
Class 13

Dilworth’s theorem and extremal set theory

A partially ordered set or poset is a set P and a binary relation ≤ such that for all a, b, c ∈ P

1. a ≤ a (reflexivity).

2. a ≤ b and b ≤ c implies a ≤ c (transitivity).

3. a ≤ b and b ≤ a implies a = b. (anti-symmetry).

Examples

1. P = {1, 2, . . . , } and a ≤ b has the usual meaning.

2. P = {1, 2, . . . , } and a ≤ b if a divides b.

3. P = {A1, A2, . . . , Am} where the Ai are sets and ≤=⊆.

A pair of elements a, b are comparable if a ≤ b or b ≤ a. Otherwise they are incomparable.

A poset without incomparable elements (Example 1) is a linear or total order.

We write a < b if a ≤ b and a 6= b.

A chain is a sequence a1 < a2 < · · · < as.

A set A is an anti-chain if every pair of elements in A are incomparable.

Suppose that C1, C2, . . . , Ck are a collection of chains such that P =
⋃k

i=1
Ci (think of a1 < a2 <

· · · < as as the set {a1, a2, . . . , as} here). Suppose that A is an anti-chain. Then k ≥ |A| because if
k < |A| then by the pigeon-hole principle there will be two elemtns of A in some chain.

Theorem 1. (Dilworth) Let P be a finite poset, then
min{m : ∃ chains C1, C2, . . . , Cm with P =

⋃m

i=1
Ci}= max{|A| : A is an anti-chain}.

Proof We have already argued that max{|A|} ≥ min{m}. We will prove there is equality here
by induction on |P |. The result is trivial if |P | = 0.

Now assume that |P | > 0 and the m is the maximum size of an anti-chain in P . Let C − x1 < x2 <

· · · < xp be a maximal chain in P i.e. we cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in P \ C has ≤ m − 1 elements. Then by induction (P \ C) =
⋃m−1

i=1
Ci

and then P = C ∪
⋃m−1

i=1
Ci and we are done.

Case 2 There exists an anti-chain A = {a1, a2, . . . , am} in P \ C. Let

• P− = {x ∈ P : x ≤ ai for some i}.

• P+ = {x ∈ P : x ≥ ai for some i}.

Note that P = P− ∪ P+. Otherwise there is an element x of P which is incomparable with every
element of A and so m is not the mximum size of an anti-chain, contradiction.

To be continued
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