Class 03

Trees

A tree is a connected graph without any cycles.

Lemma 1. A finite tree T with $n \ge 2$ vertices has at least 2 vertices of degree 1.

Proof Choose $x_1 \in V(T)$ arbitrarily. Choose a neighbour x_2 of x_1 . Suppose then that we have chosen distinct vertices $x_1, x_2, \ldots, x_i, i \ge 2$.

Case 1 $deg(x_i) = 1$ – done!

Case 2 If $deg(x_i) \ge 2$ then there exists $x \ne x_{i-1}$ such that x is adjacent to x_i . Now $x \notin \{x_1, x_2, \ldots, x_{i-1}\}$ for if $x = x_k$ then T contains the cycle x_k, \ldots, x_i, x, x_k . so we take $x_{i+1} = x$ and replace i by i + 1.

Since T is finite we must eventually end up in Case 1. This gives us one vertex of degree 1.

Now putting $y_j = x_{i-j+1}$ for $1 \le j \le i$ we continue the argument with y_1, y_2, \ldots, y_i in place of x_1, x_2, \ldots, x_i (we are now in effect growing our path from x_1 avoiding previously seen vertices.). In this way we find a second vertex of degree 1.

Lemma 2. Suppose that T = (V, E) is a tree with n vertices. Suppose that $x \in V$ has degree 1 and that $e = \{x, y\}$ is the unique edge incident with x. Then $T' = (V \setminus \{x\}, E \setminus \{e\})$ is also a tree.

Proof T' has no cycles since $T' \subseteq T$. We must show that it is connected. Let $a, b \neq x$ be vertices of T'. There is a path $P = (a = x_0, x_1, \ldots, x_k = b)$ from a to b in T. Let this be as short as possible. We claim that P is a path in T'. If not, then there exists i such that $x_i = x$. But then we must have $x_{i-1} = x_{i+1} = y$ and we get a shorter path by simply removing x_{i-1}, x_i , contradiction.

Corollary 1. A tree T with n vertices has n - 1 edges.

Proof By induction on n. If n = 1 then T has no edges.

Assume the result for some n and let T be a tree with n + 1 vertices. Choose x, e, T' as in Lemma 2. Then T' has n vertices and so by induction it has n - 1 edges. But then T has n - 1 = 1 edges.

Theorem 2. There are n^{n-2} different trees with vertex set [n].

Proof Let \mathcal{T} be the set of trees with vertex set [n]. We define a map $\mathcal{P}: \mathcal{T} \to [n]^{n-2}$ such that \mathcal{P} is a bijection. Then $|\mathcal{T}| = |[n]^{n-2}| = n^{n-2}$.

We define a sequence (x_i, y_i, T_i) , i = 1, 2, ..., n-1 where $T_1 = T$ and x_i is the least valued vertex of degree 1 in T_i and y_i is the **unique** neighbour of x_i in T_i .

$$\mathcal{P}(T) = y_1 y_2 \cdots y_{n-2}.$$

Continued in next class.