Class 07

Colorings of graphs and Ramsey's Theorem

Ramsey's Theorem for graphs:

Theorem 1. Let k, ℓ be given. There exists $R(k, \ell)$ such that if the edges of K_n are coloured Red or Blue and $n \ge R(k, \ell)$ then either (i) $\exists K_k \subseteq K_n$ all of whose edges are Red or (ii) $\exists K_\ell \subseteq K_n$ all of whose edges are Blue.

Proof We will show that for $k, \ell \geq 3$ that

$$R(k,\ell) \le R(k-1,\ell) + R(k,\ell-1).$$
(1)

Let $n = R(k - 1, \ell) + R(k, \ell - 1)$ be given and let $V_R = \{x : (x, n) \text{ is coloured Red}\}$ and let $V_B = \{x : (x, n) \text{ is coloured Blue}\}$. Then

$$|V_R| + |V_B| = R(k - 1, \ell) + R(k, \ell - 1) - 1$$

and so

(i)
$$|V_R| \ge R(k-1,\ell)$$
 or (ii) $|V_B| \ge R(k,\ell-1)$.

Assume w.l.o.g. that $|V_R| \ge R(k-1,\ell)$. Then either

 V_R contains a Red clique S of size k-1 and so $S\cup\{n\}$ is a Red clique of size k

or

 V_R contains a Blue clique T of size ℓ .

Corollary 2.

$$R(k,\ell) \le \binom{k+\ell-2}{k-1}.$$

Proof By induction on $k + \ell$. True for $k + \ell \leq 5$.

$$R(k,\ell) \leq R(k-1,\ell) + R(k,\ell-1)$$

$$\leq \binom{k+\ell-3}{k-2} + \binom{k+\ell-3}{k-1} \quad \text{induction}$$

$$= \binom{k+\ell-2}{k-1}.$$

Corollary 3.

$$R(k,k) \le \binom{2k-2}{k} \le 4^k.$$

Ramsey's Theorem in general

Theorem 4. Let $r, s \ge 1$, $q_i \ge r, 1 \le i \le s$ be given. Then there exists $N = N(q_1, q_2, \ldots, q_s; r)$ with the following property: Suppose that S is a set with $n \ge N$ elements. Let each of the elements of $\binom{S}{r}$ be given one of s colours. (Note that the elements of $\binom{S}{r}$ are the r-subsets of S).

Then there exists i and a q_i -subset T of S such that all of the elements of $\binom{T}{r}$ are coloured with the *i*th colour.

Proof First assume that s = 2 i.e. two colours, Red, Blue.

Note that

$$\begin{array}{rcl} (a) \ N(p,q;1) &=& p+q-1 \\ (b) \ N(p,r;r) &=& p(\geq r) \\ N(r,q;r) &=& q(\geq r) \end{array}$$

We proceed by induction on r. It is true for r = 1 and so assume $r \ge 2$ and it is true for r - 1 and arbitrary p, q.

Now we further proceed by induction on p+q. It is true for p+q=2r and so assume it is true for r and p', q' with p'+q' < p+q.

 let

$$p_1 = N(p-1,q;r)$$

 $p_2 = N(p,q-1;r)$

These exist by induction.

Now we prove that

$$N(p,q;r) \le 1 + N(p_1,q_1;r-1)$$

where the RHS exists by induction.

Now coulor $\binom{[n]}{r}$ with 2 colours. call this colouring σ . From this we define a colouring τ of $\binom{[n-1]}{r-1}$ as follows: If $X \subseteq [n-1]$ then give it the colour of $X \cup \{n\}$ under σ .

Now either (i) there exists $A \subseteq [n-1]$, $|A| = p_1$ such that (under τ) all members of $\binom{A}{r-1}$ are Red or (ii) there exists $B \subseteq [n-1]$, $|A| = q_1$ such that (under τ) all members of $\binom{B}{r-1}$ are Blue.

Assume w.l.o.g. that (i) holds.

$$|A| = p_1 = N(p - 1, q; r).$$

Then either

(a) $\exists B \subseteq A$ such that |B| = q and under σ all of $\binom{B}{r}$ is Blue – done, or

(b) $\exists A' \subseteq A$ such that |A'| = p - 1 and all of $\binom{A'}{r}$ is Red. But then all of $\binom{A' \cup \{n\}}{r}$ is Red. If $X \subseteq A', |X| = r - 1$ then τ colours X Red, since $A' \subseteq A$. But then σ will colour $X \cup \{n\}$ Red.