
Class 20

Let νX,G denote the number of orbits.

Theorem 1.

νX,G =
1

|G|

∑

x∈X

|Sx|.

Proof

νX,G =
∑

x∈X

1

|Ox|

=
∑

x∈X

|Sx|

|G|
,

since |Ox| |Sx| = |G| for all x ∈ X. 2

Thus in example 1 we have

νX,G =
1

4
(4 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 2 + 2 + 1 + 1 + 1 + 1 + 4) = 6.

In example 2 we have

νX,G =
1

8
(8 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 2 + 4 + 4 + 2 + 2 + 2 + 2 + 8) = 6.

Theorem 1 is hard to use if |X| is large, even if |G| is small. For g ∈ G let Fix(g) = {x ∈ X :
g ∗ x = x}.

Theorem 2. (Frobenius, Burnside)

νX,G =
1

|G|

∑

g∈G

|Fix(g)|.

Proof Let A(x, g) = 1g∗x=x. Then

νX,G =
1

|G|

∑

x∈X

|Sx|

=
1

|G|

∑

x∈X

∑

g∈G

A(x, g)

=
1

|G|

∑

g∈G

∑

x∈X

A(x, g)

=
1

|G|

∑

g∈G

|Fix(g)|.

2

Let us consider example 1 with n = 6. We compute

g e0 e1 e2 e3 e4 e5

|Fix(g)| 64 2 4 8 4 2

1



Applying Theorem 2 we obtain

νX,G =
1

6
(64 + 2 + 4 + 8 + 4 + 2) = 14.

Example 2 It is straightforward to check that when n is even, we have

g e a b c p q r s

|Fix(g)| 2n2

2n2/4 2n2/2 2n2/4 2n2/2 2n2/2 2n(n+1)/2 2n(n+1)/2

For example, if we divide the chessboard into 4 n/2 × n/2 sub-squares, numbered 1,2,3,4 then a
colouring is in Fix(a) iff each of these 4 sub-squares have the same colouring.
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