
Class 10

Parallel searching for the maximum – Valiant

We have n processors and n numbers x1, x2, . . . , xn. In each round we choose n pairs i, j and
compare the values of xi, xj .
The set of pairs chosen in a round can depend on the results of previous comparisons.

Aim: find i∗ such that xi∗ = maxi xi.

Claim 1. For any algorithm there exists an input which requires at least 1
2 log2 log2 n rounds.

Let CA(a, b) be the maximum number of rounds needed by algorithm A which uses a processors
to compute the maximum of b values in this way. The maximum is over the inputs defined by the
adversary A.

Lemma 1.

CA(a, b) ≥ 1 + CA

(

a,

⌈

b2

2a + b

⌉)

.

Proof The set of b comparisons chosen by A defines a b-edge graph G on a vertices where
comparison of xi, xj produces an edge (i, j) of G. Theorem 1 (proved below) implies that the the
maximum size α(G) of an independent set of G satisfies

α(G) ≥

⌈

b
2a
b

+ 1

⌉

=

⌈

b2

2a + b

⌉

.

(A set of vertices is independent if it contains no edges)

For any independent set I it is always possible for the adversary A to define values for x1, x2, . . . , xa

such that I is the index set of the |I| largest values and so that the comparisons do not yield any
information about the ordering of the elements xi, i ∈ I.

Thus after one round one has the problem of finding the maximum among at least α(G) elements.
Any comparison involving a vertex outside the maximum independent set chosen by A is wasted. 2

Now define the sequence c0, c1, . . . by c0 = n and

ci+1 =

⌈

c2
i

2n + ci

⌉

.

It follows from Lemma 1 that

ck ≥ 2 implies C(n, n) ≥ k + 1.

Claim 2.

ci ≥
n

32i−1
.

By induction on i. Trivial for i = 0. Then

ci+1 ≥
n2

32i+1−2
×

1

2n + n32i−1

=
n

32i+1−1
×

3

2 + 1

32i
−1

≥
n

32i+1−1
.
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Claim 1 now follows from the the above claim since

32
1
2

log2 log2 n

= 3(log2 n)1/2

= o(n).

Theorem 1. If d̄ = 2m/n = the average degree of simple graph G with n vertices and m edges then

α(G) ≥
n

d̄ + 1
.

Proof Let π(1), π(2), . . . , π(ν) be an arbitrary permutation of V . Let N(v) denote the set of
neighbours of vertex v and let

I(π) = {v : π(w) > π(v) for all w ∈ N(v)}.

Claim 3. I is an independent set.

a

b

c

d

e

f

g

h

a b c d e f g h I
π1 c b f h a g e d {c, f}
π2 g f h d e a b c {g, d, a}

Proof of Claim 3

Suppose w1, w2 ∈ I(π) and w1w2 ∈ E. Suppose π(w1) < π(w2). Then w2 /∈ I(π) — contradiction.
2

Now let π be a random permutation.

Claim 4.

E(|I|) ≥
∑

v∈V

1

d(v) + 1
.

Proof of Claim 4

Let

δ(v) =

{

1 v ∈ I
0 v /∈ I

Thus

|I| =
∑

v∈V

δ(v)

E(|I|) =
∑

v∈V

E(δ(v))

=
∑

v∈V

Pr(δ(v) = 1).
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Now δ(v) = 1 if v comes before all of its neighbours in the order π. Thus

Pr(δ(v) = 1) =
1

d(v) + 1

and the claim follows. 2

(Note that as defined, I is not maximal i.e. it may be possible to add more vertices to I while
preserving independence. Also, here I is contained in the independent set J chosen by a Greedy

algorithm: Go through the vertice in the order specified by the permutation. Put v into J if none
of its neighbours have been already been placed in J .)

Thus there exists a π such that

|I(π)| ≥
∑

v∈V

1

d(v) + 1

and so

α(G) ≥
∑

v∈V

1

d(v) + 1
.

We finish the proof of Theorem 1 by showing that

∑

v∈V

1

d(v) + 1
≥

n

d̄ + 1
.

This follows from the following claim by putting xv = d(v) + 1 for v ∈ V .

Claim 5. If x1, x2, . . . xk > 0 then

1

x1
+

1

x2
+ · · · +

1

xk

≥
k2

x1 + x2 + · · · + xk

. (1)

Proof of Claim 5

Multiplying (1) by x1 +x2 + · · ·+xk and subtracting k from both sides we see that (1) is equivalent
to

∑

1≤i<j≤k

(

xi

xj

+
xj

xi

)

≥ k(k − 1). (2)

But for all x, y > 0
x

y
+

y

x
≥ 2

and (2) follows. 2
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