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Theorem 1. Let N = N(m,m; 3). Let X1, X2, . . . , XN be points in the plane such that no three
are collinear. Then there exist m points which form a convex polygon.

Proof For i, j, k ∈ [N ] let |ijk| denote the number of points contained entirely within the
triangle XiXjXk. Now colour {i, j, k} with 0 if |ijk| is even and 1 if |ijk| is odd.

By Ramsey’s theorem there exists a subset A of [N ] such that all triples in A have the same colour.
The corresponding points form a convex polygon. If not, there exist four points Xi, Xj , Xk, Xl such
that Xl lies entirely inside the triangle XiXjXk. But then

|ijk| = |ikl| + |ijl| + |jkl| + 1

which is impossible if the four values |ijk|, |ikl|, |ijl|, |jkl| have the same parity.

Turán’s Theorem and extremal graphs.

We consider the number of edges that a graph G on n vertices can have without containing of
Kp, p ≥ 1 as a subgraph.

Suppose that
n = t(p − 1) + r where 1 ≤ r ≤ p − 1.

Define the Turán graph T (n, p) with vertex set [n] as follows: Partition [n] into sets S1, S2, . . . , Sp−1

where

|Si| =

{

t + 1 1 ≤ i ≤ r

t r + 1 ≤ i ≤ p − 1
.

Create an edge for every pair of vertices in distinct sets. The number of edges in T (n, p) is then
M(n, p) where

M(n, p) =

(

r

2

)

(t + 1)2 +

(

p − 1 − r

2

)

t2 + r(p − 1 − r)t(t + 1).

Now T (n, p) cannot contain a copy of Kp. For any p vertices must contain two vertices from the
same Si and these two vertices are no adjacent in T (n, p).

Theorem 2. (Turán) If a simple graph on n vertices has more than M(n, p) edges then it must
contain Kp as subgraph.

Proof We fix p ≥ 1 and prove the theorem by induction on t.

If t = 0 then n = r ≤ p − 1 and M(n, p) =
(

r

2

)

. In this case the statement of the theorem is
(vacuously) true since a graph on r vertices cannot have more than M(n, p) edges.

Now consider a graph G with n vertices and no copy of Kp and with as many edges as possible

under these conditions. Then G contains a copy H of Kp−1, else we can add an edge to G without
creating a copy of Kp.

Now each v /∈ V (H) has at most p−2 neighbours in H, else G has a copy of Kp. Also, the subgraph
induced by V (G)\V (H) has n−p+1 vertices and no copy of Kp. Since n−p+1 = (t−1)(p−1)+r
our inductive hypothesis implies that this subgraph has at most M(n−p+1, p) edges, by induction.
It follows that the number of edges in G is at most

M(n − p + 1, p) + (p − 2)(n − p + 1) +

(

p − 1

2

)

= M(n, p).
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This can be checked by tedious, but elementary methods.

Back to the base case: If it seems that we didn’t prove anything, think of how we use the base case
to verify the case t = 1. Here n−p+1 = r ≤ p−1 and all we require to proceed is that the number
of edges inside V \ V (H) is at most M(n, p) =

(

r

2

)

, which is obvious anyway.
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