Random Graphs

The random graph $G_{n,p}$ is obtained by **independently** including each edge of K_n with probability p and excluding it with probability 1 - p. (Note here that p can be a function of n.)

If H is a spanning subgraph of K_n (i.e. V(H) = [n]) with m edges then

$$\mathbf{Pr}(G_{n,p} = H) = p^m (1-p)^{\binom{n}{2}-m}.$$

Suppose that p = 1/2. Then for every H,

$$\mathbf{Pr}(G_{n,1/2} = H) = \left(\frac{1}{2}\right)^m \left(\frac{1}{2}\right)^{\binom{n}{2}-m} = \left(\frac{1}{2}\right)^{\binom{n}{2}}.$$

So $G_{n,1/2}$ is equally likely to be any H i.e. it is a random spanning sub-graph of K_n .

We study properties that occur with high probability whp i.e. with probability $\rightarrow 1$ as $n \rightarrow \infty$.

The diameter of a graph G = (V, E) is the maximum over pairs $v, w \in V$ of the shortest distance from v to w.

Theorem 1. If $p \ge \sqrt{\frac{3\ln n}{n-2}}$ then whp the diameter of $G_{n,p}$ is at most 2.

Proof Let

$$\mathcal{E}_{i,j} = \{ \not\exists k : (i,k) \text{ and } (k,j) \in E(G_{n,p}) \}.$$

Let

$$\mathcal{E} = \bigcup_{1 \le i < j \le n} \mathcal{E}_{i,j}.$$

If \mathcal{E} does not occur then the diameter of $G_{n,p}$ is at most 2.

$$\begin{aligned} \mathbf{Pr}(\mathcal{E}) &= \mathbf{Pr}\left(\bigcup_{1 \le i < j \le n} \mathcal{E}_{i,j}\right) \\ &\leq \sum_{1 \le i < j \le n} \mathbf{Pr}(\mathcal{E}_{i,j}) \\ &\leq \sum_{1 \le i < j \le n} (1 - p^2)^{n-2} \\ &\leq \sum_{1 \le i < j \le n} e^{-(n-2)p^2} \\ &\leq \sum_{1 \le i < j \le n} e^{-3\ln n} \\ &= \binom{n}{2} n^{-3} \\ &\to 0. \end{aligned}$$
(1)

(1) follows from the following:

Lemma 1.

$$1+x \le e^x$$
 for all x .

Proof

1.
$$x \ge 0$$
: $1 + x \le 1 + x + x^2/2! + x^3/3! + \dots = e^x$.
2. $x < -1$: $1 + x < 0 \le e^x$.
3. $x = -y, 0 \le y \le 1$: $1 - y \le 1 - y + (y^2/2! - y^3/3!) + (y^4/4! - y^5/5!) + \dots = e^{-y}$.

We now consider the connectivity of a random graph:

Theorem 2. Let $\epsilon > 0$ be a constant. (a) If $p \ge \frac{(1+\epsilon)\ln n}{n}$ then whp $G_{n,p}$ is connected. (b) If $p \le \frac{(1-\epsilon)\ln n}{n}$ then whp $G_{n,p}$ is noot connected.

Proof

(a) If $G_{n,p}$ is not connected then there exists a component S of size $1 \le s \le n/2$. Now if S is a component then

- (i) There is a spanning tree of S in $G_{n,p}$.
- (ii) There are no $S: \overline{S}$ edges.

Let \mathcal{E}_S be the event that S is a component. Then

$$\begin{aligned} \mathbf{Pr}(G_{n,p} \text{ is not connected}) &= \mathbf{Pr}\left(\bigcup_{\substack{S\subseteq[n]\\1\leq|S|\leq n/2}} \mathcal{E}_S\right) \\ &\leq \sum_{\substack{S\subseteq[n]\\1\leq|S|\leq n/2}} \mathbf{Pr}(\mathcal{E}_S) \\ &= \sum_{s=1}^{n/2} \binom{n}{s} \mathbf{Pr}(\mathcal{E}_{[s]}) \\ &= \sum_{s=1}^{n/2} \binom{n}{s} \mathbf{Pr}((i) \text{ and } (ii)) \\ &= \sum_{s=1}^{n/2} \binom{n}{s} \mathbf{Pr}((i)) \mathbf{Pr}((ii)) \end{aligned}$$

Since (i) and (ii) are independent events

$$= \sum_{s=1}^{n/2} {n \choose s} \mathbf{Pr}((\mathbf{i})) (1-p)^{s(n-s)}$$
(2)

Before we can proceed, we must estimate $\mathbf{Pr}((i))$.

First Moment Method

Lemma 2. Let X be a random variable taking values in $\{0, 1, 2, ..., \}$. Then

$$\mathbf{Pr}(X \neq 0) \le \mathbf{E}(X).$$

Proof Let $p_i = \mathbf{Pr}(X = i)$ for i = 0, 1, 2... Then

$$\mathbf{Pr}(X \neq 0) = p_1 + p_2 + \dots + p_k + \dots$$
$$\mathbf{E}(X) = p_1 + 2p_2 + \dots + kp_k + \dots$$

We apply this in estimating $\mathbf{Pr}((i))$ as follows: Let X denote the number of spanning trees of S in $G_{n,p}$. Then (i) occurs iff $X \neq 0$. To apply Lemma 2 we need to compute $\mathbf{E}(X)$.