Class 14
Dilworth’s theorem and extremal set theory

Theorem 1. (Dilworth) Let P be a finite poset, then
min{m : 3 chains C1,Cs,...,Cy, with P = J;~, C;}= max{|A| : A is an anti-chain}.

Proof We have already argued that max{|A|} > min{m}. We will prove there is equality here
by induction on |P|. The result is trivial if |P| = 0.

Now assume that |P| > 0 and the m is the maximum size of an anti-chain in P. Let C = 21 < 23 <
- < xp be a mazimal chain in P i.e. we cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in P\ C has < m — 1 elements. Then by induction (P \ C) = Uf:ll C;
and then P = C' UJ"' C; and we are done.

Case 2 There exists an anti-chain A = {a1,a2,...,an} in P\ C. Let

e P-={zeP: z<a; for some i}.

e Pt ={z€P: x> a; for some i}.
Note that

1. P = P~ UP™T. Otherwise there is an element x of P which is incomparable with every element
of A and so m is not the maximum size of an anti-chain, contradiction.

2. P~ NPt = A. Otherwise there exists x,4,j such that a; < z < a; and so A is not an
anti-chain.

3. z, ¢ P~. Otherwise z < a; for some ¢ and the chain C' is not maximal.

Applying the inductive hypothesis to P~ (|P~| < |P| follows from 3) we see that P~ can be

partitioned into m chains C;,C5 ,...,C,,. Now the elements of A must be distributed one to a
chain and so we can assume that a; € C; fori =1,2,...,m. Furthermore, a; must be the maximum
element of chain C; , else the maximum of C; is in P~ N Pt \ A, which contradicts 2.

Applying the same argument to PT we get chains O}, Cf , ..., C;t with a; as the minimum element
oij fori=1,2,...,m. Then from 2. we see that P = C; UCy U ---UC,, where C; = C;” UCf
is a chain for i =1,2,...,m. O

Theorem 2. Let P be a finite poset, then
min{m : 3 anti-chains Ay, As, ..., Ay, with P =J!"; A;}= max{|C|: A is a chain}.

Proof The minimum number of anti-chains needed to cover P is at least the size of any chain,
since a chain can contain at most one element from each anti-chain.

We prove the converse by induction on the maximum length m of a chain. If m = 1 then P itself
is an anti-chain and this provides the basis of the induction.

So now suppose that C' = 1 < x5 < -+ < Z,, be a maximum length chain and let A be the set of
maximal elements of P — an element is 2 mmazimal if Ay such that y > 2. Now consider P’ = P\ A.
P’ contains no chain of length m. If it contained y; < y2 < -+ < y,, then since y,, ¢ A, there exists

a € A such that P contains the chain y; < yo < --+ < ¥, < @, contradiction. Thus the maximum
length of a chain in P’ is m — 1 and so it can be partitioned into anti-chains A; U Ao U--- A,,_1.
Putting A,, = A completes the proof. O



Two applications of Dilworth’s Theorem

(i) Let a1, as,...,a,241 be a sequence of real numbers. A sub-sequence i1 < iy < -+ - iy, is said to be
monotone increasing (resp. monotone decreasing if a;, < a;, < -+ < a;, (resp. Ajy = Wiy = o0 =
a;, . It is monotone if it is monotone increasing or decreasing.

Theorem 3. Erdds and Szekerés
a1,02,...,0,211 contains a monotone subsequence of length n + 1.

Proof Let P = {(i,a;) : 1 <i<n?+1} and let say (i,a;) < (j,a;) if i < j and a; < aj.
A chain in P corresponds to a monotone increasing subsequence. So, suppose that there are no
monotone increasing sequences of length n + 1. Then any cover of P by chains requires at least
n + 1 chains and so, by Dilworths theorem, there exists an anti-chain A of size n + 1.

Let A = {(it,a;,) : 1 <t <n+1} where iy < iy < -+ < iyyq. Finally observe that a;, > a;,.,
for 1 <t < n, for otherwise (i¢,a;,) < (i441,04,.,) and A is not an anti-chain. Thus A defines a
monotone decreasing sequence of length n + 1. |

(ii) Another proof of Hall’s Theorem. Let G = (X UY, E) be a bipartite graph which satisfies Hall’s
condition. Define a poset P = X UY and define < by x <y only if x € X,y € Y and (z,y) € E.

Suppose that the largest anti-chain in P is A = {z1,22,...,Zh,Y1,Y2,...,yx} and let s = h + k.
Now

F({ZL’l,ZQ,...,’I’h}) g Y\{ylayQ,“' ayk}

for otherwise A will not be an anti-chain.

From Hall’s condition we see that
Y|—k>hor Y] >s.

Now by Dilworth’s theorem, P is the union of s chains: A matching M of size m, |X| —m members
of X and |Y| — m members of Y. But then

m+ (| X|=m)+ (Y| =m) =s < |Y|

and so m > | X|. m|



