
Class 15

Dilworth’s theorem and extremal set theory

We consider the size of the largest anti-chain A in the power set Pn = {A : A ⊆ [n]}.

Theorem 1. Sperner

If A ⊆ Pn is an ant–chain then |A| ≤
(

n
bn/2c

)

.

Proof Let αk = |{A ∈ A : |A| = k}| be the number of k-sets in A. We show that

n
∑

k=0

αk
(

n
k

) ≤ 1. (1)

And then because
(

n
k

)

≤
(

n
bn/2c

)

for all k we have

n
∑

k=0

αk
(

n
bn/2c

) and so |A| =

n
∑

k=0

αk ≤

(

n

bn/2c

)

.

To verify (1) we define a maximal chain Cπ for every permutation π of [n]. Here

Cπ = (∅ ⊆ {π(1)} ⊆ {π(1), π(2)} ⊆ · · · ⊆ [n].

Then for permutation π and A ∈ A define

M(π,A) =

{

1 A ∈ Cπ

0 otherwise

Then we have
∑

A∈A

M(π,A) ≤ 1 for all permutations π (2)

∑

π

M(π,A) = |A|!(n − |A|)! for all A ∈ A (3)

(2) follows from the fact that A is an anti-chain and any 2 sets in Cπ are comparable.
(3) is explained as follows: Suppose that |A| = k. Then there are k! ways of ordering the elements
of A so that it is the k-element set in Cπ and then for each such ordering, there are (n − k)! ways
of ordering the rest of the elements of [n].

Then we have

n! ≥
∑

π

∑

A∈A

M(π,A) =
∑

A∈A

∑

π

M(π,A) =
∑

A∈A

|A|!(n − |A|)! =

n
∑

k=0

αkk!(n − k)!

and (1) follows on dividing
∑n

k=0
αkk!(n − k)! ≤ n! by n!. 2

Intersecting Families A family A ⊆ Pn is an intersecting family if A,B ∈ A implies A ∩ B 6= ∅.

Exercise If A is an intersecting family then |A| ≤ 2n−1.

Theorem 2. Bollobás, Erdős-Ko-Rado

If A is an intersecting family which is also an anti-chain and A ∈ A implies that |A| ≤ bn/2c then

bn/2c
∑

k=1

αk
(

n−1

k−1

) ≤ 1. (4)

1



Proof If π is a permutation of [n] then an interval of π is a set of the form {π(i), π(i +
1), . . . , π(i + j)} where π(i + k) = π(i + k − n) if i + k > n. For A ∈ A we will write A ∈ π to mean
that A is an interval of π.

Now define

M(π,A) =

{

1

|A| A ∈ π

0 otherwise

Then we have

∑

A∈A

M(π,A) ≤ 1 for all permutations π (5)

∑

π

M(π,A) = n(|A| − 1)!(n − |A|)! for all A ∈ A (6)

(5) is explained as follows: Let k be the size of the smallest interval of π which is a member
of A. Assume w.l.o.g. that A = [k] and π(i) = i for i ∈ [n]. If A′ ∈ A is another interval
in π, let it be of type 1 if it contains 1 and of type 2 otherwise. A type 1 interval is of the form
{x, x+1, . . . , n, 1, . . . , i}, i 6= k and a type 2 interval is of the form {i, i+1, . . . , k, k+1, . . . , y}, i 6= 1.
Here i is calld the edge of the interval. There is at most one type 1 interval with edge i, else A is
not an anti-chain. Similarly for type 2 intervals. Finally, if there is a type 1 and a type 2 interval
with the same edge i then there are at most k − i type 1 intervals and at most i− 1 type 2 intrvals.
Finally note that each of the at most k intervals in π contributes at most 1/k.

(6) is explained as follows: Suppose that |A| = k. Then there n choices for the start of the interval
and then there are k! ways of ordering the elements of A so that it is interval following then for each
such ordering, there are (n− k)! ways of ordering the rest of the elements of [n]. Then we divide by
|A| = k.

Then we have

n! ≥
∑

π

∑

A∈A

M(π,A) =
∑

A∈A

∑

π

M(π,A) =
∑

A∈A

n(|A| − 1)!(n − |A|)! =

bn/2c
∑

k=1

αkn(k − 1)!(n − k)!

and (4) follows on dividing
∑bn/2c

k=1
αkn(k − 1)!(n − k)! ≤ n! by n! 2

Corollary 3. If A ⊆ Pn is intersecting and if A ∈ A implies that |A| = k ≤ bn/2c then |A| ≤
(

n−1

k−1

)

.
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