Class 10

Parallel searching for the maximum - Valiant

We have n processors and n numbers x_1, x_2, \ldots, x_n . In each round we choose n pairs i, j and compare the values of x_i, x_j .

The set of pairs chosen in a round can depend on the results of previous comparisons.

Aim: find i^* such that $x_{i^*} = \max_i x_i$.

Claim 1. For any algorithm there exists an input which requires at least $\frac{1}{2}\log_2\log_2 n$ rounds.

Let $C_{\mathcal{A}}(a, b)$ be the maximum number of rounds needed by algorithm \mathcal{A} which uses a processors to compute the maximum of b values in this way. The maximum is over the inputs defined by the adversary A.

Lemma 1.

$$C_{\mathcal{A}}(a,b) \ge 1 + C_{\mathcal{A}}\left(a, \left\lceil \frac{b^2}{2a+b} \right\rceil\right).$$

Proof The set of *b* comparisons chosen by \mathcal{A} defines a *b*-edge graph *G* on *a* vertices where comparison of x_i, x_j produces an edge (i, j) of *G*. Theorem 1 (proved below) implies that the the maximum size $\alpha(G)$ of an *independent* set of *G* satisfies

$$\alpha(G) \ge \left\lceil \frac{b}{\frac{2a}{b} + 1} \right\rceil = \left\lceil \frac{b^2}{2a + b} \right\rceil$$

(A set of vertices is independent if it contains no edges)

For any independent set I it is always possible for the adversary A to define values for x_1, x_2, \ldots, x_a such that I is the index set of the |I| largest values and so that the comparisons do not yield any information about the ordering of the elements $x_i, i \in I$.

Thus after one round one has the problem of finding the maximum among at least $\alpha(G)$ elements. Any comparison involving a vertex outside the maximum independent set chosen by A is wasted. \Box

Now define the sequence c_0, c_1, \ldots by $c_0 = n$ and

$$c_{i+1} = \left\lceil \frac{c_i^2}{2n + c_i} \right\rceil.$$

It follows from Lemma 1 that

$$c_k \ge 2$$
 implies $C(n, n) \ge k + 1$.

Claim 2.

$$c_i \ge \frac{n}{3^{2^i - 1}}.$$

By induction on *i*. Trivial for i = 0. Then

$$c_{i+1} \geq \frac{n^2}{3^{2^{i+1}-2}} \times \frac{1}{2n+n3^{2^i-1}}$$
$$= \frac{n}{3^{2^{i+1}-1}} \times \frac{3}{2+\frac{1}{3^{2^i-1}}}$$
$$\geq \frac{n}{3^{2^{i+1}-1}}.$$

Claim 1 now follows from the the above claim since

$$3^{2^{\frac{1}{2}\log_2\log_2 n}} = 3^{(\log_2 n)^{1/2}} = o(n).$$

Theorem 1. If $\overline{d} = 2m/n$ = the average degree of simple graph G with n vertices and m edges then

$$\alpha(G) \ge \frac{n}{\bar{d}+1}.$$

Proof Let $\pi(1), \pi(2), \ldots, \pi(\nu)$ be an arbitrary permutation of V. Let N(v) denote the set of neighbours of vertex v and let

$$I(\pi) = \{ v : \pi(w) > \pi(v) \text{ for all } w \in N(v) \}.$$

Claim 3. I is an independent set.

Proof of Claim 3

Suppose $w_1, w_2 \in I(\pi)$ and $w_1w_2 \in E$. Suppose $\pi(w_1) < \pi(w_2)$. Then $w_2 \notin I(\pi)$ — contradiction.

Now let π be a random permutation.

Claim 4.

$$\mathbf{E}(|I|) \ge \sum_{v \in V} \frac{1}{d(v) + 1}.$$

Proof of Claim 4 Let

 $\delta(v) = \begin{cases} 1 & v \in I \\ 0 & v \notin I \end{cases}$

Thus

$$\begin{split} |I| &= \sum_{v \in V} \delta(v) \\ \mathbf{E}(|I|) &= \sum_{v \in V} \mathbf{E}(\delta(v)) \\ &= \sum_{v \in V} \mathbf{Pr}(\delta(v) = 1). \end{split}$$

Now $\delta(v) = 1$ if v comes before all of its neighbours in the order π . Thus

$$\mathbf{Pr}(\delta(v) = 1) = \frac{1}{d(v) + 1}$$

and the claim follows.

(Note that as defined, I is not maximal i.e. it may be possible to add more vertices to I while preserving independence. Also, here I is contained in the independent set J chosen by a *Greedy* algorithm: Go through the vertice in the order specified by the permutation. Put v into J if none of its neighbours have been already been placed in J.)

Thus there exists a π such that

$$|I(\pi)| \ge \sum_{v \in V} \frac{1}{d(v) + 1}$$

and so

$$\alpha(G) \ge \sum_{v \in V} \frac{1}{d(v) + 1}.$$

We finish the proof of Theorem 1 by showing that

$$\sum_{v \in V} \frac{1}{d(v)+1} \ge \frac{n}{\bar{d}+1}.$$

This follows from the following claim by putting $x_v = d(v) + 1$ for $v \in V$.

Claim 5. If $x_1, x_2, ..., x_k > 0$ then

$$\frac{1}{x_1} + \frac{1}{x_2} + \dots + \frac{1}{x_k} \ge \frac{k^2}{x_1 + x_2 + \dots + x_k}.$$
(1)

Proof of Claim 5

Multiplying (1) by $x_1 + x_2 + \cdots + x_k$ and subtracting k from both sides we see that (1) is equivalent to

$$\sum_{1 \le i < j \le k} \left(\frac{x_i}{x_j} + \frac{x_j}{x_i} \right) \ge k(k-1).$$
(2)

But for all x, y > 0

 $\frac{x}{y} + \frac{y}{x} \ge 2$

and (2) follows.