
Class 21

Cycles of a permutation

Let π : D → D be a permutation of the finite set D. Consider the digraph Γπ = (D,A) where
A = {(i, π(i)) : i ∈ D}. Γπ is a collection of vertex disjoint cycles. Each x ∈ D being on a unique
cycle. Here a cycle can consist of a loop i.e. when π(x) = x.

Example: D = [10].

i 1 2 3 4 5 6 7 8 9 10
π(i) 6 2 7 10 3 8 9 1 5 4

The cycles are (1, 6, 8), (2), (3, 7, 9, 5), (4, 10).

In general consider the sequence i, π(i), π2(i), . . . ,. Since D is finite, there exists a first pair k < ` such
that πk(i) = π`(i). Now we must have k = 0, since otherwise putting x = πk−1(i) 6= y = π`−1(i)
we see that π(x) = π(y), contradicting the fact that π is a permutation. So i lies on the cycle
C = (i, π(i), π2(i), . . . , πk−1(i), i). If j is not a vertex of C then π(j) is not on C and so we can
repeat the argument to show that the rest of D is partitioned into cycles.

Example 1 First consider e0, e1, . . . , en−1 as permutations of D. The cycles of e0 are (1), (2), . . . , (n).
Now suppose that 0 < m < n. Let am = gcd(m,n) and km = n/am. The cycle Ci of em containing
the element i is is (i, i + m, i + 2m, . . . , i + (km − 1)m) since n is a divisor kmm and not a divisor of
k′m for k′ < km. In total, the cycles of em are C0, C1, . . . , Cam−1. This is because they are disjoint
and together contain n elements. (If i + rm = i′ + r′m mod n then (r − r′)m + (i − i′) = `n. But
|i − i′| < am and so dividing by am we see that we must have i = i′.)

Next observe that if colouring x is fixed by em then elements on the same cycle Ci must be coloured
the same. Suppose for example that the colour of i+ bm is different from the colour of i+(b+1)m,
say Red versus Blue. Then in em(x) the colour of i + (b + 1)m will be Red and so em(x) 6= x.
Conversely, if elements on the same cycle of em have the same colour then in x ∈ Fix(em). This
property is not peculiar to this example, as we will see.

Thus in this example we see that |Fix(em)| = 2am and then applying the Burnside/Frobenius
Theorem we see that

νX,G =
1

n

n−1∑

m=0

2gcd(m,n).

1 The pattern inventory

We now extend the above analysis to answer questions like: How many distinct ways are there to
colour an 8 × 8 chessboard with 32 white squares and 32 black squares?

The scenrio now consists of a set D (Domain, a set C (colours) and X = {x : D → C} is the set
of colourings of D with the colour set C. G is now a group of permutations of D.

We see first how to extend each permutation of D to a permutation of X. Suppose that x ∈ X and
g ∈ G then we define g ∗ x by

g ∗ x(d) = x(g−1(d)) for all d ∈ D.

Explanation: The colour of d is the colour of the element g−1(d) which is mapped to it by g.
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Consider Example 1 with n = 4. Suppose that g = e1 i.e. rotate clockwise by π/2 and x(1) =
b, x(2) = b, x(3) = r, x(4) = r. Then for example

g ∗ x(1) = x(g−1(1)) = x(4) = r, as before.

Now associate a weight wc with each c ∈ C. If x ∈ X then

W (x) =
∏

d∈D

wx(d).

Thus, if in Example 1 we let w(r) = R and w(b) = B and take x(1) = b, x(2) = b, x(3) = r, x(4) = r
then we will write W (x) = B2R2.

For S ⊆ X we define the inventory of S to be

W (S) =
∑

x∈S

W (x).

The probelm we discuss now is to compute the pattern inventory PI = W (S∗) where S∗ contains
one member of each orbit of X under G.

For example, in the case of Example 2, with n = 2, we gt

PI = R4 + R3B + 2R2B2 + RB3 + B4.
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