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Abstract. The main results of this paper are regularity and counting lemmas for 3-

uniform hypergraphs. A combination of these two results gives a new proof of a theorem

of Frankl and Rödl, of which Szemerédi’s theorem for arithmetic progressions of length 4

is a notable consequence. Frankl and Rödl also prove regularity and counting lemmas, but

the proofs here, and even the statements, are significantly different. Also included in this

paper is a proof of Szemerédi’s regularity lemma, some basic facts about quasirandomness

for graphs and hypergraphs, and detailed explanations of the motivation for the definitions

used.

§1. Introduction.

One of the most important tools in extremal graph theory is Szemerédi’s regularity

lemma. Given a graph G with vertex set V , the regularity lemma provides a partition of

V into sets V1, . . . , VK , such that for almost every pair (i, j) the induced bipartite graph

G(Vi, Vj) (that is, the restriction of G to the set of edges xy such that x ∈ Vi and y ∈ Vj)

behaves like a typical random graph of the same density. This result has been such an

important tool in graph theory and has so many applications that it is very natural to try

to find a generalization that will help with extremal problems for hypergraphs. Indeed,

there is an application that, even on its own, provides sufficient motivation for a project

of this kind. In 1976, Ruzsa and Szemerédi discovered a simple way to deduce Roth’s

theorem (Szemerédi’s theorem for progressions of length 3) from the regularity lemma

[RS], and for many years, Vojta Rödl, with several collaborators, has had a very promising

programme for obtaining a new proof of the full Szemerédi theorem by generalizing the

Ruzsa-Szemerédi argument. In order to do this, one needs not just a regularity lemma but

also a so-called “counting lemma”, which says, very roughly, that a sufficiently quasirandom

hypergraph will contain small subhypergraphs with approximately the correct frequency.

(This way of putting it, though it will do for now, is in fact so rough as to be positively

misleading - see §5 for an explanation of why.) In 2002, Frankl and Rödl carried out this

programme for 3-uniform hypergraphs, thereby giving a new proof of Szemerédi’s theorem

in the case of progressions of length four [FR2]. Ten years earlier, they had proved a

regularity lemma for k-uniform hypergraphs [FR1], but obtaining an appropriate counting

lemma to go with it was much harder.
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The main purpose of this paper is expository: we shall explain the ideas that lie

behind a paper of the author [G3], the main advance of which is to establish a counting

lemma for k-uniform hypergraphs, but also a regularity lemma that is not quite the same

as that of Frankl and Rödl. These two results imply not just Szemerédi’s theorem in full

generality, but also, as has already been observed by Solymosi [S2], its multidimensional

version. This result had previously been obtained only by Furstenberg’s ergodic theory

approach [FK]. To explain how these results are proved, we shall concentrate on the case

of 3-uniform hypergraphs, since the generalization to k-uniform hypergraphs, though no-

tationally more complicated, is not different in an essential way. The main results of this

paper are therefore not new, but the point is that the definitions and proofs are different

from those of Frankl and Rödl and more readily generalized. Thus, the principal novelty

of this paper occurs at the technical level. However, since this is an area where it is easy

to become overwhelmed by technical difficulties, technical simplifications are of more than

merely technical interest. That said, Nagle, Rödl and Schacht have also recently gener-

alized the Frankl-Rödl approach to k-uniform hypergraphs [NRS], in work independent

of the work discussed here. In the final section of this paper, we explain what the main

difference is between the Frankl-Rödl approach and the one given here.

The methods of this paper have their roots in part of the analytic proof of Szemerédi’s

theorem given by the author in [G1,2]. Another purpose of the paper is to explain this

connection. We shall occasionally assume a nodding acquaintance with the ideas of [G1]

(which are not used here in any formal way, but which shed light on some of our arguments):

otherwise this paper is self-contained.

The reader is urged not to be put off by the length of the paper. The main results

- counting and regularity lemmas for 3-uniform hypergraphs - are dealt with in §6 and

§8 respectively. The rest of the paper consists of discussion, motivating examples and

well-known background results in graph theory. Even the sections with the main results

contain quite a bit of discussion, rather than being written as densely as possible. If you

are looking for a short proof of Szemerédi’s theorem for progressions of length four, then

the “true” length of this paper is shorter than that of other papers that establish the

same result. Almost all the proofs are straightforward applications of the second-moment

method, otherwise known as the Cauchy-Schwarz inequality.

To begin with, here is a brief sketch of a variant of the argument of Ruzsa and

Szemerédi that was the starting point for Rödl’s programme. Their first step was to prove

the following simple-looking statement about graphs.
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Theorem 1.1. For every constant c > 0 there exists a constant a > 0 with the following

property. If G is any graph with n vertices that contains at most an3 triangles, then it is

possible to remove at most cn2 edges from G to make it triangle-free.

Sketch Proof. For anybody with experience of the regularity lemma, this is an easy and

standard argument (but it was of course a serious achievement of Ruzsa and Szemerédi to

notice that this kind of result was both easy and significant). First, apply the regularity

lemma to obtain a c/4-regular partition of G into vertex sets V1, . . . , VK of almost equal

size. Remove all edges that belong to pairs (Vi, Vj) that fail to be c/4-regular or that have

density at most c/2. The result is a subgraph G′ of G such that every edge belongs to a

pair (Vi, Vj) that is c/4 regular and has density at least c/2, and the number of edges we

have removed from G to achieve this is less than cn2.

It remains to show that G′ is triangle-free. But if xyz is a triangle in G′ then we must

have x ∈ Vi, y ∈ Vj and z ∈ Vk with the pairs (Vi, Vj), (Vj , Vk) and (Vi, Vk) all c/4 regular

and of density at least c/2. It is not hard to deduce from this that the number of triangles

in G is at least c3N3/256K3. Since K depends on c only, the result is proved. �

Remark. In the above argument we are allowing i, j and k to coincide, so strictly speaking

the triangles we obtain should have labellings on their vertices. But this affects the bound

by a factor of at most 6. It is more common to insist that K is large, so that there are

very few edges joining vertices in the same Vi and one can afford to remove them.

The bound one gets for the dependence of a on c in Theorem 1.1 is extremely weak,

and it is a fascinating problem to find a proof that does not use the regularity lemma and

therefore, one hopes, gives a better bound. The reason this would be more than a minor

curiosity is that Theorem 1.1 implies Roth’s theorem - that is, Szemerédi’s theorem in the

case of progressions of length three. There are several ways to demonstrate this - the way

we give here is a small modification of an argument of Solymosi [S1], which is a precursor

to the argument mentioned earlier. He was the first to observe that one could obtain the

following two-dimensional statement as well.

Corollary 1.2. For every δ > 0 there exists N such that every subset A ⊂ [N ]2 of size at

least δN2 contains a triple of the form (x, y), (x+ d, y), (x, y + d) with d > 0.

Proof. First, note that an easy argument allows us to replace A by a set B that is

symmetric about some point. Briefly, if the point (x, y) is chosen at random then the

intersection of A with (x, y)−A has expected size cδ2N2 for some absolute constant c > 0,

lives inside the grid [−N,N ]2, and has the property that B = (x, y) − B. So B is still
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reasonably dense, and if it contains a subset K then it also contains a translate of −K.

So we shall not worry about the condition d > 0. (I am grateful to Ben Green for bringing

this trick to my attention.)

Without loss of generality, the original set A is symmetric in this sense. Let X be the

set of all vertical lines through [N ]2, that is, subsets of the form {(x, y) : x = u} for some

u ∈ [N ]. Similarly, let Y be the set of all horizontal lines. Define a third set, Z, of diagonal

lines, that is, lines of constant x+ y. These sets form the vertex sets of a tripartite graph,

where a line in one set is joined to a line in another if and only if their intersection belongs

to A. For example, the line x = u is joined to the line y = v if and only if (u, v) ∈ A and

the line x = u is joined to the line x+ y = w if and only if (u,w − u) ∈ A.

Suppose that the resulting graph G contains a triangle of lines x = u, y = v, x+y = w.

Then the points (u, v), (u,w−u) and (w− v, v) all lie in A. Setting d = w−u− v, we can

rewrite them as (u, v), (u, v + d), (u + d, v), which shows that we are done unless d = 0.

When d = 0, we have u + v = w, which corresponds to the degenerate case when the

vertices of the triangle in G are three lines that intersect in a single point. Clearly, this

can happen in at most |A| = o(N3) ways.

Therefore, if A contains no configuration of the desired kind, then the hypothesis of

Theorem 1.1 holds, and we can remove o(N2) edges from G to make it triangle-free. But

this is a contradiction, because there are at least δN2 degenerate triangles and they are

edge-disjoint. �

It is straightforward to deduce Roth’s theorem from the above result. Note that for

this deduction we do not mind if the d obtained in Corollary 1.2 is negative.

Corollary 1.3. For every δ > 0 there exists N such that every subset A of {1, 2, . . . , N}
of size at least δN contains an arithmetic progression of length 3.

Proof. Define B ⊂ [N ]2 to be the set of all (x, y) such that x−y ∈ A. It is straightforward

to show that B has density at least η > 0 for some η that depends on δ only. Applying

Corollary 1.2 to B we obtain inside it three points (x, y), (x+d, y) and (x, y+d). Then the

three numbers x−y−d, x−y, x+d−y belong to A and form an arithmetic progression. �

Rödl’s programme, outlined in [R], was to generalize Theorem 1.1 to hypergraphs,

using generalized regularity and counting lemmas to prove it. The various ways of de-

ducing Roth’s theorem from Theorem 1.1 can then be straightforwardly modified to give

deductions of the full Szemerédi theorem.
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To be more precise about this, let H be a 3-uniform hypergraph. By a simplex in H

we mean a collection of four edges of the form {xyz, xyw, xzw, yzw}, that is, a complete

subhypergraph on four vertices. If one thinks of the edges of H as (two-dimensional)

triangles, then the “edges” of a simplex can be thought of as the faces of a tetrahedron.

However one looks at it, this is the natural generalization of the notion of a triangle in a

graph. The result of Frankl and Rödl mentioned earlier is the following.

Theorem 1.4. For every constant c > 0 there exists a constant a > 0 with the following

property. If H is any 3-uniform hypergraph with n vertices that contains at most an4

simplices, then it is possible to remove at most cn3 edges from H to make it simplex-free.

As Solymosi demonstrated, it is easy to adapt the proof of Theorem 1.2 and show

that Theorem 1.4 has the following consequence.

Theorem 1.5. For every δ > 0 there exists N such that every subset A ⊂ [N ]3 of size at

least δN3 contains a quadruple of points of the form

{(x, y, z), (x+ d, y, z), (x, y + d, z), (x, y, z + d)}

with d > 0.

Similarly, Szemerédi’s theorem for progressions of length four is an easy consequence

of Theorem 1.5.

Thus, once one has appropriate generalizations of the regularity and counting lemmas

to hypergraphs, the rest of the argument goes through quite easily. However, as will become

clear over the next three sections, even to come up with the right statements is harder

than one might at first think. To begin with, however, we shall provide some essential

background by discussing several notions of quasirandomness and the relationships between

them.

§2. Quasirandom graphs, hypergraphs and subsets of ZN : some definitions.

Every known proof of Szemerédi’s theorem involves somewhere a notion of quasiran-

domness and a two-case argument of the following kind: if a certain structure is quasiran-

dom then it contains several configurations of the kind one is looking for (just as one expects

from a random structure), and if it is not then one can exploit the non-quasirandomness

and pass to the next stage of an iteration. In this section we review certain notions of

quasirandomness and point out connections between them (some of which are well known).
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The first is the definition of a quasirandom graph, which was introduced by Chung,

Graham and Wilson [CGW]. (A similar notion was discovered independently by Thomason

[T].) There are in fact several different definitions, and the main purpose of their paper

was to show that they are all equivalent. Here we restrict attention to bipartite graphs

and focus on just two of the definitions. (Chung and Graham state their results in the

case p = 1/2 only but the generalization to arbitrary p is not hard.) A proof of a slightly

modified result will be given in the next section.

Theorem 2.1. Let G be a bipartite graph with vertex sets X and Y . Let |X| = M and

|Y | = N and suppose that G has pMN edges. Then the following properties of G are

equivalent.

(i) The number of labelled 4-cycles in G that start in X (that is, quadruples

(x1, x2, y1, y2) ∈ X2 × Y 2 such that x1y1, x1y2, x2y1 and x2y2 are all edges of G) is

at most p4M2N2 + c1M
2N2.

(ii) If X ′ and Y ′ are any two subsets of X and Y respectively, then the number of

edges from X ′ to Y ′ differs from p|X||Y | by at most c2MN .

A graph that satisfies property (i) is often called α-quasirandom. For the time being, we

shall adopt this definition, though in the next section we shall choose a different, equivalent

definition that is more convenient.

Chung and Graham [CG2] went on to define a notion of quasirandomness for subsets of

ZN . Again, they gave the definition in the form of a theorem that asserted the equivalence

of various randomness properties, and once again we shall focus on just two of these and

consider the case of an arbitary “probability” p rather than just p = 1/2. By a mod-N

progression we mean a set of the form (a, a+ d, . . . , a+ (m− 1)d), where addition is in the

group ZN .

Theorem 2.2. Let A be a subset of ZN of size pN . Then the following properties of A

are equivalent.

(i) The number of quadruples (a, b, c, d) ∈ A4 such that a + b = c + d is at most

p4N4 + o(N4).

(ii) If X is any mod-N progression then |A ∩X| = p|X|+ o(N).

Chung and Graham also pointed out that there is a close connection between quasir-

andom subsets of ZN and quasirandom graphs. To see this, let A be a subset of ZN and

define a bipartite graph G with vertex sets X = Y = ZN by letting (x, y) ∈ X × Y be an
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edge if and only if x+ y ∈ A. Then, given a 4-cycles (x1, x2, y1, y2) of the kind counted in

property (ii) of Theorem 2.1, we know that x1 + y1, x1 + y2, x2 + y1 and x2 + y2 all belong

to A, and moreover that

(x1 + y1) + (x2 + y2) = (x1 + y2) + (x2 + y1) ,

from which it is easy to see that there is an N -to-one correspondence between the 4-

cycles from Theorem 2.1 (i) and the quadruples from Theorem 2.2 (i). Thus, the set A is

quasirandom if and only if the corresponding graph G is quasirandom.

Why are quasirandom sets useful for Szemerédi’s theorem? Briefly, the reason is

that a quasirandom set A of density p must contain approximately the same number of

arithmetic progressions of length 3 as a typical random set of that density, while if it fails to

be quasirandom, then property (ii) of Theorem 2.2 tells us that there are well-structured

subsets of ZN inside which A has density substantially different from p (and hence, by

an averaging argument, sometimes substantially larger). This makes possible an iteration

argument of the kind mentioned at the beginning of this section.

In all known proofs of Szemerédi’s theorem, the difficulty increases sharply when the

length of the progression increases from 3 to 4. In the analytic approach of [G1,2], the

reason for this difficulty is that the quasirandomness of Theorem 2.2 is not a sensitive

enough property to detect that a set has too many or too few arithmetic progressions of

length 4 (compared with a random set of the same density). The idea of [G1] is to define a

stronger property, known there as quadratic uniformity, which is sensitive to progressions

of length 4. However, because it is a stronger property, it is much harder to say anything

about sets that fail to be quadratically uniform - a point to which we shall return.

The main purpose of this section, however, is to show how the notion of quadratic

uniformity leads naturally to a definition, also due to Chung and Graham [CG1] (but

arrived at in a different way), of quasirandomness for 3-uniform hypergraphs. First, then,

here is the definition of a quadratically uniform subset of ZN .

Definition 2.3. Let α > 0. A subset A ⊂ ZN of size pN is α-quadratically uniform if A8

contains at most (p4 + α)N4 octuples of the form

(x, x+ a, x+ b, x+ c, x+ a+ b, x+ a+ c, x+ b+ c, x+ a+ b+ c) .

Since quadruples (a, b, c, d) with a + b = c + d are in one-to-one correspondence with

quadruples of the form (x, x+ a, x+ b, x+ a+ b), this definition is a natural generalization

of property (i) of Theorem 2.2.
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In order to define quasirandomness for 3-uniform hypergraphs, we shall “complete the

square”, by finding a property that stands in relation to quadratic uniformity as quasiran-

domness for graphs does to quasirandomness for subsets of ZN . To establish that connec-

tion we started with a set A and defined the bipartite graph G to consist of all pairs (x, y)

such that x+ y ∈ A. Now we would like to find an associated 3-uniform hypergraph, and

it seems sensible to try the tripartite hypergraph H with vertex sets X = Y = Z = ZN ,

with the triple (x, y, z) forming an edge of H if and only if x+ y + z ∈ A.

In order to generalize Definition 2.3, we now want to find a structure in H that

corresponds to octuples of the given kind. It is natural to think of these octuples as

labelling vertices of a cube (as they would if a, b and c denoted three orthogonal vectors

of the same length). It is also natural to think of the edges of a 3-uniform hypergraph as

triangles. Is there a configuration of triangles naturally associated with a cube?

Indeed there is: the dual of a cube is an octahedron and an octahedron is made of

triangles. This suggests that we should regard a quadruple (x, x + a, x + b, x + a + b) in

ZN as a kind of square, and a 4-cycle (x1, x2, y1, y2) in a bipartite graph as its dual, which

happens, confusingly, to look like a square as well. (This dual square gives rise to the

square (x1 + y1, x1 + y2, x2 + y1, x2 + y2) in ZN .) The points xi and yi of the 4-cycle are

vertices, so the vertices of the square in ZN correspond to (1-dimensional) faces, and the

value attached to a face is the sum of the values at the vertices. This gives us a construction

that generalizes easily to all dimensions.

The above remarks provide the justification for the following construction. Given

a subset A ⊂ ZN , define a tripartite 3-uniform hypergraph H with vertex sets X =

Y = Z = ZN to be the set of all triples (x, y, z) such that x + y + z ∈ A. Define an

octahedron in this (or any other) hypergraph to be a set of eight 3-edges of the form{
(xi, yj , zk) : i, j, k ∈ {1, 2}

}
, where x1, x2 ∈ X, y1, y2 ∈ Y , z1, z2 ∈ Z. Equivalently, an

octahedron is a complete tripartite subhypergraph with two vertices from each vertex set

of H.

It is now reasonable to guess that a good definition of quasirandomness for 3-uniform

hypergraphs is the following.

Definition 2.4. Let H be a tripartite 3-uniform hypergraph with vertex sets X, Y and

Z of size L, M and N respectively and suppose that H has pLMN edges. Then H is

α-quasirandom if it contains at most (p8 + α)L2M2N2 octahedra.

This suggestion can be motivated further (to do so one attempts to generalize arguments

about graphs and sees what one needs) but for now it is perhaps enough simply to say that
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the guess turns out to be correct, and to point out that the number of octahedra must

be at least p8L2M2N2. (This last observation follows easily from the Cauchy-Schwarz

inequality, as will become clear later in this paper.)

A first sign that the definition is a good one is that the eight numbers xi + yj + zk do

form a cube, in the sense discussed earlier. It follows that a subset A of ZN gives rise to

an α-quasirandom 3-graph H if and only if A is α-quadratically uniform.

As it happens, there is a different definition (Definition 4.3 below) that is even better.

However, it is equivalent apart from the precise value of α, and the advantage is a technical

one, so for the purposes of the discussion in this section we shall stick with the more obvious

Definition 2.4.

Theorem 2.1 stated that two quasirandomness properties of graphs are equivalent. We

have just generalized the second of these properties. What about the first? It is here that

hypergraph quasirandomness springs a surprise. The property that most obviously gener-

alizes property (ii) of Theorem 2.1 is the following, which we shall call vertex-uniformity.

Definition 2.5. Let H be a 3-uniform hypergraph with vertex sets X, Y and Z of sizes

L, M and N respectively and suppose that H has pLMN edges. Then H is β-vertex-

uniform if, for any choice of subsets X ′ ⊂ X, Y ′ ⊂ Y and Z ′ ⊂ Z, the number of triples

(x, y, z) ∈ X ′ × Y ′ × Z ′ that belong to H differs from p|X ′||Y ′||Z ′| by at most βLMN .

In the next section we shall see that an α-quasirandom 3-graph is β-vertex-uniform for some

β depending on α only, but the reverse is not true. In §4 we shall give two examples that

demonstrate the failure of this implication. We end this section with one last definition, of

a property that generalizes property (ii) of Theorem 2.1 in a less naive way. This property

will turn out to be equivalent to quasirandomness - another result to be proved in the next

section.

Definition 2.6. Let H be a 3-uniform hypergraph with vertex sets X, Y and Z of sizes L,

M and N respectively and suppose that H has pLMN edges. Then H is γ-edge-uniform

if for every t ∈ [0, 1] and every tripartite graph G with vertex sets X, Y and Z and tLMN

triangles, the number of triangles in G that belong to H differs from ptLMN by at most

γLMN .

Here, of course, a triangle in G is said to belong to H if its vertices form a triple that

belongs to H.

Why is this a generalization of property (ii)? Well, that property says of a bipartite

graph that it doesn’t significantly correlate with graphs that are induced by sets of vertices

9



(that is, complete bipartite graphs on subsets of the vertex sets). Edge-uniformity says

of a 3-uniform hypergraph that it doesn’t correlate with 3-uniform hypergraphs that are

induced by sets of edges (as opposed to hyperedges).

Although in this paper we are concentrating on 3-uniform hypergraphs, it should be

clear how the definitions of this section are generalized. A k-partite k-uniform hypergraph

H of density p with vertex sets Xi of size Ni is quasirandom if it contains at most (p2k

+

c)(N1 . . . Nk)2 k-dimensional octahedra and c is small; this turns out to be equivalent to

the assertion that H is ((k − 1)-edge)-uniform, in the sense that H does not significantly

correlate with any k-uniform hypergraph induced from a (k−1)-uniform hypergraph. Using

this kind of language, one could say that a quasirandom graph is a 2-uniform hypergraph

that is (1-edge)-uniform. The right generalization of the pair (2, 1) is not (k, 1) as one

might at first suppose, but (k, k − 1). Thus, Definition 2.6 is more useful to us than

Definition 2.5.

§3. Quasirandom functions and a counting lemma.

Let G be a tripartite graph with vertex sets X, Y and Z, of sizes L, M and N

respectively, and write G(X,Y ), G(Y, Z) and G(X,Z) for the three bipartite parts of G.

Suppose that these parts are quasirandom with probabilities p, q and r respectively. How

many triangles does G contain?

If we use genuinely random graphs as our guide, we should expect the answer to be

about pqrLMN , and indeed it is easy to use property (ii) of Theorem 2.1 to prove that

this is approximately right: a typical vertex in X has about pM neighbours in Y and

rN neighbours in Z; these two neighbourhoods are linked by about q(pM)(rN) edges;

summing over all x ∈ X we obtain the desired estimate.

The argument just sketched can be generalized quite easily from triangles to copies of

any small graph, and this generalization is what we shall refer to as the counting lemma for

graphs. The first aim of this section will be to give it a different and less transparent proof.

Why should we wish to do something so apparently perverse? Because the alternative proof

has a number of advantages: first, it is closely modelled on the analytic arguments of [G1]

and related arguments from Furstenberg’s ergodic-theory proof of Szemerédi’s theorem

(see for example [FKO]); more importantly, this analytic approach is much easier to gen-

eralize, an advantage that is very noticeable even for “the first non-trivial case”, that of

3-uniform hypergraphs. Thus, the reader who is prepared to make the small effort needed

to understand the proof of Theorem 3.5 below will understand the basic structure of the
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longer arguments of §4 and §6, and also that of [G3]: the main lemmas and arguments

there all have their prototypes here.

An important technicality in the analytic approach to these arguments is to think

of sets as {0, 1}-valued functions and to generalize set-theoretic arguments to functions

taking values in more general sets such as [0, 1], [−1, 1], R+, R, {z ∈ C : |z| 6 1} or C.

We shall do that now, proving results about [−1, 1]-valued functions and only occasionally

pausing to deduce results about graphs and hypergraphs. Our first result is a version of

Theorem 2.1 for functions. It is not quite a direct generalization of Theorem 2.1 because

the conclusion is generalized to functions as well as the hypothesis. However, as we shall

see, if G is regular then it is easy to deduce Theorem 2.1 from it. We shall not bother with

the irregular case, because we shall base our later arguments on Theorem 3.1 and not use

Theorem 2.1.

Theorem 3.1. Let X and Y be sets of sizes M and N respectively and let f : X × Y →
[−1, 1]. Then the following statements are equivalent.

(i)
∑

x,x′∈X

∑
y,y′∈Y f(x, y)f(x′, y)f(x, y′)f(x′, y′) 6 c1M

2N2.

(ii) For any pair of functions u : X → [−1, 1] and v : Y → [−1, 1] we have the

inequality
∣∣∣∑x,y f(x, y)u(x)v(y)

∣∣∣ 6 c2MN .

(iii) For any pair of sets X ′ ⊂ X and Y ′ ⊂ Y we have the inequality∣∣∣∑x∈X′
∑

y∈Y ′ f(x, y)
∣∣∣ 6 c3MN .

Proof. We shall begin with a very simple argument that shows that (ii) implies (i). Let

us assume that (i) is false, or in other words that∑
x,x′∈X

∑
y,y′∈Y

f(x, y)f(x′, y)f(x, y′)f(x′, y′) > c1M
2N2 .

Now choose x′ ∈ X and y′ ∈ Y randomly and independently and fix them. Then the

average of the sum
∑

x,y f(x, y)f(x′, y)f(x, y′)f(x′, y′) is greater than c1MN , so the sum

itself is greater than c1MN for at least one choice of x′ and y′. But then (ii) is false if we

set c2 = c1, u(x) = f(x, y′) and v(y) = f(x′, y)f(x′, y′). (What is important here is that

fixing x′ and y′ turns all the terms except for f(x, y) into constants or functions of one

variable.)

The reverse implication uses the Cauchy-Schwarz inequality several times. It is this

technique that, when suitably generalized, lies at the heart of the proof of the counting

lemma for hypergraphs. (To be more precise, what we keep using is not the Cauchy-

Schwarz inequality directly, but the inequality
(∑N

i=1 ai

)2

6 N
∑N

i=1 a
2
i , which follows
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from it.) In the expressions that follow, sums involving x and x′ are over X and sums

involving y and y′ are over Y .∣∣∣∑
x,y

f(x, y)u(x)v(y)
∣∣∣4 =

((∑
x

∑
y

f(x, y)u(x)v(y)
)2)2

6
(
M

∑
x

(∑
y

f(x, y)u(x)v(y)
)2)2

6
(
M

∑
x

(∑
y

f(x, y)v(y)
)2)2

= M2
(∑

x

∑
y,y′

f(x, y)f(x, y′)v(y)v(y′)
)2

6 M2N2
∑
y,y′

(∑
x

f(x, y)f(x, y′)v(y)v(y′)
)2

6 M2N2
∑
y,y′

(∑
x

f(x, y)f(x, y′)
)2

= M2N2
∑
x,x′

∑
y,y′

f(x, y)f(x, y′)f(x′, y)f(x′, y′)

These calculations show that if (i) is true then (ii) is true for c2 = c
1/4
1 .

It is obvious that (ii) implies (iii), since one can take u and v to be the characteristic

functions of X ′ and Y ′ respectively, so it remains to prove that (iii) implies (ii).

Suppose, then, that (ii) is false and we have functions u : X → [−1, 1] and v : Y →
[−1, 1] such that

∣∣∑
x,y f(x, y)u(x)v(y)

∣∣ > c2MN . We can write u = u+−u− with u+ and

u− disjointly supported and taking values in [0, 1], and similarly we can write v = v+−v−.

It follows that there are [0, 1]-valued functions s and t such that
∣∣∑

x,y f(x, y)s(x)t(y)
∣∣ >

c1MN/4. Now let X1 and Y1 be random subsets of X and Y respectively, with their

elements chosen independently with probabilities given by the functions s and t. Then the

expectation of
∑

x∈X1

∑
y∈Y1

f(x, y) is
∑

x,y f(x, y)s(x)t(y), so there must exist a choice

of X1 and Y1 such that
∣∣∑

x∈X1

∑
y∈Y1

f(x, y)
∣∣ is at least c1MN/4. If this sum is positive,

then we are done. Otherwise, let X2 = X \X1 and Y2 = Y \ Y1, and for i, j ∈ {1, 2} let

Sij =
∑

x∈Xi

∑
y∈Yj

f(x, y). Then S11+S12+S21+S22 = 0 from which it follows that either

there exists a pair (i, j) 6= (1, 1) such that Sij > c1MN/12. Whatever happens, we have

found a pair of sets X ′ ⊂ X and Y ′ ⊂ Y such that
∣∣∣∑x∈X′

∑
y∈Y ′ f(x, y)

∣∣∣ > c2MN/12,

contradicting (iii) when c3 6 c2/12. �

Theorem 3.1 motivates the following definition.
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Definition 3.2. Let X and Y be sets of size M and N . A function f is α-quasirandom

if
∑

x,x′∈X

∑
y,y′∈Y f(x, y)f(x′, y)f(x, y′)f(x′, y′) 6 αM2N2.

If G is a bipartite graph with vertex sets X and Y , let us write G(x, y) for the function

that is 1 if xy is an edge of G and 0 otherwise. Suppose that |X| = M , |Y | = N and every

vertex in X has degree pN , and set f(x, y) = G(x, y)− p. Then it is easy to verify that∑
x,x′,y,y′

G(x, y)G(x, y′)G(x′, y)G(x′, y′)

=
∑

x,x′,y,y′

f(x, y)f(x, y′)f(x′, y)f(x′, y′) + p4M2N2 .

It follows that G is α-quasirandom, in the sense of §2, if and only if f is α-quasirandom.

From now on we shall adopt this as our definition of quasirandomness even in the non-

regular case.

Definition 3.3. Let G be a bipartite graph with vertex sets X and Y of size M and N

and suppose that G has pMN edges. Then G is α-quasirandom if the function f(x, y) =

G(x, y)− p is α-quasirandom.

Notice also that, with this definition of f ,∑
x∈X′

∑
y∈Y ′

G(x, y) =
∑

x∈X′

∑
y∈Y ′

f(x, y) + p|X ′||Y ′| ,

so property (iii) of Theorem 3.1 and property (ii) of Theorem 2.1 are trivially equivalent.

We have therefore proved Theorem 2.1 in the case of regular graphs.

Now let us state and prove a counting lemma for graphs. We begin with the special case

of triangles in order to demonstrate the argument without getting tied up with notation.

It is also the case of most immediate interest.

Lemma 3.4. Let G be a tripartite graph with vertex sets X, Y and Z, of sizes L, M

and N respectively. Suppose that the bipartite graphs G(X,Y ), G(Y, Z) and G(X,Z) are

α-quasirandom with densities p, q and r respectively. Then the number of triangles in G

differs from pqrLMN by at most 4α1/4LMN .

Proof. Let the variables x, y and z always stand for elements of X, Y and Z respectively,

so that we do not keep needing to specify this. Define a function f : X × Y → [−1, 1] by

f(x, y) = G(x, y)− p, and similarly let g(y, z) = G(y, z)− q and h(x, z) = G(x, z)− r. In

terms of this notation, the number of triangles in G is given by the sum∑
x,y,z

(p+ f(x, y))(q + g(y, z))(r + h(x, z)) .

13



This sum splits naturally into eight parts, and the idea of the proof is that if α is small

then only the main term pqrLMN makes a significant contribution to it. To see this, let

us consider any one of the four terms that involves f(x, y) rather than p. It will have the

form
∑

x,y,z f(x, y)u(y, z)v(x, z), where u is either q or g and v is either r or h.

If we now fix z, we obtain an expression of the form
∑

x,y f(x, y)u(y)v(z). The deduc-

tion of property (ii) from property (i) in Theorem 3.1 tells us that this is at most α1/4LM ,

which gives us that
∑

x,y,z f(x, y)u(y, z)v(x, z) is at most α1/4LMN . There are seven

terms other than the main one, of this kind, three of which are easily seen to be zero, so

the result follows. �

The general counting lemma is proved in essentially the same way. We shall state

it in an equivalent form, as a “probability lemma”. Notice that the probability in the

conclusion of the lemma is what one would expect in the case of random graphs. The

conclusion of the lemma therefore says that there are about as many copies of H in G as

one would expect.

Theorem 3.5. Let G be an m-partite graph with vertex sets X1, . . . , Xm and write Ni for

the size of Xi. Suppose that for each pair (i, j) the induced bipartite graph G(Xi, Xj) is

α-quasirandom with density pij . Let H be any graph with vertex set {1, 2, . . . ,m} and let

(x1, . . . , xm) be a random element of X1×. . .×Xm. Then the probability that the function

i 7→ xi is an isomorphic embedding of H into G differs from
∏

ij∈E(H) pij

∏
ij /∈E(H)(1−pij)

by at most 2(m
2 )α1/4. The probability that xixj is an edge of G whenever ij is an edge of

H (but not necessarily conversely) differs from
∏

ij∈E(H) pij by at most 2|E(H)|α1/4.

Proof. This time, let xi always stand for an element of Xi. Let fij(x, y) = G(x, y)− pij

for each pair (i, j). Then the probability in question is

(N1 . . . Nm)−1
∑

x1,...,xm

∏
ij∈E(H)

(pij + fij(xi, xj))
∏

ij /∈E(H)

(1− pij − fij(xi, xj)) .

Once again, we have a sum that splits up into several terms. The main term is∏
ij∈E(H) pij

∏
ij /∈E(H)(1 − pij) and it remains to show that all other terms are small.

But any other term must choose fij(xi, xj) from at least one bracket, and since only one

bracket involves both xi and xj , if we fix all the other xk we obtain an expression of the

form
∑

xi,xj
fij(xi, xj)u(xi)v(xj), with u and v taking values in the interval [−1, 1]. It

follows from the α-quasirandomness of fij and Theorem 3.1 that this is at most α1/4NiNj .

Summing over the other m − 2 variables and multiplying by (N1 . . . Nm)−1 we find that
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each term apart from the main one has size at most α1/4. Since there are 2(m
2 ) terms, the

result follows (and could be improved slightly since some of the terms are zero).

The proof of the second assertion is similar, but slightly simpler. �

§4. A counting lemma for quasirandom 3-graphs.

The virtue of the arguments in §3 is that they generalize easily. Our first demonstra-

tion of this takes the form of very similar proofs of corresponding results for quasirandom

3-uniform hypergraphs. As in §3, we begin with a result about functions that serves as

a definition of quasirandomness. The statement is very similar to that of Theorem 3.1,

and the proofs of the implications are also very similar to the corresponding proofs in

Theorem 3.1. Properties (i) and (iii) below are functional versions of Definitions 2.4 and

2.6 respectively.

During part of the proof, we shall make use of a non-standard but very convenient

“product convention”. If g is any function of k variables x1, . . . , xk, then gx,x′(x2, . . . , xk)

will be shorthand for gx(x2, . . . , xk)gx′(x2, . . . , xk). What’s more, we shall iterate this,

writing gx,x′,y,y′ for (gx,x′)y,y′ and so on. For instance, if g is a function of three variables,

then

gx,x′,y,y′(z) = g(x, y, z)g(x′, y, z)g(x, y′, z)g(x′, y′, z) .

If we iterate k times, then the resulting function is a function of no variables, that is, a

constant. To be precise, gx1,x′1,...,xk,x′
k

is the number
∏

ε∈{0,1} g
(
u1(ε), . . . , uk(ε)

)
, where

ui(ε) = xi if εi = 0 and ui(ε) = x′i if εi = 1.

Theorem 4.1. LetX, Y and Z be sets of sizes L, M andN and let f : X×Y ×Z → [−1, 1].

Then the following statements are equivalent.

(i)
∑

x0,x1∈X

∑
y0,y1∈Y

∑
z0,z1∈Z

∏
(i,j,k)∈{0,1}3 f(xi, yj , zk) 6 c1L

2M2N2.

(ii) For any three functions u : X×Y → [−1, 1], v : Y ×Z → [−1, 1] and w : X×Z →
[−1, 1] we have the inequality

∣∣∑
x,y,z f(x, y, z)u(x, y)v(y, z)w(x, z)

∣∣ 6 c2LMN .

(iii) For any tripartite graph G with vertex sets X, Y and Z, the sum of f(x, y, z)

over all triangles xyz of G is at most c3LMN in magnitude.

Proof. Assume that (i) is false, so that

∑
x0,x1∈X

∑
y0,y1∈Y

∑
z0,z1∈Z

∏
(i,j,k)∈{0,1}3

f(xi, yj , zk) > c1L
2M2N2 .
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Choose x1, y1 and z1 randomly and independently and fix them. Then the average of the

sum

∑
x0,y0,z0

∏
(i,j,k)∈{0,1}3

f(xi, yj , zk)

is greater than c1LMN , so the sum itself is greater than c1LMN for at least one choice

of x1, y1 and z1. But then (ii) is false if we set c2 = c1, u(x, y) = f(x, y, z1), v(y, z) =

f(x1, y, z)f(x1, y1, z) and w(x, z) = f(x, y1, z)f(x, y1, z1)f(x1, y1, z)f(x1, y1, z1).

Again, the details do not matter here: the point is that if we write x, y and

z for x0, y0 and z0, then f(x, y, z) is the only term in the product that depends

on all of x, y and z, so fixing x1, y1 and z1 results in an expression of the form∑
x,y,z f(x, y, z)u(x, y)v(y, z)w(x, z).

Now let us prove the reverse inequality by making repeated use of the Cauchy-Schwarz

inequality. This is where we shall use the notation introduced before the statement of the

theorem.

(∑
x,y,z

f(x, y, z)u(x, y)v(y, z)w(x, z)
)8

6
(
MN

∑
y,z

(∑
x

f(x, y, z)u(x, y)v(y, z)w(x, z)
)2)4

6 M4N4
(∑

y,z

(∑
x

f(x, y, z)u(x, y)w(x, z)
)2)4

= M4N4
(∑

x,x′

∑
y,z

f(x, y, z)f(x′, y, z)u(x, y)u(x′, y)w(x, z)w(x′, z)
)4

= M4N4
(∑

x,x′

∑
y,z

fx,x′(y, z)ux,x′(y)wx,x′(z)
)4

6 M4N4L6
∑
x,x′

(∑
y,z

fx,x′(y, z)ux,x′(y)wx,x′(z)
)4

.

We now perform on the inner sum the steps from the corresponding part of the proof of
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Theorem 3.1. The last expression is at most

M4N4L6
∑
x,x′

(∑
z

(∑
y

fx,x′(y, z)ux,x′(y)wx,x′(z)
)2)2

6 M4N4L6
∑
x,x′

(
N

∑
z

(∑
y

fx,x′(y, z)ux,x′(y)
)2)2

= M4N6L6
∑
x,x′

(∑
y,y′

∑
z

fx,x′(y, z)fx,x′(y′, z)ux,x′(y)ux,x′(y′)
)2

= M4N6L6
∑
x,x′

(∑
y,y′

∑
z

fx,x′,y,y′(z)ux,x′,y,y′

)2

6 M4N6L6
∑
x,x′

M2
∑
y,y′

(∑
z

fx,x′,y,y′(z)ux,x′,y,y′

)2

6 M6N6L6
∑
x,x′

∑
y,y′

(∑
z

fx,x′,y,y′(z)
)2

= M6N6L6
∑
x,x′

∑
y,y′

∑
z,z′

fx,x′,y,y′,z,z′ .

This is another way of writing

M6N6L6
∑

x0,x1∈X

∑
y0,y1∈Y

∑
z0,z1∈Z

∏
(i,j,k)∈{0,1}3

f(xi, yj , zk) .

It follows that if (i) is true then (ii) is true with c2 = c
1/8
1 .

It is obvious that (ii) implies (iii), since one can take u, v and w to be the characteristic

functions of the bipartite graphs G(X,Y ), G(Y, Z) and G(X,Z). It therefore remains to

prove that (iii) implies (ii).

Suppose, then, that (ii) is false and we have functions u : X×Y → [−1, 1], v : Y ×Z →
[−1, 1] and w : X × Z → [−1, 1] such that

∣∣∑
x,y,z

f(x, y, z)u(x, y)v(y, z)w(x, z)
∣∣ > c2LMN .

One can write u as u+ − u− with u+ and u− disjointly supported and taking values in

[0, 1], and one can do the same for v and w. It follows that there are functions a, b and c

taking values in [0, 1] such that

∣∣∑
x,y,z

f(x, y, z)a(x, y)b(y, z)c(x, z)
∣∣ > c2LMN/8 .
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Now let A1, B1 and C1 be random subsets of X × Y , Y × Z and X × Z, their elements

chosen randomly and independently with probabilities given by the functions a, b and c.

Writing A1, B1 and C1 for the characteristic functions of the sets as well, we have that

the expectation of ∣∣∣∑
x,y,z

f(x, y, z)A1(x, y)B1(y, z)C1(x, z)
∣∣∣

is at least c2LMN/8. Choose A1, B1 and C1 such that the absolute value of the sum is at

least this big and let the complements of A1, B1 and C1 be A2, B2 and C2. Write Sijk for

the sum
∑

x,y,z f(x, y, z)Ai(x, y)Bj(y, z)Ck(x, z). Since f sums to zero, we know that the

Sijk add up to zero. Since S111 has absolute value at least c2LMN/8, it follows that at

least one Sijk exceeds c2LMN/56. If we let G be the tripartite graph with edge sets Ai,

Bj and Ck, then we have disproved (iii) for any c3 6 c2/56. �

It is now very natural to make the following pair of definitions.

Definition 4.2. Let X, Y and Z be sets of sizes L, M and N . A function f : X × Y ×Z
is α-quasirandom if∑

x0,x1∈X

∑
y0,y1∈Y

∑
z0,z1∈Z

∏
(i,j,k)∈{0,1}3

f(xi, yj , zk) 6 αL2M2N2 .

Definition 4.3. Let H be a tripartite 3-uniform hypergraph with vertex sets X, Y and

Z of sizes L, M and N . Let the number of edges of H be pLMN and let f(x, y, z) =

H(x, y, z)− p. Then H is α-quasirandom if f is α-quasirandom.

As we commented earlier, this definition is not identical to Definition 2.4, but it is equiv-

alent (give or take the precise value of α) and it is the one we shall use. The advantage

it has is that it is easier to use when proving a counting lemma. Note that if H fails to

be quasirandom in this sense, then we have the easy deduction that f fails property (ii)

of Theorem 4.1, which in turn shows easily that H is not α-edge uniform (in the sense of

Definition 2.6).

We come now to a counting lemma for quasirandom 3-uniform hypergraphs. For

simplicity, we prove it only in one special case, that of simplices (these were defined just

before the statement of Theorem 1.4), but it is an easy exercise to generalize this case to

a full counting lemma, just as we generalized Lemma 3.4 to Theorem 3.5.

Lemma 4.4. Let H be a quadripartite 3-uniform hypergraph with vertex sets X, Y , Z

and W , of sizes L, M and N and P respectively. Suppose that the induced subhypergraphs
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H(X,Y, Z), H(X,Y,W ), H(X,Z,W ) and H(Y, Z,W ) are α-quasirandom with densities

p, q, r and s respectively. Then the number of simplices in H differs from pqrsLMNP by

at most 15α1/8LMNP .

Proof. Let the variables x, y, z and w stand for elements of X, Y , Z and W . Let the

letterH stand for the characteristic function of the hypergraphH as well as the hypergraph

itself. Define functions f , g, h and k (with obvious domains) by f(x, y, z) = H(x, y, z)−p,
g(x, y, w) = H(x, y, w) − q, h(x, z, w) = H(x, z, w) − r and k(y, z, w) = H(y, z, w) − s.

Then the number of simplices in H is∑
x,y,z,w

(p+ f(x, y, z))(q + g(x, y, w))(r + h(x, z, w))(s+ k(y, z, w)) .

The main term in this sum is pqrsLMNP . We shall now show that all other

terms are significantly smaller. Consider, for example, any term that chooses f(x, y, z)

rather than p from the first bracket. For each fixed w this results in a sum of the form∑
x,y,z f(x, y, z)t(x, y)u(y, z)v(z, x), with t, u and v taking values in the interval [−1, 1].

Therefore, by Theorem 4.1 (and the bound obtained in the proof), the entire sum comes

to at most α1/8LMNP . The same argument works for g, h and k, and that is enough to

show that all terms apart from the main term have modulus at most α1/8LMNP , which

proves the result. �

§5. Why quasirandom 3-graphs are not enough.

To prove Roth’s theorem (that is, Szemerédi’s theorem for progressions of length 3),

one uses a combination of Szemerédi’s regularity lemma and Lemma 3.4. The reader who

has followed the paper so far may be disappointed to learn that Lemma 4.4 is not very useful

when it comes to generalizing that argument. However, any effort spent on understanding

it will pay dividends later, since the result that is useful is a further generalization, proved

by a similar technique, and the steps of that result will make much more sense if they are

compared with the steps in the proofs of Theorem 4.1 and Lemma 4.4.

What, then, is inadequate about quasirandomness of 3-uniform hypergraphs? The

answer is not that the property is too weak - as Lemma 4.4 demonstrates - but rather that

it is too strong. In other words, we are delighted if we are lucky enough to be presented

with a quasirandom hypergraph, but in general it is too much to hope for. If we wish to

generalize the proof for graphs, triangles and progressions of length 3, then we shall need

two components: a regularity lemma and an associated counting lemma. The regularity
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lemma will tell us that we can divide any 3-uniform hypergraph H into random-like pieces

(whatever this turns out to mean, it should somehow be analogous to the statement of

the usual regularity lemma for graphs) and the counting lemma will allow us to use this

information to approximate the number of simplices in H. One might think that “random-

like pieces” should simply be quasirandom sub-hypergraphs, but any sensible statement

along these lines turns out to be false.

Here is a simple example of a tripartite 3-uniform hypergraph that has no large quasir-

andom subhypergraph, and which therefore cannot be decomposed into a small number of

them. Let X, Y and Z be three sets of size N and let G be a random tripartite graph with

vertex sets X, Y and Z. Let H be the hypergraph consisting of all triangles in G, that is,

all triples (x, y, z) such that xy, yz and xz are edges of G. Then the density of H is 1/8,

but the number of octahedra in H is about 2−12N6 (because an octahedron, considered

as a graph, has 12 edges) rather than 8−8N6 as it should have if H is quasirandom.

Now, given any large subsets X ′ ⊂ X, Y ′ ⊂ Y and Z ′ ⊂ Z, the graphs G(X ′, Y ′),

G(Y ′, Z ′) and G(X ′, Z ′) are (with high probability) quasirandom, and therefore the same

reasoning shows that the induced subhypergraph H(X ′, Y ′, Z ′) still fails to be quasiran-

dom.

Indeed, the situation is even worse, as it is not just induced subhypergraphs that fail

to be quasirandom. Let H ′ be any subhypergraph of H and let the density of H ′ be p.

Since H ′ is a subhypergraph of H,∑
x,y,z

H ′(x, y, z)G(x, y)G(y, z)G(x, z) = pN3 .

If we set f(x, y, z) = H ′(x, y, z)− p, then we can deduce that∑
x,y,z

f(x, y, z)G(x, y)G(y, z)G(x, z) = pN3 − pN3/8 ,

which is a clear violation of property (iii) of Theorem 4.1. This argument remains valid

even if one starts by restricting to large subsets X ′, Y ′ and Z ′ of X, Y and Z.

This looks like bad news, and in a way it is, because it makes life more complicated,

but it is not as bad as all that. To see why not, just look back at the discussion of the

example above. Although the hypergraph H was not quasirandom, we had absolutely no

difficulty calculating roughly how many octahedra it should have, and the reason was that

we were able to use the quasirandomness of the graphs G(X,Y ), G(Y, Z) and G(Z,X).

More generally, suppose we construct a hypergraph H as follows. First, we take random
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graphs G(X,Y ), G(Y, Z) and G(Z,X) with densities p, q and r and let G be the tripartite

graph formed by their union. Next, we define H0 to be the hypergraph consisting of all

triangles of G. Finally, we let H be a random subhypergraph of H0, choosing each edge

of H0 with probability s and making all choices independently.

How many octahedra do we expect H to contain? Well, if we choose x0, x1 ∈ X,

y0, y1 ∈ Y and z0, z1 ∈ Z at random, then the probability that a pair xiyj belongs to

G is p, and these probabilities are more or less independent, so the probability that all

four pairs belong to G is almost exactly p4. Similar statements hold for the yizj and

the xizj , so the probability that all the 2-edges of the octahedron belong to G is almost

exactly (pqr)4. If this happens, then there are eight 3-edges, or faces, each of which has

a probability s of lying in H. We therefore expect the number of octahedra in H to be

about (pqr)4s8(|X||Y ||Z|)2.

It is clear from that calculation that quasirandom hypergraphs are not the only ones

for which it ought to be possible to prove a counting lemma. That is, one ought to be

able to relax the assumptions of Lemma 4.4 so that the induced subhypergraphs are not

necessarily quasirandom, but are built rather like the hypergraph considered in the last

paragraph. It is a lemma of this kind that we shall state and prove in the next section.

This will deal with the difficulty that we have just discussed. If we have proved a

counting lemma for a wider class of hypergraphs than just the quasirandom ones, then it

is enough, when proving a regularity lemma, to show that a hypergraph can be decomposed

into subgraphs from this wider class. And this assertion is weak enough to be true, which

is of course a huge advantage.

The situation we have just encountered occurs in other parts of mathematics - indeed,

something like it seems to happen for almost any class of mathematical objects that do

not have too rigid a structure but are well-endowed with subobjects. In such a situation,

it is very useful to find, for any object X in the class, a subobject Y ⊂ X that is in some

way “stable”, in the sense that any further subobject Z ⊂ Y does not differ interestingly

from Y . To do this one must first identify the stable objects and then prove that every

object contains a stable subobject. Here the structure we have been talking about is an

approximate one (it is not hard to define a notion of approximate isomorphism to make it

precise).

More exact instances are usually called canonical Ramsey theorems, of which the

most famous example concerns arbitrary colourings of the edges of the complete graph on

N. Here, one cannot expect to find a monochromatic infinite clique, but one can find an
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infinite set X such that the restriction of the colouring to the clique X(2) has one of four

simple forms. Write all edges as xy with x < y and write xy ∼ zw if xy and zw have the

same colour. Then one of the following four statements is true for all pairs xy, zw of edges

with x, y, z, w ∈ X: (i) xy ∼ zw if and only if x = z and y = w; (ii) xy ∼ zw if and only if

x = z; (iii) xy ∼ zw if and only if y = w; (iv) xy ∼ zw. It is easy to check that if one of

these statements holds for X then it holds for all subsets Y ⊂ X, so X (together with its

colouring) is stable.

A second class of examples arises in Banach space theory. There are several theorems

in the subject that allow one to pass from a Banach space X, perhaps with some extra

properties, to a subspace Y that is in some way easier to handle. And in many cases, the

property that Y has is a stability property, in the sense that all its subspaces are in some

important way similar to the space itself.

Before we embark on the main results of this paper, here is a second hypergraph

example to consider. It is not completely obvious that the first one matters, since it is

not derived from a subset of ZN in the way shown after Definition 2.3. Perhaps hyper-

graphs that come from sets have some extra property that makes them decomposable into

quasirandom pieces.

It turns out that they don’t. Rather than show precisely this, we shall briefly discuss

a similar result for functions, because it is much easier technically. It is derived in a

simple way from an example that plays a similar role in the analytic proof of Szemerédi’s

theorem [G1].

Let N be an odd positive integer and let ω = e2πi/N . Define a function f : Z3
N → C by

f(x, y, z) = ω(x+y+z)2 . This can be decomposed as ω(x+y)2ω(y+z)2ω(x+z)2ω−x2
ω−y2

ω−z2
,

or alternatively as g(x, y)g(y, z)g(x, z), where g(x, y) = ω2−1(x2+y2)+2xy. It is a straight-

forward exercise to deduce from the fact that the function ωx2
has very small Fourier

coefficients that g is a quasirandom function. So once again, we have a function of three

variables that is a product of three quasirandom functions of two variables and therefore

not quasirandom itself, even after restriction to any large set.

§6. A counting lemma for two-dimensional quasirandom simplicial complexes.

What the previous section shows is that we should consider objects that are slightly

more complicated than 3-uniform hypergraphs. We need to look instead at 3-uniform

hypergraphs that are obtained as subhypergraphs H of the set of all triangles in some

tripartite graph G, paying attention to both H and G. Let us write ∆(G) for the set of
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triangles of G. Then one of these objects can be defined more formally as an ordered pair

(G,H) such that H ⊂ ∆(G). It should be considered as quasirandom if the three bipartite

parts of the graph G are quasirandom and H in some way “sits quasirandomly” inside

∆(G). Our first task is to make this idea precise. Once we have done that, we shall prove

another sequence of results, again following the scheme of §3 and §4.

A slightly better way to think of our objects (G,H) is as two-dimensional simplicial

complexes: that is, as collections Σ of sets of size at most 3 with the property that if

A ∈ Σ and B ⊂ A then B ∈ Σ. Of course, to do this we need to take not just a graph

and a hypergraph, but also a set of vertices (and, to be strictly correct, the empty set).

What makes this a better way to think about it is partly that it is more natural when one

comes to generalize to k-uniform hypergraphs, and partly that the regularity lemma we

shall eventually prove involves restricting vertex sets. Despite all this, it will be simpler

to stick to pairs (G,H) for now and bear in mind that our results will later be applied to

pairs with restricted vertex sets. Let us make a formal definition.

Definition 6.1. An r-partite chain is a pair (G,H), where G is an r-partite graph, H is

an r-partite hypergraph with the same vertex sets as G, and H ⊂ ∆(G).

Suppose, then, that we have a chain (G,H). We know what it means for the bipartite

parts of G to be quasirandom, but must now say what it means for H to sit quasirandomly

inside ∆(G). As before, we shall define this in terms of functions. For convenience, let us

make another definition.

Definition 6.2. Let X, Y and Z be three sets and let f : X × Y ×Z → R be a function.

Then oct(f) is defined to be fx,x′,y,y′,z,z′ , which equals the sum∑
f(x, y, z)f(x, y, z′)f(x, y′, z)f(x, y′, z′)f(x′, y, z)f(x′, y, z′)f(x′, y′, z)f(x′, y′, z′)

taken over all x, x′ ∈ X, y, y′ ∈ Y and z, z′ ∈ Z.

Recall that the notation fx,x′,y,y′,z,z′ was introduced before the statement of Theorem 4.1.

We shall use it again when proving Theorem 6.5 below.

If f is the characteristic function of a hypergraph H then oct(f) is the number of

octahedra in H. We shall write oct(H) for this quantity. With this notation it is easy to

express precisely what it means for H to sit quasirandomly in G.

Definition 6.3. Let G be a tripartite graph with vertex sets X, Y and Z of sizes L, M

and N , and let f : X × Y × Z → [−1, 1] be a function such that f is supported in ∆(G).

23



Let the densities of G(X,Y ), G(Y, Z) and G(X,Z) be p, q and r respectively. Then f

is α-quasirandom relative to G if oct(f) 6 α(pqr)4(LMN)2. Now let H be a tripartite

3-uniform hypergraph with vertex sets X, Y and Z and suppose that H ⊂ ∆(G) and

|H| = γ|∆(G)|. Let f(x, y, z) = H(x, y, z)− γ for (x, y, z) ∈ ∆(G) and 0 otherwise. Then

H is α-quasirandom relative to G if f is α-quasirandom relative to G.

It might be more natural to say that f is α-quasirandom relative to G if oct(f) 6

α oct(G). If G is quasirandom, then this is roughly what the definition does say, and we

shall apply the definition only to quasirandom graphs, where the formulation we have given

turns out to be slightly more convenient for technical reasons.

These definitions are very similar to those of §4, but now everything takes place inside

∆(G). What we shall show is that if the bipartite parts of G are sufficiently quasirandom,

then relative quasirandomness has consequences that are also similar to those of §4, though

for reasons that will be explained more fully later, some of them are a bit more complicated.

The main result of this section is a counting lemma for simplices in quadripartite

chains. The reader who follows the proof will see that it can be generalized easily to a

counting lemma for arbitrary subchains. However, the case of simplices is easier to present,

and is enough for the application to arithmetic progressions of length four.

Before we prove this counting lemma, we need to prepare for it with a technical lemma

(Lemma 6.6 below), which itself needs small amount of preparation.

Definition 6.4. Let G and H be k-partite graphs with vertex sets X = X1 ∪ . . . ∪ Xk

and A = A1 ∪ . . . ∪ Ak respectively. A homomorphism from H to G is a map φ : A → X

such that φ(Ai) ⊂ Xi for each i and such that φ(v)φ(w) is an edge of G whenever vw is

an edge of H.

Note that in the above definition we say nothing about what happens if vw is not an

edge of H. Nor do we insist that φ is an injection.

Let G be a quadripartite graph with vertex sets X, Y , Z and W of sizes L, M , N

and P respectively. Let H be another quadripartite graph, with vertex sets A, B, C and

D of sizes q, r, s and t, and let a, a′ ∈ A, b, b′ ∈ B and c, c′ ∈ C be six vertices and

suppose that the set {a, a′, b, b′, c, c′} is independent. For any x, x′ ∈ X, y, y′ ∈ Y and

z, z′ ∈ Z let h(x, x′, y, y′, z, z′) be the number of homomorphisms φ from H to G such that

φ(a) = x, φ(a′) = x′, φ(b) = y, φ(b′) = y′, φ(c) = z and φ(c′) = z′. Lemma 6.6 will tell us

that if G is α-quasirandom for a sufficiently small α, then the function h is approximately

constant. This is a simple application of the counting lemma for graphs (Theorem 3.5)
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and the second-moment method.

Before we embark on the lemma, let us think about the constant we expect to obtain.

For each pair i, j let the density of the graph G(Xi, Xj) be δij . Given any edge e of H, let

us set δ(e) to be the δij for which Ai and Aj are the vertex sets containing the two vertices

joined by e. The number of ways of choosing a function φ that respects the partitions

of G and H is LqMrNsP t. If we fix the images of a, a′, b, b′, c, c′ then the number of

possible extensions is Lq−2Mr−2Ns−2P t. Given an edge e of H, it joins Ai to Aj for some

1 6 i < j 6 4. The probability that φ(e) is an edge of G is the density δij of the bipartite

subgraph G(Xi, Xj). If G behaves like a random graph, then the probability that φ is a

homomorphism will be roughly the product, δ, of all these individual edge-probabilities.

We shall call this the expected H-density of G. (The assumption that {a, a′, b, b′, c, c′} is

an independent set means that we do not have to worry about whether there are edges

joining vertices in the set {x, x′, y, y′, z, z′}.) We expect the approximately constant value

of h to be about δLq−2Mr−2Ns−2P t.

We shall be using second moments, so for convenience here first is an easy technical

lemma that encapsulates what we need for the main lemma.

Lemma 6.5. Let α, δ ∈ [0, 1], let R be a real number and let a1, . . . , an be real numbers

such that
∑n

i=1 ai > (δ − α)Rn and
∑n

i=1 a
2
i 6 (δ2 + α)R2n. Then |ai − δR| 6 Rα1/4 for

all but at most 3n
√
α values of i.

Proof. Using our hypotheses, we find that

n∑
i=1

(ai − δR)2 =
n∑

i=1

a2
i − 2R

n∑
i=1

aiδ + nδ2R2

6 R2n
(
δ2 + α− 2δ(δ − α) + δ2

)
= R2nα(1 + 2δ) 6 3R2nα .

The result follows immediately. �

The statement that follows will look somewhat peculiar: we are giving the particular

case that happens to arise later of a more general statement which, though more natural,

is perhaps harder to digest. Some readers may wish to jump to Lemma 6.7 and then come

back to this point of the paper when the motivation for it has become clear.

Lemma 6.6. Let G, H and δ be as in the remarks preceding Lemma 6.5. Let 0 < ε 6 1,

let α > 0 be such that 2mα1/16 6 εδ/3 and suppose that G is α-quasirandom. Let m be

the number of edges of H and let δ be the expected H-density of G. Then the number of
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sextuples (x, x′, y, y′, z, z′) for which h(x, x′, y, y′, z, z′) differs from δLq−2Mr−2Ns−2P t by

more than εδLq−2Mr−2Ns−2P t is at most εδL2M2N2.

Proof. First, we estimate
∑

x,x′,y,y′,z,z′ h(x, x
′, y, y′, z, z′). This is the number of homo-

morphisms φ from H to G, which, by Theorem 3.5, is at least (δ − 2mα1/4)LqMrNsP t.

Next, we estimate
∑

x,x′,y,y′,z,z′ h(x, x
′, y, y′, z, z′)2. For this we can use the counting

lemma again, but first we must define an auxiliary graph J . For each vertex v of H apart

from a, a′, b, b′, c and c′, let v1 be a copy of v. Let γ be a function defined on the

vertex set V of H that takes the vertices a, a′, b, b′, c and c′ to themselves and takes any

other vertex v to its copy v1. The vertex set of J is V ∪ γ(V ) and the edges of J are the

edges of H together with all pairs γ(u)γ(v) such that uv is an edge of H. It is easy to

see that
∑

x,x′,y,y′,z,z′ h(x, x
′, y, y′, z, z′)2 is the number of homomorphisms from J to G,

which is of course why we defined J . Since every edge of H has been doubled up in J , the

product of the edge-probabilities of J is δ2, so Theorem 3.5 tells us that the number of

homomorphisms from J to G is at most (δ2 + 22mα1/4)L2q−2M2r−2N2s−2P t.

Let us now apply the previous lemma, with n = L2M2N2, R = Lq−2Mr−2Ns−2P t,

δ as it is and α replaced by 22mα1/4. Then the hypotheses of the lemma are satisfied

and it tells us that the number of sextuples (x, x′, y, y′, z, z′) for which h(x, x′, y, y′, z, z′)

differs from δLq−2Mr−2Ns−2P t by more than 2m/2α1/16Lq−2Mr−2Ns−2P t is at most

3.2mα1/8L2M2N2. Our upper bound on α then implies the result. �

A few words of explanation are needed before the next lemma, to draw attention to

how it differs from the implication of (ii) from (i) in Theorem 4.1. As in that proof we

have a sum and we wish to show that it is small, subject to a quasirandomness assumption

about the function f . As in that proof we shall use the Cauchy-Schwarz inequality several

times, and the manipulations will be very similar. However, this time the functions we

look at are supported in the set of triangles of a quasirandom quadripartite graph G, and

the bound we obtain is stronger because it depends on the densities of the six bipartite

parts of G. The significance of this is that the theorem says something even when the

quasirandomness parameter η below is much larger than any of these densities. This extra

strength is very significant when G is sparse, as it will be if it is one of the graphs given

to us by the hypergraph regularity lemma proved later. To obtain the extra strength, we

shall be very careful to use the full strength of the Cauchy-Schwarz inequality whenever

we apply it: if the number of i such that ai 6= 0 is m, then we shall bound
(∑n

i=1 ai

)
above by m

∑n
i=1 a

2
i rather than by n

∑n
i=1 a

2
i .
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We shall use the following notation. The graph G will have vertex sets X, Y , Z and

W , but we shall also think of them as X1, X2, X3 and X4 respectively. (Sometimes one

notation is easier to handle, sometimes the other.) The density of Gij will again be denoted

δij . We shall write hi for |Xi|, hij for |G(Xi, Xj)| and hijk for the number of triangles

in G(Xi, Xj) ∪ G(Xj , Xk) ∪ G(Xi, Xk). If x, x′ ∈ X1 and i > 1 then we shall also write

hi(x, x′) for the number of vertices in Xi that are joined to both x and x′. Similarly, if

1 < i < j then we shall write hij(x, x′) for the set of all edges yz in G(Xi, Xj) such that

y and z are both joined to both of x and x′. Similarly, if x, x′ ∈ X1, y, y′ ∈ X2 and i > 2,

then we shall write hi(x, x′, y, y) for the number of z ∈ Xi that are joined to all of x, x′, y

and y′. It is numbers such as these that will appear when we make our more efficient uses

of the Cauchy-Schwarz inequality.

Lemma 6.7. Let G be as just described, and let f : X×Y ×Z → [−1, 1], g : X×Y ×W →
[−1, 1], h : X × Z ×W → [−1, 1] and k : Y × Z ×W → [−1, 1] be functions that are

non-zero only at triples that form triangles in G. Suppose that G is α-quasirandom and

that f is η-quasirandom relative to the tripartite graph G(X,Y, Z). Suppose also that

236α1/16 6 η(δ12δ23δ13δ14δ24δ34)8/6. Then∣∣∣ ∑
x,y,z,w

f(x, y, z)g(x, y, w)h(x, z, w)k(y, z, w)
∣∣∣ 6 (2η)1/8δ12δ23δ13δ14δ24δ34LMNP .

Proof. We begin with several applications of the Cauchy-Schwarz inequality, of a similar

kind to ones that we have seen already.

( ∑
x,y,z,w

f(x, y, z)g(x, y, w)h(x, z, w)k(y, z, w)
)8

6
(
h234

∑
y,z,w

(∑
x

f(x, y, z)g(x, y, w)h(x, z, w)k(y, z, w)
)2)4

6
(
h234

∑
y,z,w

(∑
x

f(x, y, z)g(x, y, w)h(x, z, w)
)2)4

= h4
234

(∑
x,x′

∑
y,z,w

fx,x′(y, z)gx,x′(y, w)hx,x′(z, w)
)4

6 h4
234h

6
1

∑
x,x′

( ∑
y,z,w

fx,x′(y, z)gx,x′(y, w)hx,x′(z, w)
)4

6 h4
234h

6
1

∑
x,x′

(
h34(x, x′)

∑
z,w

(∑
y

fx,x′(y, z)gx,x′(y, w)hx,x′(z, w)
)2)2
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6 h4
234h

6
1

∑
x,x′

(
h34(x, x′)

∑
z,w

G(z, w)
(∑

y

fx,x′(y, z)gx,x′(y, w)
)2)2

= h4
234h

6
1

∑
x,x′

h34(x, x′)2
(∑

y,y′

∑
z,w

fx,x′,y,y′(z)gx,x′,y,y′(w)G(z, w)
)2

6 h4
234h

6
1

∑
x,x′

h34(x, x′)2h2(x, x′)2
∑
y,y′

(∑
z,w

fx,x′,y,y′(z)gx,x′,y,y′(w)G(z, w)
)2

6 h4
234h

6
1

∑
x,x′

h34(x, x′)2h2(x, x′)2
∑
y,y′

h4(x, x′, y, y′)

∑
w

(∑
z

fx,x′,y,y′(z)gx,x′,y,y′(w)G(z, w)
)2

6 h4
234h

6
1

∑
x,x′

h34(x, x′)2h2(x, x′)2
∑
y,y′

h4(x, x′, y, y′)

∑
w

(∑
z

fx,x′,y,y′(z)Gx,x′Gy,y′(w)G(z, w)
)2

= h4
234h

6
1

∑
x,x′

h34(x, x′)2h2(x, x′)2
∑
y,y′

h4(x, x′, y, y′)∑
z,z′

fx,x′,y,y′,z,z′

∑
w

Gx,x′Gy,y′Gz,z′(w)

= h4
234h

6
1

∑
x,x′

h34(x, x′)2h2(x, x′)2
∑
y,y′

h4(x, x′, y, y′)
∑
z,z′

fx,x′,y,y′,z,z′h4(x, x′, y, y′, z, z′)

The main idea of the proof has now been given. The rest of the argument consists in

showing that the h-terms are all approximately constant and calculating what the result

would be if they were constant. For this we use the lemma about graphs proved earlier.

The final line above can be written as∑
x,x′,y,y′,z,z′

h(x, x′, y, y′, z, z′)fx,x′,y,y′,z,z′ = 〈h, F 〉 ,

where F (x, x′, y, y′, z, z′) = fx,x′,y,y′,z,z′ and

h(x, x′, y, y′, z, z′) = h4
234h

6
1h34(x, x′)2h2(x, x′)2h4(x, x′, y, y′)h4(x, x′, y, y′, z, z′) .

This last quantity is the number of homomorphisms from a certain quadripartite graph H

to G, given that a particular six of its vertices (none of which are joined to each other)

map to x, x′, y, y′, z and z′. To see this, note first that it is true of each individual term in

the product. For example, to understand the term h34(x, x′)2 in this way, take the graph

J with vertex set {a, a′, b, b′, c, c′, d, e} and edges ad, ae, a′d, a′e and de. The number of
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homomorphisms φ from J to G such that φ(a) = x, φ(a′) = x′, φ(b) = y, φ(b′) = y′,

φ(c) = z, φ(c′) = z′, φ(d) ∈ Z and φ(e) ∈ W is the number of pairs (z, w) ∈ Z × W

such that z is joined to w and both z and w are joined to both x and x′, which is the

definition of h34(x, x′). To obtain the product, one takes disjoint copies of all the graphs J

constructed in this way and identifies the vertices a, a′, b, b′, c and c′ from each one. (That

is, the a in one graph is the same as the a in another, and so on.)

Let the vertex set of H be A ∪ B ∪ C ∪ D, and let us look at the sizes of A, B, C

and D. The set A contains a and a′, and receives an additional six (isolated) vertices from

the term h6
1. B contains b and b′, and receives in addition four vertices from h4

234 and

two from h2(x, x′). C contains c and c′ and receives four vertices from h4
234 and two from

h34(x, x′)2. Finally, D receives four vertices from h4
234, two from h34(x, x′) and one each

from h4(x, x′, y, y′) and h4(x, x′, y, y′, z, z′).

In a similar way one can work out how many edges there are between each pair from

A, B, C and D. For example, the number of edges between B and D is 4+2+2 = 8, since

h4
234 contributes four, h4(x, x′, y, y′) contributes two and h4(x, x′, y, y′, z, z′) contributes

two. As another example, the number of edges between A and C is 4, all coming from

h34(x, x′)2. It turns out that there are eight edges between any pair of sets that includes

D and four between any other pair.

We wish to apply Lemma 6.6. It follows from the simple calculations we have just

made that the expected H-density of G is

δ = (δ12δ23δ13)4(δ14δ24δ34)8 .

We also have q = r = s = t = 8 and m = 36. Let ε = η(δ12δ23δ13)4/2 and call a

sextuple (x, x′, y, y′, z, z′) bad if
∣∣h(x, x′, y, y′, z, z′) − δL6M6N6P 8

∣∣ > εδL6M6N6P 8, and

good otherwise.

By Lemma 6.6, the number of bad sextuples is at most εδL2M2N2, and a trivial upper

bound for each h(x, x′, y, y′, z, z′) is L6M6N6P 8. Therefore, if we let h′ be a new function

that equals h for every good sextuple and takes the value δL6M6N6P 8 otherwise, then

‖h− h′‖1 6 εδ(LMNP )8. Writing d for the constant function δL6M6N6P 8, we also have

that ‖h′ − d‖∞ 6 εδL6M6N6P 8. As for F , we know that ‖F‖1 is at most the number of

octahedra in the graph G(X,Y, Z). By Theorem 3.5, this is at most 2(δ12δ23δ13)4(LMN)2.

Finally, we are assuming also the bound ‖F‖∞ 6 1. Putting all these facts together, we
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find that ∣∣〈h, F 〉 − 〈d, F 〉
∣∣ 6 |〈h− h′, F 〉|+ |〈h′ − d, F 〉|

6 ‖h− h′‖1‖F‖∞ + ‖h′ − d‖∞‖F‖1

6 εδ(LMNP )8 + εδ(LMNP )8

= η(δ12δ23δ13δ14δ24δ34LMNP )8 .

But the the relative quasirandomness assumption on f tells us that

〈d, F 〉 = δL6M6N6P 8 oct(f)

6 ηδ(δ12δ23δ13)4(LMNP )8

= η(δ12δ23δ13δ14δ24δ34LMNP )8 .

The result follows. �

We are now ready to prove a generalization of Lemma 4.4 from quasirandom hyper-

graphs to quasirandom chains. Notice the dependence of parameters in the statement.

The graph G is α-quasirandom and the hypergraph H is relatively η-quasirandom. Both α

and η need to be small for the conclusion to hold and be useful, but whereas the condition

on α depends on η, the density of G and the relative density of H, the smallness of η

depends only on the last of these. In particular, as we have already mentioned, η can be

much larger than the density of G. This is critically important, since it is all that can be

guaranteed by the regularity lemma later.

Theorem 6.8. Let X, Y , Z and W be sets of size L, M , N and P respectively. Let

G be a quadripartite graph with vertex sets X, Y , Z and W and suppose that the six

bipartite parts of G are α-quasirandom. Write δ12 for the density of the graph G(X,Y ),

and similarly for the other parts, and suppose that all these graphs are α-quasirandom.

Let H123 be a tripartite hypergraph with vertex sets X, Y and Z that is η-quasirandom

relative to ∆
(
G(X,Y, Z)

)
and similarly for H124, H134 and H234. For each triple ijk

Let the relative density of Hijk be δijk. Let H be the union of the hypergraphs Hijk.

Suppose that α satisfies the condition 236α1/16 6 η(δ12δ23δ13δ14δ24δ34)8/6. Then the

number of simplices in H differs from δ12δ23δ13δ14δ24δ34δ123δ124δ134δ234LMNP by at most

8η1/8δ12δ23δ13δ14δ24δ34LMNP .

Proof. We wish to estimate the sum∑
x,y,z,w

H(x, y, z)H(x, y, w)H(x, z, w)H(y, z, w) .
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For each triple 1 6 i < j < k 6 4 let dijk(x, y, z) = δijkG(x, y)G(y, z)G(x, z). Then

∑
x,y,z,w

d123(x, y, z)d124(x, y, w)d134(x, z, w)d234(y, z, w)

is δ123δ124δ134δ234 times the number of simplices in G. Since G is α-quasirandom, Theorem

3.5 tells us that the number of simplices in G is δ12δ23δ13δ14δ24δ34LMNP , to within an

error of at most 64α1/4LMNP , which is certainly at most η1/8LMNP .

If we let f(x, y, z) = H(x, y, z) − d123(x, y, z), then our hypothesis implies that f is

η-quasirandom relative to G. If we take the sum we wish to estimate and change H(x, y, z)

into d123(x, y, z), then the difference we make to the sum is∣∣∣ ∑
x,y,z,w

f(x, y, z)H(x, y, w)H(x, z, w)H(y, z, w)
∣∣∣ .

By Lemma 6.7, this is at most (2η)1/8δ12δ23δ13δ14δ24δ34LMNP . By a similar argu-

ment we can replace H(x, y, w) by d124(x, y, w), again making a difference of at most

(2η)1/8δ12δ23δ13δ14δ24δ34LMNP . Repeating this process twice more, we find that∣∣∣ ∑
x,y,z,w

H(x, y, z)H(x, y, w)H(x, z, w)H(y, z, w)

−
∑

x,y,z,w

d123(x, y, z)d124(x, y, w)d134(x, z, w)d234(y, z, w)
∣∣∣

is at most 4(2η)1/8δ12δ23δ13δ14δ24δ34LMNP . Combining this with the estimate of the

previous paragraph, we obtain the desired result. �

We have now finished the hardest part of the proof, by identifying a class of stable hy-

pergraphs and proving a counting lemma for them. It remains to prove a regularity lemma,

which says, roughly speaking, that every dense 3-uniform hypergraph can be decomposed

into stable subhypergraphs.

§7. A proof of Szemerédi’s regularity lemma.

The statement of Szemerédi’s regularity lemma given in the introduction is not quite

standard, but it can be proved more cleanly and is better suited for generalizing to hyper-

graphs. To demonstrate the first of these assertions, to keep this paper self-contained and

to illuminate the proof of hypergraph regularity, we shall now prove it in full.
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Let G be a bipartite graph with vertex sets X and Y of sizes M and N respectively.

Let X1 ∪ . . . ∪ Xm and Y1 ∪ . . . ∪ Yn be partitions of X and Y , with |Xi| = αiM and

Yj = βjN . Write d(Xi, Yj) for the density of the induced subgraph G(Xi, Yj), that is,

|Xi|−1|Yj |−1 times the number of edges from Xi to Yj . The mean-square density of G with

respect to the partitions is defined to be
∑

i,j αiβjd(Xi, Yj)2. Sometimes, when G is clear

from the context, we shall call this the mean-square density of the partitions. This concept

can also be viewed probabilistically. Choose a random x ∈ X and y ∈ Y . Then x belongs

to some Xi and y to some Yj and the mean-square density is the expectation of the square

of the density d(Xi, Yj).

Our first steps are very simple - all they say is that certain projections on certain

Hilbert spaces have norm at most 1. However, let us quickly establish them in our partic-

ular context.

Lemma 7.1. Let U be a finite set and let f : U → R be a function with mean d. Let

U = U1 ∪ . . . ∪ Us with |Ui| = γi|U |, and let di be the mean of f restricted to Ui. Then

d2 6
∑r

i=1 γid
2
i .

Proof. By the Cauchy-Schwarz inequality,

( r∑
i=1

γidi

)2

6
( r∑

i=1

γi

)( r∑
i=1

γid
2
i

)
.

The left-hand side is d2 and the first bracket on the right-hand side is 1, so the result is

proved. �

Lemma 7.2. Let U , f and U1, . . . , Ur be as in Lemma 7.1. Suppose that each Ui is

partitioned further into sets Uij , let |Uij | = γij |U | and let dij be the mean of f restricted

to Uij . Then
∑

i γid
2
i 6

∑
ij γijd

2
ij .

Proof. By Lemma 7.1, we have for each i the inequality

d2
i 6

∑
j

γij

γi
d2

ij .

Multiplying both sides by γi and summing over i gives the result. �

Corollary 7.3. Let G be a bipartite graph of density d with vertex sets X and Y of

sizes M and N respectively. Let X1 ∪ . . . ∪Xm and Y1 ∪ . . . ∪ Yn be partitions of X and

Y . Let each Xi be partitioned further into sets Xik and each Yj into sets Yjl. Then the
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mean-square density of G with respect to the partitions {Xik} and {Yjl} is at least the

mean-square density of G with respect to the partitions {Xi} and {Yj}.

Proof. Let U be the set X × Y and let f be the characteristic function of G. Then the

result follows from Lemma 7.2 if we take as our cruder partition of U all sets of the form

Xi×Yj and as our finer one all sets of the form Xik×Yjl, since the quantities compared in

that lemma are the mean-square densities of G with respect to the two sets of partitions. �

Lemma 7.4. Let G be a bipartite graph of density d with vertex sets X and Y of sizes

M and N , and suppose that G fails to be ε-quasirandom. Then there are partitions

X = X1 ∪X2 and Y = Y1 ∪ Y2 of the vertex sets that have mean-square density at least

d2 + ε2/16.

Proof. Let f(x, y) = G(x, y)−d. The proof of Theorem 3.1 provides us with subsets X1 ⊂
X and Y1 ⊂ Y such that

∣∣∑
x∈X1

∑
y∈Y1

f(x, y)
∣∣ > εMN/4. Let us write φ(Xi, Yj) for the

“density” of f when restricted to Xi × Yj , that is, for |Xi|−1|Yj |−1
∑

x∈Xi

∑
y∈Yj

f(x, y).

Then the mean-square density of the partitions is

2∑
i,j=1

αiβj

(
d+ φ(Xi, Yj)

)2 =
2∑

i,j=1

αiβj

(
d2 + 2dφ(Xi, Yj) + φ(Xi, Yj)2

)
.

The first term adds up to d2. The second adds up to zero, since the average of f is zero.

The third adds up to at least α1β1(α1M)−2(β1N)−2(εMN/4)2, which is at least ε2/16. �

Lemma 7.5. Let G be a bipartite graph with vertex sets X and Y of sizes M and N

respectively. Let X1∪ . . .∪Xm and Y1∪ . . .∪Yn be partitions of X and Y , with |Xi| = αiM

and Yj = βjN . Suppose that the mean-square density of these partitions is d2. Let B be

the set of all pairs (i, j) such that the subgraph G(Xi, Yj) fails to be ε-quasirandom, and

suppose that
∑

(i,j)∈B αiβj > ε. Then one can find partitions Xi = Xi1 ∪ . . . ∪ Xis and

Yj = Yj1 ∪ . . . ∪ Yjt such that the refined partitions {Xik} and {Yjl} have mean-square

density at least d2 + ε3/16. Moreover, s and t are uniformly bounded above by 2n and 2m

respectively.

Proof. For every pair (Xi, Yj) that fails to be ε-quasirandom Lemma 7.4 provides us

with partitions Xi = X
(j)
i1 ∪ X(j)

i2 and Yj = Y
(i)
j1 ∪ Y (i)

j2 of mean-square density at least

d(Xi, Yj)2 + ε2/16. For each i let Xi = Xi1 ∪ . . . ∪ Xis be a partition with s 6 2n that

simultaneously refines all the partitions X(j)
i1 ∪X(j)

i2 , and for each j let Yj = Yj1 ∪ . . .∪ Yjt

be a partition with t 6 2m that simultaneously refines all the partitions Yj = Y
(i)
j1 ∪ Y (i)

j2 .
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For each (i, j) ∈ B, Lemma 7.3 implies that the mean-square density of G with respect

to the partitions Xi1 ∪ . . .∪Xis and Yj1 ∪ . . .∪Yjt is at least d(Xi, Yj)2 + ε2/16. For every

other (i, j), Lemma 7.3 implies that it is at least d(Xi, Yj)2. Multiplying by αiβj and

summing over all i, j tells us that the mean-square density of the partitions {Xik} and

{Yjl} is at least ∑
(i,j)/∈B

αiβjd(Xi, Yj)2 +
∑

(i,j)∈B

αiβj

(
d(Xi, Xj)2 + ε2/16

)
,

which is at least d2 + ε3/16, by our hypothesis on the size of B. �

The next result is our non-standard statement of Szemerédi’s regularity lemma.

Theorem 7.6. Let ε > 0 and let G be any bipartite graph with vertex sets X and Y .

Then there are partitions X = X1∪ . . .∪Xm and Y = Y1∪ . . .∪Yn with m and n bounded

above by functions of ε, with the following property. Let B be the set of all pairs (i, j)

such that the subgraph G(Xi, Yj) fails to be ε-quasirandom. Then
∑

(i,j)∈B αiβj 6 ε.

Equivalently, the probability that a random pair (x, y) ∈ X × Y belongs to an Xi × Yj for

which G(Xi, Yj) fails to be ε-quasirandom is at most ε.

Proof. If G itself is ε-quasirandom then we are done. Otherwise, let d be the density of

G. Then Lemma 7.4 gives us partitions X = X1 ∪ X2 and Y = Y1 ∪ Y2 of mean-square

density at least d2 + ε3/16. In general, given any pair of partitions X = X1 ∪ . . . ∪ Xm

and Y = Y1 ∪ . . . ∪ Yn, either
∑

(i,j)∈B αiβj 6 ε and we are done (where B is defined as

in the statement of the theorem) or we can find refinements for which the mean-square

density is greater by at least ε3/16. This allows us to construct a sequence of partitions

of ever-increasing mean-square density, each refining the one before. Since mean-square

density is bounded above by 1, this sequence must terminate in at most 16ε−3 steps, and it

terminates at a pair of partitions that satisfy the conclusion of the theorem. By the bound

in Lemma 7.5, the number of sets in these partitions is bounded above by a function of ε

only. (This function is given by a tower of 2s of height proportional to ε−3.) �

To end this section, we prove a (known and easy) generalization of Szemerédi’s regu-

larity lemma, which we shall need later.

Lemma 7.7. Let X and Y be sets and let G1, . . . , Gr be bipartite graphs that form

a partition of the edges of the complete bipartite graph K(X,Y ). Let X1, . . . , Xm and

Y1, . . . , Yn be partitions of X and Y respectively and suppose that the sum of the mean-

square densities of all the graphs Gu with respect to these partitions is D. Choose an
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element (x, y) of the set X×Y uniformly at random, and suppose that with probability at

least ε it lies in some Xi ×Yj for which not all the graphs Gu(Xi ×Yj) are ε-quasirandom.

Then one can find partitions Xi = Xi1 ∪ . . . ∪Xisi
and Yj = Yj1 ∪ . . . ∪ Yjtj

such that the

sum of the mean-square densities of the Gu with respect to the refined partitions {Xik}
and {Yjl} is at least D + ε3/16. Moreover, all the si are bounded above by 2n and all the

tj are bounded above by 2m.

Proof. This is very similar to the proof of Lemma 7.5 so we shall be brisk. Let (i, j) be a

pair such that some graph Gu(Xi ×Yj), of density d, say, fails to be ε-quasirandom. Then

by Lemma 7.4 we can find partitions of Xi and Yj into two sets each in such a way that the

mean-square density of Gu(Xi × Yj) with respect to these partition is at least d2 + ε2/16,

and that will be true of any refinements of them, by Corollary 7.3.

Now let us find such partitions for every pair (i, j) for which a suitable u exists.

Then each set Xi has been partitioned into two in at most n ways and each Yj has been

partitioned into two in at most m ways. Let Xi = Xi1∪ . . .∪Xisi and Yj = Yj1∪ . . .∪Yjtj

be common refinements of these partitions, into at most 2n sets and 2m sets respectively.

For each pair (i, j) for which there was a non-ε-quasirandom graph Gu(Xi, Xj) of

density d the mean-square density of Gu(Xi, Xj) with respect to the partitions Xi =

Xi1∪ . . .∪Xisi
and Yj = Yj1∪ . . .∪Yjtj

is at least d2 +ε2/3. Since a random pair (x, y) has

a probability of at least ε of belonging to Xi×Xj for such a pair (i, j), a calculation similar

to that of Lemma 7.5 shows that the sum of the mean-square densities of all the graphs

Gu with respect to the partitions {Xik} and {Yjl} is at least D + ε3/16, as claimed. �

Theorem 7.8. Let ε > 0, let X1, . . . , Xk be finite sets. For each i let X ′
i1, . . . , X

′
imi

be

a partition of Xi, and for each i, j let Gij(1), . . . , Gij(rij) be bipartite graphs that form

a partition of the complete bipartite graph K(Xi, Xj). Then for each i one can find a

partition Xi1, . . . , Xini
of Xi that refines the partition X ′

i1, . . . , X
′
imi

, and this can be done

in such a way that, for every i and j, if a random pair (x, y) is chosen from Xi ×Xj , then

with probability at least 1 − ε it lies in some set Xis × Xjt for which all the rij induced

subgraphs Gij(u)(Xis, Xjt) are ε-quasirandom. Moreover, all the ni are bounded above by

a function that depends on ε, the mi and the rij only.

Proof. Suppose that we have partitions Xi1, . . . , Xini
of each Xi, and suppose that for

these partitions the conclusion of the theorem is false. Then there exist i and j such that

at least ε|Xi||Xj | of the pairs (x, y) ∈ Xi × Xj lie in sets Xis × Xjt for which at least

one of the graphs Gij(u)(Xis, Xjt) is not ε-quasirandom. By Lemma 7.7 we can refine the
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partitions Xi1, . . . , Xini and Xj1, . . . , Xjnj in such a way that the sum of the mean-square

densities of the graphs Gij(u) with respect to the refined partitions is greater by at least

ε3/16 than it was for the original ones. Moreover, the numbers of sets in the new partitions

are bounded above by an exponential function of the numbers in the old ones.

Since the sum of the mean-square densities of the graphs Gij(u) (over all i, j and u)

cannot exceed
∑

i<j rij , this procedure must terminate after at most 16ε−3
∑

i<j rij steps.

At that point we have a partition with the desired properties. If we start the iteration

with the partitions given in the first place, then we end up proving the theorem. �

§8. Regularity for 3-uniform hypergraphs.

As ever, the picture for hypergraphs is more complicated. One of the reasons for this

we have already met - we shall split our hypergraphs into “stable” subhypergraphs (see the

discussion at the end of §5) rather than quasirandom ones, and this forces us to discuss

chains (G,H) as well as hypergraphs. We shall find ourselves partitioning not just the

vertex sets of H (and G) but also the edge sets of the graphs G, so the statements we

prove are rather more elaborate.

A more technical complication, but nevertheless a fundamental one, arises out of the

fact that we must consider chains (G,H) for which G is very sparse. This makes it hard to

generalize Lemma 7.4 adequately. To see why, let G be an α-quasirandom tripartite graph

of density p with vertex sets X, Y and Z, and suppose that p is very small. Let H ⊂ ∆(G)

be a hypergraph that fails to be η-quasirandom relative to ∆(G). If α is small enough,

then an averaging argument similar to that of Theorem 4.1 allows us to find sets X ′ ⊂ X,

Y ′ ⊂ Y and Z ′ ⊂ Z such that the restriction of H to X ′ × Y ′ × Z ′ is of significantly

greater density than H itself. (This statement is true both relative to G and, since G is

quasirandom, in absolute terms.) Unfortunately, the sets X ′, Y ′ and Z ′ that this argument

gives are contained in certain neighbourhoods of vertices of G, and therefore their sizes

depend not just on η but on p as well. Therefore, any increase in mean-square density that

we can hope to get from the dense hypergraph H(X ′, Y ′, Z ′) will also depend on p.

This matters a lot, because as the iteration proceeds in the hypergraph regularity

lemma, we are forced to consider a sequence of graphs Gi with rapidly decreasing densities

pi, so if the increase in mean-square density at stage i depends on pi, there is no guarantee

that the iteration will come to an end.

The solution to this problem is to squeeze a bit more out of the proof of Theorem

4.1. Instead of choosing just one triple (X ′, Y ′, Z ′), we shall choose several, and prove that
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they are sufficiently spread out to provide us with an increase in mean-square density that

is strong enough to use.

The statement of the hypergraph regularity lemma is somewhat complicated, so we

shall postpone it until after we have made the above remarks precise in Lemma 8.4 below.

At that point, the formulation of the regularity lemma will be better motivated and the

rest of the proof quite easy.

To begin with, here is a simple and general criterion that we can use when we are

trying to establish that a partition gives us an increase in mean-square density.

Lemma 8.1. Let U be a set of size n and let f and g be functions from U to the interval

[−1, 1]. Let B1, . . . , Br be a partition of U and suppose that g is constant on each Bi.

Then the mean-square density of f with respect to the partition B1, . . . , Br is at least

〈f, g〉2/n‖g‖2
2.

Proof. For each j Let aj be the value taken by g on the set Bj . Then, by the Cauchy-

Schwarz inequality,

〈f, g〉 =
∑

j

aj

∑
x∈Bj

f(x)

6
(∑

j

|Bj |a2
j

)1/2(∑
j

|Bj |−1
∑

x∈Bj

f(x)
)1/2

= ‖g‖2

(∑
j

|Bj |
(
|Bj |−1

∑
x∈Bj

f(x)
)2)1/2

.

But
∑

j |Bj |
(
|Bj |−1

∑
x∈Bj

f(x)
)2 is n times the mean-square density of f (by definition),

so the lemma follows. �

So that it does not clutter up the proof of Lemma 8.4, here is a second very simple

technical lemma.

Lemma 8.2. Let 0 < δ < 1 and let r be an integer greater than or equal to δ−1. Let

v1, . . . , vn be vectors in `n2 such that ‖vi‖2 6 n for each i and such that ‖
∑
vi‖2

2 6 δn3. Let

r vectors w1, . . . , wr be chosen uniformly and independently from the vi. (To be precise,

for each wj an index i is chosen randomly between 1 and n and wj is set equal to vi.)

Then the expectation of ‖
∑
wj‖2

2 is at most 2δr2n.

Proof. The expectation of ‖
∑
wj‖2

2 is the expectation of
∑

i,j〈wi, wj〉. If i 6= j then the

expectation of 〈wi, wj〉 is n−2 ‖
∑
vi‖2

2 which, by hypothesis, is at most δn. If i = j, then
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〈wi, wj〉 is at most n, again by hypothesis. Therefore, the expectation we are trying to

bound is at most (δr(r − 1) + r)n. Since δr > 1, this is at most 2δr2n, as claimed. �

Definition 8.3. Let G be a tripartite graph with vertex sets X, Y and Z and let the

bipartite graphs G(X,Y ), G(Y,Z) and G(X,Z) be partitioned into subgraphs Gi(X,Y ),

Gj(Y, Z) and Gk(X,Z) respectively. For each triangle (x, y, z) ∈ ∆(G), define its index

to be the triple (i, j, k) such that xy ∈ Gi(X,Y ), yz ∈ Gj(Y, Z) and xz ∈ Gk(X,Z).

The induced partition of ∆(G) is the partition of the triples of ∆(G) according to their

index. If f : X × Y × Z → [−1, 1], then the mean-square density of f relative to the

partitions (Gi(X,Y )), (Gj(Y,Z)) and (Gk(X,Z)) is defined to be the mean-square density

of f relative to the induced partition of ∆(G).

Note that a typical cell of the induced partition is of the form

∆
(
Gi(X,Y ) ∪Gj(Y, Z) ∪Gk(X,Z)

)
.

Lemma 8.4. Let G be a tripartite graph with vertex sets X, Y and Z of sizes L, M

and N respectively, let the densities G(X,Y ), G(Y, Z) and G(X,Z) be δ12, δ23 and δ13, let

δ = δ12δ23δ13 and suppose that these three graphs are α-quasirandom. LetH be a tripartite

3-uniform hypergraph with the same vertex sets as G, let the relative density |H|/|∆(G)|
of H in G be d, and suppose that H is not η-quasirandom relative to ∆(G). Suppose

also that 221α1/4 6 δ7. Then there are partitions G1(X,Y ) ∪ . . . ∪ Gl(X,Y ) = G(X,Y ),

G1(Y,Z) ∪ . . . ∪ Gm(Y, Z) = G(Y,Z) and G1(X,Z) ∪ . . . ∪ Gn(X,Z) = G(X,Z), relative

to which the mean-square density of H is at least d2 + 2−10η2. Moreover, l, m and n are

all at most 3δ−4
.

Proof. Let f(x, y, z) = H(x, y, z) − d whenever (x, y, z) ∈ ∆(G) and let it be zero

otherwise. Then the hypothesis of the lemma is that∑
x,x′,y,y′,z,z′

fx,x′,y,y′,z,z′ > ηδ4L2M2N2 .

Let U = ∆(G) and for each triple (x, y, z) ∈ U define Fxyz(x′, y′, z′) to be

fx,x′,y,y′,z,z′/f(x′, y′, z′) and let F (x′, y′, z′) =
∑

x,y,z Gxyz(x′, y′, z′). With this notation,

the hypothesis can be rewritten 〈f, F 〉 > ηδ4(LMN)2.

Let us now build some new functions Exyz. These will have similar properties to the

Fxyz but will take values 0, 1 and −1 only. A vital property of each function Fxyz is that it

can be written in the form u(x′, y′)v(y′, z′)w(x′, z′), since of the eight terms in the product
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fx,x′,y,y′,z,z′ the only one that depends on all three of x′, y′ and z′ is f(x′, y′, z′), which is

absent from Fxyz(x′, y′, z′). Moreover, we can do this with u, v and w taking values in the

interval [−1, 1].

Fix a triple (x, y, z) as above, and for each pair (x′, y′) define u′(x, y) randomly accord-

ing to the following simple rule. If u(x′, y′) is positive then u′(x′, y′) is 1 with probability

u(x′, y′) and 0 otherwise. If u(x′, y′) is negative then u′(x′, y′) is -1 with probability

|u(x′, y′)| and 0 otherwise. If u(x′, y′) = 0 then u′(x′, y′) = 0 as well. Construct functions

v′ and w′ similarly, and let all the random choices that have been made be independent.

Finally, let Exyz(x′, y′, z′) = u′(x′, y′)v′(y′, z′)w′(x′, z′), and note that the expectation of

Exyz(x′, y′, z′) is Fxyz(x′, y′, z′).

Let E be the sum of all the functions Exyz. The expectations of 〈f, Fxyz〉 and 〈f,Exyz〉
are the same, so we can make the random choices in such a way that 〈f,E〉 > ηδ4(LMN)2.

The other property we shall use is that Exyz(x′, y′, z′) is non-zero only if x, x′, y, y′, z

and z′ are the vertices of an octahedron in the graph G. (This is true despite the fact

that we have divided by f(x′, y′, z′): for each pair there is still a triple containing it for

which f is required to be non-zero.) So that our notation will be reasonably concise, Let

us set Gx,x′,y,y′,z,z′ to be 1 if x, x′, y, y′, z and z′ are the vertices of an octahedron and 0

otherwise. (Strictly speaking, it would be more accurate to write ∆(G)x,x′,y,y′,z,z′ .)

Our next aim is to obtain an upper bound for ‖E‖2
2. To start with, we have

‖E‖2
2 =

∑
x′,y′,z′

(∑
x,y,z

Exyz(x′, y′, z′)
)2

6
∑

x′,y′,z′

(∑
x,y,z

Gx,x′,y,y′,z,z′

)2

=
∑

x′,y′,z′

∑
x1,y1,z1,x2,y2,z2

Gx1,x′,y1,y′,z1,z′Gx2,x′,y2,y′,z2,z′

This counts the number of 9-tuples (x′, y′, z′, x1, y1, z1, x2, y2, z2) such that the sextuples

(x′, x1, y
′, y1, z

′, z1) and (x′, x2, y
′, y2, z

′, z2) both form octahedra in G. That is, it counts

the number of copies in G of a certain graph with nine vertices and seven edges between

each pair of vertex sets (four for each octahedron but intersecting in one). By Theorem

3.5 and our upper bound for α, there are at most 2δ7(LMN)3 of these.

We are not yet in a position to apply Lemma 8.1: E is the sum of |U | functions

Exyz and we are unlikely to find a partition into just a few sets on which it is constant.

The next stage of the argument is to make a random selection of a small number of Exyz

in such a way that their sum preserves the good properties of E. Let r > δ−4, choose
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E1, . . . , Er randomly from the Exyz and let D =
∑r

i=1Ei. Since the expectation of 〈f,Ei〉
is |U |−1〈f,E〉 and we know that 〈f,E〉 > ηδ4(LMN)2, the expectation of 〈f,D〉 is at least

ηδ4r|U |−1(LMN)2. By Theorem 3.5 and our upper bound for α, we know that |U | lies

between δLMN/2 and 2δLMN , so this is at least ηrδ2|U |/4.

We shall now apply Lemma 8.2, with n = |U |, to the functions Exyz. We have

shown that ‖E‖2
2 6 2δ7(LMN)3, which is at most 16δ4|U |3. Moreover, each Exyz is

supported in U and takes values in [−1, 1], so ‖Exyz‖2
2 is at most |U |. Therefore, Lemma

8.2 implies that the expectation of ‖D‖2
2 is at most 32δ4r2|U |. Therefore, the expectation

of 256δ2r〈f,D〉 − ηδ‖D‖2
2 is at least 64ηδ4r2|U |. From this it follows that we can choose

D in such a way that 〈f,D〉 > ηδ2r|U |/4 and ‖D‖2
2 6 256δ2r〈f,D〉η−1. For such a D, we

have
〈f,D〉
‖D‖2

2

>
〈f,D〉

256δ2rη−1
>

ηδ2r|U |
210δ2rη−1

=
η2|U |
210

.

We finish the proof by applying Lemma 8.1 to a suitable partition of U =

∆(G). Each of the r functions Exyz that we added up to make D is of the form

u′(x′, y′)v′(y′, z′)w′(x′, z′), where u′, v′ and w′ take values in the set {−1, 0, 1}. We can

partition the bipartite graph G(X,Y ) into at most 3r subgraphs Gi(X,Y ) such that every

u′ is constant on each Gi(X,Y ). In a similar way we can partition G(Y,Z) into sub-

graphs Gj(Y, Z) and G(X,Z) into subgraphs Gk(X,Z). For each triangle (x, y, z) ∈ ∆(G),

define its index to be the triple (i, j, k) such that xy ∈ Gi(X,Y ), yz ∈ Gj(Y, Z) and

xz ∈ Gk(X,Z). Then partition ∆(G) into triples according to their index. This partition

has at most 33r cells, each of the form ∆
(
Gi(X,Y ) ∪Gj(Y, Z) ∪Gk(X,Z)

)
.

The function D is constant on each cell, so Lemma 8.1 and our estimate for

〈f,D〉/‖D‖2
2 imply that the mean-square density of f with respect to this partition is

at least 2−10η2. It follows that the mean-square density of H is at least d2 +2−10η2, which

proves the lemma. �

Now let us prepare for the statement of our regularity lemma for 3-uniform hyper-

graphs. As with the counting lemma, we will keep things simple by restricting to the

case of quadripartite hypergraphs, but the result can easily be generalized. The idea will

be to take a quadripartite 3-uniform hypergraph H and “decompose it into quasirandom

chains”. Before we say exactly what this means, let us try to motivate the slightly technical

definition we shall give in a moment of a quasirandom chain.

What we ultimately want from a chain is that it should satisfy the conditions for

Theorem 6.8, the counting lemma for chains that we proved earlier. There we had a
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quadripartite graph G with vertex sets of sizes L, M , N and P and a quadripartite 3-

uniform hypergraph H ⊂ ∆(G). Writing δ for the product of the densities of the six

bipartite parts of G, the assumptions of the theorem were that each tripartite part of

H was η-quasirandom relative to G, each bipartite part of G was α-quasirandom and

236α1/16 6 ηδ8/6. Writing γ for the product of the relative densities of the four tripartite

parts of H, the conclusion was that the number of simplices in H differed from γδLMNP

by at most 8η1/8δLMNP . We therefore consider this to be a small error if η1/8 is small

compared with γ.

Definition 8.5. Let ψ(η, δ) be a polynomial in η and δ that vanishes when either η or δ

is zero. A quadripartite chain (G,H) with δ defined as above is (η, ψ)-quasirandom if all

six parts of G are ψ(η, δ)-quasirandom and all four parts of H are η-quasirandom relative

to G.

Later we shall use this definition in the case where ψ(η, δ) = (2−40ηδ8)16. Then, if

α = ψ(η, δ) it will satisfy the condition 236α1/16 6 ηδ8/6 discussed above.

In Szemerédi’s regularity lemma one decomposes a graph into quasirandom pieces

using partitions of its vertex sets. As we have already mentioned, the decompositions we

shall consider of hypergraphs are more complicated, so let us say precisely what they are.

We shall use the following notation for this purpose and throughout the rest of the paper.

If G is a quadripartite graph, X and Y are two of its vertex sets and X ′ ⊂ X and Y ′ ⊂ Y ,

then G(X ′, Y ′) stands for the induced bipartite subgraph of G with vertex sets X ′ and Y ′.

Similarly, if H is a quadripartite 3-uniform hypergraph and X ′, Y ′ and Z ′ are subsets of

three of its vertex sets then H(X ′, Y ′, Z ′) stands for the induced tripartite subhypergraph

with vertex sets X ′, Y ′ and Z ′. The complete k-partite graph with vertex sets X1, . . . , Xk

will be denoted K(X1, . . . , Xk).

Definition 8.6. Let X1, X2, X3 and X4 be four sets. A decomposition of the complete

quadripartite graph K(X1, X2, X3, X4) consists of the following:

(a) for each vertex set Xi a partition into subsets Xi1, . . . , Xini
;

(b) for each bipartite graphK(Xi, Xj) a partition into subgraphsGij(1), . . . , Gij(mij).

Such a decomposition provides us with a collection of tripartite graphs. A typical one

of these graphs has vertex sets of the form Xir, Xjs and Xkt, and an edge set of the form

Gij(u)(Xir, Xjs) ∪Gjk(v)(Xjs, Xkt) ∪Gik(w)(Xir, Xkt) .
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If H is a quadripartite 3-uniform hypergraph with vertex sets X1, X2, X3 and X4, then the

decomposition also provides us with a collection of tripartite hypergraphs. A typical one

of these has vertex sets as above and edge set H ∩∆(G), where G is one of the tripartite

graphs of the form the collection just defined. The pair (G,H) will then be a chain.

Definition 8.7. Let H be a quadripartite 3-uniform hypergraph with vertex sets

X1, . . . , X4 and suppose that we have a decomposition of K(X1, X2, X3, X4). Then the

associated chain decomposition of H is the set of all chains formed in the way explained

above.

Every triple (x, y, z) ∈ (Xi, Xj , Xk) belongs to exactly one of the tripartite graphs

defined above, and hence we can associate with it exactly one of the chains. Hence, to

each (x, y, z, w) we can associate four chains, one for each triple.

Definition 8.8. Let H be as above. Then H(Xi, Xj , Xk) is (ε, η, ψ)-quasirandom if for all

but ε|Xi||Xj ||Xk| of its edges (x, y, z) the associated tripartite chain is (η, ψ)-quasirandom.

H itself is (ε, η, ψ)-quasirandom if all its four parts are.

Just before we prove the regularity lemma, here is a generalization of Corollary 7.3 that

we will need in the proof.

Lemma 8.9. Let G be a tripartite graph with vertex sets X, Y and Z, let H be a

tripartite 3-uniform hypergraph with the same vertex sets, and let d be the relative density

|H ∩ ∆(G)|/|∆(G)| of H in ∆(G). Let E1 ∪ . . . ∪ El, F1 ∪ . . . ∪ Fm and G1 ∪ . . . ∪ Gn

be partitions of G(X,Y ), G(Y, Z) and G(X,Z) respectively. Let each Ei, Fj and Gk be

partitioned further into sets Eir, Fjs and Gkt. Then the mean-square density of H relative

to the partitions {Eir}, {Fjs} and {Gkt} is at least as big as the mean-square density of

H relative to {Ei}, {Fj} and {Gk}.

Proof. Like Corollary 7.3, this result is an immediate consequence of Lemma 7.2. This

time, let U = ∆(G) and let f be the characteristic function of H. The partition of U

induced by the partitions {Eir}, {Fjs} and {Gkt} is a refinement of the partition induced

by the partitions {Ei}, {Fj} and {Gk}, and again the quantities compared in Lemma 7.2

are the mean-square densities we wish to compare here. �

We are now ready for the main result of this section.

Theorem 8.10. Let H be a quadripartite hypergraph with vertex sets X, Y , Z and W ,

and let ε, η > 0. Let the densities of H(X,Y, Z), H(X,Y,W ), H(X,Z,W ) and H(Y, Z,W )
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be δ123, δ124, δ134 and δ234 respectively . Then there is a decomposition of the complete

quadripartite graph K(X,Y, Z,W ) such that the associated chain decomposition of H is

(ε, η, ψ)-quasirandom. Moreover, the number of bipartite graphs in the decomposition is

bounded above by a number that depends only on ε and η, while the number of sets in the

partitions of X, Y , Z and W is bounded above by a function of ε, η, ψ and the densities

δ123, δ124, δ134 and δ234.

Proof. Suppose that we have a decomposition of the vertices and edges of K(X,Y, Z,W ),

with each vertex set partitioned into at most n sets and each complete bipartite graph

formed from two of the vertex sets partitioned into at most m bipartite subgraphs.

Let α = ψ(η, ε/48m). By Theorem 7.8 we can refine the partitions of X, Y , Z

and W so that if a random quadruple (x, y, z, w) is chosen from X × Y × Z ×W , then,

with probability at least 1 − α, xy lies in a product Xi × Yj of cells such that all the

induced subgraphs G(Xi, Yj), where G is a graph from the decomposition of K(X,Y ), are

α-quasirandom, and similarly for the other five pairs from (x, y, z, w). Suppose that we

have passed to such a refinement. Then each vertex set is now partitioned into at most N

sets, where N depends on ε, m and n only.

We do not want to consider chains that are too sparse, so let us show that these do

not occur very often. To any quadruple (x, y, z, w) ∈ X×Y ×Z×W there is an associated

quadripartite chain. Let its vertex sets be A1, A2, A3 and A4 and let its edge-sets be Gij

for 1 6 i < j 6 4. Here, A4 is the cell that contains w from the partition of W , G23 is the

bipartite graph from the decomposition that contains the edge yz, and so on. The graphs

Gij form the edges of the quadripartite chain. The hyperedges come from the union of the

four tripartite hypergraphs

H ∩∆
(
Gij(Ai, Aj) ∪Gjk(Aj , Ak) ∪Gik(Ai, Ak)

)
,

where 1 6 i < j < k 6 4.

Suppose we choose (x, y, z, w) at random. Then there are at most m possibilities for

each Gij . It follows that if we condition on the set A1 ×A2 ×A3 ×A4 in which (x, y, z, w)

lies, then for each ij the probability that Gij has density less than ε/48m in Ai × Aj is

at most ε/48. Therefore, with probability at least 1 − ε/8, each Gij has density at least

ε/48m in Ai ×Aj .

Suppose that the chain decomposition we now have of H is not (ε, η, ψ)-quasirandom.

Then, without loss of generality, for at least ε|X||Y ||Z|/4 edges ofH(X,Y, Z) the associated

chain is not (η, ψ)-quasirandom. It follows that there are at least ε|X||Y ||Z|/8 edges
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(x, y, z) ofH(X,Y, Z) such that the density conditions above are satisfied for the associated

chains, and such that either H(X,Y, Z) is not η-quasirandom relative to the associated

tripartite graph or the three parts of the tripartite graph are not all α-quasirandom.

However, we have arranged for the second possibility to apply to at most α|X||Y ||Z|
triples, so there are at least ε|X||Y ||Z|/16 edges such that H(X,Y, Z) is not η-quasirandom

relative to the associated tripartite graph.

Whenever this happens we can use Lemma 8.4 to partition the three bipartite parts

of the graph in such a way that the mean-square density of H relative to these partitions is

greater by at least 2−10η than the square of the density ofH relative to the tripartite graph.

Moreover, by Lemma 8.9 this property is maintained if we refine these partitions. Hence,

we can choose a common refinement of all the partitions of all the bipartite parts of all

the graphs, preserving all the mean-square density increases. Since at least ε|X||Y ||Z|/16

triples belong to tripartite graphs where such increases have taken place, we find that the

mean-square density of H relative to the new decomposition is at least 2−14εη greater than

it was relative to the old one. The number of bipartite graphs in the new partitions is

bounded above by a function of ε, η and m only.

This procedure can be iterated. When we refine the partitions of the vertex sets, the

mean-square density of H relative to the decomposition does not decrease, so the iteration

must eventually come to an end and the theorem is proved. �

Remark. An examination of the above proof shows that the bound for the numbers of

cells in the eventual partition is of “wowzer” type. The wowzer function W is defined in

two steps as follows. First let the tower function T be defined by T (1) = 2, T (n) = 2n−1.

Next, let W (1) = 2 and W (n) = T (W (n − 1)). In general, the hypergraph regularity

lemma for k-uniform hypergraphs iterates the bound for (k−1)-uniform hypergraphs, and

thus advances one level in the Ackermann hierarchy. This means that the bounds that it

gives for the theorems of van der Waerden and Szemerédi are of Ackermann type. Similar

bounds have recently been achieved for Szemerédi’s theorem by Tao, who has produced a

discretization of Furstenberg’s ergodic-theory proof. This answered a question that many

people had asked, and the insights gained played an important role in his spectacular result

with Green that the primes contain arbitrarily long arithmetic progressions.

We finish the section with a corollary that is designed to make the regularity lemma

easy and convenient to use. As with our earlier results, the result we give is not the most

general possible, but more general versions can be proved with only small adaptations.
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Let H be a quadripartite 3-uniform hypergraph with vertex sets X1, X2, X3 and X4,

and for each i let the size of Xi be Ni. Suppose that for each i we have a subset Ai ⊂ Xi

of size δi|Xi| and that G is a quadripartite graph with vertex sets A1, A2, A3 and A4. For

each pair i < j let δij be the density |G(Ai, Aj)|/|Ai||Aj | and for each i < j < k let δijk

be the relative density of H inside ∆
(
G(Ai, Aj) ∪G(Aj , Ak) ∪G(Ai, Ak)

)
. Let us call the

product of the densities δi, δij and δijk the expected simplex density of H in G.

Corollary 8.11. Let ε > 0, let H be a quadripartite graph with vertex sets X1, X2, X3

and X4, and for each i let the size of Xi be Ni. Then for each triple 1 6 i < j < k 6 4

one can remove at most ε|H(Xi, Xj , Xk)| edges of H(Xi, Xj , Xk), and one can find a

decomposition of the complete quadripartite graph K = K(X1, X2, X3, X4), with the

following property. Let each Xi be partitioned into at most n parts and let the number

of bipartite graphs in any of the six parts of K be m. Let H ′ equal H after the edges

have been removed and let G be any quadripartite graph arising from the decomposition

with vertex sets Ai. Let σ be the expected simplex density of H ′ in G. Then either σ = 0

or σ > (ε/8n)4(ε/48m)6(ε/8)4 and the number of simplices in the hypergraph H ′ ∩∆(G)

differs from σN1N2N3N4 by at most εσN1N2N3N4.

Proof. Let γ be (ε/8)3, let η = (εγ/16)8 and for any δ > 0 let ψ(η, δ) = 2−40ηδ8)16.

Using Theorem 8.10, let us take a decomposition of the graph K = K(X1, X2, X3, X4) such

that the associated chain decomposition of H is (ε/2, η, ψ)-quasirandom, and let m be the

maximum number of bipartite graphs in any of the six parts of K. For each i < j < k

we shall remove at most ε|Xi||Xj ||Xk| edges of H, using the conclusion of Theorem 8.10

and simple averaging arguments. The result will be a subhypergraph H ′ such that each

edge (xi, xj , xk) has several good properties. To describe these properties, let us take an

arbitrary such edge, let Ai ⊂ Xi, Aj ⊂ Xj and Ak ⊂ Xk be the vertex sets from the

decomposition that contain xi, xj and xk respectively and let Gij , Gjk let Gik be the

bipartite graphs containing xixj , xjxk and xixk. The properties are then as follows.

(i) The densities of Ai, Aj and Ak inside Xi, Xj and Xk are all at least ε/24n.

(ii) The densities of Gij , Gjk and Gik inside K(Ai, Aj), K(Aj , Ak) and K(Ai, Ak)

are all at least ε/48m.

(iii) The relative density of H ′ inside the tripartite graph

G = Gij(Ai, Aj) ∪Gjk(Aj , Ak) ∪Gik(Ai, Ak)

is at least ε/8.

(iv) The chain (G,H ′ ∩∆(G)) is (ε/2, η, ψ)-quasirandom.
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Now let us see how we can get these properties.

(i) Since Xi is partitioned into at most n sets Ai, the number of vertices that belong

to an Ai of density less than e/24n is at most ε|Xi|/24. Therefore, the number of triples

(xi, xj , xk) in Xi ×Xj ×Xk such that at least one of Ai, Aj and Ak has density less than

ε/24n is at most ε|Xi||Xj |Xk|/8.

(ii) This is obtained by an argument similar to that for (i). In fact, we gave the ar-

gument as part of the proof of Theorem 8.10, which implies that the number of triples

(xi, xj , xk) in Xi × Xj × Xk for which this density condition fails is again at most

ε|Xi||Xj |Xk|/8.

(iii) Since K(Xi, Xj , Xk) is partitioned into sets ∆(G), where G is a tripartite graph

of the given form, at most ε|Xi||Xj |Xk|/8 edges of H(Xi, Xj , Xk) can live in a ∆(G) where

the relative density of H is less than ε/8.

(iv) The conclusion of Theorem 8.10 (with ε replaced by ε/2) and Definition 8.8

together tell us that this is true for all but at most ε|Xi||Xj |Xk|/2 edges of H(Xi, Xj , Xk).

It follows that we may remove at most ε|Xi||Xj |Xk| from each part H(Xi, Xj , Xk) of

H and obtain a hypergraph H ′ such that properties (i), (ii), (iii) and (iv) hold for every

single edge of H ′.

We now apply Theorem 6.8. Let G be any quadripartite graph arising from the

decomposition, let its vertex sets be A1, A2, A3 and A4 and let δ be the product of the

densities of its edge sets. If all four hypergraphs of the form ∆
(
G(Ai, Aj , Ak)

)
contain

edges of H ′ then the densities of all the G(Ai, Aj) inside K(Ai, Aj) are at least ε/48m,

the relative density of H ′ inside each G(Ai, Aj) ∪ G(Aj , Ak) ∪ G(Ai, Ak) is at least ε/8

and H ′ is (ε/2, η, ψ)-quasirandom there. By our choices of η, ψ and the lower bounds for

the densities, this means that the conditions for Theorem 6.8 are satisfied and we may

conclude that the number of simplices in H ∩∆(G) differs from σN1N2N3N4 by at most

8η1/8δN1N2N3N4. By our choice of η, this is at most εσN1N2N3N4. �

§9. Szemerédi’s theorem for progressions of length 4.

It is now straightforward to generalize the proof of Theorem 1.1 to give a proof of

Theorem 1.4. Let us modify the statement a little bit so that it fits better with the

statements of the last section.

Theorem 9.1. For every a > 0 there exists c > 0 with the following property. Let H

be any quadripartite hypergraph H with vertex sets X1, X2, X3 and X4 of sizes N1,
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N2, N3 and N4 respectively, and suppose that the number of simplices in H is at most

cN1N2N3N4. Then it is possible to remove at most aNiNjNk triples from each of the four

induced subhypergraphs H(Xi, Xj , Xk) in such a way that the resulting subhypergraph of

H is simplex-free.

Proof. Apply Corollary 8.11 with ε = a and suppose that the resulting hypergraph H ′

contains a simplex with vertices x1, x2, x3 and x4. Let G be the associated quadripartite

graph coming from the decomposition. Then each tripartite part of G contains an edge

of H ′, so the expected simplex density σ of H in G is non-zero. Corollary 8.11 tells us

that it is therefore at least (1 − a)(a/8n)4(a/48m)6(a/8)4. If c is less than this, then we

have obtained a contradiction, which shows that H ′ could not after all have contained a

simplex. Since the numbers m and n depend on ε only, the theorem is proved. �

To conclude, let us deduce Szemerédi’s theorem for progressions of length four. First

we prove a tiny weakening of Theorem 1.5. (The difference is that we prove that d 6= 0

rather than that d > 0. Ben Green’s trick mentioned in the proof of Corollary 1.2 works

here as well, but Szemerédi’s theorem does not need the positivity of d.)

Theorem 9.2. For every δ > 0 there exists N such that every subset A ⊂ [N ]3 of size at

least δN3 contains a quadruple of points of the form

{(x, y, z), (x+ d, y, z), (x, y + d, z), (x, y, z + d)}

with d 6= 0.

Proof. Define a quadripartite hypergraph with vertex sets X = Y = Z = [N ] and

W = [3N ] as follows. A triple (x, y, z) ∈ X×Y ×Z belongs to H if and only if (x, y, z) ∈ A.

A triple (x, y, w) ∈ X × Y ×W belongs to H if and only if (x, y, w − x − y) ∈ A, and

similarly for triples (x, z, w) and (y, z, w).

Suppose now that H contains a simplex (x, y, z, w) and let d = w − x− y − z. Then

the points (x, y, z), (x, y, z + d), (x, y + d, z) and (x+ d, y, z) all belong to A. This proves

the theorem unless d is always 0. But in that case, there are at most N3 simplices in H: in

fact, there are exactly |A| of them. Now we apply Theorem 9.1 with a = δ/20. It gives us

a c > 0 such that, if H contains at most cN4 simplices, then we can remove at most aN3

edges from each part of H and remove all of them. Since our hypergraph contains at most

N3 simplices, if N−1 < c we may apply the theorem. However, the number of simplices

with d = 0 is δN3, and no two of these share a face, since a simplex with d = 0 is uniquely
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determined by any one of its four faces. Therefore, if we remove at most a proportion a of

the faces from each of the four parts of H, we end up removing at most 10aN3 = δN3/2

simplices, which is not all of them. (The number 10 comes from the fact that |W | = 3N .)

That is a contradiction, and the theorem is proved. �

Corollary 9.3. For every δ > 0 there exists N such that every subset A ⊂ [N ] of size at

least δN contains an arithmetic progression of length four.

Proof. Define a subset B ⊂ [N ]3 to consist of all triples (x, y, z) such that x+2y+3z ∈ A.

It is a straightforward exercise to show that B has density bounded below by a function

of δ, so Theorem 9.3 yields the arithmetic progression

x+ 2y + 3z, (x+ d) + 2y + 3z, x+ 2(y + d) + 3z, x+ 2y + 3(z + d) . �

§10. Concluding Remarks.

The technical details in the papers of Rödl and his coauthors are very different from

those here and it is possible and instructive to pinpoint where the difference arises. The

answer is that the two approaches use different notions of quasirandomness that are equiv-

alent for graphs and dense hypergraphs but not equivalent for the sparse hypergraphs we

are forced to consider here.

Briefly, whereas in this paper we have focused on “octahedral quasirandomness”, they

concentrate their attention on edge-uniformity (see Definition 2.6). These two definitions

are not equivalent for chains (G,H), because, as we noted at the beginning of Section 8, if

G is sparse, then the failure of H to be relatively quasirandom does not imply that there

is a significant increase in mean-square density.

This presented us with a technical problem (dealt with in Lemma 8.4) that does

not arise if one uses edge-uniformity instead: that property is weaker, so its denial has

stronger consequences. However, one pays the price for this weakness when proving a

counting lemma. (In fact, this is an oversimplification: edge-uniformity does not seem

to be enough on its own, but a more complicated variant of it can be used instead, more

complicated in a way that is rather similar to the way that Lemma 8.4 is more complicated

than Lemma 7.4.) Octahedral quasirandomness appears to be exactly the right concept for

proving a counting lemma in an analytic style modelled on arguments that have already

been used for proving Szemerédi’s theorem; edge-uniformity is the concept one naturally
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comes up with if one wishes to model one’s arguments on the usual proof of Szemerédi’s

regularity lemma. It is just a pity that one cannot use both!

Thus, even though the two approaches share many features, in that they both prove

regularity and counting lemmas for chains, they are also genuinely different: for Rödl and

his coauthors the counting lemma is harder than the regularity lemma, whereas for us it

is the other way round.
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