Class 05

Colorings of graphs and Ramsey's Theorem

A proper colouring of the vertices of graph G is a map $f: V \to C$ such that v, w adjacent implies $f(v) \neq f(w)$. If |C| = k then f is a k-colouring.

The **Chromatic number** $\chi(G) = \min\{k : G \text{ has a } k \text{-colouring}\}.$

Examples:

 $\chi(K_n) = n, \ \chi(C_{2k}) = 2 \text{ and } \chi(C_{2k+1}) = 3.$

Let $\Delta(G)$ be the maximum degree of G.

Lemma 1. G is $(\Delta + 1)$ -colourable.

Proof Let the vertices of G be v_1, v_2, \ldots, v_n .

Algorithm: For i = 1, 2, ..., n, colour v_i with a colour not used in $\Gamma(v_i) \cap \{v_1, v_2, ..., v_{i-1}\}$. This is always possible since $|\Gamma(v_i) \cap \{v_1, v_2, ..., v_{i-1}\}| \leq \Delta$.

Theorem 1. Suppose that $d \ge 3$ and $\Delta(G) \le d$ and that K_{d+1} is not a subgraph of G. Then $\chi(G) \le d$.

Proof We use induction on |V|. We can assume that G is connected, since we can apply the theorem (inductively) We can also assume that $\Delta(G) = d$, for otherwise we can use Lemma 1.

- 1. $\exists v : G v$ is not connected. Suppose that the components of G v are C_1, C_2, \ldots, C_k . We can by induction colour $D_i = C_i + v$ for $i = 1, 2, \ldots, k$ using d colours. We can further assume that colour 1 is used for v in all of these colourings. But then we can put the colourings together to make a d-colouring of G.
- 2. $\exists v_1, v_2 : G \{v_1, v_2\}$ is not connected. Add edge (v_1, v_2) if necessary. Suppose that the components of $G \{v_1, v_2\}$ are C_1, C_2, \ldots, C_k . We can by induction colour $D_i = C_i + \{v_1, v_2\}$ for $i = 1, 2, \ldots, k$ using d colours. Since v_1, v_2 are adjacent, we can assume that v_1 has colour 1 and v_2 has colour 2 in all of these colourings. But then we can put the colourings together to make a d-colouring of G.
- 3. We are now left with the case where we can assume that for any set $X \neq V$ of ≥ 3 vertices, there exist $x, y, z \in X$ such that each of x, y, z is adjacent to some vertex in $V \setminus X$. Since $G \neq K_{d+1}$ there are vertices x_1, x_{n-1}, x_n such that x_1 is adjacent to x_{n-1}, x_n and x_{n-1} is not adjacent to x_n .

Now order the vertices as x_1, x_2, \ldots, x_n so that each $x_k, k \ge 2$ is adjacent to at lead one $x_i, i < k$. This can be done: If we have chosen x, x, \ldots, x_{k-1} then we can choose x_k to be any vertex in $X = V \setminus \{x_1, x_2, \ldots, x_{k-1}\}$ other than x_{n-1}, x_n which is adjacent to something in $V \setminus X$.

Now assign x_{n-1}, x_n the same colour. We can colour $x_{n-2}, x_{n-3}, \ldots, x_2$ in this order so that no x_k has the same colour as a neighbour x_l with l > k. This is because x_k has most d-1neighbours x_l with l > k.

Finally, the neighbourhood of x_1 uses at most d-1 colours, since the colour of x_{n-1}, x_n has been used at least twice.