Class 13

Dilworth's theorem and extremal set theory

A partially ordered set or poset is a set P and a binary relation \leq such that for all $a, b, c \in P$

- 1. $a \leq a$ (reflexivity).
- 2. $a \leq b$ and $b \leq c$ implies $a \leq c$ (transitivity).
- 3. $a \leq b$ and $b \leq a$ implies a = b. (anti-symmetry).

Examples

- 1. $P = \{1, 2, \dots, \}$ and $a \leq b$ has the usual meaning.
- 2. $P = \{1, 2, ..., \}$ and $a \le b$ if a divides b.
- 3. $P = \{A_1, A_2, \ldots, A_m\}$ where the A_i are sets and $\leq = \subseteq$.

A pair of elements a, b are comparable if $a \le b$ or $b \le a$. Otherwise they are incomparable.

A poset without incomparable elements (Example 1) is a linear or total order.

We write a < b if $a \leq b$ and $a \neq b$.

A chain is a sequence $a_1 < a_2 < \cdots < a_s$.

A set A is an **anti-chain** if every pair of elements in A are incomparable.

Suppose that C_1, C_2, \ldots, C_k are a collection of chains such that $P = \bigcup_{i=1}^k C_i$ (think of $a_1 < a_2 < \cdots < a_s$ as the set $\{a_1, a_2, \ldots, a_s\}$ here). Suppose that A is an anti-chain. Then $k \ge |A|$ because if k < |A| then by the pigeon-hole principle there will be two elements of A in some chain.

Theorem 1. (Dilworth) Let P be a finite poset, then $\min\{m: \exists \text{ chains } C_1, C_2, \ldots, C_m \text{ with } P = \bigcup_{i=1}^m C_i\} = \max\{|A|: A \text{ is an anti-chain}\}.$

Proof We have already argued that $\max\{|A|\} \ge \min\{m\}$. We will prove there is equality here by induction on |P|. The result is trivial if |P| = 0.

Now assume that |P| > 0 and the *m* is the maximum size of an anti-chain in *P*. Let $C - x_1 < x_2 < \cdots < x_p$ be a *maximal* chain in *P* i.e. we cannot add elements to it and keep it a chain.

Case 1 Every anti-chain in $P \setminus C$ has $\leq m - 1$ elements. Then by induction $(P \setminus C) = \bigcup_{i=1}^{m-1} C_i$ and then $P = C \cup \bigcup_{i=1}^{m-1} C_i$ and we are done.

Case 2 There exists an anti-chain $A = \{a_1, a_2, \ldots, a_m\}$ in $P \setminus C$. Let

- $P^- = \{x \in P : x \le a_i \text{ for some } i\}.$
- $P^+ = \{x \in P : x \ge a_i \text{ for some } i\}.$

Note that $P = P^- \cup P^+$. Otherwise there is an element x of P which is incomparable with every element of A and so m is not the minimum size of an anti-chain, contradiction.

To be continued