
Class 14

Dilworth’s theorem and extremal set theory

Theorem 1. (Dilworth) Let P be a finite poset, then
min{m : ∃ chains C1, C2, . . . , Cm with P =

⋃m

i=1
Ci}= max{|A| : A is an anti-chain}.

Proof We have already argued that max{|A|} ≥ min{m}. We will prove there is equality here
by induction on |P |. The result is trivial if |P | = 0.

Now assume that |P | > 0 and the m is the maximum size of an anti-chain in P . Let C = x1 < x2 <
· · · < xp be a maximal chain in P i.e. we cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in P \ C has ≤ m − 1 elements. Then by induction (P \ C) =
⋃m−1

i=1
Ci

and then P = C ∪
⋃m−1

i=1
Ci and we are done.

Case 2 There exists an anti-chain A = {a1, a2, . . . , am} in P \ C. Let

• P− = {x ∈ P : x ≤ ai for some i}.

• P+ = {x ∈ P : x ≥ ai for some i}.

Note that

1. P = P−∪P+. Otherwise there is an element x of P which is incomparable with every element
of A and so m is not the maximum size of an anti-chain, contradiction.

2. P− ∩ P+ = A. Otherwise there exists x, i, j such that ai < x < aj and so A is not an
anti-chain.

3. xp /∈ P−. Otherwise x < ai for some i and the chain C is not maximal.

Applying the inductive hypothesis to P− (|P−| < |P | follows from 3) we see that P− can be
partitioned into m chains C−

1 , C−

2 , . . . , C−

m. Now the elements of A must be distributed one to a
chain and so we can assume that ai ∈ C−

i for i = 1, 2, . . . ,m. Furthermore, ai must be the maximum
element of chain C−

i , else the maximum of C−

i is in P− ∩ P+ \ A, which contradicts 2.

Applying the same argument to P + we get chains C+

1 , C+

2 , . . . , C+
m with ai as the minimum element

of C+

i for i = 1, 2, . . . ,m. Then from 2. we see that P = C1 ∪ C2 ∪ · · · ∪ Cm where Ci = C−

i ∪ C+

i

is a chain for i = 1, 2, . . . ,m. 2

Theorem 2. Let P be a finite poset, then
min{m : ∃ anti-chains A1, A2, . . . , Am with P =

⋃m

i=1
Ai}= max{|C| : A is a chain}.

Proof The minimum number of anti-chains needed to cover P is at least the size of any chain,
since a chain can contain at most one element from each anti-chain.

We prove the converse by induction on the maximum length m of a chain. If m = 1 then P itself
is an anti-chain and this provides the basis of the induction.

So now suppose that C = x1 < x2 < · · · < xm be a maximum length chain and let A be the set of
maximal elements of P – an element is x mmaximal if 6 ∃y such that y > x. Now consider P ′ = P \A.
P ′ contains no chain of length m. If it contained y1 < y2 < · · · < ym then since ym /∈ A, there exists
a ∈ A such that P contains the chain y1 < y2 < · · · < ym < a, contradiction. Thus the maximum
length of a chain in P ′ is m − 1 and so it can be partitioned into anti-chains A1 ∪ A2 ∪ · · ·Am−1.
Putting Am = A completes the proof. 2
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Two applications of Dilworth’s Theorem

(i) Let a1, a2, . . . , an2+1 be a sequence of real numbers. A sub-sequence i1 < i2 < · · · ik is said to be
monotone increasing (resp. monotone decreasing if ai1 ≤ ai2 ≤ · · · ≤ aik

(resp. ai1 ≥ ai2 ≥ · · · ≥
aik

. It is monotone if it is monotone increasing or decreasing.

Theorem 3. Erdős and Szekerés
a1, a2, . . . , an2+1 contains a monotone subsequence of length n + 1.

Proof Let P = {(i, ai) : 1 ≤ i ≤ n2 + 1} and let say (i, ai) ≤ (j, aj) if i < j and ai ≤ aj .
A chain in P corresponds to a monotone increasing subsequence. So, suppose that there are no
monotone increasing sequences of length n + 1. Then any cover of P by chains requires at least
n + 1 chains and so, by Dilworths theorem, there exists an anti-chain A of size n + 1.

Let A = {(it, ait
) : 1 ≤ t ≤ n + 1} where i1 < i2 ≤ · · · < in+1. Finally observe that ait

> ait+1

for 1 ≤ t ≤ n, for otherwise (it, ait
) ≤ (it+1, ait+1

) and A is not an anti-chain. Thus A defines a
monotone decreasing sequence of length n + 1. 2

(ii) Another proof of Hall’s Theorem. Let G = (X ∪Y,E) be a bipartite graph which satisfies Hall’s
condition. Define a poset P = X ∪ Y and define < by x < y only if x ∈ X, y ∈ Y and (x, y) ∈ E.

Suppose that the largest anti-chain in P is A = {x1, x2, . . . , xh, y1, y2, . . . , yk} and let s = h + k.
Now

Γ({x1, x2, . . . , xh}) ⊆ Y \ {y1, y2, . . . , yk}

for otherwise A will not be an anti-chain.

From Hall’s condition we see that

|Y | − k ≥ h or |Y | ≥ s.

Now by Dilworth’s theorem, P is the union of s chains: A matching M of size m, |X|−m members
of X and |Y | − m members of Y . But then

m + (|X| − m) + (|Y | − m) = s ≤ |Y |

and so m ≥ |X|. 2
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