Class 21

Cycles of a permutation

Let 7 : D — D be a permutation of the finite set D. Consider the digraph I', = (D, A) where
A ={(i,m(i)) : i € D}. T'; is a collection of vertex disjoint cycles. Each x € D being on a unique
cycle. Here a cycle can consist of a loop i.e. when 7(x) = .

Example: D = [10].
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The cycles are (1,6,8),(2),(3,7,9,5), (4,10).

In general consider the sequence i, (i), 72(4), . . . ,. Since D is finite, there exists a first pair k¥ < £ such
that 7%(i) = w%(i). Now we must have k = 0, since otherwise putting z = 7%71(i) # y = 7¢~1(4)
we see that m(z) = m(y), contradicting the fact that 7 is a permutation. So 4 lies on the cycle
C = (i,n(i), 72(q),..., 77 1(i),i). If j is not a vertex of C then m(j) is not on C' and so we can
repeat the argument to show that the rest of D is partitioned into cycles.

Example 1 First consider eg, e1, . .., e,_1 as permutations of D. The cycles of eg are (1), (2), ..., (n).
Now suppose that 0 < m < n. Let a,,, = ged(m,n) and k., = n/an,. The cycle C; of e, containing
the element 7 is is (¢,7 +m, i+ 2m, ..., i+ (k, — 1)m) since n is a divisor k,,m and not a divisor of

kE'm for k' < ky,. In total, the cycles of e,, are Cy,Cy,...,Cq, —1. This is because they are disjoint
and together contain n elements. (If i + rm =i’ + 'm mod n then (r —r")m + (i — ') = fn. But
|i —i'| < an, and so dividing by a,, we see that we must have i = i’.)

Next observe that if colouring x is fixed by e, then elements on the same cycle C; must be coloured
the same. Suppose for example that the colour of ¢ 4+ bm is different from the colour of i 4+ (b+ 1)m,
say Red versus Blue. Then in e, (z) the colour of i + (b + 1)m will be Red and so e, (z) # =.
Conversely, if elements on the same cycle of e, have the same colour then in z € Fiz(ey,). This
property is not peculiar to this example, as we will see.

Thus in this example we see that |Fiz(en,)| = 2°" and then applying the Burnside/Frobenius
Theorem we see that
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1 The pattern inventory

We now extend the above analysis to answer questions like: How many distinct ways are there to
colour an 8 x 8 chessboard with 32 white squares and 32 black squares?

The scenrio now consists of a set D (Domain, a set C' (colours) and X = {z: D — C} is the set
of colourings of D with the colour set C'. G is now a group of permutations of D.

We see first how to extend each permutation of D to a permutation of X. Suppose that z € X and
g € G then we define g x x by

g*z(d) = z(g7(d)) for all d € D.

Explanation: The colour of d is the colour of the element g~!(d) which is mapped to it by g.



Consider Example 1 with n = 4. Suppose that g = e; i.e. rotate clockwise by 7/2 and z(1) =
b,z(2) = b,x(3) = r,z(4) = r. Then for example

g*x(1) = x(g7 (1)) = z(4) = r, as before.

Now associate a weight w, with each ¢ € C. If x € X then
deD

Thus, if in Example 1 we let w(r) = R and w(b) = B and take (1) = b, 2(2) = b,z(3) = r,z(4) = r
then we will write W (z) = B?R2.

For S C X we define the inventory of S to be

W(S)=> W().

z€eS

The probelm we discuss now is to compute the pattern inventory PI = W(S*) where S* contains
one member of each orbit of X under G.

For example, in the case of Example 2, with n = 2, we gt

PI=R*+ R*B+2R?2B? + RB® + B*.



