Class 19

Orbits: If $x \in X$ then its orbit $O_x = \{y \in X : \exists g \in G \text{ such that } g * x = y\}.$

Lemma 1. The orbits partition X.

Proof $x = 1_X * x$ and so $x \in O_x$ and so $X = \bigcup_{x \in X} O_x$.

Suppose now that $O_x \cap O_y \neq \emptyset$ i.e. $\exists g_1, g_2$ such that $g_1 * x = g_2 * y$. But then for any $g \in G$ we have

$$g \ast x = (g \circ (g_1^{-1} \circ g_2)) \ast y \in O_y$$

and so $O_x \subseteq O_y$. Similarly $O_y \subseteq O_x$. Thus $O_x = O_y$ whenever $O_x \cap O_y \neq \emptyset$.

The two problems we started with are of the following form: Given a set X and a group of permutations *acting* on X, compute the number of orbits i.e. distinct colourings.

A subset H of G is called a *sub-group* of G if it satisfies *axioms* A1, A2, A3 (with G replaced by H).

The stabilizer S_x of the element x is $\{g : g * x = x\}$. It is a sub-group of G.

Lemma 2.

If $x \in X$ then $|O_x| |S_x| = |G|$.

Proof Fix $x \in X$ and define an equivalence relation \sim on G by

$$g_1 \sim g_2$$
 if $g_1 * x = g_2 * x$.

Let the equivalence classes be A_1, A_2, \ldots, A_m . We first argue that

$$|A_i| = |S_x| \qquad i = 1, 2, \dots, m.$$
(1)

Fix i and $g \in A_i$. Then

$$h \in A_i \leftrightarrow g \ast x = h \ast x. \leftrightarrow (g^{-1} \circ h) \ast x = x \leftrightarrow (g^{-1} \circ h) \in S_x. \leftrightarrow h \in g \circ S_x$$

where $g \circ S_x = \{g \circ \sigma : \sigma \in S_x\}$. Thus $|A_i| = |g \circ S_x|$. But $|g \circ S_x| = |S_x|$ since if $\sigma_1, \sigma_2 \in S_x$ and $g \circ \sigma_1 = g \circ \sigma_2$ then $g^{-1} \circ (g \circ \sigma_1) = (g^{-1} \circ g) \circ \sigma_1 = \sigma_1 = g^{-1} \circ (g \circ \sigma_2) = \sigma_2$. This proves (1).

Finally, $m = |O_x|$ since there is a distinct equivalence class for each distinct g * x.

Examples:

In example 1 with n = 4 we have

x	O_x	S_x
rrrr	$\{rrrr\}$	G
brrr	$\{brrr, rbrr, rrbr, rrrb\}$	$\{e_0\}$
rbrr	$\{brrr, rbrr, rrbr, rrrb\}$	$\{e_0\}$
rrbr	$\{brrr, rbrr, rrbr, rrrb\}$	$\{e_0\}$
rrrb	$\{brrr, rbrr, rrbr, rrrb\}$	$\{e_0\}$
bbrr	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e_0\}$
rbbr	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e_0\}$
rrbb	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e_0\}$
brrb	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e_0\}$
rbrb	${\rm rbrb, brbr}$	$\{e_0, e_2\}$
brbr	${\rm rbrb, brbr}$	$\{e_0, e_2\}$
bbbr	$\{bbbr,rbbb,brbb,bbrb\}$	$\{e_0\}$
bbrb	$\{bbbr,rbbb,brbb,bbrb\}$	$\{e_0\}$
brbb	{bbbr,rbbb,brbb,bbrb}	$\{e_0\}$
rbbb	{bbbr,rbbb,brbb,bbrb}	$\{e_0\}$
bbbb	$\{bbbb\}$	G

In example 2 we have

x	O_x	S_x
rrrr	$\{e\}$	G
brrr	$\{brrr, rbrr, rrbr, rrrb\}$	$\{e,r\}$
rbrr	$\{brrr,rbrr,rrbr,rrrb\}$	$\{e,s\}$
rrbr	$\{brrr,rbrr,rrbr,rrrb\}$	$\{e,r\}$
rrrb	$\{brrr,rbrr,rrbr,rrrb\}$	$\{e,s\}$
bbrr	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e,p\}$
rbbr	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e,q\}$
rrbb	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e,p\}$
brrb	$\{bbrr,rbbr,rrbb,brrb\}$	$\{e,q\}$
rbrb	${\rm rbrb, brbr}$	$\{e,b,r,s\}$
brbr	${\rm rbrb, brbr}$	$\{e,b,r,s\}$
bbbr	$\{bbbr,rbbb,brbb,bbrb\}$	$\{e,s\}$
bbrb	$\{bbbr,rbbb,brbb,bbrb\}$	$\{e,r\}$
brbb	{bbbr,rbbb,brbb,bbrb}	$\{e,s\}$
rbbb	{bbbr,rbbb,brbb,bbrb}	$\{e,r\}$
bbbb	$\{e\}$	G