Class 14

Dilworth's theorem and extremal set theory

Theorem 1. (Dilworth) Let P be a finite poset, then $\min\{m : \exists \text{ chains } C_1, C_2, \ldots, C_m \text{ with } P = \bigcup_{i=1}^m C_i\} = \max\{|A| : A \text{ is an anti-chain}\}.$

Proof We have already argued that $\max\{|A|\} \ge \min\{m\}$. We will prove there is equality here by induction on |P|. The result is trivial if |P| = 0.

Now assume that |P| > 0 and the *m* is the maximum size of an anti-chain in *P*. Let $C = x_1 < x_2 < \cdots < x_p$ be a *maximal* chain in *P* i.e. we cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in $P \setminus C$ has $\leq m - 1$ elements. Then by induction $(P \setminus C) = \bigcup_{i=1}^{m-1} C_i$ and then $P = C \cup \bigcup_{i=1}^{m-1} C_i$ and we are done.

Case 2 There exists an anti-chain $A = \{a_1, a_2, \ldots, a_m\}$ in $P \setminus C$. Let

- $P^- = \{x \in P : x \leq a_i \text{ for some } i\}.$
- $P^+ = \{x \in P : x \ge a_i \text{ for some } i\}.$

Note that

- 1. $P = P^- \cup P^+$. Otherwise there is an element x of P which is incomparable with every element of A and so m is not the maximum size of an anti-chain, contradiction.
- 2. $P^- \cap P^+ = A$. Otherwise there exists x, i, j such that $a_i < x < a_j$ and so A is not an anti-chain.
- 3. $x_p \notin P^-$. Otherwise $x < a_i$ for some *i* and the chain *C* is not maximal.

Applying the inductive hypothesis to $P^ (|P^-| < |P|$ follows from 3) we see that P^- can be partitioned into m chains $C_1^-, C_2^-, \ldots, C_m^-$. Now the elements of A must be distributed one to a chain and so we can assume that $a_i \in C_i^-$ for $i = 1, 2, \ldots, m$. Furthermore, a_i must be the maximum element of chain C_i^- , else the maximum of C_i^- is in $P^- \cap P^+ \setminus A$, which contradicts 2.

Applying the same argument to P^+ we get chains $C_1^+, C_2^+, \ldots, C_m^+$ with a_i as the minimum element of C_i^+ for $i = 1, 2, \ldots, m$. Then from 2. we see that $P = C_1 \cup C_2 \cup \cdots \cup C_m$ where $C_i = C_i^- \cup C_i^+$ is a chain for $i = 1, 2, \ldots, m$.

Theorem 2. Let P be a finite poset, then $\min\{m: \exists anti-chains A_1, A_2, \ldots, A_m \text{ with } P = \bigcup_{i=1}^m A_i\} = \max\{|C|: A \text{ is a chain}\}.$

Proof The minimum number of anti-chains needed to cover P is at least the size of any chain, since a chain can contain at most one element from each anti-chain.

We prove the converse by induction on the maximum length m of a chain. If m = 1 then P itself is an anti-chain and this provides the basis of the induction.

So now suppose that $C = x_1 < x_2 < \cdots < x_m$ be a maximum length chain and let A be the set of maximal elements of P – an element is $x \mod x \mod x \mod y$ such that y > x. Now consider $P' = P \setminus A$. P' contains no chain of length m. If it contained $y_1 < y_2 < \cdots < y_m$ then since $y_m \notin A$, there exists $a \in A$ such that P contains the chain $y_1 < y_2 < \cdots < y_m < a$, contradiction. Thus the maximum length of a chain in P' is m - 1 and so it can be partitioned into anti-chains $A_1 \cup A_2 \cup \cdots A_{m-1}$. Putting $A_m = A$ completes the proof.

Two applications of Dilworth's Theorem

(i) Let $a_1, a_2, \ldots, a_{n^2+1}$ be a sequence of real numbers. A sub-sequence $i_1 < i_2 < \cdots i_k$ is said to be monotone increasing (resp. monotone decreasing if $a_{i_1} \leq a_{i_2} \leq \cdots \leq a_{i_k}$ (resp. $a_{i_1} \geq a_{i_2} \geq \cdots \geq a_{i_k}$. It is monotone increasing or decreasing.

Theorem 3. Erdős and Szekerés

 $a_1, a_2, \ldots, a_{n^2+1}$ contains a monotone subsequence of length n+1.

Proof Let $P = \{(i, a_i) : 1 \le i \le n^2 + 1\}$ and let say $(i, a_i) \le (j, a_j)$ if i < j and $a_i \le a_j$. A chain in P corresponds to a monotone increasing subsequence. So, suppose that there are no monotone increasing sequences of length n + 1. Then any cover of P by chains requires at least n + 1 chains and so, by Dilworths theorem, there exists an anti-chain A of size n + 1.

Let $A = \{(i_t, a_{i_t}) : 1 \le t \le n+1\}$ where $i_1 < i_2 \le \cdots < i_{n+1}$. Finally observe that $a_{i_t} > a_{i_{t+1}}$ for $1 \le t \le n$, for otherwise $(i_t, a_{i_t}) \le (i_{t+1}, a_{i_{t+1}})$ and A is not an anti-chain. Thus A defines a monotone decreasing sequence of length n+1.

(ii) Another proof of Hall's Theorem. Let $G = (X \cup Y, E)$ be a bipartite graph which satisfies Hall's condition. Define a poset $P = X \cup Y$ and define $\langle by | x \langle y | only if | x \in X, y \in Y | and (x, y) \in E$.

Suppose that the largest anti-chain in P is $A = \{x_1, x_2, \dots, x_h, y_1, y_2, \dots, y_k\}$ and let s = h + k. Now

$$\Gamma(\{x_1, x_2, \dots, x_h\}) \subseteq Y \setminus \{y_1, y_2, \dots, y_k\}$$

for otherwise A will not be an anti-chain.

From Hall's condition we see that

$$|Y| - k \ge h$$
 or $|Y| \ge s$.

Now by Dilworth's theorem, P is the union of s chains: A matching M of size m, |X| - m members of X and |Y| - m members of Y. But then

$$m + (|X| - m) + (|Y| - m) = s \le |Y|$$

and so $m \geq |X|$.

-		۰.	
		L	
		L	
_	_		