Class 15

Dilworth's theorem and extremal set theory

We consider the size of the largest anti-chain \mathcal{A} in the power set $\mathcal{P}_n = \{A : A \subseteq [n]\}$.

Theorem 1. Sperner

If $\mathcal{A} \subseteq \mathcal{P}_n$ is an ant-chain then $|\mathcal{A}| \leq {n \choose \lfloor n/2 \rfloor}$.

Proof Let $\alpha_k = |\{A \in \mathcal{A} : |A| = k\}|$ be the number of k-sets in \mathcal{A} . We show that

$$\sum_{k=0}^{n} \frac{\alpha_k}{\binom{n}{k}} \le 1.$$
(1)

And then because $\binom{n}{k} \leq \binom{n}{\lfloor n/2 \rfloor}$ for all k we have

$$\sum_{k=0}^{n} \frac{\alpha_k}{\binom{n}{\lfloor n/2 \rfloor}} \text{ and so } |\mathcal{A}| = \sum_{k=0}^{n} \alpha_k \le \binom{n}{\lfloor n/2 \rfloor}.$$

To verify (1) we define a maximal chain C_{π} for every permutation π of [n]. Here

$$C_{\pi} = (\emptyset \subseteq \{\pi(1)\} \subseteq \{\pi(1), \pi(2)\} \subseteq \cdots \subseteq [n].$$

Then for permutation π and $A \in \mathcal{A}$ define

$$M(\pi, A) = \begin{cases} 1 & A \in C_{\pi} \\ 0 & \text{otherwise} \end{cases}$$

Then we have

$$\sum_{A \in \mathcal{A}} M(\pi, A) \leq 1 \quad \text{for all permutations } \pi$$
 (2)

$$\sum_{\pi} M(\pi, A) = |A|!(n - |A|)! \quad \text{for all } A \in \mathcal{A}$$
(3)

(2) follows from the fact that \mathcal{A} is an anti-chain and any 2 sets in C_{π} are comparable.

(3) is explained as follows: Suppose that |A| = k. Then there are k! ways of ordering the elements of A so that it is the k-element set in C_{π} and then for each such ordering, there are (n-k)! ways of ordering the rest of the elements of [n].

Then we have

$$n! \ge \sum_{\pi} \sum_{A \in \mathcal{A}} M(\pi, A) = \sum_{A \in \mathcal{A}} \sum_{\pi} M(\pi, A) = \sum_{A \in \mathcal{A}} |A|! (n - |A|)! = \sum_{k=0}^{n} \alpha_k k! (n - k)!$$
follows on dividing $\sum_{k=0}^{n} \alpha_k k! (n - k)! \le n!$ by $n!$.

and (1) follows on dividing $\sum_{k=0}^{n} \alpha_k k! (n-k)! \leq n!$ by n!.

Intersecting Families A family $\mathcal{A} \subseteq \mathcal{P}_n$ is an *intersecting* family if $A, B \in \mathcal{A}$ implies $A \cap B \neq \emptyset$.

Exercise If \mathcal{A} is an intersecting family then $|\mathcal{A}| \leq 2^{n-1}$.

Theorem 2. Bollobás, Erdős-Ko-Rado

If A is an intersecting family which is also an anti-chain and $A \in A$ implies that $|A| \leq |n/2|$ then

$$\sum_{k=1}^{\lfloor n/2 \rfloor} \frac{\alpha_k}{\binom{n-1}{k-1}} \le 1.$$
(4)

Proof If π is a permutation of [n] then an *interval* of π is a set of the form $\{\pi(i), \pi(i+1), \ldots, \pi(i+j)\}$ where $\pi(i+k) = \pi(i+k-n)$ if i+k > n. For $A \in \mathcal{A}$ we will write $A \in \pi$ to mean that A is an interval of π .

Now define

$$M(\pi, A) = \begin{cases} \frac{1}{|A|} & A \in \pi\\ 0 & \text{otherwise} \end{cases}$$

Then we have

$$\sum_{A \in \mathcal{A}} M(\pi, A) \leq 1 \quad \text{for all permutations } \pi$$

$$\sum_{\pi} M(\pi, A) = n(|A| - 1)!(n - |A|)! \quad \text{for all } A \in \mathcal{A}$$
(6)

(5) is explained as follows: Let k be the size of the smallest interval of π which is a member of \mathcal{A} . Assume w.l.o.g. that A = [k] and $\pi(i) = i$ for $i \in [n]$. If $A' \in \mathcal{A}$ is another interval in π , let it be of type 1 if it contains 1 and of type 2 otherwise. A type 1 interval is of the form $\{x, x+1, \ldots, n, 1, \ldots, i\}, i \neq k$ and a type 2 interval is of the form $\{i, i+1, \ldots, k, k+1, \ldots, y\}, i \neq 1$. Here *i* is calld the *edge* of the interval. There is at most one type 1 interval with edge *i*, else \mathcal{A} is not an anti-chain. Similarly for type 2 intervals. Finally, if there is a type 1 and a type 2 interval with the same edge *i* then there are at most k - i type 1 intervals and at most i - 1 type 2 intrvals. Finally note that each of the at most k intervals in π contributes at most 1/k.

(6) is explained as follows: Suppose that |A| = k. Then there *n* choices for the start of the interval and then there are k! ways of ordering the elements of *A* so that it is interval following then for each such ordering, there are (n-k)! ways of ordering the rest of the elements of [n]. Then we divide by |A| = k.

Then we have

$$n! \ge \sum_{\pi} \sum_{A \in \mathcal{A}} M(\pi, A) = \sum_{A \in \mathcal{A}} \sum_{\pi} M(\pi, A) = \sum_{A \in \mathcal{A}} n(|A| - 1)!(n - |A|)! = \sum_{k=1}^{\lfloor n/2 \rfloor} \alpha_k n(k - 1)!(n - k)!$$

and (4) follows on dividing $\sum_{k=1}^{\lfloor n/2 \rfloor} \alpha_k n(k-1)!(n-k)! \le n!$ by n!

Corollary 3. If $\mathcal{A} \subseteq \mathcal{P}_n$ is intersecting and if $A \in \mathcal{A}$ implies that $|A| = k \leq \lfloor n/2 \rfloor$ then $|\mathcal{A}| \leq {n-1 \choose k-1}$.