Class 10
Parallel searching for the maximum — Valiant

We have n processors and n numbers zi,z9,...,Z,. In each round we choose n pairs i,j and
compare the values of z;, x;.
The set of pairs chosen in a round can depend on the results of previous comparisons.

Aim: find i* such that z;» = max; ;.
Claim 1. For any algorithm there exists an input which requires at least %logz logy n rounds.
Let C4(a,b) be the maximum number of rounds needed by algorithm A which uses a processors

to compute the maximum of b values in this way. The maximum is over the inputs defined by the
adversary A.

Lemma 1. 2
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Proof The set of b comparisons chosen by A defines a b-edge graph G on a vertices where

comparison of x;,x; produces an edge (i,7) of G. Theorem 1 (proved below) implies that the the
maximum size «(G) of an independent set of G satisfies
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(A set of vertices is independent if it contains no edges)

For any independent set I it is always possible for the adversary A to define values for x1,zo, ..., 2,
such that I is the index set of the |I| largest values and so that the comparisons do not yield any
information about the ordering of the elements x;,i € I.

Thus after one round one has the problem of finding the maximum among at least «(G) elements.
Any comparison involving a vertex outside the maximum independent set chosen by A is wasted. O

Now define the sequence cg, c1,... by ¢ = n and
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It follows from Lemma 1 that

¢k > 2 implies C(n,n) > k + 1.

Claim 2.
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Claim 1 now follows from the the above claim since

1 logg logg n 1/2
22 = gllogzn) "% — o(n).

Theorem 1. If d = 2m/n = the average degree of simple graph G with n vertices and m edges then
n
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Proof Let 7(1),7(2),...,m(v) be an arbitrary permutation of V. Let N(v) denote the set of
neighbours of vertex v and let

I(m) ={v: w(w) > 7n(v) for all w € N(v)}.

Claim 3. I is an independent set.
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Proof of Claim 3
Suppose wy, wy € I(7) and wywe € E. Suppose 7(wy1) < 7(ws). Then wy ¢ I(7) — contradiction.
O

Now let m be a random permutation.

Claim 4. )
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Proof of Claim 4
Let
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Now §(v) = 1 if v comes before all of its neighbours in the order . Thus

and the claim follows. O

(Note that as defined, I is not maximal i.e. it may be possible to add more vertices to I while
preserving independence. Also, here I is contained in the independent set J chosen by a Greedy
algorithm: Go through the vertice in the order specified by the permutation. Put v into J if none
of its neighbours have been already been placed in J.)

Thus there exists a 7 such that
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and so
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We finish the proof of Theorem 1 by showing that
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This follows from the following claim by putting z, = d(v) + 1 for v € V.
Claim 5. If x1,x2,...x5 > 0 then
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Proof of Claim 5
Multiplying (1) by @1 +x2 + - - - + z and subtracting k from both sides we see that (1) is equivalent
to
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But for all z,y >0
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and (2) follows. O



