Class 20

Let $\nu_{X,G}$ denote the number of orbits.

Theorem 1.

 $\nu_{X,G} = \frac{1}{|G|} \sum_{x \in X} |S_x|.$

Proof

$$\nu_{X,G} = \sum_{x \in X} \frac{1}{|O_x|}$$
$$= \sum_{x \in X} \frac{|S_x|}{|G|},$$

since $|O_x| |S_x| = |G|$ for all $x \in X$.

Thus in example 1 we have

$$\nu_{X,G} = \frac{1}{4}(4+1+1+1+1+1+1+1+1+2+2+1+1+1+4) = 6.$$

In example 2 we have

$$\nu_{X,G} = \frac{1}{8}(8+2+2+2+2+2+2+2+2+4+4+2+2+2+8) = 6.$$

Theorem 1 is hard to use if |X| is large, even if |G| is small. For $g \in G$ let $Fix(g) = \{x \in X : g * x = x\}$.

Theorem 2. (Frobenius, Burnside)

$$\nu_{X,G} = \frac{1}{|G|} \sum_{g \in G} |Fix(g)|.$$

Proof Let $A(x,g) = 1_{g*x=x}$. Then

$$\nu_{X,G} = \frac{1}{|G|} \sum_{x \in X} |S_x|$$

$$= \frac{1}{|G|} \sum_{x \in X} \sum_{g \in G} A(x,g)$$

$$= \frac{1}{|G|} \sum_{g \in G} \sum_{x \in X} A(x,g)$$

$$= \frac{1}{|G|} \sum_{g \in G} |Fix(g)|.$$

Let us consider example 1 with n = 6. We compute

g	e_0	e_1	e_2	e_3	e_4	e_5
Fix(g)	64	2	4	8	4	2

Applying Theorem 2 we obtain

$$\nu_{X,G} = \frac{1}{6}(64 + 2 + 4 + 8 + 4 + 2) = 14.$$

Example 2 It is straightforward to check that when n is even, we have

l	g	е	a	b	с	р	q	r	s
	Fix(g)	2^{n^2}	$2^{n^2/4}$	$2^{n^2/2}$	$2^{n^2/4}$	$2^{n^2/2}$	$2^{n^2/2}$	$2^{n(n+1)/2}$	$2^{n(n+1)/2}$

For example, if we divide the chessboard into $4 n/2 \times n/2$ sub-squares, numbered 1,2,3,4 then a colouring is in Fix(a) iff each of these 4 sub-squares have the same colouring.