Class 22

To see that the definition of PI makes sense we need to prove

Lemma 1. If x, y are in the same orbit of X then W(x) = W(y).

Proof Suppose that g * x = y. Then

$$W(y) = \prod_{d \in D} w_{y(d)}$$

=
$$\prod_{d \in D} w_{g*x(d)}$$

=
$$\prod_{d \in D} w_{x(g^{-1}(d))}$$
 (1)

$$= \prod_{d \in D} w_{x(d)}$$
(2)
$$= W(x)$$

Note, that we can go from (1) to (2) because as d runs over D, $g^{-1}(d)$ also runs over d. \Box Let $\Delta = |D|$. If $g \in G$ has k_i cycles of length i then we define

$$ct(g) = x_1^{k_1} x_2^{k_2} \cdots x_{\Delta}^{k_{\Delta}}.$$

The Cycle Index Polynomial of G, C_G is then defined to be

$$C_G(x_1, x_2, \dots, x_\Delta) = \frac{1}{|G|} \sum_{g \in G} ct(g).$$

In Example 2 with n = 2 we have

g	е	a	b	с	р	q	r	s
ct(g)	x_1^4	x_4	x_{2}^{2}	x_4	x_{2}^{2}	x_{2}^{2}	$x_1^2 x_2$	$x_1^2 x_2$

and so

$$C_G(x_1, x_2, x_3, x_4) = \frac{1}{8}(x_1^4 + 3x_2^2 + 2x_1^2x_2 + 2x_4).$$

In Example 2 with n = 3 we have

g	е	a	b	с	р	q	r	s
ct(g)	x_1^9	$x_1 x_4^2$	$x_1 x_2^4$	$x_1 x_4^2$	$x_1^3 x_2^3$	$x_1^3 x_2^3$	$x_1^3 x_2^3$	$x_1^3 x_2^3$

and so

$$C_G(x_1, x_2, x_3, x_4) = \frac{1}{8}(x_1^9 + x_1x_2^4 + 4x_1^3x_2^3 + 2x_1x_4^2).$$

Theorem 1. (Polya)

$$PI = C_G \left(\sum_{c \in C} w_c, \sum_{c \in C} w_c^2, \dots, \sum_{c \in C} w_c^{\Delta} \right).$$

In Example 2, we replace x_1 by R + B, x_2 by $R^2 + B^2$ and so on. When n = 2 this gives

$$PI = \frac{1}{8}((R+B)^4 + 3(R^2 + B^2) + 2(R+B)^2(R^2 + B^2) + 2(R^4 + B^4))$$

= $R^4 + R^3B + 2R^2B^2 + RB^3 + B^4.$

Putting R = B = 1 gives the number of distinct colourings. Note also the formula for *PI* tells us that there are 2 distinct colourings using 2 reds and 2 Blues.

Proof of Polya's Theorem

Let $X = X_1 \cup X_2 \cup \cdots \cup X_m$ be the equivalence clases of X under the relation

$$x \sim y$$
 iff $W(x) = W(y)$.

By Lemma 1, $g * x \sim x$ for all $x \in X, g \in G$ and so we can think of G acting on each X_i individually i.e. we use the fact that $x \in X_i$ implies $g * x \in X_i$ for all $i \in [m], g \in G$. We use the notation $g^{(i)} \in G^{(i)}$ when we restrict attention to X_i . Let m_i denote the number of orbits $\nu_{X_i,G^{(i)}}$. Then

$$PI = \sum_{i=1}^{m} m_i W_i$$

$$= \sum_{i=1}^{m} W_i \left(\frac{1}{|G|} \sum_{g \in G} |Fix(g^{(i)})| \right)$$
 by Theorem the theorem of Burnside, Frobenius
$$= \frac{1}{|G|} \sum_{g \in G} \sum_{i=1}^{m} |Fix(g^{(i)})| W_i$$

$$= \frac{1}{|G|} \sum_{g \in G} W(Fix(g))$$
(3)

Note that (3) follows from $Fix(g) = \bigcup_{i=1}^{m} Fix(g^{(i)})$ since $x \in Fix(g^{(i)})$ iff $x \in W_i$ and g * x = x. Suppose now that $ct(g) = x_1^{k_1} x_2^{k_2} \cdots x_{\Delta}^{k_{\Delta}}$ as above. Then we claim that

$$W(Fix(g)) = \left(\sum_{c \in C} w_c\right)^{k_1} \left(\sum_{c \in C} w_c^2\right)^{k_2} \cdots \left(\sum_{c \in C} w_c^{\Delta}\right)^{k_{\Delta}}.$$
(4)

Substituting (4) into (3) yields the theorem.

To verify (4) we use the fact that if $x \in Fix(g)$, then the elements of a cycle of g must be given the same colour. A cycle of length i will then contribute a factor $\sum_{c \in C} w_c^i$ where the term w_c^i comes from the choice of colour c for every element of the cycle.