Principle of Inclusion-Exclusion

Class 17

Euler’s Function ¢(n).

Let ¢(n) be the number of positive integers © < n which are mutually prime to n i.e. have no
common factors with n, other than 1.

$(12) = 4.
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Let n = pl"p32pi? - - pp* be the prime factorisation of n.

A; ={z €[n]: p; divides z},

choices for f(i), for each i.

We can also practise inclusion-exclusion with this example. Let A; = {f : [n] — [n] :

i=1,2,...,n. Then X =, 4;. So,

(by the binomial theorem)
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Let X ={f:[n] = [n]: f(@) #ifori=1,2,..
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.,n}. Now |X| = (n — 1)™ since there are n — 1
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Proofs of inclusion-exclusion formula
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Proof 2 Write the formula as
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where
n; = Z |As] fori=1,2,...,N.
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If  in in none of the A; then x contributes 1 to the RHS of (1).

If x is in exactly & > 1 of the A; then x contributes
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to the RHS of (1).
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