
Class 18

Chapter 37: Polya’s Theory of Counting

Example 1 A disc lies in a plane. Its centre is fixed but it is free to rotate. It has been divided into
n sectors of angle 2π/n. Each sector is to be coloured Red or Blue. How many different colourings
are there? One could argue for 2n. On the other hand, what if we only distinguish colourings
which cannot be obtained from one another by a rotation. For example if n = 4 and the sectors are
numbered 1,2,3,4 in clockwise order around the disc, then there are only 6 ways of colouring the
disc – 4R, 4B, 3R1B, 1R3B, RRBB and RBRB.

Example 2 Now consider an n×n “chessboard” where n ≥ 2. Here we colour the squares Red and
Blue and two colourings are different only if one cannot be obtained from another by a rotation or
a reflection. For n = 2 there are 6 colourings.

The general scenario that we consider is as follows: We have a set X which will stand for the set
of colourings when transformations are not allowed. (In example 1, |X| = 2n and in example 2,

|X| = 2n2

). In addition there is a set G of permutations of X. You can think of the permutations as
moving the colours around. The set of allowable permutations will have a group structure: Given
two members g1, g2 ∈ G we can define their composition g1 ◦ g2 by g1 ◦ g2(x) = g1(g2(x)) for x ∈ X.
We require that G is closed under composiiton i.e. g1 ◦ g2 ∈ G if g1, g2 ∈ G. We also have the
following:

A1 The identity permutation 1X ∈ G.

A2 (g1 ◦ g2) ◦ g3 = g1 ◦ (g2 ◦ g3) (Composition is associative).

A3 The inverse permutation g−1 ∈ G for every g ∈ G.

(A set G with a binary relation ◦ which satisfies A1,A2,A3 is called a Group).

In example 1 X = {1, 2, . . . , n} the group is G1 = {e0, e1, . . . , en−1} where ej ∗ x = x + j mod n
stands for rotation by 2jπ/n.

In example 2, X = 2[n]2 . We number the squares 1,2,3,4 in clockwise order starting at the upper left
and represent X as a sequence from {r, b}4 where for example rrbr means colour 1,2,4 Red and 3
Blue. G2 = {e, a, b, c, p, q, r, s} is in a sense independent of n. e, a, b, c represent a rotation through
0, 90, 180, 270 degrees respectively. p, q represent reflections in the vertical and horizontal and r, s
represent reflections in the diagonals 1,3 and 2,4 respectively. Now check the following table:

rrrr brrr rbrr rrbr rrrb bbrr rbbr rrbb brrb rbrb brbr bbbr bbrb brbb rbbb bbbb
e rrrr brrr rbrr rrbr rrrb bbrr rbbr rrbb brrb rbrb brbr bbbr bbrb brbb rbbb bbbb
a rrrr rbrr rrbr rrrb brrr rbbr rrbb brrb bbrr brbr rbrb rbbb bbbr bbrb brbb bbbb
b rrrr rrbr rrrb brrr rbrr rrbb brrb bbrr rbbr rbrb brbr brbb rbbb bbbr bbrb bbbb
c rrrr rrrb brrr rbrr rrbr brrb bbrr rbbr rrbb brbr rbrb bbrb brbb rbbb bbbr bbbb
p rrrr rbrr brrr rrrb rrbr bbrr brrb rrbb rbbr brbr rbrb bbrb bbbr brbb brbb bbbb
q rrrr rrrb rrbr rbrr brrr rrbb rbbr bbrr brrb brbr rbrb rbbb brbb bbrb bbbr bbbb
r rrrr brrr rrrb rrbr rbrr brrb rrbb rbbr bbrr rbrb brbr brbb bbrb bbbr rbbb bbbb
s rrrr rrbr rbrr brrr rrrb rbbr bbrr brrb rrbb rbrb brbr bbbr rbbb brbb bbrb bbbb

From now on we will write g ∗ x in place of g(x).

Orbits: If x ∈ X then its orbit Ox = {y ∈ X : ∃g ∈ G such that g ∗ x = y}.
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Lemma 1. The orbits partition X.

Proof x = 1X ∗ x and so x ∈ Ox and so X =
⋃

x∈X Ox.

Suppose now that Ox ∩Oy 6= ∅ i.e. ∃g1, g2 such that g1 ∗x = g2 ∗y. But then for any g ∈ G we have

g ∗ x = (g ◦ (g−1
1 ◦ g2)) ∗ y ∈ Oy

and so Ox ⊆ Oy. Similarly Oy ⊆ Ox. Thus Ox = Oy whenever Ox ∩ Oy 6= ∅. 2

The two problems we started with are of the following form: Given a set X and a group of permu-
tations acting on X, compute the number of orbits i.e. distinct colourings.
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