Class 23

The probabilistic method

Example 1

Theorem 1. Assume that $k \geq 3$. Then

$$R(k,k) > 2^{k/2}$$
.

Proof We must prove that if $n \leq 2^{k/2}$ then there exists a Red-Blue colouring of the edges of K_n which contains no Red k-clique and no Blue k-clique. We can assume $k \geq 4$ since we know R(3,3) = 6.

We show that this is true with positive probability in a random Red-Blue colouring. So let Ω be the set of all Red-Blue edge colourings of K_n with uniform distribution. Equivalently we independently colour each edge Red with probability 1/2 and Blue with probability 1/2.

Let

 \mathcal{E}_R be the event: {There is a Red k-clique} and \mathcal{E}_B be the event: {There is a Blue k-clique}.

We show

$$\mathbf{Pr}(\mathcal{E}_R \cup \mathcal{E}_B) < 1.$$

Let C_1, C_2, \ldots, C_N , $N = \binom{n}{k}$ be the vertices of the N k-cliques of K_n . Let $\mathcal{E}_{R,j}$ be the event: $\{C_j \text{ is Red}\}$.

$$\begin{aligned}
\mathbf{Pr}(\mathcal{E}_R \cup \mathcal{E}_B) &\leq & \mathbf{Pr}(\mathcal{E}_R) + \mathbf{Pr}(\mathcal{E}_B) \\
&= & 2\mathbf{Pr}(\mathcal{E}_R) \\
&= & 2\mathbf{Pr}\left(\bigcup_{j=1}^N \mathcal{E}_{R,j}\right) \\
&\leq & 2\sum_{j=1}^N \mathbf{Pr}(\mathcal{E}_{R,j}) \\
&= & 2\sum_{j=1}^N \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
&= & 2\binom{n}{k} \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
&\leq & 2\frac{n^k}{k!} \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
&\leq & 2\frac{2^{k^2/2}}{k!} \left(\frac{1}{2}\right)^{\binom{k}{2}} \\
&= & \frac{2^{1+k/2}}{k!}
\end{aligned}$$

The result here may be strengthened slightly to state that

$$2 \binom{n}{k} \left(rac{1}{2}
ight)^{\binom{k}{2}} < 1 ext{ implies } R(k,k) > n.$$

Example 2 Colouring Problem

Theorem Let A_1, A_2, \ldots, A_n be subsets of A and $|A_i| = k$ for $1 \le i \le n$. If $n < 2^{k-1}$ then there exists a partition $A = R \cup B$ such that

$$A_i \cap R \neq \emptyset$$
 and $A_i \cap B \neq \emptyset$ $1 \leq i \leq n$.

[R = Red elements and B = Blue elements.]

Proof Randomly colour A.

 $\Omega = \{R, B\}^A = \{f : A \to \{R, B\}\},$ uniform distribution.

$$\mathcal{E} = \{ \exists i : A_i \subseteq R \text{ or } A_i \subseteq B \}.$$

Claim: $P(\mathcal{E}) < 1$.

Thus $\Omega \setminus \mathcal{E} \neq \emptyset$ and this proves the theorem.

$$\mathcal{E}_i = \{A_i \subseteq R \text{ or } A_i \subseteq B\}$$

$$\mathcal{E} = \bigcup_{i=1}^n \mathcal{E}_i.$$

$$\mathbf{P}(\mathcal{E}) \leq \sum_{i=1}^{n} \mathbf{P}(\mathcal{E}_i)$$

$$= \sum_{i=1}^{n} \binom{1}{2}^{k-1}$$

$$= n/2^{k-1}$$

$$< 1$$

Explanation:

For any set $X \subseteq A$ and any $x \in \{R, B\}^X$ we have

$$P(f(X) = x) = 2^{-|X|}$$
.

- 1. The number of ω such that f(X) = x is $2^{|A|-|X|}$.
- 2. f(X) = x just depends on the random colours assigned to X and so is *independent* of colours not in X.

Example 3 A property of tournaments.

A tournament T=(V,E) is an orientation of a complete graph. Suppose V=[n]. Thas property A_k if for every $S\subseteq [n]$, |S|=k, there exists $w\notin S$ such that w "beats" S i.e. every edge vw with $v\in S$ is oriented from v to w. It seems quite difficult to construct tournaments with this property, especially if k is large.

Theorem 2. If $\binom{n}{k} \left(1 - \frac{1}{2^k}\right)^{n-k} < 1$ then there exists a tournament with property A_k .

Proof Let T be a random tournament on [n] i.e. randomly orient the edges of K_n . For $S \subseteq [n]$, |S| = k, let

$$\mathcal{E}_S = \{ \not\exists v \notin S : v \text{ beats } S \}.$$

Then

$$\mathbf{Pr}(\mathcal{E}_S) = \left(1 - \frac{1}{2^k}\right)^{n-k}.$$

Here $1 - \frac{1}{2^k}$ is the probability that one $w \notin S$ fails to beat S and the n - k events "v fails to beat S, $w \notin S$ " are independent.

Thus

$$egin{array}{lcl} \mathbf{Pr}(
eg A_k) & = & \mathbf{Pr}\left(igcup_{\substack{S\subseteq[n]\|S|=k}} \mathcal{E}_S
ight) \ & \leq & \sum_{\substack{S\subseteq[n]\|S|=k}} \mathbf{Pr}(\mathcal{E}_S) \ & = & ig(n \ kig) \left(1-rac{1}{2^k}
ight)^{n-k} \ & < & 1. \end{array}$$

Note that if we fix k and let $n \to \infty$, then $\binom{n}{k} \left(1 - \frac{1}{2^k}\right)^{n-k} \to 0$ and we say that a random tournament has property A_k , with high probability (**whp**) i.e. with probability tending to 1 as n tends to ∞ .