
LECTURE NOTES 1 FOR 254A

TERENCE TAO

1. Introduction

The aim of this course is to tour the highlights of arithmetic combinatorics - the
combinatorial estimates relating to the sums, differences, and products of finite sets,
or to related objects such as arithmetic progressions. The material here is of course
mostly combinatorial, but we will also exploit the Fourier transform at times. We
will also discuss the recent applications of this theory to geometric combinatorics
problems, and in particular the Kakeya problem.

The setup is as follows. Let Z be an abelian additive group: typical examples of Z
are the integers Z, a cyclic group Z = Z/NZ, or a lattice Zn. These are all discrete
examples; one could of course consider continuous groups such as the real line R or
the circle T but this will not add any new features to the theory, because we will
always be dealing with finite subsets of Z.

Let A, B be two finite subsets of Z. We can then form their sum set

A + B := {a + b : a ∈ A, b ∈ B}
or their difference set

A − B := {a − b : a ∈ A, b ∈ B}.
If Z is also a ring, then we could form their product set also:

A · B := {ab : a ∈ A, b ∈ B},
although we will not deal with this set for several weeks.

The type of questions we will be concerned with are the following: what are the
relationships between the relative sizes of the sets A, B, A + B, A − B, A + A,
A − A, A + B + B, etc.? A typical question is the following: if A is “essentially
closed under addition”, in the sense that |A + A| ∼ |A|, does this mean that A is
also essentially closed under subtraction, in the sense that |A−A| ∼ |A|? And is A
essentially closed under iterated addition, in the sense that |A+A+A| ∼ |A|, etc.?
Of course, the number of questions one could ask here is endless, and we do not yet
have a completely satisfactory theory, but there are a number of very useful tools
developed which can attack these problems.

Some of what we do has the flavor of “approximate group theory”. A subgroup G of
Z has the property of being closed under addition, or more precisely that G+G = G.
In particular, |G + G| = |G|. We do not directly deal with subgroups here, but
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instead with approximate subgroups in which (for instance) A + A is only slightly
larger than A. The question is then to what extent does the machinery and intuition
from group theory (e.g. the concepts of cosets, quotient spaces, homomorphisms,
etc.) carry over to this approximate setting.

Another variant we will consider is when we no longer consider complete sum sets
A + B, but rather partial sum sets of the form

{a + b : (a, b) ∈ G}
for some “large” subset G of A × B, as well as the associated partial difference set

{a − b : (a, b) ∈ G}.
Knowing the relationship between the size of these two sets has immediate appli-
cation to the Kakeya problem, which we will discuss later in this course. (I’ll just
give one small hint about the relationship here: the Kakeya problem concerns how
well various line segments, pointing in different directions, can overlap each other.
If a line segment connects two points a and b, then the point (a + b)/2 must also
lie in the line segment, whereas the difference (a − b) is essentially the direction of
the line segment. Thus if one can compress line segments in lots of directions into
a very small set, one should end up with a situation in which a certain partial sum
set is small but the corresponding partial difference set is large. Thus any estimate
we have connecting partial sum sets with partial difference sets should lead to some
bound on the size of Kakeya sets.)

The above questions were all concerned with sums and differences, and the meth-
ods we will use to deal with them are mostly combinatorial, and based on basic
arithmetic facts, such as the commutativity and associativity of addition, or of such
equivalences as “a + b = c + d if and only if a − d = c − b”. However, we will also
rely sometimes on the Fourier transform. The reason this transform comes in is the
following: if f is a function supported on a set A, and g is supported on B, then
the convolution f ∗ g is supported on A + B, while f ∗ g̃ is supported on A − B,
where g̃(x) := g(−x) is the reflection of g. Thus, it is plausible that knowledge
about how f ∗ g and f ∗ g̃ are related will lead to information about how A+B and
A − B are related. To analyze these convolutions, the most obvious tool to use is
the Fourier transform.

(A side note: there are basically three aspects to the Fourier transform: the an-

alytic side, which has to do with estimates such as Plancherel, Hausdorff-Young,
Littlewood-Paley, Sobolev, and the uncertainty principle; the algebraic side, which
has to do with group actions (symmetries), characters, representation theory, and
so forth; and the arithmetic side, which has to do with how the Fourier transform
measures how well a set is closed under addition or subtraction. The three aspects
are of course related, but of course the emphasis in this course will mostly be on
the arithmetic side of the Fourier transform).

Closely related to the theory of sums and differences is that of arithmetic pro-

gressions. Arithmetic progressions are the most obvious example of “approximate
groups”: if A := {a + jr : 1 ≤ j ≤ N} is an arithmetic progression of size N , then
A + A is another arithmetic progression of almost the same size (2N − 1, to be
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precise). More generally, we can consider an arithmetic progression of dimension
d, which is something of the form

A := {a + j1r1 + . . . + jdrd : 1 ≤ js ≤ Ns for j = 1, . . . , d};
for generic choices of spacing r1, . . . , rd, this has size N1 . . .Nd, while A+A is only
slightly larger with size (2N1−1) . . . (2Nd−1) ∼ 2d|A|. Thus arithmetic progressions
are good examples of sets where |A + A| is comparable to A. One could also take
a large subset A′ ⊂ A of an arithmetic progression to obtain another set for which
|A′ + A′| is comparable to |A′|. (For instance, A′ could be N/2 numbers from
{1, . . . , N}, selected at random). There is a very deep theorem known as Freiman’s

theorem which gives a converse to this statement: if A + A has size comparable to
A, then A is a large subset of an arithmetic progression of small dimension. We’ll
prove this theorem later in this course.

Arithmetic progressions are closely related to the Fourier transform. The key con-
nection is the following: (infinite) arithmetic progressions are nothing more than the
level sets of characters (such as exp(2πikx))! (Another, closely related connection
is the Poisson summation formula).

Later on in this course we will study arithmetic progressions in more detail. An old
conjecture of Erdös - still unsolved - is whether the prime numbers have arithmetic
progressions of arbitrary length. Even in the simplest non-trivial case of arithmetic
progressions of length 3, we do not know the answer (though in one sense we are
very close, only off by a square root of a logarithm - more on this later). It may
be that this question will be resolved using some deep facts from number theory,
but it is also quite possible that one can use a far cruder argument, using only
the fact that the set of primes in {1, . . . , N} has density ∼ 1/ logN . This leads
to the following problem: given any k ≥ 3, what density do we need of subsets
of {1, . . . , N} to guarantee a non-trivial arithmetic progression of length k? (By
non-trivial we mean that the spacing of the progression is non-zero). There is a
famous result of Szemeredi in this direction: given any δ > 0 and k ≥ 3, it is true
that every subset of {1, . . . , N} of density at least δ (i.e. cardinality at least δN)
has a non-trivial arithmetic progression of length k, provided N is large enough
depending on δ and k. We will give several proofs of this result for small values
of k, and give a beautiful (but rather unusual) proof by Furstenburg using ergodic
theory in the general case.

2. Bounds on A + B

We now begin with one of the most basic questions: given the cardinalities |A|, |B|
of two non-empty finite sets A, B in a group Z, what can one say about |A + B|?
(This is of course a vacuous question if A or B is empty).

We have a trivial upper bound

|A + B| ≤ |A||B|
and this is sharp, as can be seen when A and B are generic (and Z is large). The
more interesting question is what lower bound one can get on |A + B|.
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We first make a basic observation: if we translate A or B by any amount, this does
not affect the cardinalities of A, B, or A + B (or of A − B, etc.).

Lemma 2.1. If A and B are non-empty finite subsets of Z, then we have |A+B| ≥
|A| + |B| − 1.

Proof We exploit the fact that the integers are ordered. We may translate A so
that sup(A) = 0, and translate B so that inf(B) = 0. Since 0 ∈ A, B, we thus see
that A + B contains A∪B. But A consists of non-positive integers and B consists
of non-negative integers, so |A ∪ B| = |A| + |B| − 1, and the claim follows.

These bounds are sharp; see Exercises 1 and 2. Note from Exercise 2 that the lower
bound is only attained of A and B are arithmetic progressions.

This settles the problem when the group Z is the integers. What about other
groups? We first observe that all torsion-free groups are “equivalent” to Z, in the
following sense.

Definition 2.2. An abelian group Z is torsion-free if one has nx 6= 0 for all non-
zero x and all n ≥ 1, where nx = x + . . . + x is the summation of n copies of
x.

Recall that an isomorphism φ : Z → Z ′ between two abelian groups is a bijection
such that φ(x + y) = φ(x) + φ(y) for all x, y ∈ Z. Unfortunately, isomorphisms are
very rare (e.g. there is no isomorphism between Z and Z2). Thus we will use a
more relaxed notion of isomorphism.

Definition 2.3. Let k ≥ 2, let A ⊂ Z be the subset of one abelian group, and let
B ⊂ Z ′ be the subset of another abelian group. A Freiman isomorphism of order k
φ : A → B is a bijection from A to B such that for any x1, . . . , xk, y1, . . . , yk ∈ A,
we have

φ(x1) + . . . + φ(xk) = φ(y1) + . . . + φ(yk)

if and only if

x1 + . . . + xk = y1 + . . . + yk.

The idea is that a Freiman isomorphism looks exactly like an actual isomorphism
as long as you are only allowed to perform at most k additions. Observe that if φ is
a Freiman isomorphism of order k, then it is automatically a Freiman isomorphism
of order k′ for all k′ ≤ k. Also, the composition of two Freiman isomorphisms of
order k is another Freiman isomorphism of order k, as is the inverse of a Freiman
isomorphism of order k. Note that every genuine isomorphism is a Freiman isomor-
phism of every order, as is any translation map φ(x) := x+x0. Finally, we see that
if there is a Freiman isomorphism on A ∪ B ⊂ Z of order at least 2 which maps A
to A′ and B to B′, then A + B will have the same cardinality as A′ + B′, in fact φ
induces an explicit bijection between the two sets. (Note also that the same is true
for A−B, because of the simple identity x1 +x2 = y1 + y2 ⇐⇒ x1 − y2 = y1 −x2.
If one also wants to preserve the cardinality of more complicated expressions such
as A + B − B then one needs higher order isomorphisms, of course.).
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We can now make precise the statement that torsion-free abelian groups are no
richer than the integers, for the purposes of understanding sums and differences of
finite sets.

Lemma 2.4. Let A be a finite subset of a torsion-free abelian group. Then for any

integer k, there is a Freiman isomorphism φ : A → φ(A) to some finite subset φ(A)
of the integers.

Note that the converse is trivial: one can always embed the integers in any other
torsion-free abelian group.

Proof We may extend Z to be a vector space over the rationals Q (by replacing Z
with Z ⊗Z Q). Without loss of generality we may translate A so that it contains 0.
Now look at span(A), the span of A over the rationals. This is a finite-dimensional
vector space over Q and is thus isomorphic to Qn for some n. Since A is finite,
we thus see that A is contained in some lattice which is isomorphic to Zn. Thus
without loss of generality we may assume that Z = Zn.

Now let M be a large integer, and define the map φ : Zn → Z by

φ(a1, . . . , an) := a1 + a2M + a3M
2 + . . . + anMn−1.

(i.e. we view elements of Zn as digit strings of integers base M . If M is large
enough depending on A and k, we see that this is a Freiman isomorphism (because
if M is large enough we never have to “carry” a digit).

As a corollary, we see that Lemma 2.1 extends to all torsion-free abelian groups
(and indeed, any inequality involving a finite number of sums and differences which
works for Z, will work for all torsion-free abelian groups). Note that something
slightly non-trivial is going on here, because Lemma 2.1 relied crucially on the
ordering of Z, which is not an arithmetic property and is not preserved under
Freiman isomorphisms.

Now we look at what happens when there is torsion, e.g. if Z = Z/NZ for some N .
The first thing we see is that we have the trivial bound |A + B| ≥ max(|A|, |B|),
since A + B must contain at least one translate of A and at least one translate
of B. This is sharp: if A, B are equal to the same finite subgroup G of Z, then
|A + B| = |A| + |B|. (See Exercise 3 for a more precise formulation of when
|A + B| ≥ max(|A|, |B|) is sharp.)

Now let’s look at what happens when there aren’t any proper subgroups, i.e. when
Z = Z/pZ for some prime p.

Theorem 2.5 (Cauchy-Davenport inequality). If A, B are any two non-empty sub-

sets of Z/pZ for some prime p, then

|A + B| ≥ min(|A| + |B| − 1, p).

This theorem is superficially similar to the torsion-free inequality in Lemma 2.1,
but is more non-trivial to prove - we will in fact give two and a half proofs of this
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inequality. Note that we need the p on the right-hand side, since clearly we cannot
make |A + B| exceed p.

We first deal with a trivial case, when |A| + |B| − 1 ≥ p. Then |A| + |B| is larger
than |Z/pZ|, and by the pigeonhole principle A and x−B will always intersect for
any x ∈ Z/pZ. Thus A + B = Z/pZ, and so |A + B| = p as desired. So we only
need to prove the inequality |A + B| ≥ |A| + |B| − 1 when |A| + |B| − 1 < p.

We now begin the first proof of the Cauchy-Davenport inequality, based on contra-
diction. Suppose we have a counterexample to the inequality, so that |A + B| <
|A|+ |B|−1 ≤ p for some A and B. Let’s assume the counterexample is minimal in
the sense that |A| is as small as possible. (Note that the inequality is trivial when
|A| = 1, so |A| > 1). By translating A and B we may assume that A, B have a
point in common.

Now we do a little trick, known as the Dyson e-transform1: we replace A and B by
A′ := A ∩ B and B′ := A ∪ B. From inclusion-exclusion we see that |A′| + |B′| =
|A| + |B|. Also we observe that A′ + B′ is a subset of A + B (because

A′ + B′ = A′ + (A ∪ B) ⊆ (A′ + B) ∪ (A′ + A) ⊆ (A + B) ∪ (B + A) = A + B

). Thus A′, B′ will be another counterexample to the Cauchy-Davenport inequality
(we’ve kept |A|+ |B|−1 the same size, but made A+B equal or smaller cardinality;
note that A′ is non-empty by assumption). This will contradict minimality of A
unless A′ = A ,i.e. if A is contained in B.

Thus when we have a minimal counterexample A, B to the Cauchy-Davenport in-
equality, we know that A ⊆ B whenever A and B intersect. More generally, by
translation invariance we see that A + x ⊆ B whenever A + x and B intersect. In
particular, this means that B−A+A ⊆ B (since A+x intersects B precisely when
x ∈ B−A). Thus |B−A+A| ≤ |B|. By Exercise 3 this means that B is a translate
of some subgroup of Z/pZ, which means that either |B| = 1 or B = Z/pZ. But in
either case we can easily check that we do not have a counterexample to Cauchy-
Davenport. Thus there is no minimal counterexample to Cauchy-Davenport.

Now we give a completely different proof of Cauchy-Davenport, due to Elon, Nathanson,
and Ruzsa. Write m := |A|, n := |B|; we may assume that m + n − 1 < p. Write
F := Z/pZ, and consider the set FA, the set of F -valued functions on A. This
is an m-dimensional vector space over the field F . Now consider the polynomi-
als 1, x, x2, . . . , xm−1, thought of as functions from A to F (i.e. elements of FA).
These m functions are linearly independent (over F ) in FA, because polynomials
of degree m − 1 have at most m − 1 zeroes. Thus these functions form a basis for
FA. Similarly the functions 1, y, y2, . . . , ym−1 form a basis for FB.

Now consider FA ⊗FB = FA×B, the space of F -valued functions f(x, y) for x ∈ A
and y ∈ B. Then the functions xjyk, for 0 ≤ j ≤ m − 1 and 0 ≤ k ≤ n − 1, form
a basis for FA×B. In particular, if we let S be the mn − 1 monomials {xjyk : 0 ≤
j ≤ m − 1, 0 ≤ k ≤ n − 1, (j, k) 6= (m − 1, n − 1)}, then xm−1yn−1 does not lie in

1Actually, this is the Dyson 0-transform. The e-transform is the 0-transform composed with a
translation by e.
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the span of S (over F ). On the other hand, observe that xjyk does lie in the span
of S if 0 ≤ j < m − 1 (because yk is a linear combination of 1, y, . . . , yn−1) or if
0 ≤ k < n − 1 (because xj is a linear combination of 1, x, . . . , xm−1).

Now suppose that the Cauchy-Davenport inequality failed, so that |A + B| < m +
n − 1. Then there exists a set C ⊆ F of cardinality |C| = m + n − 2 such that
A + B ⊆ C. Thus if we define the function f ∈ FA×B by

f(x, y) :=
∏

z∈C

(x + y − z)

then f vanishes on A×B, i.e. f ≡ 0. However, if we expand f(x, y) out completely,
we get a monomial term of the form

(

m + n − 2
m − 1

)

xm−1yn−1,

plus a lot of other monomial terms involve xjyk where either j < m−1 or k < n−1
or both, and which thus lie in the span of S. But since mn − 1 < p, we see that
(

m + n − 2
m − 1

)

is not a multiple of p, and so it is invertible in F . This contradicts

the fact that xm−1yn−1 does not lie in the span of S.

Now we give half of a proof of the Cauchy-Davenport inequality. Note that the
Cauchy-Davenport inequality is equivalent to the more symmetrical:

Proposition 2.6. Let A, B, C be non-empty subsets of F such that |A|+|B|+|C| ≥
p + 2. Then A + B + C = Zp.

Indeed, to see how this proposition implies Cauchy-Davenport, just set C :=
−(Z/pZ\(A + B)) and take contrapositives.

We will use the Fourier transform. Let l2(F ) be the vector space of complex-valued

functions on F . Given any f ∈ l2(F ), we can define the Fourier transform f̂ ∈ l2(F )
by

f̂(ξ) :=
1√
p

∑

x∈F

e2πixξ/pf(x).

This is an isometry from l2(F ) to l2(F ). Now look at the subspace l2(A) of l2(F );
this is the |A|-dimensional space of complex-valued functions on A. The Fourier

transform l̂2(A) of this space is thus also |A| dimensional. Heuristically, this means
that given any |A| distinct frequencies ξ1, . . . , ξ|A|, we should be able to find a func-

tion f ∈ l2(A) whose Fourier coefficients f̂(ξ1), . . . , f̂(ξ|A|) are equal to anything

we specify. (This is true if the characters e2πixξj/p for j = 1, . . . , |A| are linearly
independent on A). If we believe this, then in particular we can make one Fourier
coefficient equal to 1 and |A| − 1 other coefficients equal to 0.

Since |A| + |B| + |C| ≥ p + 2, we can find subsets X, Y, Z covering F − {0} with
cardinality |A| − 1, |B| − 1, and |C| − 1 respectively. Then if we believe the above
heuristic, we can find functions f, g, h in l2(A), l2(B), l2(C) such that f has a non-
zero Fourier coefficient at 0 but zero coefficients on X , and similarly for g, h and
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Y , Z. But by Parseval, this implies that the Fourier coefficients of f ∗ g ∗h are zero
everywhere except at 0 where it is non-zero; this implies that f ∗ g ∗ h is a non-zero
constant. Since f ∗ g ∗ h is supported on A + B + C, the claim follows.

Unfortunately I haven’t been able to prove the linear independence of the characters
necessary to make this proof work (even though one has a vast amount of freedom
in selecting the sets X , Y , Z), however it does show how the Fourier transform can
(in principle) be used to control additive information of sets.

3. On A and A + B

Now let’s go back to a general abelian group Z, and suppose that we have two finite
non-empty sets A, B. We have the bound |A + B| ≥ |A|. Call a set A B-invariant

if we have |A + B| = |A|; of course this can only happen when A has at least as
many elements as B. From Exercise 3 we know that B-invariant sets are unions of
cosets of some subgroup G, generated by some translate of B. Note that |G| must
be larger than or equal to |B|, but less than or equal to |A|.

Thus we have a satisfactory description of B-invariant sets. Now let us call A
essentially B-invariant if |A + B| ∼ |A|. Is there an analogous structure theorem
for essentially B-invariant sets - that they are essentially cosets of a group generated
by B (or one of its translates)?

It turns out the answer is yes - this is a variant of Freiman’s theorem - but it is
not easy to prove. However, we can begin to approach this fact with a number of
partial results of this nature.

First of all, suppose that A and A′ are two genuinely B-invariant sets. Then A and
A′ are unions of cosets of the same sub-group G. This gives us some additional
information on the sum set A+A′. First of all, it must also be unions of cosets of G,
but secondly, it cannot be as large as |A||A′|, because G + G = G. Indeed, we now
have the upper bound |A + A′| ≤ |A||A′|/|G|, and similarly |A − A′| ≤ |A||A′|/|G|
(this is basically because we can pass to the quotient group Z/G and use the
bound |(A + A′)/G| ≤ |A/G||A′/G|, etc.). In particular, if we use the crude bound
|G| ≥ |B|, we obtain |A ± A′| ≤ |A||A′|/|B|.

Let’s look at the dual situation. Suppose A is both genuinely B-invariant and
genuinely B′-invariant. Then it is not hard to see that A must consist of cosets
of some group G which contains both a translate of B and a translate of B′. In
particular, this means that B ± B′ is contained in a coset of G. Using the trivial
bound |G| ≤ |A|, we thus obtain the bound |B ± B′| ≤ |A|.

The first question we can ask is whether these crude bounds continue to hold for
essentially B-invariant sets instead of genuinely B-invariant sets. One can partially
answer this question by means of the following elementary lemma of Imre Ruzsa.

Lemma 3.1. [4] If U , V , W are three non-empty finite subsets of an abelian group

Z, then |V − W | ≤ |U+V ||U+W |
|U| .
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Note that this is a generalization of the trivial bound |V − W | ≤ |V ||W |. In the
special case where U is a subgroup, this bound in fact comes from the trivial bound
applied to the abelian group Z/U , and then pulled back to Z. (In that particular
case one can improve the left-hand side to |U +V −W |, and more generally one can
do so when U is essentially closed under addition, see Q10. However for general U
one cannot hope for such an estimate, see Q9). One can think of this lemma as sort
of a triangle inequality: if one can control the arithmetic interaction between U
and V , and between U and W , then one can also control the arithmetic interaction
between V and W .

Proof Consider the linear map π : V ×W → V −W defined by π(x, y) := x−y. This
map is clearly surjective, and so we can find a partial inverse f : V −W → V ×W
such that π(f(w)) = w for all w ∈ V − W . In particular, the points f(w) all have
different values of π as w varies in V − W .

Let U∆ ∈ Z ×Z be the diagonal U∆ := {(u, u) : u ∈ U}. Observe that (V × W ) +
U∆ = (U +V )× (U +W ). In particular, for any w ∈ V −W , the sets f(w)+U∆ lie
in (U +V )× (U +W ). Furthermore, since U∆ is in the null space of π, we see that
the sets f(w) + U∆ are all disjoint. Since each set f(w) + U∆ has cardinality |U |
and we have |V −W | such sets, we have |U ||V − W | ≤ |U + V ||U + W | as desired.

In this proof we see a number of interesting tricks, notably the trick of selecting a
section (or partial inverse) f to an injective function π, which is then used to obtain
a certain disjointness property. We will meet this trick again later in this course.

From this lemma we see that if A and A′ are two essentially B-invariant sets, then

|A − A′| ≤ |A + B||A′ + B|
|B| .

|A||A′|
|B|

which is consistent with our previous discussion. Or if A is both essentially B-
invariant and B′-invariant, then

|B − B′| ≤ |A + B||A + B′|
|A| . |A|

which is also consistent with our previous discussion. Of course, we would also
like to control |A + A′| and |B + B′|, but we do not yet have the technology to
do so; the problem is that if |A + B| ∼ |A| we do not yet know if |A − B| ∼ |A|
(this seems true, based on analogy with genuinely B-invariant sets, and we will
eventually prove something like this, but we certainly don’t know it yet).

Another thing we see from the analogy between essentially B-invariant sets and
genuinely B-invariant sets is that if A is essentially B-invariant, then it should also
be essentially B + B-invariant, essentially B −B-invariant, essentially B + B + B-
invariant, etc. We will prove something like this in the next three sections.
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4. Plünnecke’s theorem

The purpose of this section is to prove

Theorem 4.1 (Plünnecke’s theorem). [3] Let A, B be two finite non-empty subsets

of an abelian group Z, and suppose that |A+B| ≤ K|A| for some real number K ≥ 1.
Then there is some non-empty subset A′ of A such that |A′ + B + B| ≤ K2|A′|.

In particular, every essentially B-invariant set contains an essentially B+B-invariant
set. Of course this theorem can be iterated to construct B + B + B + B-invariant
sets, etc.

The idea behind this theorem is that if the passage from A to A + B “magnifies”
cardinality by K, then the passage from A to A+B+B should magnify cardinality
by at most K2. In order to quantify this notion of magnification, we shall need
some machinery from graph theory.

Set V0 := A, V1 := A + B, V2 := A + B + B. We can define a directed graph
G = G[A, B] connecting V0 to V1 and V1 to V2 as follows: for every a ∈ A and
b ∈ B, we connect a ∈ V0 to a + b ∈ V1; we let E0→1 be the set of all such edges.
For every a + b ∈ A + B and c ∈ B, we connect a + b ∈ V1 to a + b + c ∈ V2.

This graph G[A, B] is an example of a commutative graph, which we now define.

Definition 4.2. Let Z be an abelian group. A commutative graph (or Plünnecke

graph) of depth 2 is a graph G with three (possibly overlapping) finite sets of vertices
V0, V1, V2 ⊂ Z, and two sets of directed edges E0→1, E1→2, such that each edge e
in E0→1 connects V0 to V1, and each edge in E1→2 connects V1 to V2. Furthermore,
we have the following commuting square property: if the edge a → a + b lies in
E0→1, and the edge a + b → a + b + c lies in E1→2, then the edge a → a + c must
also lie in E0→1, and the edge a + c → a + b + c must also lie in E1→2.

The commuting graph property is so named because it reflects a basic feature of
addition, namely that the translation maps a 7→ a + b and a 7→ a + c commute.
There are commuting graphs of higher order depths, but we will not need them
here (but see Exercise 6).

Observe from the commuting square property that every edge a → a + b in E0→1

induces an injection from edges a + b → a + b + c emanating from a + b, and edges
a → a + c emanating from a; we call this the pullback map induced by the edge
a → a + b. Similarly, any edge d → d + c in E1→2 induces a pushforward map from
edges d − b → d terminating at d, to edges d + c − b → d + c terminating at d + c.
Intuitively, these maps show us that the behavior of the graph from V0 to V1 must
somehow be similar to that from V1 to V2.

We do allow V0, V1, V2 to overlap, but this can be easily fixed by replacing Z with
the product space Z ×Z, and replacing V0, V1, V2 by their respective lifts V0 ×{0},
V1 × {1}, V2 × {2}, and adjusting the edges accordingly. Thus we will take V0,
V1, V2 to be disjoint. (Note how the freedom to take Cartesian products of our
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abelian group gives us additional room to maneuver; we will see more examples of
this product trick later on).

Let G = (V0, V1, V2, E0→1, E1→2) be a commuting graph. If A′ is a subset of V0,
we define G(A′) ⊆ V1 to be the set of all vertices in V1 which are connected via
an edge in E0→1 to some vertex in A′. Similarly we define G2(A′) ⊆ V2 to be the
set of all vertices in V2 which are connected via an edge in E1→2 to some vertex in
G(A′), or equivalently the set of all vertices in V2 which are connected via a path
of length 2 to a vertex in A′. In the special case G = G[A, B], observe that G(A′)
is just A′ + B and G2(A′) is just A′ + B + B.

Plünnecke’s theorem will then follow from the following proposition.

Proposition 4.3. Let G be a commutative graph, and suppose that |V1| < K|V0|.
Then |G2(A′)| < K2|A′| for some A′ ⊆ V0.

To prove this proposition, let us first prove it in the special case when C = 1:

Proposition 4.4. Let G be a commutative graph such that |V1| < |V0|. Then

|G2(A′)| < |A′| for some A′ ⊆ V0.

This Proposition asserts, informally, that if G is not an expanding map, then neither
is G2. We prove this theorem in the next section.

5. Some graph theory

To prove Proposition 4.4, we recall Menger’s theorem from graph theory. Let G be a
directed graph, and let A and B be two subsets of G. We define MAXFLOW (A →
B; G) to be the maximum number of disjoint paths in G which connect a vertex
in A with a vertex in B. We define MINCUT (A → B; G) to be the minimum
number of vertices one needs to remove from G in order to disconnect A from B.

Theorem 5.1 (Menger’s theorem). MAXFLOW (A → B; G) = MINCUT (A →
B; G).

This theorem has a nice intuitive interpretation; the only obstructions to flowing
from A to B are cuts which disconnect A from B. In particular, if one cannot
disconnect A from B using s−1 cuts, then one must be able to find s disjoint paths
from A to B.

Proof It is obvious that MAXFLOW is less than or equal to MINCUT , since if
S is a set disconnecting A from B then every path from A to B must pass through
S, and so one can have at most |S| disjoint paths. The other direction, however, is
not as obvious.

We induct on the number of edges in G. If there are no edges in G then MAXFLOW
and MINCUT are both equal to |A ∩ B|. Now we assume that there is at least
one edge (a → b) in G, and the claim has already been proven for all fewer edges.
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Let s := MINCUT (A → B; G). We have to construct s disjoint paths from A to
B. Let us first look at the quotient graph G/(a = b), with a and b identified into
a single vertex {a, b}, and the edge (a → b) deleted. Let S/(a = b) be a minimal
subset of G/(a = b) disconnecting A/(a = b) from B/(a = b). If S/(a = b) has at
least s elements, then we can apply the induction hypothesis to G/(a = b) (which
has fewer edges than G) to construct s disjoint paths in G/(a = b) from A/(a = b)
to B/(a = b), which clearly lifts to s disjoint paths in G from A to B as desired.
Thus we can assume S/(a = b) has fewer than s elements. But S disconnects A
from B, and thus has at least s elements. The only way this can happen is if S
contains both a and b, and |S| = s.

Now consider MINCUT (A → S; G). This must be at least s, because if we could
disconnect A from S using fewer than s elements, then we could disconnect A from
B using the same elements (because every path from A to B must pass through
something in S). In fact we see that MINCUT (A → S; G− (a → b)) is at least s,
because the edge from a to b plays no role in the connectivity between A and S. By
the induction hypothesis we can thus find s disjoint paths from A to S; note each
path must have a distinct endpoint since |S| = s. Similarly we can find s disjoint
paths from S to B, with each path having a distinct initial point. The paths in the
first family must be disjoint from the paths in the second family, except at S, since
otherwise we could construct a path from A to B which avoids S entirely. Now
all we do is concatenate the s paths from A to S with the s paths from S to B to
create the s disjoint paths from A to B.

Now we prove Proposition 4.4. Write s := MAXFLOW (V0 → V2; G). Since V1

disconnects V0 from V2, we have s ≤ |V1| < |V0|. On the other hand, by Menger’s
theorem there is a set S ⊆ V0∪V1∪V2 of cardinality |S| = s < |V0| which disconnects
V0 from V2.

Write S = S0∪S1∪S2, where Sj := S∩Vj . The plan now is to push all the vertices
in the S1 component of the disconnecting set over to V0.

Let G′ be the subgraph of G whose edges E′
0→1 ∪ E′

1→2 are the union of all the
paths from V0\S0 to V2\S2. Since G has the commutative property, we see easily
that G′ does also. Also, S1 disconnects V0 from V2 in G′. In particular, we have
MINCUT (V0 → V2; G

′) = |S1| (if the mincut was any smaller, we could contradict
the minimality of |S| = s). Thus there are |S1| disjoint paths in G′, which of course
pass through distinct points in S1. Let W0 ⊆ V0\S0 denote the initial points of
these paths and W1 ⊆ V2\S2 denote the final points, thus |W0| = |S1| = |W2|.

Now we use the commutative property of G′. By pulling back on these |S1| disjoint
paths, we see that we have an injection from the edges in E′

1→2 to the edges in
E′

0→1 emanating from W0, since every edge in E′
1→2 emanates from some vertex in

S1. Similarly, by pushing forward on these paths, we see that we have an injection
from the edges in E′

0→1 to the edges in E′
1→2 entering W2. The only way both

of these statements can be true is if every edge in E′
0→1 emanates from W0, and

every edge in E′
1→2 terminates at W2. But then we can replace S0 ∪ S1 ∪ S2 by

S0 ∪ W0 ∪ S2 to obtain a set of cardinality s disconnecting V0 from V2 in G. Since
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S0 ∪ W0 ∪ W2 disconnects S, the set G2(V0\(S0 ∪ W0)) must be contained in W2.
But since s < |V0|, the set V0\(S0 ∪ W0) has larger cardinality than |W2|, and we
are done.

6. The Cartesian product trick

We have proven Proposition 4.3 in the special case C = 1. Now we leverage this
special case to the general case by a surprisingly powerful trick, that of taking
Cartesian products. We have already seen a very tiny hint of this when we used a
lifting trick to make V0, V1, and V2 disjoint.

Let G and G̃ be two commutative graphs in two abelian groups Z and Z̃, with
vertex sets V0, V1, V2 and Ṽ0, Ṽ1, Ṽ2 respectively, and edge sets E0→1, E1→2 and
Ẽ0→1, Ẽ2→2. Then we can form a Cartesian product G × G̃ in Z × Z̃ with vertex
sets V0 × Ṽ0, V1 × Ṽ1, V2 × Ṽ2 and edge sets E0×1 × Ẽ0×1 and E1×2 × Ẽ1×2, where

the direct sum of two edges (a → b) and (ã → b̃) is understood to be the edge

((a, ã) → (b, b̃)).

One can easily verify that the Cartesian product of two commutative graphs is
still commutative. For instance, the Cartesian product of G[A, B] and G[Ã, B̃] is

G[A × Ã, B × B̃].

Let us also define the concept of magnification ratio. If G is a commutative graph,
we define the magnification ratio D(G) to be the infimum

D(G) := inf
A′⊆V0, non-empty

|G2(A′)|
|A′| ;

thus D(G) is the minimum amount by which G2 expands sets. Proposition 4.4

thus asserts that if |V1|
|V0|

is less than 1, then so is the ratio D(G). We wish to prove

Proposition 4.3, which asserts that if |V1|
|V0|

is less than K, then the ratio D(G) is less

than K2.

Two examples should be kept in mind. Let Z = Zk, let A := {0}, and let B

be the standard basis for Zk. Then in the commutative graph Gk := G[A, B],

we have |V0| = 1, |V1| = k, and D(G) = k(k−1)
2 (why?). Dually, we have the

reflected commutative graph G†
k, in which the sets V0 and V2 are swapped, in

which |V0| = k(k−1)
2 , |V1| = k, and D(G) = 2

k(k−1) . Note that in both cases we are

pretty close to the bound in Proposition 4.3, up to a factor of 2 or so.

Now we make a key observation connecting magnification ratios with Cartesian
products:

Lemma 6.1. Let G and G̃ be commutative graphs. Then D(G × G̃) = D(G) ×
D(G̃).
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Proof Let d := D(G) and d̃ := D(G̃). Then there exists A′ ⊆ V0 such that

|G2(A′)| = d|A′|, while there exists Ã′ ⊆ Ṽ0 such that |G̃2(Ã′)| = d̃|Ã′|. Multiplying
together, we obtain

|(G × G̃)2(A′ × Ã′)| = dd̃|A′ × Ã′|
which implies that D(G × G̃) ≥ dd̃.

Now we show the reverse inequality, i.e. for every Ω ⊆ V0 × V ′
0 , that

|(G × G̃)2(Ω)| ≥ dd̃|Ω|.

The trick is to factorize the left-hand side. Let IV0
= G[V0, {0}] be the trivial

commutative graph whose vertex sets V0, V1, V2 are all equal to V0, and the edges
are just the loops on V0. Similarly define IṼ2

. Then observe that

(G × G̃)2(Ω) = (G × IṼ2
)2(IV0

× G̃)2(Ω);

this basically arises because we can think of paths in G × G̃ as a path in IV0
× G̃,

followed by a path in G × IṼ2
. Also, it is easy to see that D(IV0

× G̃) = D(G̃) and

D(G × IṼ2
) = D(G). The claim follows.

Now we have enough tools to finish the proof of Proposition 4.3. Let G be a
commutative graph such that |V1|/|V0| < K for some K > 1. Let k be an integer
between 2K+1 and 2K+2, so that |V1|/|V0| 2

k−1 < 1. Then if we take the Cartesian

product of G with G†
k, the new graph G×G†

k has a ratio |V1|/|V0| less than 1. Thus

Proposition 4.4 applies, and D(G × G†
k) < 1. By Lemma 6.1, we thus have

D(G) < 1/D(G†
k) =

k(k − 1)

2
≤ 10K2.

This is almost what we want, except that we have lost a constant of 10. To remove
this loss we resort to Cartesian products again. Let M be a large integer, and
consider G× . . .×G, the Cartesian product of M copies of G. Applying the bound
we have with G replaced by G × . . . × G (and K replaced by KM ) we obtain

D(G × . . . × G) ≤ 10K2M .

But then applying Lemma 6.1 repeatedly and then taking M th roots, we obtain

D(G) ≤ K2

as desired. (This weird phenomenon occurs everywhere in this subject - all con-
stants can be magically converted to 1 just by raising everything to sufficiently high
powers. See, constants really don’t matter after all!) This completes the proof of
Proposition 4.3, and hence of Plünnecke’s theorem.

7. Boosting the size of A′

We have just proven Plünnecke’s theorem, which roughly speaking says that if A
is essentially B-invariant, then some subset A′ of A is essentially B + B-invariant.
While this is a nice theorem to have, it seems a little unsatisfactory in one respect:
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the set A′ could be much smaller than A. Fortunately, we can remedy this quite
easily.

Corollary 7.1. Let A and B be non-empty subsets of an abelian group Z such that

|A + B| ≤ K|A|, and let 0 < δ < 1 be a parameter. Then there exists a subset A′

of A of cardinality |A′| ≥ (1 − δ)|A| such that |A′ + B + B| ≤ 2K2

δ |A|.

Thus one can make A′ nearly as large as A, although we begin to lose in the
constants as one tries to push A′ closer and closer to being 100% of A. One cannot
improve this factor K2/δ by much; see Q11.

Proof We shall iterate Plünnecke’s theorem by performing the algorithm. Let
A0 := A. By Plünnecke’s theorem we may find a non-empty subset A′

0 of A0 such
that

|A′
0 + B + B| ≤ |A0 + B|2

|A0|2
|A′

0| ≤
K2|A|2
|A0|2

|A′
0|.

Now set A1 := A0\A′
0. If |A1| < δ|A|, we terminate the algorithm. Otherwise we

apply Plünnecke’s theorem again to find a non-empty subset A′
1 of A1 such that

|A′
1 + B + B| ≤ |A1 + B|2

|A1|2
|A′

1| ≤
K2|A|2
|A1|2

|A′
1|.

Now we set A2 := A1\A′
1. If |A2| < δ|A| we terminate the algorithm. We repeat

this procedure until it terminates (which it must, as each new Aj is strictly smaller
than the previous one) at some Ak with |Ak| < δ|A|. We then set A′ := A\Ak;
clearly we have |A′| ≥ (1 − δ)|A|. Also, by construction

|A′ + B + B| ≤
k−1
∑

j=0

|A′
j + B + B|

≤
k−1
∑

j=0

K2|A|2
|Aj |2

|A′
j |

= K2|A|2
k−1
∑

j=0

|Aj | − |Aj+1|
|Aj |2

≤ K2|A|2( 1

|Ak−1|
+

k−2
∑

j=0

|Aj | − |Aj+1|
|Aj ||Aj+1|

)

= K2|A|2( 1

|Ak−1|
+

k−2
∑

j=0

1

|Aj+1|
− 1

|Aj |

≤ 2K2|A|2/|Ak−1|
≤ 2K2|A|/θ

as desired.

Now one could ask why we couldn’t boost A′ up all the way to A and obtain a
result of the form “If A is essentially B-invariant, then it is also essentially B + B-
invariant”. The following example (due to Ruzsa) shows that this is too naive.
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Proposition 7.2. [4] Let n be a large integer. Then there exists sets A of size

|A| ∼ n2 and B of size |B| ∼ n, such that |A + B| ∼ n2 but |A + B + B| ∼ n3.

Proof We shall use the abelian group Z2. We shall need a set B for which B + B
is much larger than B; a typical choice is the set

B := {(i, 0) : i = 1, . . . , n} ∪ {(0, j) : j = 1, . . . , n};

observe that |B| ∼ n but that |B + B| ∼ n2.

Now let A0 be the n × n square {(i, j) : i, j = 1, . . . , n}; observe that |A0| ∼ n2,
|A0 + B| ∼ n2, and |A0 + B + B| ∼ n2. Thus A0 is not a counterexample to our
claim; it is both essentially B-invariant and essentially B + B-invariant. However,
we can worsen things by adding a small number of maverick elements to A0.

Specifically, let A1 be any collection of n points, sufficiently separated in space.
Then |A1| ∼ n, |A1 +B| ∼ n2, and |A1 +B +B| ∼ n3. If we then set A := A0 ∪A1

then we obtain our desired counterexample.

Note how a key fact used here was that B + B was much larger than B. If B + B
was the same size as B one could do much better; see Q10.

Thus we really do need to remove some exceptional elements before passing from
essentially B-invariant sets to B +B-invariant sets. We will see more examples like
this later on.

8. Some consequences of Plünnecke’s theorem

From Plünnecke’s theorem we have some immediate corollaries. To state them, we
need some notation. Let us write 2A for A + A, 3A for A + A + A, etc, with the
convention that 0A = {0}. (This should be kept separate from 2·A := {2a : a ∈ A},
3 · A := {3a : a ∈ A}, etc.). Plünnecke’s theorem thus says that if you can control
A + B, then you can also control A′ + 2B for some refinement A′ of A. Iterating
this, we can get

Corollary 8.1 (Iterated Plünnecke’s theorem). Let A, B be two finite non-empty

subsets of an abelian group Z, and suppose that |A + B| ≤ K|A| for some real

number K ≥ 1. Then for every n = 1, 2, 3, . . . there is some non-empty subset An

of A such that |An + nB| ≤ KC(n)|An| for some absolute constant C(n).

Indeed, this claim when m is a power of two just follows by iterating Plünnecke’s
theorem log2 m times, and then one makes the simple observation that once the
theorem is proven for any large n, it automatically holds for smaller n (because if
n < n′ then nA is contained in a translate of n′A).

One can in fact take C(n) = n; see Exercise 6.
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From the above Corollary and Lemma 3.1 we see that

|nB − nB| ≤ |An + nB|2
|An|

≤ K2C(n)|An| ≤ K2C(n)|A|.

Since nB is contained in a translate of mB when n ≥ m, we thus easily obtain

Corollary 8.2 (Sumset estimates.). Let A, B be two finite non-empty subsets of

an abelian group Z, and suppose that |A+B| ≤ K|A| for some real number K ≥ 1.
Then for every n, m ≥ 0 we have the bound

|nB − mB| ≤ KC(n,m)|A|.

Thus if A is essentially B-invariant, then the sum or difference of an arbitrary
number of copies of B cannot get much larger than A. This is consistent with our
intuition that if A is essentially B-invariant, then B is essentially contained inside
a coset of a subgroup G, and A is essentially the union of such cosets.

Let us call a set A essentially closed under addition if |A + A| . |A|. The sumset
estimates, specialized to the case A = B, then say that if A is essentially closed
under addition, then it is also essentially closed under subtraction, and more gen-
erally any expression of the form A±A±A . . .±A also has size comparable to |A|.
This means that A behaves essentially like an additive subgroup of Z (especially
if we translate A so that A contains the origin) - with one basic caveat: the more
arithmetic operations we perform on A, the larger the exponent C(n, m) can get,
and so eventually we might lose our closure properties if we insist on doing too
much arithmetic. (A basic example to keep in mind here is when Z is the integers
and A := {1, . . . , N}. This set is more or less closed under arithmetic operations
as long as you don’t take too many of them.)

The exponents C(n) and C(n, m) can be computed, and the values that were worked
out here are not the best exponents known, but we will not bother to make these
exponents explicit and sharp in these lectures.

One can swap addition and subtraction here; if A is essentially closed under sub-
traction, then it is also essentially closed under addition (one just uses B := −A
instead of B := +A in the sumset estimates. See also Exercise 7).

One should compare this situation with that of subgroups and submonoids. A
submonoid G is closed under sums of two elements: G + G ⊆ G, and hence by
iteration it is closed under sums of arbitrary elements: nG ⊆ G. If G is a finite
monoid, then it must have torsion, and thus n · G = −G for some large n, and
thus G is also closed under negation. Hence G is a subgroup and thus closed under
all arithmetic operations. The above sumset estimates can thus be viewed as a
perturbation of this basic principle: closure under one arithmetic operation (+ or
-) implies closure under the other operation, and under iterates of these operations.
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9. Covering one set by another

Compare the following two notions:

• A set G is closed under addition if G + G = G.
• A set A is essentially closed under addition if |A + A| ∼ |A|.

Up until now I have been trying to convince you that the second notion is basically
a mild generalization of the first, although it is much more robust (it is stable under
translations, finite unions of translations, and also refinements - passing from A to
a subset A′ of comparable cardinality) But the observant reader should have noted
that there seems to be a large gap between the two, because the first notion is
about equating two sets, whereas the second notion is only about comparing two
cardinalities. Saying that |A + A| and |A| have comparable cardinalities does not
necessarily mean that they have similar structure... does it?

On the other hand, we do know that if |A+A| = |A|, then A is indeed a translate of
a subgroup G, and so A = G+x for some x (see Exercise 3). So, up to translations
(which, it should be clear by now, are quite harmless), the extreme limiting case of
the second notion does indeed correspond to the first. So this helps close the gap
between the two notions, at least in the extreme limiting case when |A + A| = |A|.
However, this doesn’t help us when, say, |A + A| = |A| + 1; now the two notions
seem quite different again.

To close this gap we use yet another clever elementary lemma of Imre Ruzsa.

Lemma 9.1 (Ruzsa’s quotient lemma). [5] Let A and B be finite sets. Then there

exists a set X of cardinality |X | ≤ |A+B|
|A| such that B ⊆ X +A−A. In other words

we can cover B by at most
|A+B|
|A| translates of A − A.

Proof Consider the sets x + A, where x ranges over B. These are a collection
of sets contained in A + B, each with cardinality |A|. Let us consider a maximal
disjoint family of such sets, i.e. a collection of the form {x + A : x ∈ X} such that
the x + A are all disjoint. Such a collection can easily be obtained by the greedy

algorithm. By the disjointness, we see that there can be at most |A+B|
|A| such sets.

Now let b be any element of B. By maximality, b + A must intersect one of the
x + A, i.e. b ∈ x + A−A for some x ∈ X , i.e. b ∈ X + A−A, thus B ⊆ X + A−A
as desired.

Note how powerful this “maximal disjoint family” trick is. Note what is going
on in the case when A is a subgroup, and B is a union of cosets of A (so that
|A + B| = |B|). Then what X is doing is simply selecting a single element from
each coset inside B, and of course X will end up having cardinality |B|/|A|. Thus
this lemma is a generalization of the familiar algebraic notion of taking a quotient
by a subgroup, which of course turns each coset into a single element of the quotient
space.
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To apply this quotient lemma, suppose that A is essentially closed under addition:
|A + A| ∼ |A|. Then by sumset estimates we also have |nA − mA + A| ∼ |A|.
By the above lemma, we can thus cover nA − mA by O(1) translates of A − A.
In particular, if we set G := A − A, then G + G and G − G, and more generally
nG − mG, is contained in O(1) translates of G.

Thus: if A is essentially closed under addition, then there is a slightly larger set
G := A − A, which is “even more closed under addition” in the sense that G + G
or G − G is contained in O(1) translates of G. Note that A is itself contained in
a translate of G, and has comparable size, |A| ∼ |G|. This provides a satisfying
connection between the approximate notion of “essentially closed under addition”
and the more precise notion of “genuinely closed under addition”.

One may ask why we need this intermediate set G - why couldn’t we just use A
directly? In other words, could we say that if A is essentially closed under addition,
that A + A is contained in O(1) translates of A, etc? Looking at our first model
example - that of A = {1, . . . , N} in the integers Z = Z, this seems plausible.
However, this statement is false. Let us set A to be a random subset of {1, . . . , N}
by flipping an independent coin for each integer from 1 to N and placing that
integer in A if the coin turns up heads. This is almost surely a set of cardinality
≈ N/2. (By “almost surely” I mean that the probability of this statement being
false is exponentially small in N). The set A + A almost surely contains a large
interval, e.g. {N/2, . . . , 3N/2} (why?). However, it is difficult to cover such an
interval with only a small number of translates of A. For instance, if you were to
use two translates of A to cover {N/2, . . . , 3N/2}, you would almost surely only be
able to cover 3/4 of this interval (why?). With three translates you could cover 7/8
at most, almost surely, and so forth. Indeed, if you are good with probability you
will see that you will almost surely need ∼ log N translates to cover all of A + A.

This illustrates an important principle: even if a set A contains a lot of “holes” - in
this case, it is missing half the elements of the interval {1, . . . , N}, the set A − A
is much better behaved and will have almost no holes.

It turns out that this logarithmic loss is more or less sharp: if you do insist on
trying to cover things using A instead of A − A, you only lose that logarithmic
factor.

Theorem 9.2. Let A be a finite subset of an abelian group Z of cardinality |A| =
N > 1 which is essentially closed under addition. Then for any fixed n, m ≥ 0 there

is a set X = X(n, m) with cardinality |X | . log N such that mA − nA ⊆ X + A.

In other words, a set like A − A (or more generally mA − nA) can be covered by
O(log N) translates of A.

To illustrate the basic idea, let us first show a baby version of this theorem, which
is already somewhat interesting:

Lemma 9.3. Let G be a finite group of cardinality |G| = N , and let A be a non-

empty subset of G. Then one can cover G using at most O( N
|A| log N) translates
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of A; in other words, there exists a subset X of G with cardinality |X | . N
|A| log N

such that X + A = G.

Proof We shall use a random argument. We may assume that N ≫ 1 is large.
Let 1 ≤ r ≪ N be a number to be chosen later. We construct X by taking each
element of G and placing it in X with probability r/N , with each element being
chosen independently of all the others. Clearly |X | =

∑

x∈G χX(x) has expected
value of r, since χX(x) has expectation r/N for each x ∈ G. Furthermore, it is not
hard to see that

|X |2 =
∑

x∈G

∑

y∈G

χX(x)χX(y) = |X | +
∑

x,y∈G:x 6=y

χX(x)χX(y)

has expectation r+N(N −1) r
N

r
N ∼ r2, for similar reasons. By Markov’s inequality

we thus see that |X | = O(r) with probability at least 99%.

Now we compute the expected value of |X + A|. First we take any element g ∈ G
and ask what is the probability that g lies in X + A. This is the same as saying
that X has some intersection with g − A. But g − A has |A| elements and each
element has independently an r/N chance of lying in X . Thus the probability that
X intersects g − A is

1 − (1 − r

N
)|A|.

Summing over all g, we see that the expected value of |X +A| =
∑

g∈G χX+A(g) is

N − N(1 − r

N
)|A| ≥ N − Ne−r|A|/N ,

since e−x ≥ 1 − x for all 0 ≤ x ≤ 1 by convexity of e−x. Thus we can choose
r = O( N

|A| log N) such that |X + A| has expected value at least N − 0.01, which

means that it has to be equal to N at least 99% of the time. But then we see that
X + A = G and |X | = O(r) at least 98% of the time, and we are done (since we
only need to find at least one such X .

Another way to prove this lemma is sketched in Exercise 8. Note that this argument
also shows that if you only want X + A to fill up, say, 90% of G, rather than all
of G, then you only need O(N/|A|) translates rather than O( N

|A| log N). (Thus,

fighting for that last 10% of G takes a lot of effort! Compare with the discussion
on exceptional sets after Corollary 7.1).

Now we prove Theorem 9.2. Fix m, n, and write B := mA − nA. The idea is now
to run the same argument, but using A−A as a proxy for the group G; we already
saw earlier that in many ways A−A functions like a group. However, for technical
reasons we first need to improve Lemma 9.1 a little bit:

Lemma 9.4 (Improved quotient lemma). Let A and B be finite sets. Then there

exists a set X in Z of cardinality at most
2|A+B|

|A| such that X + A − A covers B,

and moreover for every y ∈ B there are at least |A|/2 triplets (x, a, a′) ∈ X ×A×A
such that x + a − a′ = y.
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Thus not only does X + A − A cover B; it covers B multiple times. The only loss
here compared to Ruzsa’s quotient lemma is that X could be twice as big.

Proof We perform the following algorithm. Initialize X to be the empty set, so
that X +A−A is also the empty set. We now run the following loop. If we cannot
find any element y in B which is “sufficiently disjoint from X +A−A” in the sense
that |(y + A) ∩ (X + A)| < |A|/2, we terminate the algorithm. Otherwise, if there
is such an element y, we add it to X , and then repeat the algorithm.

Every time we add an element to X , the size of |X +A| increases by at least |A|/2,
by construction. However, X + A must always lie within the set B + A. Thus this

algorithm terminates after at most 2|A+B|
|A| steps.

Now let y be any element of B. By construction, we have |(y+A)∩(X+A)| ≥ |A|/2,
and hence y has at least |A|/2 representations of the form x + a − a′ for some
(x, a, a′) ∈ X × A × A′, as desired.

We are now ready to cover B by translates of A. We apply Lemma 9.4 to create our
set X ; note that |A| = N and |B +A| = O(N) by sumset estimates, so |X | = O(1).
Let 1 ≤ r ≪ N be a number to be chosen later (we may of course assume that N
is large since the claim is trivial for N small). Let Y be a subset of X × A chosen
randomly, so that each pair (x, a′) of X×A has an independent probability of r

N |X|

of being selected. By the argument in Lemma 9.3 we see that |Y | = O(r) with
probability at least 99%. Now pick any element y ∈ B and let us ask what is the
probability that y lies in Y + A. From Lemma 9.4 we know that there are at least
N/2 pairs (x, a′) ∈ X × A′ such that y lies in x − a′ + A. Each of these pairs has
independently a r/N |X | chance of lying in Y . Thus the probability that y lies in
Y + A is at least

1 − (1 − r

N |X |)
N/2 ≥ 1 − e−r/2|X|.

Thus the expected value of |(Y + A) ∩ B is at least

|B|(1 − e−r/2|X|).

If we choose r to be a sufficiently large multiple of log N , this is greater than
|B| − 0.01, and so we have B ⊆ Y + A with probability 99%. Thus we have
B ⊆ Y + A and |Y | . log N for 98% of the choices of Y , and we are done.

We now have quite a satisfactory theory of the structure of sets A which are es-
sentially closed under addition or subtraction; we now know that they are also
closed under more complicated sums and differences, and we can cover these more
complicated sums and differences by a small number of translates of either A or
A−A, thus keeping close to our heuristic that A should basically be a translate of
a subgroup, or a large subset thereof. Even this is not the best thing we can say;
we can make this heuristic even more precise, thanks to a deep theorem known as
Freiman’s theorem, but we won’t tackle it until the next set of notes.
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10. A + B and A − B

In the previous section we saw that if A was essentially closed under addition - so
that |A + A| ∼ |A|, then it was also essentially closed under subtraction |A − A|,
and indeed we were able to say a lot more than this. Now one could ask whether
the same thing is true when one has two sets instead of one. For instance, if we
know that |A + B| ∼ |A|, does this mean that |A − B| ∼ |A|?

On the positive side, we have Q3, which implies that if |A + B| = |A|, then B is
contained in some subgroup G, and A is the union of cosets of G, and so |A−B| =
|A| as well. On the other hand, this argument also gives that |A + B + B| = |A|,
and we already know from Proposition 7.2 that A+B +B is a problem. As it turns
out, A − B is also not well behaved, and for similar reasons:

Proposition 10.1. [4] For any integer K ≥ 1, there exist finite subsets A, B of

an abelian group Z such that |A + B| ∼ |A| but |A − B| & |A|2−log 6/ log 7.

Proof One of the key ingredients of Proposition 7.2 was to use a B such that B+B
was a very different size from B. Here, the analogous trick is to use a B such that
B −B is a very different size from B + B. To do this, first observe that we clearly
cannot use a B which is symmetric, e.g. B = −B, or more generally B = x0 − B.
The simplest non-symmetric set is B := {0, 1, 3} in the group Z/7Z; for this set,
B−B = {−3,−2,−1, 0, 1, 2, 3} has cardinality 7, while B +B = {0, 1, 2, 3, 4, 6} has
cardinality 6. This difference may not look like much, but we can use the Cartesian
product trick to boost this. Let N be a large integer, and let B := {0, 1, 3}N in the
group Z := (Z/7Z)N . Then |B| = 3N , |B − B| = 7N , and |B + B| = 6N .

Thus if we were to set A = B, then A − B is significantly larger than A + B. This
however is not enough, because A + B is much larger than A.

Another option is to set A = (Z/7Z)N . Then A + B is the same size as A, but
unfortunately so is A − B.

To get a genuine counterexample we shall take a combination of the two previous
examples. Specifically, we set Z := (Z/7Z)N × Z, so that Z contains an infinite
number of copies of (Z/7Z). We let B be as before (identifying (Z/7Z)N with
(Z/7Z)N × {0}), and let A consist of one copy of (Z/7Z)N and roughly (7/6)N

copies of B. Then A has cardinality comparable to 7N + (7/6)N3N ∼ 7N , A + B
has cardinality 7N + (7/6)N6N ∼ 7N , but A−B has cardinality 7N + (7/6)N7N ∼
(49/6)N . The proof follows.

Thus essentially B-invariant sets aren’t necessary (−B)-invariant. It is possible to
make an example in the torsion-free group Z instead of the group (Z/7Z)N × Z;
the idea is to use the base 7 representation of the integers. We leave the details to
the reader (or see [4]).

In the case of A+B and A+B +B, Plünnecke’s theorem (and Corollary 7.1) allow
us to salvage a satisfactory result if we pass from A to a subset A′; we know that
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we can make A′ nearly the same size as A, though we begin to pay if we try to
make A′ too close to A. We could hope to pull off a similar trick with A + B and
A − B, but now we will lose a logarithm.

Proposition 10.2. [4] For any integer n ≥ 1, there exist finite non-empty subsets

A, B of an abelian group Z such that |A| ∼ |A + B| ∼ Cn, and |B| ∼ n, but

|A′ − B| & n|A′| for all non-empty subsets A′ of A.

Proof The trick here is to make A + B “small” (so many sums of the form a + b
collide) but A − B “large” (so many differences of the form a − b are distinct; in
fact, since |A′ −B| ∼ |A′||B|, we need a very large fraction of the differences to be
distinct). Furthermore, this largeness of A − B has to be fairly “uniform”; unlike
Proposition 10.2, we cannot get away with using a small exceptional set to generate
this largeness of A − B.

We shall work in the group Z2n. Let A be the set

A := {(x1, x2, . . . , x2n) ∈ Z2n : x1 + . . . + xn = n; x1, . . . , xn ≥ 0}.
In other words, A is the set of partitions of n consecutive objects into 2n groups.

The number of such partitions is

(

3n− 1
2n− 1

)

, because every time you choose 2n−1

objects out of an ordered sequence of 3n − 1 objects, the remaining n objects are
partitioned into 2n groups, and this map from choices to partitions is bijective.
From Stirling’s formula n! ∼ nne−nn−1/2 we thus see that |A| ∼ Cn for some C
(actually C = 27/4, if you must know).

Now let B := {e1, . . . , e2n} be the basis elements of Z2n, thus |B| = 2n. Clearly
A + B is equal to

A + B = {(x1, x2, . . . , x2n) ∈ Z2n : x1 + . . . + xn = n + 1; x1, . . . , xn ≥ 0}
and thus has cardinality

|A + B| =

(

3n
2n − 1

)

=
3n

n + 1

(

3n − 1
2n − 1

)

∼ |A|.

Now look at A−B. The problem here is that every element (x1, x2, . . . , x2n) in A
has at least n co-efficients which are zero, and thus generates n elements in A − B
for which exactly one of the coefficients is equal to −1. Conversely, given such an
element of A − B one can reconstruct the elements of A and B which generated
it; i.e. these elements of A − B are all distinct. Thus |A − B| ≥ n|A|, and more
generally |A′ − B| ≥ n|A′| for every subset A′ of A.

The factor n is pretty small compared to A, it is comparable to log |A|. We now
show that this logarithmic loss is about as bad as it can get:

Proposition 10.3. Let A, B be finite non-empty subsets of an abelian group Z
such that |A| ∼ |A + B|. Then for any ε > 0 we can find some subset A′ of A such

that |A′| ∼ |A| and |A′ − B| ≤ Cε|A|1+ε.

Proof We let N be a large number to be chosen later. By the Iterated Plünnecke
theorem we can find a subset A′ of A such that |A′ + 2NB| ≤ C(N)|A′|; by using
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either the statement or proof of Corollary 7.1 one can also make |A′| ∼ |A|. Now
consider the sequence of numbers

1, |B|, |2B|, |4B|, . . . , |2NB|.
These are an increasing sequence of numbers bounded above by C(N)|A|, so by the
pigeonhole principle there exists 0 ≤ j < N such that

|2j+1B| ≤ C(N)|A|1/N |2jB|.
Now let B∗ := 2jB, thus

|B∗ + B∗| ≤ C(N)|A|1/N |B∗|.
By Lemma 3.1 we have

|A′ − B∗| ≤
|A′ + B∗||B∗ + B∗|

|B∗|
≤ C(N)|A|1/N |A′ + B ∗ | ≤ C(N)|A|1/N |A|

as desired, if N is chosen large enough.

This exploiting of the pigeonhole principle in a long monotone sequence is a useful
trick: the point is that a long monotone sequence must be close to constant at some
point along the sequence.

This above discussion concludes the limit of what we will say about the cardinality

of sets such as A, A+B, A+A, A−B, etc. In the next set of notes we will analyze
the structure of these sets also.

11. Exercises

• Q1. Let m ≥ 1, n ≥ 1, and m + n − 1 ≤ s ≤ mn. Show that there
exists sets A, B of integers such that |A| = m, |B| = n, and |A + B| = s.
(Thus there are no further relationships on |A|, |B|, |A+B| beyond the bounds
|A| + |B| − 1 ≤ |A + B| ≤ |A||B| already proven.)

• Q2. Let A, B be non-empty finite sets of integers with |A|, |B| ≥ 2. Show
that |A+B| = |A|+ |B|−1 if and only if A and B are arithmetic progressions
with exactly the same spacing.

• Q3. Let A, B be non-empty finite subsets of an abelian group Z. Show that
|A + B| = |A| if and only if A is the union of cosets of some finite subgroup
G of Z, and B is contained in a translate of the same subgroup G. (As a
corollary, note that |A+ A| = |A| if and only if A is a translate of a subgroup
G).

• Q4*. Let A, B be non-empty finite subsets of the field Z/pZ, and suppose that
|A + B| = |A| + |B| − 1 < p. Show that A and B are arithmetic progressions
with exactly the same spacing. (Hint: Use the Dyson e-transform proof,
and induct on the size of A. The key is to show that if A′ and B′ are
progressions with the same spacing, and A′ + B′ = A + B, then A and B
are also progressions with the same spacing. You may find it convenient to
use translations and isomorphisms to transform arithmetic progressions to an
interval {1, 2, . . . , m}. Note that if the interval is small enough, then one can
perform a Freiman isomorphism to transform Z/pZ back to Z.)
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• Q5. Suppose that A is a finite collection of women, and B is a finite collection
of men, such that some of the women are compatible with some of the men
(i.e. there is a graph G from A to B describing the compatibility). For every
set A′ ⊆ A of women, let G(A′) denote the set of men who are compatible
with at least one woman in A′. Show that it is possible for each woman in A
to marry a separate man with whom she is compatible, if and only if one has
|G(A′)| ≥ |A′| for all |A′| ⊆ A. (This is known as Hall’s marriage theorem,
and can be deduced from Menger’s theorem. One could say that this theorem
lists all the possible (graph-theoretical) obstructions to marriage.)

• Q6**. Extend Plünnecke’s theorem to higher sums. More precisely, show
that if A, B are finite non-empty subsets of an abelian group Z such that
|A + B| ≤ C|A|, and n ≥ 1, then there is a non-empty subset A′ of A such
that |A′ +nB| ≤ Cn|A′|. (Note that iterating Plünnecke’s theorem only gives
this for n which are powers of two. For general n, the main trick is to start
with a separating set of the obvious graph on V0 ∪ . . . ∪ Vn, and move all the
intermediate separating points down to V0.)

• Q7. Suppose that A, B are finite sets such that |A + B| ∼ |A| ∼ |B|. Show
that A, B, and A ∪ B are all essentially closed under addition (Hint: Use
the iterated Plünnecke theorem). Conclude that any expression of sums and
differences of A and B, e.g. A+A−A+B−B−B, has cardinality comparable
to |A|.

• Q8. Let A and B be any two non-empty subsets of a finite abelian group G.
Use the pigeonhole principle to show that there exists a translate B + x of B

in G such that |A ∩ (B + x)| ≥ |A||B|
|G| , and hence that

|G| − |A ∪ (B + x)|
|G| ≤ |G| − |A|

|G|
|G| − |B|

|G| .

Iterate this fact to give a different proof of Lemma 9.3.
• Q9. Show that for any n ≥ 1, there exists an abelian group Z and a finite set

U such that |U | = 4n, |U + U | = 10n, and |U + U −U | = 28n. (Hint: first do
the case n = 1). Conclude that one cannot hope to replace the left-hand side
of Lemma 3.1 by |U + V − W |, even if we are prepared to lose a constant or
a logarithm in the estimate.

• Q10. Let A, A′, B be finite non-empty subsets of an abelian group Z such
that B is essentially closed under addition. The purpose of this question is to
show that B behaves much like a subgroup of Z for purposes of quotienting
out by B.

• (a) Show that |A + B| ∼ |A| if and only if A is contained in O(|A|/|B|)
translates of B.

• (b) Show that if |A + B| ∼ |A|, then |A + mB − nB| ∼ |A| for all m, n (with
the constants depending on m and n, of course.

• (c) Show that |A + A′ + B| .
|A+B||A′+B|

|B| (compare this with Lemma 3.1).

• Q11. Let 0 < δ < 1. Show that there exists finite non-empty subsets A,B of
an abelian group Z such that |A + B| ∼ |A| such that for every subset A′ of
A for which |A′| ≥ (1 − δ)|A|, we have |A′ + B + B| & |A|/δ. (Hint: adapt
the proof of Proposition 7.2). Thus one cannot get rid of the 1/δ factor in
Corollary 7.1.
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1. The structure of sets essentially closed under addition

Let Z be an abelian group, and let A be a non-empty finite subset of Z which is
essentially closed under addition in the sense that |A + A| ∼ |A|. In the previous
week’s notes, we were able to deduce quite a bit of information about A. For
instance, from sumset estimates we know that any additive combination A ± A ±
A . . . ± A of A also has cardinality comparable to A. In fact by combining this
with Rusza’s quotient lemma we have a stronger statement, that any such additive
combination is contained in the union of O(1) translates of A − A. In particular
the set G := A − A is very close to being a subgroup of Z, in the sense that
G + G ⊆ X + G for some small set X . Throughout these notes we call a set X
small if we have |X | = O(1).

Let us make some notation. We say that a set A′ is a refinement of another set A
if A′ ⊆ A and |A′| ∼ |A|. We say that a set A′ is a small convolution of another set
A if A′ = X +A for some small set A. We say that A′ is a refined small convolution

of A if it is the refinement of a small convolution of A. Thus the set G = A − A
mentioned above is a refined small convolution of itself. Observe that the relation
of being a refined small convolution is transitive (but not quite symmetric, recall
that to cover a set by its refinement could require a logarithmic number of covers).

This is already a fairly satisfactory state of affairs. For comparison with the exactly
closed under addition case, if we know that |A + A| = |A| then we know that A is
a translate A = x + G of some subgroup G of Z, so in particular G = A − A and
G + G = G.

However, we can still ask for more. We know a lot about the structure of finite
abelian groups G; they are the direct product of a finite number of cyclic groups
(we won’t prove this fact here, but it is standard in any graduate algebra course).
This is a very explicit description of these sets. We could ask for a similarly explicit
description of sets essentially closed under addition.

To get an idea of what one could hope for, note first that if A is essentially closed
under addition, and A′ is a refinement, then A′ is also essentially closed under
addition, since

|A′| ≤ |A′ + A′| ≤ |A + A| ∼ |A| ∼ |A′|.
Also, if A is essentially closed under addition, and A′ is a small convolution of A,
i.e. A′ = X + A for some small set X , then A′ is also essentially closed under

1
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addition, since

|A′| ≤ |A′ + A′| = |X + X + A + A| ≤ |X + X ||A + A| . |A| ≤ |A′|.
Thus any characterization of sets essentially closed under addition must be stable
under both refinement and small convolutions, and hence under refined small con-
volutions. It must also be stable under Cartesian products and bijective Freiman
homomorphisms of order at least 2; to remind you of the terminology, let us recall

Definition 1.1. Let k ≥ 2, let A ⊂ Z be the subset of one abelian group, and let
B ⊂ Z ′ be the subset of another abelian group.

A Freiman homomorphism of order k φ : A → B is a map such that for any
x1, . . . , xk, y1, . . . , yk ∈ A, we have

φ(x1) + . . . + φ(xk) = φ(y1) + . . . + φ(yk)

whenever
x1 + . . . + xk = y1 + . . . + yk.

If moreover φ is bijective and the inverse is also a Freiman homomorphism of order
k, we say that φ is a Freiman isomorphism of order k.

Thus, for instance, bijective Freiman homomorphisms of order at least 2 preserve
the size of A and cannot increase the size of A + A. Note that bijective Freiman
homomorphisms are not necessarily Freiman isomorphisms, which would in fact
preserve the size of A + A.

In light of these invariances, the best structure theorem one can hope for is some-
thing of the form

Conjecture 1.2. Let A be essentially closed under addition. Then A is a refined

small convolution of a set P , where P is some explicit set which is very similar to a

product of finite cyclic groups, which is manifestly essentially closed under addition,

and is also stable under Cartesian products and bijective Freiman homomorphisms

of order at least 2.

It turns out that this conjecture is more or less true, for very satisfactory classes
of objects P . When the ambient group Z is torsion free or has very large torsion,
one can take P to be something called a generalized arithmetic progression and
the result is known as Freiman’s theorem. When the ambient group Z has small
torsion, then one can take P to be a genuine subgroup of Z and the result is due to
Rusza (and is in fact quite short, given all the machinery we’ve already developed).
There are intermediate cases where Z has intermediate or mixed torsion where one
can state some theorems of a similar flavor, but we won’t do so here.

2. The bounded torsion case

We begin with the case where Z has bounded torsion, i.e. there is some small
positive integer r = O(1) such that rx = 0 for all x ∈ Z. For instance, Z could be
the direct sum of a large number of copies of Z/rZ. In this case we have
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Theorem 2.1. [?] Let Z have bounded torsion, and let A ⊆ Z be essentially closed

under addition. Then A is a refinement of a subgroup G of Z.

Clearly the converse is true: subgroups are essentially closed under addition, and
hence so are refinements. One may wonder what happed to the small convolutions,
but in the bounded torsion case a small convolution X + G of a subgroup G is
a refinement of the slightly larger subgroup 〈X〉 + G, where 〈X〉 is the subgroup
generated by X (and clearly has cardinality at most r|X| = O(1). Clearly the
subgroup property is stable under Cartesian products; it takes a little more effort
to see that a Freiman homomorphic image of order 2 of a subgroup is a translated
subgroup (Exercise 1), which is thus a refinement of a slightly larger subgroup.

Proof Without loss of generality we may assume that 0 ∈ A (since we can just
add it in if it isn’t already there). Then A is a refinement of A−A, and so it suffices
to show that the set G0 := A − A is a refinement of some subgroup. If we let 〈G0〉
be the group generated by G0, it thus suffices to show that |〈G0〉| . |G0|.

As mentioned in the previous section, we already know that

G0 + G0 ⊆ X + G0

for some small set X . Iterating this we see that

G0 + G0 + G0 ⊆ X + X + G0

G0 + G0 + G0 + G0 ⊆ X + X + X + G0

etc. Doing this r times and taking unions, we thus obtain

〈G0〉 ⊂ 〈X〉 + G0,

and hence

|〈G0〉| ≤ |〈X〉||G0| ≤ r|X||G0| . |G0|
as desired.

Doing this argument a little more carefully and explicitly one can get a more precise
statement: if |A+A| ≤ K|A| and Z has torsion r, then A is contained in a subgroup

G of cardinality at most K2rK4 |A|. Thus this theorem is only effective when r and
K are fairly small, otherwise the passage from X to 〈X〉, in particular, is rather
lossy.

3. The torsion-free case

We now turn to the torsion-free case (when nx 6= 0 for all x ∈ Z\{0} and
n = 1, 2, 3, . . . ), which is substantially more difficult. As far as I know, nobody
has managed to adapt the simple argument in the previous section to this case (of
course, one would have to replace “subgroup” by another notion, e.g. “generalized
arithmetic progression”, since in the torsion-free case all non-trivial subgroups are
infinite). It is still possible to proceed, but we must now supplement our combina-
torial techniques with a powerful new weapon - the Fourier transform.
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Before we do so, though, let us try to figure out what “subgroup” should be replaced
with in the torsion-free case. To put it another way, what explicit finite sets P are
there which are manifestly essentially closed under addition?

A simple example is the interval [0, N ] := {n ∈ Z : 0 ≤ n ≤ N} in the torsion-free
group Z. Since |[0, N ]| = N + 1 and [0, N ] + [0, N ] = [0, 2N ], we see that [0, N ]
is essentially closed under addition. More generally, (and keeping in mind that
our sets P should be stable under Cartesian products), if we have any multi-index
N := (N1, . . . , Nd), we can define the box

[0, N ] := {(n1, . . . , nd) ∈ Zd : 0 ≤ ni ≤ Ni for i = 1, . . . , d}.
Since |[0, N ]| =

∏d
i=1(Ni + 1) and [0, N ] + [0, N ] = [0, 2N ], we see that

|[0, N ] + [0, N ]| ≤ 2d|[0, N ]|
and so [0, N ] is essentially closed under addition if d is bounded. We call d the

dimension or rank of the box [0, N ], and call the number |[0, N ]| =
∏d

i=1(Ni + 1)
the volume of the box.

We also need to be stable under bijective Freiman homomorphisms of order 2. To
this end, we make the following definitions. If φ : Zd → Z is an affine homomor-
phism (i.e. the translation of a genuine homomorphism) and [0, N ] is a box of
dimension d, we call φ([0, N ]) an generalized arithmetic progression of dimension
d, length N and volume |[0, N ]|. If φ is in fact injective on [0, N ], then we call
this generalized arithmetic progression proper. It is easy to see that a generalized
arithmetic progression takes the form

P := {a +

d
∑

i=1

nivi : 0 ≤ ni ≤ Ni for i = 1, . . . , d} = {a + n · v : n ∈ [0, N ]}

for some fixed group elements a, v1, . . . , vd ∈ Z, where v := (v1, . . . , vd) ∈ Zd, and
the dot product n · v is defined in the obvious manner. Also, it is clear that this

progression is proper if all the sums a +
∑d

i=1 nivi. When d = 1 this is clearly just
the familiar notion of arithmetic progression. We call a = φ(0) the base point of
the progression P , and we call v1, . . . , vd the basis vectors of P .

If φ is injective on [0, N ], then it is definitely a bijective Freiman homomorphism of
order 2 from [0, N ] to φ([0, N ]), and hence all proper generalized arithmetic progres-
sions are essentially closed under addition if the dimension is bounded. (Conversely,
these are the only images of [0, N ] under bijective Freiman homomorphisms; see
Exercise 2). It is not as obvious, but in fact even the improper generalized arith-
metic progressions are essentially closed under addition; we will see this in the next
section.

We can now state Freiman’s theorem, which asserts that up to refined small con-
volution, proper generalized arithmetic progressions are the only sets essentially
closed under addition.

Theorem 3.1 (Freiman’s theorem). [2] Let Z be a torsion-free abelian group, and

let A ⊆ Z be essentially closed under addition. Then A is a refined small convolu-

tion of a proper generalized arithmetic progression P of bounded rank.
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It turns out we can drop the “small convolution” bit of this theorem; more on this
later.

We now sketch how this theorem is proven. Firstly, we observe using Rusza’s
quotient lemma that it suffices to show that some arithmetic combination of A,
such as 2A − 2A, can be refined to a proper generalized arithmetic progression.
Next, we use some Freiman isomorphisms to set Z to be a cyclic group, of order
not much larger than |A|. The task is now to find a large arithmetic progression
in 2A − 2A. It is here that the Fourier transform comes in handy; 2A − 2A is the
Fourier support of the non-negative function |χ̂A|4. The fact that A is essentially
closed under addition and that A is a large subset of Z will mean that |χ̂A|4 is
concentrated on a small set, which will imply that 2A− 2A contains the “dual” of
that set. This dual is something known as a Bohr neighbourhood. The last step
is to show that Bohr neighbourhoods contain large proper generalized arithmetic
progressions.

4. Reduction to finding a large arithmetic progression inside 2A− 2A

Let A be essentially closed under addition. Our task is to place A inside (a small
convolution) of a proper generalized arithmetic progression P of comparable size.
Clearly we may assume that A is large, since the task is trivial if A = O(1).

It may seem strange, but up to small convolutions, the task of placing A inside
P is almost the same as placing P inside A, or in some enlargement of A such
as 2A − 2A. This is analogous to the statement in group theory that if a group
contains a group H of small index. then G is contained in a small extension of H .
To extend this to our situation of sets essentially closed under addition, we recall (a
consequence of) Rusza’s quotient lemma from last week’s notes, which we rephrase
here in our new language:

Lemma 4.1 (Rusza’s quotient lemma). If |A+B| ∼ |A| ∼ |B|, then A is a refined

small convolution of B − B.

Thus if we can find a proper generalized arithmetic progression P of bounded rank
such that |A + P | ∼ |A| ∼ |P |, Rusza’s quotient lemma will then give that A is a
refined small convolution of P −P . Since P is a generalized arithmetic progression
of bounded rank, P − P is a refined small convolution of P , and the claim then
follows. (To see what is going on here, pretend that the progression P is actually
a subgroup. Then the condition |A + P | ∼ |P | asserts that the quotient set A/P is
small, and thus that A is contained in a small convolution of P ).

So, we need to find a large proper progression P which is essentially A-invariant.
But from sumset estimates we already know that all additive combinations of A,
such as 2A − 2A, are already essentially A-invariant. Thus if we can find a proper
generalized arithmetic progression P which refines 2A−2A and is of bounded rank,
then we are done.
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It remains to show that 2A − 2A contains a large subset (of cardinality ∼ |A|)
which is also a proper generalized arithmetic progression of bounded rank. To do
this we first use Freiman homomorphisms to restrict A to an abelian group Z of
comparable cardinality.

5. Restricting A to a cyclic group

Right now A is a subset of an arbitrary torsion-free abelian group Z. This group,
being infinite is far too large to do any accurate Fourier analysis on, given how
finite A is. (The uncertainty principle tells us that Fourier analysis is more useful
when applied to large objects rather than small ones). On the other hand, we don’t
really use all of Z - in fact, we are only looking for progressions inside 2A − 2A.
This set is reasonably small (it has size ∼ |A|) and behaves sort of like a group, so
it seems reasonable that we can somehow quotient out the rest of Z and just work
in a group of order comparable to A. This we can do, thanks to the technology of
Freiman homomorphisms.

We will need Freiman isomorphisms of order 8 on A. These will induce Freiman
isomorphisms of order 2 on 2A−2A, which is enough to preserve proper generalized
arithmetic progressions (Exercise 2).

First note that since Z is torsion free, A can be mapped onto the integers via a
Freiman isomorphism of order 8 (Lemma 2 of last week’s notes). So we can assume
that Z is the integers Z. This is better than Z being arbitrary, however the infinite
nature of Z will still cause problems (because we will soon want to talk about a
“random dilation” of A, and this only makes sense for finite groups). So now we
truncate the integers to be finite.

By translating A we may assume that A lives on the positive integers, and in
particular lies inside the interval [1, p/8] for some very large prime p ≫ |A|. Since
[1, p/8] can be mapped via a Freiman isomorphism of order 8 into the field Z/pZ,
we can thus assume now that A lives inside the field Z/pZ. (This is no longer
torsion free, but we will not need the torsion-free assumption any more).

We have now localized A to live in a finite group, but this is not particularly useful
right now because p could be so much larger than |A| that A only will occupy a tiny
fraction of Z/pZ, which suggests via the uncertainty principle that Fourier analysis
at this stage would not be helpful. To fix this we will perform a random projection
of A onto a much smaller group Z/NZ, for some N which is comparable in size to
A (we will choose N later).

But first, we use a random dilation trick, to give us some freedom to avoid some
obstacles later on. Let λ be a randomly chosen invertible element of the field Z/pZ;
this induces an additive isomorphism x → λx on Z/pZ. In particular, we observe
that the set λA is Freiman isomorphic to A of order 8 (in fact, of any order). So
we have the freedom to randomly dilate A. (Of course, A would then no longer live
in [0, p/8], but we soon use a pigeonholing trick to compensate for this fact).
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Now let N ≪ p be chosen later, and define the projection π : Z/pZ → Z/NZ by
setting

π(n) := (n mod N) for all N = 0, 1, 2, . . . , p − 1.

This is not quite an additive homomorphism, however note that for j = 0, 1, . . . , 7, π
is a Freiman homomorphism of order 8 when restricted to the set Zj := (jp/8, (j +
1)p/8], which is a set which occupies roughly 1

8 of the original field Z/pZ. By
the pigeonhole principle, for each λ there exists a 0 ≤ j < 8 such that the set
A′ := λA ∩ Zj refines λA. Thus if we set B := π(A′) ⊆ Z/NZ, then the map
π : A′ → B is a surjective Freiman homomorphism of order 8.

This is beginning to look pretty good, but there is a problem: this map might
not be injective (so that there might be collisions π(x) = φ(x′) for two distinct
x, x′ ∈ A′). More generally, there may be collisions in 8A′, so that

π(x1) + . . . + π(x8) = π(x′
1) + . . . + π(x′

8)

while x1+. . .+x8 6= x′
1+. . .+x′

8, where all sixteen elements are in A′; this is the only
obstruction to π being a Freiman isomorphism of order 8. Fortunately, this type of
collision rarely occurs, if N is large enough and λ is chosen randomly. Indeed, if we
do have the above collision, then the integer (x1 + . . . + x8)− (x′

1 + . . . + x′
8) must

be a non-zero multiple of N . Thus we will have no collisions if the set 8A′ − 8A′ ⊆
λ(8A − 8A) contains no multiples of N , where we think of elements of Z/pZ as
being integers from 0 to p − 1. However, for each non-zero element y in 8A − 8A,
the probability that the randomly dilated element λy will be a multiple of N is
O(1/N), since p is prime. Thus, if we choose N ≫ |8A − 8A|, there will be a
non-zero probability that there are no collisions. Since |8A − 8A| ∼ |A|, we can do
this by choosing N to be a sufficiently large but bounded multiple of |A|.

To summarize, if we choose N large but still comparable to A we can find a refine-
ment A′ of λA which is Freiman-isomorphic of order 8 to a subset B of Z/NZ. If
we can show that 2B − 2B contains a proper bounded-rank generalized arithmetic
progression of size comparable to |B|, this implies (by pulling back the Freiman iso-
morphisms) that 2A′−2A′, and hence 2A−2A, similarly contain a proper bounded-
rank generalized arithmetic progression of size comparable to |B| = |A′| ∼ |A|, and
we will be done.

Thus to conclude the proof of Freiman’s theorem, we have to prove

Proposition 5.1. Let N be a large integer, and let A be a subset of Z/NZ with

cardinality |A| ∼ N and such that |A+A| ∼ |A|. (The latter condition is superfluous

from the former, but there is a reason why we still keep it around, which we will

get to later). Then 2A− 2A contains a proper bounded-rank generalized arithmetic

progression P of cardinality |P | ∼ N .

Now we have achieved the goal of making A a large subset of the group, which
allows for Fourier analysis to enter the picture. This we will do in the next section.

(A remark: The observant reader may ask why we aren’t done already proving
Freiman’s theorem, because Z/NZ is certainly a proper arithmetic progression,
and by our assumptions it isn’t much larger than A itself. The problem is that the
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projection π is not an isomorphism on all of Z/NZ; at best it is an isomorphism on
smaller sets such as 8A or 2A−2A, and you can’t pull the progression Z/NZ to get
any sort of meaningful progression in the original group. So Freiman isomorphisms
are somewhat subtle maps - once you stray too far from the original set A (where
“too far” depends on the order of the isomorphism), the mapping properties become
terrible.)

Note, by the way, that since the magnitude of N is determined up to a constant,
one can easily arrange matters so that N is prime (e.g. by using the prime number
theorem; much more elementary proofs are available that there is a prime between
N and CN for large enough N and some large absolute constant C).

6. Fourier analysis on finite abelian groups

Let Z be an additive finite abelian group. Then there exists a map e : Z ×Z → S1,
where S1 := {z ∈ C : |z| = 1} is the unit circle, which is multiplicative in the sense
that

e(x + x′, ξ) = e(x, ξ)e(x′, ξ); e(x, ξ + ξ′) = e(x, ξ)e(x, ξ′) for all x, x′, ξ, ξ′ ∈ Z

and which is non-degenerate in the sense that for every non-zero x there exists
a ξ such that e(x, ξ) 6= 1, and similarly for every non-zero ξ there exists a x
such that e(x, ξ) 6= 1. We call e a bi-character of Z. Note in particular that

e(0, ξ) = e(x, 0) = 1, and e(x,−ξ) = e(−x, ξ) = e(x, ξ) for all x, ξ ∈ Z. We usually
refer to x as the position variable and ξ as the frequency variable.

The existence of such a bi-character is easiest to see in the cyclic case Z = Z/NZ,
in which case one can just take

e(x, ξ) := exp(2πixξ/N).

Also, if Z is the direct sum Z = Z1 × Z2 of two smaller abelian groups, with
bi-characters e1 and e2 respectively, then the tensor product

e1 ⊗ e2((x1, x2), (ξ1, ξ2)) := e1(x1, ξ1)e2(x2, ξ2)

is a bi-character on Z. Since every finite abelian group is the direct sum of cyclic
groups, we thus see that every abelian group has at least one such bi-character.
(There are actually many bi-characters, basically because Z contains lots of auto-
morphisms, but it never makes much of a difference in Fourier analysis which one
you pick. One can make things more canonical by letting ξ range not in Z, but
rather in the dual group Z∗, which consists of the characters on Z., in which case
e(x, ξ) is just the tautological map of ξ applied to x.)

Once one selects and fixes a bi-character e, one can then do Fourier analysis. Let
dx denote normalized counting measure on Z, thus

∫

Z

f(x) dx :=
1

|Z|
∑

x∈Z

f(x),
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and let dξ denote discrete measure on Z, thus
∫

Z

g(ξ) dξ :=
∑

ξ∈Z

g(ξ).

The functions e(·, ξ) then form an orthonormal basis of L2(Z, dx) (Exercise 3).

Because of this, if we define define the Fourier transform f̂(ξ) of a complex-valued
function f(x) on Z by the formula

f̂(ξ) := 〈f, e(·, ξ)〉L2(Z,dx) :=

∫

Z

f(x)e(x, ξ) dx

then we have the Fourier inversion formula

f(x) =

∫

Z

f̂(ξ)e(x, ξ) dξ =
∑

ξ∈Z

f̂(ξ)e(x, ξ)

(Exercise 3). Furthermore, we have the Parseval relation

〈f, g〉L2(Z,dx) = 〈f̂ , ĝ〉L2(Z,dξ)

and hence the Plancherel formula

‖f‖L2(Z,dx) = ‖f̂‖L2(Z,dξ)

(Exercise 3). Furthermore, if we define convolution

f ∗ g(x) :=

∫

Z

f(y)g(x − y) dy

then we have
f̂ ∗ g(ξ) = f̂(ξ)ĝ(ξ)

(Exercise 3), and if we define reflection f̃ by

f̃(x) := f(−x)

then we have
ˆ̃
f(ξ) = f̂(ξ)

(Exercise 3).

We now apply these Fourier identities to the characteristic function f(x) = χA(x)
of some subset A ⊆ Z of cardinality |A| = c|Z| for some 0 < c ≤ 1; we shall think
of c as being reasonably close to 1. Then from Plancherel we have

∑

ξ∈Z

|χ̂A(ξ)|2 =

∫

Z

|χA(x)| dx = c (1)

while from the triangle inequality we have the crude pointwise estimate

|f̂(ξ)| ≤
∫

Z

|χA(x)| dx ≤ c. (2)

Together, these bounds imply that the number of “large” Fourier coefficients is
rather small: for any 0 < ε ≤ 1, we have

|{ξ ∈ Z : |χ̂A(ξ)| ≥ εc}| ≤ ε−2c−1. (3)

This is a basic consequence of orthogonality; the only way that |χ̂A(ξ)| = |〈χA, e(·, ξ)〉|
can come close to the theoretical maximum of c is if χA is close to parallel to the
character e(·, ξ), but because the characters are all orthogonal, it is difficult for χA
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to be close to parallel to too many of these characters at once. Later on we will
obtain a more refined estimate for these “resonant frequencies” ξ where the Fourier
transform is large.

Now suppose that A is essentially closed under addition, so that |A + A| ≤ K|A|
for some K = O(1). Then χA ∗ χA is supported on A + A which has normalized
measure at most cK. On the other hand, we have

‖χA ∗ χA‖L1(Z,dx) = ‖χA‖L1(Z,dx)‖χA‖L1(Z,dx) = c2,

and hence by Hölder’s inequality (or Cauchy-Schwarz)

‖χA ∗ χA‖L2(Z,dx) ≥ c3/2K−1/2.

By Plancherel this implies that
∑

ξ∈Z

|χ̂A(ξ)|4 ≥ c3K−1. (4)

In contrast, notice from (1), (2) that
∑

ξ∈Z

|χ̂A(ξ)|4 ≤ c2
∑

ξ∈Z

|χ̂A(ξ)|2 = c3 (5)

so we have a very precise control on the l4 norm of χ̂A here, especially if K is small.
In fact, we can even get a concentration estimate on χ̂A. A slight modification of
(5) gives

∑

ξ∈Z:|χ̂A(ξ)|≤εc

|χ̂A(ξ)|4 ≤ ε2c2
∑

ξ∈Z

|χ̂A(ξ)|2 = ε2c3,

so if we choose ε := 1
2
√

K
, then by (4) we have

∑

ξ∈Λ

|χ̂A(ξ)|4 ≥ 3

4

∑

ξ∈Z

|χ̂A(ξ)|4 (6)

where Λ is the set of resonant frequencies

Λ := {ξ ∈ Z : |χ̂A(ξ)| ≥ c

2
√

K
}.

On the other hand, from (3) we have

|Λ| ≤ 4Kc−1. (7)

Thus, if A is essentially closed under addition, a small set Λ of frequencies will

dominate the L4 norm of χ̂A. (This should be contrasted with the case when A is
exactly closed under addition: see Exercise 4).

To access this structural information about |χ̂A(ξ)|4, we introduce the function f(x)
defined by

f := χA ∗ χA ∗ χ̃A ∗ χ̃A.

Observe from our Fourier identities that f is supported on 2A−2A and has Fourier
transform

f̂(ξ) = |χ̂A(ξ)|4.
In particular, f has non-negative Fourier transform which is in some sense highly
concentrated in Λ. Remember that we wanted to show that 2A − 2A contained a
large arithmetic progression; it thus suffices to show that the support of f contains



LECTURE NOTES 2 11

a large proper arithmetic progression. By the Fourier inversion formula, it thus
suffices to find a large proper bounded-rank generalized arithmetic progression P
for which the Fourier series

f(x) =
∑

ξ∈Z

|χ̂A(ξ)|4e(x, ξ) (8)

is non-zero for all x ∈ P .

Now we use the fact that |χ̂A|4 is concentrated in Λ; by the uncertainty principle,
this should mean that f should be concentrated on some sort of dual set of Λ. To
make this precise, let X ⊆ Z denote the set

X := {x ∈ Z : |e(x, ξ) − 1| < 1/4 for all x ∈ Λ}; (9)

this is an example of a Bohr set and we will have more to say about this set later.
Then it is clear that

Re
∑

ξ∈Λ

|χ̂A(ξ)|4e(x, ξ) ≥ 3

4

∑

ξ∈Z

|χ̂A(ξ)|4,

so in particular

|
∑

ξ∈Λ

|χ̂A(ξ)|4e(x, ξ)| ≥ 3

4

∑

ξ∈Z

|χ̂A(ξ)|4.

On the other hand, from (6) and the triangle inequality we have

|
∑

ξ∈Z\Λ

|χ̂A(ξ)|4e(x, ξ)| ≤ 1

3

∑

ξ∈Λ

|χ̂A(ξ)|4.

Adding this together, we see thus see that the expression (8) is non-zero for all
x ∈ X . In other words, the Bohr set X is contained in 2A− 2A. (It is not yet clear
how useful this is, because we haven’t shown any lower bounds on the size of X ,
but we will come to this shortly).

Let us now apply the above discussion to the situation inherited from the previous
section, in which we have a refinement A of ZN such that |A + A| ∼ |A|; thus both
c and K are comparable to one, and so by (7) Λ is a small set. We have shown that
2A−2A contains a Bohr set X , which is sort of a dual to Λ. Thus all we need to do
is show that the Bohr set contains a proper bounded-rank generalized arithmetic
progression P of size comparable to N , and we will have proven Freiman’s theorem.
This is the purpose of the next section.

7. Some lattice theory

Let us remind ourselves of the current situation. We have a large integer N , and a
small set Λ in Z/NZ, so that |Λ| = O(1). We wish to show that the Bohr set (9)
contains a proper bounded-rank generalized arithmetic progression of volume ∼ N .

We haven’t fixed the bicharacter e yet; let us use the standard one e(x, ξ) :=
exp(2πixξ/N). Then our Bohr set takes the form

X = {x ∈ Z : ‖xξ

N
‖ < δN for all x ∈ Λ}
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for some small absolute constant δ (corresponding to the 1/4 factor in (9); one
can shrink X a bit and take δ to be 1/20 for concreteness). Here ‖x‖ denotes the
distance from the real number x to the nearest integer.

In contrast, note that the set

{x ∈ R : ‖xξ

N
‖ = 0}

is an infinite arithmetic progression for each x ∈ Λ. So X is in some sense the
intersection of |Λ| = O(1) many neighbourhoods of arithmetic progressions, and we
have to somehow show that X thus itself contains a large generalized arithmetic
progression of bounded rank. To do this we use some lattice theory.

First note that we can erase 0 from Λ since it contributes nothing to the Bohr set.
Let us now enumerate Λ as Λ = {ξ1, . . . , ξk} for some k = O(1). We work on the

torus T k := Rk/Zk, and isolate the vector

w := (
ξ1

N
, . . . ,

ξk

N
) + Zk

in this torus. Since Nw = 0, the expression xw ∈ T k makes sense for every
x ∈ Z/NZ. Observe that the set

X ′ := {x ∈ Z/NZ : xw ∈ B(0, δ)},
where B(0, δ) is the ball of radius δ around the origin in the torus T k, is contained in
the Bohr set X . Thus it will suffice to show that X ′ contains a proper bounded-rank
generalized arithmetic progression P of cardinality ∼ N .

As a warm up let us first show the much weaker statement that |X ′| ∼ N (so that we
at least have enough elements to support such a large arithmetic progression). We
can cover the torus T k by about O((C/δ)k) balls of radius δ/2. By the pigeonhole
principle, one of these balls, say B(x0, δ/2), contains at least & (δ/C)kN multiples
of w. Subtracting, this means that B(x0, δ/2) − B(x0, δ/2) = B(0, δ) contains
& (δ/C)kN multiples of w. Since δ is an absolute constant and k = O(1), we see
that |X ′| & N and we are done.

We still have to construct P . The idea is to use basis vectors vi ∈ Z/NZ such that
viw is very close to the origin; this will allow us to use many multiples of vi in our
progression and still have the property that xw ∈ B(0, δ) for all x ∈ P . Of course
we need the progression to be proper, which we will achieve by ensuring that the
viw are “linearly independent”.

We turn to the details. We will work locally in the ball B(0, δ), and observe that

the torus Tk is indistinguishable from Euclidean space Rk in this region. This
allows us to use tools from linear algebra.

We use the greedy algorithm. Let X ′w := {xw : x ∈ X ′}; these are the multiples
of w which lie in B(0, δ), and we have already seen that this set is quite large,
|X ′w| = |X ′| ∼ N . Let v1w be the non-zero element of X ′w which is closest to
the origin (if there is a tie, choose arbitrarily). Let v2w be the non-zero element of
X ′w which is linearly independent from v1w and is closest to the origin. Let v3w
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be the non-zero element of X ′w which is linearly independent from v1w and v2w
and which is closest to the origin. We continue in this manner until we can go no
further; we thus obtain linearly independent vectors v1w, . . . , vk′w in X ′w for some
1 ≤ k′ ≤ k which span X ′w. For j = 1, . . . , k let rj = |vjw| denote the distance
from vjw to the origin, thus 0 ≤ r1 ≤ r2 ≤ . . . ≤ rk′ ≤ δ.

We now use a volume packing argument to get upper bounds on the distances rj .
For j = 0, . . . , k′, let Vj denote the span of v1w, . . . , vjw, thus {0} = V0 ⊂ V1 ⊂
V2 ⊂ . . . ⊂ Vk′ form a k′-dimensional complete flag of subspaces. Let πj denote the
orthogonal projection onto Vj , and consider the “box”

B = {x ∈ Vk′ : |πj+1(x) − πj(x)| < rj/2k for all 0 ≤ j < k′}.

Note from the triangle inequality that this box is contained in B(0, δ/2). Observe
that B cannot contain any multiples of w other than the origin. For, if we had
some non-zero multiple vw of w in B, let Vj be the first subspace in the flag which
contains vj , thus vw is independent of v1, . . . , vj−1. By the triangle inequality, we
would then have

|vw| = |πj(vw)| < r1/2k + . . . + rj/2k ≤ rj ,

contradicting the minimality of rj .

If we now let B/2 denote the set {x/2 : x ∈ B}, then by convexity and symmetry
we have B/2 − B/2 = B. Thus by the previous discussion, the sets xw + B/2
are disjoint as x varies over X ′. Since the sets xw + B/2 lie in the k′-dimensional
disk B(0, 2δ)∩ Vk′ , and |X ′| ∼ N , a volume packing argument thus yields that the
k′-dimensional volume of B/2 is O(1/N) (allowing constants to depend in δ and k),
so the same applies to B. But a simple computation shows that the k′-dimensional
measure of B is comparable to r1 . . . rk′ , so we have shown that

r1 . . . rk′ . 1/N. (10)

Now let N1, . . . , Nk′ ≥ 1 be positive integers such that Nj is the integer part of

1 + δ
krj

. By the previous (and the assumption k = O(1)) we have

N1 . . . Nk′ & N.

If we let P ⊆ Z/NZ be the generalized arithmetic progression

P := {
k′

∑

j=1

njvj : 0 < nj ≤ Nj for all j = 1, . . . , k′}

then P has volume & N , and by construction we also see that Pw ⊆ B(0, δ). Thus
P is contained inside X ′ and is thus contained inside the Bohr set. Also from linear
independence we see that P is proper (note that the linear combinations never leave
B(0, δ), so we don’t encounter any wraparound issues arising from the torus, and
we are done. This completes the proof of Freiman’s theorem.

(Remark: one can get more precise bounds on r1 . . . rk, by a classical theorem
known as Minkowski’s second theorem, but we do not need to do so here.)
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8. Some more lattice theory: Proper and improper generalized

arithmetic progressions

The main result of this section is the following result of Gowers and Walters:

Theorem 8.1. Let Z be a torsion-free abelian group. Then every generalized arith-

metic progression in Z with bounded rank is the refinement of a proper generalized

arithmetic progression with equal or lesser rank.

Now observe that any small convolution X +P of a generalized arithmetic progres-
sion P of bounded rank d is a refinement of a generalized arithmetic progression of
rank d+ |X |; indeed, X is clearly contained in a rather small arithmetic progression
Q of rank |X | and volume 2|X|, and then X + P is a refinement of the general-
ized arithmetic progression Q + P . Thus by Lemma 8.1, the small convolution of a
proper bounded-rank progression is the refinement of another proper bounded-rank
progression. This allows us to remove the “small convolution” caveat in Freiman’s
theorem.

The proof I give here is not Gowers and Walters’ original proof (which I haven’t
seen), and is probably much clumsier, but it does illustrate some interesting tech-
niques from lattice theory.

Before we prove this theorem, let us recall an algebraic analogue which has a similar
flavor.

Lemma 8.2. Let Γ be a lattice in Rd, i.e. a discrete additive subgroup. Then there

is an invertible linear transformation which transforms Γ to the standard lattice Zk

for some 0 ≤ k ≤ d. We call k the rank of the lattice Γ.

If one thinks of finitely generated lattices as the analogue of generalized progres-
sions, and invertible images of the standard lattice as the analogue of proper gen-
eralized progressions, then we see that this lemma is in some sense an algebraic
analogue of Theorem 8.1.

Proof This result can be proven algebraically (using the fact that every finitely
generated torsion-free group is isomorphic to some standard lattice), but we will
use an analytic proof, similar in spirit to the Euclidean algorithm (which in fact
corresponds to the d = 1 case of this Lemma).

We first observe that we may assume that the vectors in Γ span Rd, else we could
pass from Rd to a smaller vector space and continue the argument. With this
assumption, we will show that Γ is in fact isomorphic to Zd.

Since Γ is discrete, there exists some ball B(0, ε) which contains no lattice point in
Γ other than the origin. We fix this ε > 0.

By the spanning assumption, we can find d linearly independent vectors v1, . . . , vd

in Γ, so in particular the volume |v1 ∧ . . . ∧ vd| is strictly positive. On the other
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hand, by Minkowski’s theorem (Exercise 5) we know that this volume is bounded
from below by some constant c = c(ε) > 0 depending only on ε.

We now use the method of descent. Let 〈v1, . . . , vd〉 be the lattice consisting of
integer combinations of the v1, . . . , vd. This is a sublattice of Γ. If it is in fact
equal to Γ, then Γ is clearly isomorphic to Zd since we can use an invertible trans-
formation to map the linearly independent vectors v1, . . . , vd to the generators of
Zd. Now suppose that the vectors 〈v1, . . . , vd〉 do not generate Γ. Then the half-

open paralleopiped {∑d
i=1 tivi : 0 ≤ ti < 1} generated by the vectors v1, . . . , vd,

being a fundamental domain of 〈v1, . . . , vd〉, must contain a lattice point w in Γ

which is non-zero. Write w =
∑d

i=1 tivi; without loss of generality we may as-
sume that td > 0. We may also assume that td ≤ 1/2 since we could replace w by
v1 + . . .+vd−w otherwise. Then the volume |v1∧ . . .∧vd−1∧w| is at most half that
of |v1 ∧ . . .∧ vd|. We thus replace vd by w and repeat the above argument. Because
of our absolute lower bound on the volume of paralleopipeds, this argument must
eventually terminate, at which point we have found the desired presentation for Γ.

Call a lattice vector v in Γ irreducible if it is not of the form nw for some integer
n > 1 and some w ∈ Γ. Clearly every lattice vector is the integer multiple of an
irreducible lattice vector.

One corollary of the above Lemma is that irreducible vectors can always be factored
out:

Corollary 8.3. Let Γ be a lattice of rank k, and let w be a non-zero irreducible

vector in Γ. Then we have a factorization Γ = 〈w〉 + Γ′ where 〈w〉 is the space of

integer multiples of w, and Γ′ is a lattice of rank k − 1.

Proof By Lemma 8.2 we may take Γ equal to Zk, at which point w takes the
form (a1, . . . , ak) for some integers a1, . . . , ak. Since v is irreducible, the a1, . . . , ak

have no common factor, and thus we have n1a1 + . . . + nkak = 1 for some integers
n1, . . . , nk. By use of row operations (which leaves Zk invariant) we may thus
assume that w is equal to the basis vector ek. But then the claim follows by setting
Γ′ := Zk−1.

We now prove Theorem 8.1. We shall actually prove the following variant, which
is clearly equivalent to Theorem 8.1 but is easier to prove for inductive purposes:

Proposition 8.4. Let Z be a torsion-free abelian group, let P be a generalized

arithmetic progression in Z of rank k = O(1), and let Q be a generalized arithmetic

progression in Z of rank d = O(1) and cardinality |Q| = O(1). Then Q + P is a

refinement of a proper generalized arithmetic progression of bounded rank.

Thus we have split our progression into a large progression P and a small progression
Q. The reason we do this is that our inductive step will sometimes reduce the rank k
of the large progression at the cost of increasing the rank d of the small progression,
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and then use a different argument to reduce the small rank d while keeping the large
rank k constant.

Proof As mentioned above, we will induct on both k and d. We call a pair P ′, Q′

of progressions with ranks k′, d′ simpler than P, Q with ranks k, d if k′ < k, or if
k′ = k and d′ < d, or if k′ = k and d′ = d and P ′ has a smaller volume than P . We
may assume inductively that the Proposition has already been proven for all pairs
P ′, Q′ of progressions which are simpler than P , Q.

The basic idea is to use the fact that an arithmetic progression can be improper only
when there is at least one collision between two different sums in the progression.
One can then use this collision to reduce the rank of either P or Q without increasing
the size of P and Q too much.

First let us look at the case where P is improper; we will aim to use this im-
properness to drop the rank k of P by one; the small progression Q will make its
appearance at the end. We may assume that P has base point 0, i.e.

P := {n · v : n ∈ [0, N ]}
for some multivector v ∈ Zk and multinumber N := (N1, . . . , Nk). It will be

convenient to rescale by N . If x ∈ Rk, let x/N denote the vector

x/N := (x1/N1, . . . , xk/Nk),

and let v′ denote the multivector

v′ := (N1v1, . . . , Nkvk),

thus we have

P = {x · v′ : x ∈ [0, N ]/N}.

Since P is improper, we have some x, x′ ∈ [0, N ]/N such that x · v′ = x′ · v′. Let

ker(v′) ⊆ Zk/N be the lattice

ker(v′) := {x ∈ Zk/N : x · v′ = 0};
we thus see that ker(v′) contains a non-zero vector w ∈ [−N, N ]/N , namely w :=
x − x′. We may of course assume that w is irreducible in ker(v′).

Morally, Corollary 8.3 should now let us replace the rank k lattice Zk/N by one of
rank k − 1, but we are not dealing with the infinite lattice here, only a bounded
subset of it, and so we have to do a little more work.

Write w = (w1, . . . , wk). Without loss of generality we may assume that the kth

coefficient dominates in the sense that

|wj | ≤ |wk| for j = 1, . . . , k. (11)

One should think of this as saying that w is essentially aligned with the ek basis
vector. In particular wk is non-zero.

Now suppose that w is small, |w| ≪ 1. Then we can replace P by a progression
of the same rank but smaller volume, allowing us to use the induction hypothesis.
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Here’s how. Let N ′ denote the multinumber

N ′ := (kN1, . . . , kNk−1, Nk|wk|).
Observe that for every x ∈ [0, N ]/N there exists some integer n such that x − nw
lies in [−N ′, N ′]/N , just by the Euclidean algorithm in the kth co-ordinate. Since
x · v′ = (x − nw) · v′, we can thus cover the arithmetic progression P by another
progression P ′ of the same rank k, but of volume O(|[−N ′, N ′]|) = O(|wk ||[0, N ]|).
This is smaller if |w| is sufficiently small. Thus in this case one can use the induction
hypothesis to close the argument. (Note that P ′ can easily be verified to be a small
convolution of P , so that P is thus a refinement of P ′).

It remains to consider the case when w is never small; i.e. there is a ball Bk(0, ε)

in Rk which contains no lattice point of ker(v′) other than the origin, where ε =
ε(k) > 0 depends only on k. This tells us (by volume-packing arguments) that the
lattice ker(v′) is fairly sparse; for instance, it can only have a bounded number of
elements in the bounded set [−N, N ]/N . In particular this implies that

|P | ∼ |[0, N ]|.

Define a linear projection πw from Rk to Rk−1 by

πw(x) = x − xk

wk
w.

Let Γ ⊆ Rk−1 denote the lattice Γ := πw(Zk/N); this lattice Γ is discrete (indeed,

it lives in the discrete lattice 1
|wk|N1...Nk

Zk−1) and has rank k− 1 (since it contains

Zk−1/N). Now, let B(0, C) be a large ball in Rk−1. We claim that the set Γ ∩
B(0, C) has O(|[0, N ]|) elements and that

P ⊆ (Γ ∩ B(0, C)) · v′.
To verify the latter claim, let x · v′ be any element of P . Since w · v′ = 0, we have
x · v′ = πw(x) · v′. But since x ∈ [0, N ]/N , a simple computation using (11) shows
that πw(x) ∈ Γ ∩ B(0, C) if C is large enough depending on k, and we are done.
To prove the former claim, note that Γ consists of elements of the form πw(x) for

some x = (x1, . . . , xk) ∈ Zk. Since πw(w) = 0, we may assume that |xk| < |wk|.
But then if πw(x) ∈ B(0, C), one easily sees that |x| . 1. Since x also lies in Zk/N ,
the claim follows.

Since Γ ∩ B(0, C) has O(|[0, N ]|) elements, we see by volume packing arguments

(noting that Γ contains Zk−1 and so we can start tiling all of Rk−1 with integer
translates of B(0, C)) that

|Rk−1/Γ| & 1/|[0, N ]|. (12)

The plan is to replace the progression P by the slightly larger object (Γ∩B(0, C))·v′,
which has rank k − 1. The trouble is that we have not yet demonstrated that
Γ ∩ B(0, C) is an arithmetic progression. We already know that Γ is a lattice of
rank k−1, and hence by Lemma 8.2 can be generated by k−1 linearly independent
lattice vectors. In principle, this allows us to cover Γ ∩ B(0, C) by an arithmetic
progression of rank k−1, but if the parallelopiped generated by these vectors is too
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degenerate then this progression will be very inefficient (it will require many more
points than |[0, N ]|, and so we will no longer be able to use the induction hypothesis
since the old progression P will not be a refinement of the new one). So we need a
way to obtain a non-degenerate parallelopiped in Γ. Fortunately we can re-use the
algorithm from the previous section. Let u1 be a non-zero vector in Γ of minimal
length; let u2 be a non-zero vector linearly independent of u1 with minimal length
subject to these constraints; and so forth up to uk−1 (we must get k − 1 vectors

this way because Γ spans Rk−1. By repeating the volume packing argument used
to prove (10) in the last section, we have that

|u1| . . . |uk−1| ∼ |Rk−1/Γ|. (13)

In particular, this implies that the vectors u1, . . . , uk−1 are not very degenerate:

|Rk−1/Γ| ≤ |u1 ∧ . . . ∧ uk−1| ≤ |u1| . . . |uk−1| . |Rk−1/Γ|. (14)

Also by the greedy nature of the construction, and the fact that Γ contains Zk−1/N ,
we see that the vectors ui are all bounded.

Let U be the sublattice Γ generated by the linearly independent vectors u1, . . . , uk−1.
By (14) we see that U has bounded index:

|Γ/U | . 1.

In particular Γ is a small convolution of U , and Γ ∩ B(0, C) is a small convolution
of U ∩ B(0, 2C).

Let x be any element of U ∩ B(0, 2C). Since x ∈ U , we have

x =

k−1
∑

i=1

niu
i

for some integers ni. These integers can be computed by Cramer’s rule:

ni =
u1 ∧ . . . ∧ ui−1 ∧ x ∧ ui+1 ∧ . . . ∧ uk−1

u1 ∧ . . . ∧ uk−1

where the quotient of two (k−1)-forms in Rk−1 is defined in the obvious manner. By
(14) we thus have ni = O(1/|ui|). Thus U ∩B(0, 2C), and hence (U ∩B(0, 2C)) ·v′,
is contained in an arithmetic progression of rank k − 1 and size

[⌊C/|w1|⌋, . . . , ⌊C/|wk−1|⌋]
which thus has volume

.
1

|w1| . . . |wk−1|
.

1

|Rk−1/Γ|
. |[0, N ]|

by (14) and (12).

To summarize, we have covered the arithmetic progression P , which has rank k and
cardinality |P | ∼ |[0, N ]|, by a small convolution of another arithmetic progression
- call it P ′ - which has rank k−1 and volume O(|[0, N ]|). Since every small set can
be contained in a small arithmetic progression, we thus see that P is a refinement
of Q′ + P ′ for some small arithmetic progression Q′. We now apply the induction
hypothesis, replacing P by P ′ (thus reducing the rank of P ) and adding Q′ to Q
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(this increases the rank of Q, but we still have a simpler pair of progressions by
definition) to get what we want. This concludes the induction when P is improper.

Now we look at the case when P is proper; the idea is now to work with Q in much
the same way that P was worked on in the previous argument.

If Q + P is already proper, then we are done. So suppose Q + P is improper; we
thus have q, q′ ∈ Q and p, p′ ∈ P such that q + p = q′ + p′. Since P is already
proper, we have q 6= q′.

By translation symmetry we may assume Q has base point 0, so

Q := {a + m · y : m ∈ [0, M ]}

for some multivector y ∈ Zd, and some multinumber M of rank d; since Q is small,
M is bounded. Since we have q − q′ ∈ P −P , we thus have m · y ∈ P −P for some
m ∈ [−M, M ]. We can write m = cm′ where m′ is irreducible in Zd, and c = O(1)
is non-zero. Then m′ · v ∈ (P − P )/c.

By Corollary 8.3, Zd is the direct sum of a lattice of rank d − 1, and the integer
multiples 〈m′〉 of m′. Since M is small, we can thus cover Q by Q′ + [−C, C]m′ · v
for some small arithmetic progression Q′ of rank d−1, and some bounded constant
C. Thus we have

Q + P ⊆ Q′ + (
⋃

|r|≤C

r

c
(P − P ) + P ).

But one can easily verify that (
⋃

|r|≤C
r
c (P − P ) + P ) is contained in a progression

P ′ of the same rank as P and of comparable volume. Thus Q+P is a refinement of
the simpler pair of progressions Q′ + P ′, and we can use the induction hypothesis
again. This closes the induction.

9. Disassociated sets, and Chang’s refinement of Freiman’s theorem

In previous sections we have proven Freiman’s theorem, which states that if |A +
A| ≤ K|A| then A is a refined small convolution of an arithmetic progression P
of dimension d at most d ≤ CK , where the constants of the refinement and small
convolution are at most C′

K . However, the estimates we have for the dimension d
are pretty bad; our bound for CK is essentially the same as |Λ|, which is as large
as KC , while the bound for C′

K is exponential in the dimension and thus looks like
exp(CKC).

Recently, Chang [1] has refined the dimension bound from KC to CK log K (which
is close to the optimal conjecture of CK), with a corresponding improvement of
the C′

K constant to exp(CK(log K)2). The idea is to use more information about
the resonant set Λ than just merely bounding the size |Λ| as in (7).
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Let us recall our situation. We are working in a cyclic group Z/NZ, and have a
subset A of Z/NZ of size |A| = cN , and we consider the resonant set

Λ := {ξ ∈ Z/NZ : |χ̂A(ξ)| ≥ αc}
for some 0 < α < 1 (in the previous applications, we had α := 1/(2

√
K)). Then

the Plancherel identity
∑

ξ∈Z/NZ

|χ̂A|2 = c

gives the cardinality bound

|Λ| ≤ α−2c−1.

This bound is fairly sharp (see for instance Q4). However, we can do a bit better.

Definition 9.1. A cube of dimension d is a generalized arithmetic progression of
dimension d, base point equal to 0, and all lengths N1, . . . , Nd equal to 1; in other
words, a cube is a set of the form

{
d

∑

i=1

ǫivi : ǫi = 0, 1}

for some basis vectors v1, . . . , vd. Alternatively, a cube is any linear image of [0, 1]d.

Theorem 9.2. [1] With the above notation, Λ is contained in a cube of dimension

O(α−2 log(1/c)).

This result is especially impressive in the case α ∼ 1 and c ≪ 1. Then the set
Λ has cardinality O(1/c), but here we are saying a much stronger statement, that
Λ is in fact contained in a cube of dimension O(log(1/c)). (In the context of Q6,
this implies that any subgroup of cardinality c is contained in a cube of dimension
O(log(1/c)), which is a true but not entirely obvious statement. To get some idea
of what’s going on, observe that the set {1, 2, . . . , N} is contained in the cube with
basis vectors 20, 21, . . . , 2⌊log2

N⌋).

To prove this theorem we need a definition.

Definition 9.3. A set ξ1, ξ2, . . . , ξn of frequencies is said to be dissociated if the
cube

{
d

∑

i=1

ǫiξi : ǫi = 0, 1}

is proper. Equivalently, the only solution to

d
∑

i=1

ǫiξi = 0; ǫi ∈ {−1, 0, 1}

occurs when all the ǫi are equal to zero.

A key example to keep in mind here is when ξj = 2j . The intuition then is that
dissociated frequencies behave much like lacunary frequencies.

To prove Theorem 9.2, it will suffice to show
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Proposition 9.4. With the above notation, any dissociated set ξ1, ξ2, . . . , ξn in Λ
can have cardinality at most O(α−2 log(1/c)).

Let us see why Proposition 9.4 implies Theorem 9.2. Let ξ1, . . . , ξn be a maximal

dissociated set in Λ. Then any other frequency ξ in Λ must be of the form

ξ =

n
∑

i=1

ǫiξi

for some ǫi ∈ {−1, 0, 1}, since otherwise we could add ξ to our dissociated set and
contradict maximality. But this means that all vectors ξ in Λ are contained in the
cube with basis vectors ±ξ1, . . . ,±ξn, and we are done.

We now prove the Proposition. First we observe that we can replace Λ by the slight
variant

Λθ := {ξ ∈ Z/NZ : Reeiθχ̂A(ξ) ≥ 1

2
αc}.

Since one can cover Λ by a finite number of the Λθ, it suffices to prove the claim
for a single Λθ.

Fix θ, and consider the normalized exponential sum

f(x) :=
e−iθ

√
n

n
∑

j=1

e2πiξjx/n.

From Plancherel’s theorem, we see that this function is normalized in L2:

‖f‖L2(Z/NZ;dx) = 1.

Also from Parseval’s inequality, we know that f has a large inner product with χA:

〈f, χA〉L2(Z/NZ;dx) =
1√
n

n
∑

j=1

e−iθχ̂A(ξj),

and hence by construction of Λθ

Re
1

N

∑

x∈A

f(x) &
1√
n

nαc,

or equivalently
1

|A|
∑

x∈A

Ref(x) &
√

nα.

Our aim is to show that n = O(α−2 log(1/c)). If this is not true, then
√

nα ≫
log(1/c)1/2, and hence we have

1

|A|
∑

x∈A

Ref(x) ≫ log(1/c)1/2. (15)

Thus while f is L2 normalized, its average on the subset A of Z/NZ is somewhat
large. If we just use the L2 bound, we cannot get a contradiction, because the
hypothesis |A| = cN combined with the L2 normalization only allows us to bound
the left-hand side of (15) by O(c−1/2) (how? use Cauchy-Schwarz). Fortunately,
we can take advantage of the dissociativity to improve our bounds on f . The
point is that f is composed of dissociated frequencies, which should act in a largely
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independent manner, and so we expect a “large deviation estimate” or “law of
large numbers” that says that the magnitude of f does not fluctuate very much,
and indeed we expect exponential decay estimates for the set where f is very large
(this is where the log is eventually going to come from). Specifically, we have

Lemma 9.5. In the above notation, we have
∫

Z/NZ
eRef(x) dx . 1.

Proof The presence of the exponential is a familiar one when dealing with a sum
of “independent” quantities, since the exponential converts this to a product of
independent quantities, at which point one can exploit the independence.

Since

Ref(x) = n−1/2
n

∑

j=1

cos(2πξjx/n − θ)

we have

eRef(x) =
n

∏

j=1

en−1/2 cos(2πiξjx/n−θ).

Now we estimate the exponential by a Taylor expansion:

en−1/2 cos(2πiξjx/n−θ) ≤ 1 + n−1/2 cos(2πiξjx/n − θ) + O(n−1).

Since (1 + O(n−1))n = O(1), we thus have

eRef(x) .

n
∏

j=1

(1 + n−1/2 cos(2πiξjx/n − θ)),

which we split using exponentials as

eRef(x) .

n
∏

j=1

(1 +
1

2
n−1/2e−iθe2πiξjx/n +

1

2
n−1/2eiθe−2πiξjx/n).

Now we multiply this out. The right-hand side contains a 1, plus a whole bunch of
multiples of plane waves e2πiξx/n for various values of ξ. However, since the ξj are
dissociated, none of those plane waves are constant. Thus if we sum in x, they all
cancel, and we obtain

∫

Z/NZ
eRef(x) dx . 1

as desired. �

From this Lemma and the Jensen inequality

exp(
1

|A|
∑

x∈A

Ref(x)) ≤ 1

|A|
∑

x∈A

eRef(x)

we obtain the desired contradiction to (15), since |A| = cN , and Proposition 9.4
follows.



LECTURE NOTES 2 23

10. Exercises

• Q1. Let G be a subgroup of an abelian group Z, and let φ : G → G′ be
a Freiman homomorphism of order 2 from G to some subset G′ of another
abelian group Z ′. Show that G′ is the translate of some subgroup of Z ′.
(Hint: first normalize so that φ(0) = 0).

• Q2. Let P be a proper generalized arithmetic progression, and let φ :
P → φ(P ) be a Freiman homomorphism of order 2 from P to some subset
φ(P ) of an abelian group Z. Show that φ(P ) is a generalized arithmetic
progression of the same length as P , and furthermore that φ(P ) is proper if
φ is injective. (Hint: This is a very similar argument to Q1. First normalize
so that P is a box and φ(0) = 0).

• Q3. Verify all the unproved claims in Section 6.
• Q4. Let A be a subset of a finite abelian group Z with |A| = c|Z| and
|A + A| = |A|, and let e(x, ξ) be a fixed bi-character used to define the
Fourier transform. Show that there is a set Λ ⊆ Z of size |Λ| = c−1

such that |χ̂A| = cχΛ; thus one has perfect concentration of the Fourier
transform in a small set. Contrast this with the computations in Section 6.
Show in addition that Λ is a subgroup of Z.

• Q5. Let Λ be a lattice (i.e. a discrete additive subgroup) of Rd whose

quotient space Rd/Λ has finite volume. (A typical example is Zd). Let K

be a convex bounded subset of Rd which is symmetric around the origin,
and such that |K| > 2dRd/Λ. Show that K must contain a lattice point in
Λ other than the origin. (This is Minkowski’s first theorem. Hint: adapt
some of the arguments in Section 7). Give an example to show that the
constant 2d in the above theorem cannot be improved.

• Q6*. Prove (13) by doing a volume packing argument on the quotient space

Rd/Γ. (It is possible to compute a sharp constant in (13) - in fact, it is

2d/|B(0, 1)| - and the claim in fact holds for all possible norms on Rd, not
just the Euclidean one. This statement is known as Minkowski’s second

theorem, but we will not prove it here).
• Q7 (a). Let a1, . . . , aN be a square-summable sequence of positive reals:

N
∑

j=1

a2
j ≤ 1.

For any λ > 0, prove the bound

P (|
N

∑

j=1

εjaj | > λ) . e−cλ2

for some absolute constant c > 0, where the εj = ±1 are independent, iden-
tically distributed unbiased random signs, and P denotes the probability

of an event. (Hint: compute the expectation of exp(t
∑N

j=1 εjaj) for any

parameter t > 0, in the spirit of Lemma 9.5.) This is of course a special
case of the law of large numbers.
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• Q7(b) Under the same assumptions on ai, prove Zygmund’s inequality

|{θ ∈ [0, 2π] : |
N

∑

j=1

aje
2πi2jθ| > λ}| . e−cλ2

for any λ > 0. (In fact, one can replace the frequencies 2j by any other
dissociated set).
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1. Introduction

In the previous two sets of notes we have been concerned with the size of the sumset

{a + b : (a, b) ∈ A × B}
and difference set

{a − b : (a, b) ∈ A × B}
and how the sizes of these sets were related to each other, and whether they revealed
anything about the inner structure of A and B.

However, in many applications we do not have control over the full sumset or full
difference set: we merely have control over a “large portion” of the sumset or
difference set. In other words, we may only have good control on a set such as

{a + b : (a, b) ∈ G}
or

{a − b : (a, b) ∈ G},
where G is a “large” subset of A×B, and then we are interested in asking the same
sorts of questions (how does a partial sumset control a partial difference set? What
does this say about the structure of A and B?)

As one can imagine, the results here are more incomplete than in the case of total
sumsets and total difference sets. Nevertheless, we still have some important results,
notably the Balog-Szemeredi theorem, which asserts that control of partial sumsets
can be used to imply control of total sumsets if one passes to a refinement.

To give one indication of how partial sum sets or partial difference sets come up,
suppose we have two sets A and B of very different cardinalities, say |A| ≫ |B|,
but we know that A is essentially B-invariant, so that |A + B| ∼ |A|. Now we
want to say something about A − B. In week 1 notes we know that we can say
something if we lose a small power of A and pass to a refinement. Here is another
approach. We have a projection π+1 : A × B → A + B defined by the addition
map π+1(a, b) := a + b. This is a map from a large set (of cardinality |A||B|) to a
small set (of cardinality ∼ |A|). This means that there must be substantial failure
of injectivity in π+1; more precisely, (see Q1), we must have

|{(a, b, a′, b′) ∈ A × B × A × B : a + b = a′ + b′}| ≥ |A|2|B|2
|A + B| & |A||B|2.

1
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Now we use a basic relationship between addition and subtraction: if a+b = a′+b′,
then a− b′ = a′ − b. Thus if one has many sum collisions, then one must also have
many difference collisions:

|{(a, b′, a′, b) ∈ A × B × A × B : a − b′ = a′ − b}| & |A||B|2.
Thus, if we define π−1 : A×B → A−B to be the subtraction map π−1(a, b) := a−b,
then we have

|{(x, x′) ∈ (A × B)2 : π−1(x) = π−1(x
′)}| & |A||B|2.

To use this, we need a definition. Let us call a difference d ∈ A − B popular if it
can be written as a − b in & |B| different ways, i.e.

|{x ∈ A × B : π−1(x) = d}| & |B|.
Note that no difference x can be written in more than |B| ways, since once you
choose b there is no choice for a (since a = x + b). So popular differences are ones
which can be written in a near-maximal number of ways. Let G be the set of pairs
x ∈ A × B for which π−1(x) is popular. If x 6∈ G, then there are ≪ |G| elements
x′ ∈ A × B for which π−1(x

′) = π−1(x). Thus we have

|{(x, x′) ∈ (A × B)2 : π−1(x) = π−1(x
′), x 6∈ G}| ≪ |A × B||B| = |A||B|2.

Thus we must have

|{(x, x′) ∈ (A × B)2 : π−1(x) = π−1(x
′), x ∈ G}| & |A||B|2.

Since each x ∈ G contributes at most |B| elements to this set, we thus have

|G| & |A||B|,
i.e. G is a refinement of A × B. The set

{a− b : (a, b) ∈ G}
is the set of all popular differences. Since each difference requires ∼ |B| elements
from G, we have

|{a − b : (a, b) ∈ G}| . |G|/|B| ≤ |A × B|/|B| = |A|.
To summarize, starting from the hypothesis that all of the sum set A + B had size
∼ |A|, we can conclude that a large portion of the difference set A−B also has size
∼ |A|. (One can weaken the hypothesis, assuming instead that a large portion of
{a + b : (a, b) ∈ G′} the sumset has size ∼ |A|, although because at some point we
swap (a, b, a′, b′) with (a, b′, a′, b) the set G and G′ are not directly related.)

We would like to then reverse these types of implications, so that if one assumes
that a large part of A+B (for instance) is small, then perhaps all of A+B is small.
As stated, such a claim is clearly false. For instance, let N be a large number,
and let A = B consist of the arithmetic progression {1, 2, . . . , N}, together with N
generic integers. Then |A| = |B| = 2N , and a large portion of A + B is contained
inside the small set {2, . . . , 2N} (indeed, one quarter of A × B projects onto this
set), but A + B is huge, of the order of N2. The problem here is that A and B
contain a large number of “junk” elements which do not contribute at all to the
portion G of A × B which is projecting onto the small set, but which do bloat the
size of A + B unnecessarily.



LECTURE NOTES 3 3

The Balog-Szemerédi theorem [1] asserts that in such situations, one can always
trim away the junk and make A + B small again:

Theorem 1.1 (Balog-Szemerédi theorem). Let N be a large integer, and let A and

B be finite subsets of an abelian group Z such that |A| ∼ |B| ∼ N . Suppose also

that there is a refinement G ⊆ A × B of A × B such that the differences of a − b
are small:

|{a − b : (a, b) ∈ G}| . N.

Then we can find refinements A′, B′ of A and B respectively such that

|A′ − B′| . N.

Recall that a set A′ is a refinement of A if A′ ⊆ A and |A′| ∼ |A|. From sumset
estimates (see Week 1 notes) we know that once |A′ − B′| . N , we know that A′

and B′ (and even A′ ∪ B′) are essentially closed under addition, subtraction, and
any other finite combination of these operations; if we are in a torsion-free group
we also know that A′, B′ are a refinement of a generalized arithmetic progression
of small rank. IN short, we know just about everything about A′ and B′. So the
Balog-Szemerédi theorem says that if most of A − B is small, then A and B both
contain large components which are very highly structured. (As mentioned before,
the rest of A and B may well be random noise).

Note that the claim would be trivial if the set G contained a large Cartesian product
A′ ×B′. However, all we know is that G is a large subset of A×B, and this is not
enough to obtain a large Cartesian product (see Q3).

We now present a proof by Gowers [4] of the Balog-Szemerédi theorem which gives
quite good bounds (the final constants are basically just polynomials of the original
constants, as opposed to the exponential (or worse) constants that can come out of
things like Freiman’s theorem).

Note: throughout these notes, we shall be using the Cauchy-Schwarz estimate (Q1)
and the popularity argument (Q2) quite often.

2. Proof of the Balog-Szeméredi theorem

The basic idea of the proof is as follows. Fix N , A, B, G; clearly we may assume
that A and B are disjoint (by translating one set if necessary). We need to find
refinements A′ and B′ such that A′−B′ is very small, of size O(N). Since |A′| ∼ N
and |B′| ∼ N , the trivial bound for A′−B′ is O(N2) - because the differences a− b
of A′−B′ could all be distinct. This is far too weak a bound. However, if we knew
that all the differences of A′ − B′ were popular - i.e. for every a − b in A′ − B′,
there existed & N other pairs (a′, b′) ∈ A × B for which a − b = a′ − b′ - then
this would ensure that A′ − B′ only has cardinality O(N) (because each distinct
element A′ − B′ is associated to & N pairs from A × B, and there are only ∼ N2

pairs in A×B to go around). So, a naive way to try to prove this theorem is to try
to choose A′ and B′ so that all the differences in A′ − B′ are popular. (This is a
manifestation of a basic principle: if one wants to make a set (in this case A′ −B′)
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small, try to make it so that each element of the set consumes a large number of
resources (in this case, a large number of differences), and ensure that the total
number of resources (in this case, the pairs A×B) is bounded. The main problem
is to prevent a proliferation of a large number of elements, each of which consumes
very little resources).

Define a (symmetric) relation ∼ on A×B∪B×A by setting a ∼ b or b ∼ a if a− b
is a popular difference. From the hypothesis on G and the popularity argument
in Q2 we see that this relation is quite dense; the set of pairs (a, b) ∈ A × B such
that a ∼ b is & N2. We can think of this as a bipartite graph; for sake of analogy,
we will think of A, B as distinct sets of people, and think of the relation a ∼ b as
saying that person a knows person b. By the resource consumption argument given
above, the set

D := {a − b : a ∼ b}
of popular differences is small:

|D| . N.

Unfortunately, even though we have lots of connections (lots of pairs of people know
each other), we don’t necessarily have large sets A′, B′ such that all of the people
in A′ know all the people in B′ - i.e. we don’t know that we can make A′ and B′

totally connected via the relation ∼. (See Q3; also if you have some experience with
Ramsey theory, you know that this is a rather tall order).

The trick is to weaken the relation ∼ by using degrees of separation (as in the
infamous “six degrees of separation”). We first set 0 < ε ≤ 1 to be a small
parameter (comparable to 1) to be chosen later, and define a (symmetric) relation
∼∼ on B × B by setting b ∼∼ b′ if

|{a′ ∈ A : b ∼ a′ ∼ b′}| ≥ εN.

i.e. two people b, b′ are related by ∼∼ if they are connected by one degree of
separation in multiple (& N) ways. We will say that b and b′ communicate if they
are related by ∼∼ (they don’t directly know each other, but they have a lot of
mutual friends). We then define a relation ∼∼∼ on A × B by setting a ∼∼∼ b if

|{b′ ∈ B : a ∼ b′ ∼∼ b}| & N ;

roughly speaking, we have a ∼∼∼ b if a and b are connected by three degrees of
separation in multiple (& N2) ways. We say that a is aware of b if a ∼∼∼ b (they
may not directly know each other, but a knows many people who communicate
with b). The intuition is that this relation is much weaker than than ∼, and thus it
should be easier to find large groups A′, B′ of people which are totally connected
by this relation. (There is an analogy here with some arguments in the previous
notes, where a set A did not contain a large arithmetic progression, but the variant
2A − 2A did).

First, we check that even though the awareness relation ∼∼∼ is weak, it still
consumes enough resources that the difference set is still small:

Lemma 2.1. The set {a − b : a ∼∼∼ b} has cardinality O(N).
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Proof Let a ∼∼∼ b. By definition, we can find & εN2 pairs (a′, b′) such that
a ∼ b′ ∼ a′ ∼ b. From the identity

a − b = (a − b′) − (a′ − b′) + (a′ − b)

we thus see that there are & N2 solutions to the equation

a − b = d1 − d2 + d3; d1, d2, d3 ∈ D.

(Note that different pairs (a′, b′) will lead to different triples of popular differences
(d1, d2, d3)). Thus each difference a − b with a ∼∼∼ b is associated with & N2

triples (d1, d2, d3) in D3. But as discussed before D only has cardinality O(N),
hence D3 has cardinality O(N3); thus there are only at most O(N) possible values
for a − b, and the lemma follows.

So the whole problem now is to find large sets A′, B′ which are totally connected
by the awareness relation ∼∼∼. An obvious sub-problem here is to find a large set
B′ such that the elements of B′ are related to each other by the communication
relation ∼∼ quite often.

The first thing to do is to refine B by kicking out all the unfriendly people, as they
clearly are not going to be part of the final set B′. Let B1 ⊂ B be the set of all the
people b in B who know & N people in A:

|{a ∈ A : a ∼ b}| & N for all b ∈ B1.

By the popularity argument we know that

|{(a, b) ∈ A × B1 : a ∼ b}| & N2

and in particular that |B1| ∼ N . So even after we remove all the unfriendly people
from B, we still have a large group of people B1, and a lot of pairs of people between
A and B1 who know each other.

Now, we pick a random person a0 ∈ A and set B2 = B2(a0) ⊆ B1 to be all the
people that a0 knows directly:

B2 := {b ∈ B1 : b ∼ a0}.
Let us call B2(a0) the friends of a0. The point is that a pair of communicating
people b, b′ are much more likely to both be the friends of a0, than a pair of non-
communicating people b, b′ (since they just don’t have that many mutual friends).
Inverting this, this should mean that most friends of a0 communicate a lot.

Also, while the set B2 may occasionally be small (because a0 might be particularly
unfriendly), it will be large on the average. Indeed, since |{(a, b) ∈ A × B1 : a ∼
b}| ∼ N2, we see from the popularity argument (Q2) that |B2| has expectation
∼ N , and in particular we have |B2| ∼ N with probability ∼ 1.

Now let’s condition on the event that |B2| ∼ N ; this event has probability ∼ 1 so
this conditioning does not significantly distort probabilities. Take two uncommu-
nicative people b, b′ ∈ B1, so that b 6 ∼∼b′. By definition, b and b′ communicate
with O(εN) people in A. Thus the probability that these people both lie in B2
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is O(ε). Summing over all uncommunicative pairs (there are O(N2) of them) and
using linearity of expectation, we obtain

E(|{(b, b′) ∈ B2 : b 6 ∼∼b′}|) . εN2 . ε|B2|2.
Thus on the average, at most O(ε) of the pairs in B1 are uncommunicative. By the
pigeonhole principle, we may thus find an a0 ∈ A such that B2 := B2(a0) has size
|B2| ∼ N and we have the bound

|{(b, b′) ∈ B2 : b 6 ∼∼b′}| . ε|B2|2.
Call an element b ∈ B2 uncommunicative if

|{b′ ∈ B2 : b 6 ∼∼b′}| & ε1/2|B2|.

Clearly, there are at most O(ε1/2|B2|) uncommunicative elements of B2 (this is
the popularity argument again!). Thus if we let B∗ ⊆ B2 be the uncommunicative
elements of B2, then B∗ is fairly small:

|B∗| . ε1/2|B2|.

By construction of B1, everybody in B1 knows & N people in A. Since B2 is a
subset of B1, we thus have

|{(a, b) ∈ A × B2 : a ∼ b}| & N |B2| & N2;

thus a lot of people in A know a lot of people in B2. By the popularity argument,
there thus exists a refinement A′ of A such that everybody in A′ knows many people
from B2:

|{b′ ∈ B2 : a ∼ b′}| & N for all a ∈ A′.

We are now ready to define B′: we simply set B′ := B2\B∗, i.e. we choose all the
communicative people from B2. Since B∗ is so small (if ε is small enough), we have
|B′| ∼ N , so that B′ is indeed a refinement of B. We now claim that a ∼∼∼ b for
every a ∈ A′, b ∈ B′.

To prove this, fix a ∈ A′ and b ∈ B′. By construction, a knows & N people b′

in B2. Since B∗ is so small (if ε is small enough), a must therefore know & N
people b′ in B′. Since b is not uncommunicative, it will communicate with all but
O(ε1/2N) people in B′. Thus, if ε is small enough, it will communicate with & N
of the people b′ mentioned above - and hence a ∼∼∼ b. This, combined with the
previous Lemma, shows that |A′ − B′| . N , and the result follows. �

Note how every time we make the relation weaker, we can make it denser. Regard-
ing the original knowledge relation a ∼ b, we could only say things like “people
in B1 know many (& N) people in A”. For the slightly weaker communication
relation b ∼∼ b′, we could say things like “people in B’ communicate all but a few
(O(ε1/2N)) people in B2”. And finally regarding the weakest notion of awareness
a ∼∼∼ b, we can say that “people in A′ are aware of all the people in B′”.

The Balog-Szemerédi theorem can be made a little more quantitative: an inspection
of the above proof reveals that the constants only grow polynomially rather than
exponentially. More precisely, we have
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Theorem 2.2 (Quantitative Balog-Szemerédi theorem). Let N be a large integer,

and let A and B be finite subsets of an abelian group Z such that |A| = |B| = N .

Suppose also that there is a set G ⊆ A × B of A × B with |G| ≥ N2/K such that

the differences of a − b are small:

|{a − b : (a, b) ∈ G}| ≤ KN.

Then we can find subsets A′, B′ of A and B respectively such that

|A′|, |B′| & K−CN

and

|A′ − B′| . KCN.

One could even work out these constants C explicitly (they are of the order of 10 or
so, depending on how efficiently you run the above argument), but we will not do
so here. This quantitative version has applications to arithmetic progressions, as
we will see in a later set of notes; for now, however, we shall focus on its application
to the Kakeya problem.

3. A variant of the Balog-Szemerédi theorem, and applications to

the Kakeya problem

Before we get to the Kakeya problem, we need a variant of the Balog-Szemerédi
theorem. To do so, let us first digress on popular rows and columns.

Suppose that A and B are finite sets with cardinality |A| ∼ |B| ∼ N , and let
H ⊆ A×B be a large subset of A×B, so that |H | ∼ N2. One can think of A×B
as looking roughly like a square, either considered as the union of ∼ N rows of the
form A × {b}, or as the union of ∼ N columns of the form {a} × B. Each of these
rows and columns contain a certain number of elements from H .

Since there are ∼ N rows, and the total number of elements of H is ∼ N2, we
see that each row contains ∼ N on the average. However, it is not necessarily the
case that every row contains ∼ N elements of H ; there might be a few rows which
contain far fewer. However, such rows, by definition, do not contain many elements
of H . Indeed, by the popularity argument (Q2), if we throw away all the unpopular

rows (those rows which only have ≪ N elements of H), then one still retains a large
fraction of H (and in particular, we still have ∼ N2 elements of H). Since each row
can contain at most O(N) elements from H , the number of rows remaining must
still be comparable to N . Thus one can always refine things a little bit so that all
the rows become popular.

One can similarly throw away the unpopular columns and ensure that all the
columns are popular, while still retaining a large fraction of H . Unfortunately,
it is not so easy to simultaneously ensure that the rows and columns are popular,
because the operation of throwing away unpopular rows may turn previously pop-
ular columns unpopular, and vice versa. However, we always have the freedom to
make either the rows popular, or the columns popular, depending on which is more
convenient at the time.
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By doing this, one can modify the previous Balog-Szemerédi argument to retain a
large portion of a reference set H :

Theorem 3.1 (Modified Balog-Szemerédi theorem). Let N be a large integer, and

let A and B be finite subsets of an abelian group Z such that |A| ∼ |B| ∼ N . Suppose

also that there is a refinement G ⊆ A × B of A × B such that the differences of

a − b are small:

|{a − b : (a, b) ∈ G}| . N.

Suppose also we have another refinement H ⊆ A×B (so that |H | ∼ N2). Then we

can find refinements A′, B′ of A and B respectively such that

|A′ − B′| . N

and also

|H ∩ (A′ × B′)| ∼ N2.

Note that if one sets H := A × B then one gets the ordinary Balog-Szemerédi
theorem. The proof of this theorem is almost the same as that of the usual Balog-
Szemerédi, however every time one prepares to pass from A or B to a refinement
of A or B, one must make sure that either all the columns are popular or all the
rows are popular (so that the refinement captures most of H). We leave the actual
verification of this modified version to Q4.

A more quantitative version is available. The following bound was proven by Bour-
gain [2], using the above arguments:

Theorem 3.2. [2] Let N be a large integer, and let A and B be finite subsets of

an abelian group Z such that |A| ∼ |B| ∼ N . Suppose also that there is a set

H ⊆ A × B of cardinality

|H | ≥ N2/K

whose sum set is small:

|{a + b : (a, b) ∈ H}| ≤ N.

Then we can find subsets A′, B′ of A and B respectively such that

|H ∩ (A′ × B′)| & K−9N2.

and also

|A′ − B′| . K13N−1|H ∩ (A′ × B′)|.

Note that the existence of this set H with small sumset implies the existence of the
set G with small difference set, by the argument in the introduction.

Now we apply this Theorem to Kakeya sets. These sets can be studied both in
Euclidean space or in finite fields; for simplicity we treat the finite field case (which
has fewer technicalities).

Let F be a finite field (e.g. F := Z/pZ for some prime p), and let n ≥ 2 be an
integer, thus Fn is vector space over F . We think of n as being fixed, but |F | as
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being large; our implicit constants may depend on n but not on F . A line in Fn is
any set l of the form

l = {x + tv : t ∈ F}
where x ∈ Fn and v ∈ Fn\{0}; we refer to v as the direction of l (though this
direction is only defined up to scalar multiplication by invertible elements of F ,
thus there are about |F |n−1 possible distinct directions). A Besicovitch set in Fn

is said to be any set E ⊆ Fn which contains a line in every direction.

The finite field Kakeya set conjecture asserts that one has the bound

|E| ≥ c(n, ε)|F |n−ε

for every ε > 0 and some c(n, ε) > 0 independent of |F |; thus Besicovitch sets are
conjectured to fill up practically all of Fn. This conjecture is known to be true in
two dimensions, but is not known in higher dimensions; however, partial bounds
exist. For instance, here is an easy estimate:

Proposition 3.3. Every Besicovitch set E in Fn has cardinality

|E| & |F |(n+1)/2.

Proof Fix the Besicovitch set E. We may assume that F is large (actually we just
need |F | ≥ 4) since the claim is trivial otherwise.

For every t ∈ F , consider the “horizontal plane” Fn−1 ×{t}, and let Et denote the
“horizontal slice”

Et := E ∩ (Fn−1 × {t}).
Clearly we have

∑

t∈F

|Et| = |E|

so the average size of |Et| is |E|/|F |. Indeed, from Chebyshev’s inequality we have

|{t ∈ F : |Et| ≥ 2|E|/|F |}| ≤ |F |/2

and hence we have at least |F |/2 values of t for which |Et| ≤ 2|E|/|F |. In particular,
we have at least two such values of t. By an affine transformation, we may assume
those values are 0 and 1, thus

|E0|, |E1| ≤ 2|E|/|F |.
Now consider the lines in E. For every “velocity” w ∈ Fn−1, there must be a line
lw with direction (1, w) that lies in E. This line must intersect E0 at some point
a(w) ∈ E0, and intersect E1 at some other point b(w) ∈ E1, so that b(w)− a(w) =
(1, w). Thus to each w ∈ Fn−1 we can associate a pair (a(w), b(w)) ∈ E0 × E1 of
points, so that the line between them lies in E and has direction (1, w). But since
two points determine at most one line, all these pairs are distinct. Thus if we let
H be the set of all such pairs, we have |H | = |F |n−1. But we also have the trivial
bound

|H | ≤ |E0 × E1| = |E0||E1| . (|E|/|F |)2.
Combining the two bounds we get |E| & |F |(n+1)/2 as desired.
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We now use Bourgain’s version of the Balog-Szemerédi theorem to improve this
a bit for large dimension n, though we will have to assume F has characteristic
greater than 2. (The characteristic of a finite field F is the prime p such that
px = 0 for all x ∈ F ).

Proposition 3.4. Let F have characteristic greater than 2. Every Besicovitch set

E in Fn has cardinality

|E| & |F |(13n+12)/25.

Proof Again, we take |F | large, and consider the slices Et. By Chebyshev we have

|{t ∈ F : |Et| ≥ 10|E|/|F |}| ≤ |F |/10.

In particular, we can find a non-trivial arithmetic progression a, a + r, a + 2r of
length 3 such that |Ea|, |Ea+r |, |Ea+2r| ≤ 10|E|/|F |. (Indeed, we just pick a and
r randomly, and we will have this happening with at least a 70% chance). By an
affine transformation (using the assumption that the characteristic is greater than
2) we may set a := 0 and r := 1/2. Thus we have |E0|, |E1/2|, |E1| ≤ N , where we
set N := 10|E|/|F |.

As before, for every velocity w ∈ Fn−1 we have a pair (a(w), b(w)) in E0 × E1,
such that b(w) − a(w) = (1, w) and the line between a(w) and b(w) lies in E. In
particular, the midpoint (a(w) + b(w))/2 lies in E1/2. Thus, if we let G ⊆ E0 ×E1

be the set of pairs of the form (a(w), b(w)), then |G| = |F |n−1, and in fact

|{b − a : (a, b) ∈ G}| = |F |n−1

(since all the differences in G are distinct), while

|{b + a : (a, b) ∈ G}| = |E1/2| ≤ N.

Write K := N2/|F |n−1, so that |G| = N2/K. Now we apply Bourgain’s version of
the Balog-Szemerédi theorem, with H replaced by G, to obtain sets A′ ⊆ E0 and
B′ ⊆ E1 such that

|A′ − B′| . K13N−1|G ∩ (A′ × B′)|.
However, since all the differences in G are distinct, we have

|G ∩ (A′ × B′)| ≤ |A′ − B′|
which implies that

K13N−1 . 1

which (after some algebra) implies that N25/13 & |F |n−1, and hence that |E| &

|F |(13n+12)/25.

4. Another approach to the Kakeya problem

The material here is only a brief taste of what goes into the Kakeya problem. For a
more thorough discussion of the Kakeya problem and its connection to arithmetic
combinatorics, see [7].

While the Balog-Szemerédi theorem has many uses (in particular it is used in
Gowers proof of Szemerédi’s theorem, to be covered in a later set of notes), it
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is not the most efficient tool to attack the Kakeya problem. One can improve upon
the above result by dealing with the slices Et and the set G directly.

To simplify the discussion, let us assume for the moment that the slices Et are
evenly distributed, so each slice has cardinality comparable to its average value
N := |E|/|F |. Also write Z := Fn. Then, as in the proof of Proposition 3.4, we
have a set G ⊆ Z × Z of cardinality |G| = |F |n−1 whose differences b − a are all
distinct, but whose sums are all small

|{a + b : (a, b) ∈ G}| ≤ |E1/2| . N.

In other words, we have
|π+(G)| . N.

More generally, given any slice Et with t 6= 0, we have

|{(1 − t)a + tb : (a, b) ∈ G}| ≤ |Et| . N

and so if we define πr(a, b) := a + rb for any r ∈ F , we have

|πt/(1−t)(G)| . N.

Thus almost all of the arithmetic projections of G are small (of size O(N)), except
for the projection π−1, which is large, because of the distinct differences property:

|π−1(G)| = |G| = |F |n−1.

Our task is to get a lower bound for |E| in terms of |F |, or - what amounts to
the same thing - getting an upper bound for |F | in terms of N . This leads to the
following question: if we have upper bounds on various projections πr(G) of a set
G, does this imply upper bounds on the size of π−1(G)? Well, have the obvious
bound

|π−1(G)| ≤ |G| ≤ |π0(G) × π∞(G)| = |π0(G)||π∞(G)|
where we adopt the convention π∞(a, b) := b. So if we have |π0(G)|, |π∞(G)| . N ,
then |G| . N2; combining this with the formula N = |E|/|F | we get the bound
|E| & N (n+1)/2, which we obtained before.

The argument in Proposition 3.4 implies the following improvement to this trivial
bound:

Proposition 4.1. Let G ⊂ Z×Z be a set such that |π0(G)|, |π1(G)|, |π∞(G)| . N .

Then |π−1(G)| . N2−1/13.

This corresponds to the numerology |E| & N (13n+12)/25, as discussed earlier. The
proof of this Proposition is almost identical to that in Proposition 3.4 (note that
we can assume that π−1 is injective on G, by removing redundant elements of G if
necessary).

We can improve this bound a bit (at the cost of requiring one more projection), by
using a somewhat different argument than that used to prove the Balog-Szemerédi
theorem.

Proposition 4.2. [5] Let G ⊂ Z×Z be a set such that |π0(G)|, |π1(G)|, |π2(G)|, |π∞(G)| .

N . Then |π−1(G)| . N2−1/4.
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This bound then leads to the improved bound |E| & N (4n+3)/7 for Besicovitch sets
when the characteristic is greater than 3.

Proof We think of G as living on a two-dimensional space Z × Z. We shall
construct various geometric objects in this space. We may of course assume that
π−1 is injective on G, so that we just need to bound |G|.

Define a vertical line segment to be a pair (g, g′) ∈ G×G such that π0(g) = π0(g
′);

we abuse notation and write write π0((g, g′)) for π0(g) = π0(g
′). Let V be the set

of all vertical line segments. By Cauchy-Schwarz (Q1) we have

|V | & |G|2/N. (1)

We define a new relation ∼0 by setting v1 ∼4 v2 if v1 and v2 have the same value
of π2 ⊗ π∞. By Cauchy-Schwarz (Q1) we have

|{(v1, v2) ∈ V × V : v1 ∼0 v2}| & |V |2/N2 & |G|4/N4

by (1).

We will complement this lower bound with an upper bound

|{(v1, v2) ∈ V × V : v1 ∼0 v2}| . N3

which will give |G| . N2−1/4. This is better than the trivial bound of N4 (which
can be obtained, e.g. by specifying four projections of the four vertices of the
trapezoid formed by v1, v2. The key is to use the injectivity of π−1, and more
precisely the identity

π−1(g
′
2) = −π1(g

′
1) + 2π1(g2) − 2π∞(g1).

Thus if one specifies π1(g
′
1), π1(g2), and π∞(g1), then one also specifies π−1(g

′
2),

hence g′2 (by injectivity of π−1), which then together with π1(g2) gives g2, which
together with π∞(g1) gives g1, which together with π1(g

′
1) gives g′1. Thus (v1, v2)

is completely determined by the three projections π1(g
′
1), π1(g2), and π∞(g1), and

the upper bound of O(N3) follows.

If we are allowed to use more projections than π0, π1, π2, π∞, then we can improve
the gain 1/4 in N2−1/4 somewhat; the record to date is N2−0.325..., using a very
large number of slices (and requiring the characteristic of F to be large) [6]. If we
could get down to N1+ε for any ε then we would have proven the Kakeya conjecture
(not just in finite fields, but also in Euclidean space; see Q5).

If one doesn’t wish to involve the projection π2(G), the results we have are weaker:

Proposition 4.3. [5] Let G ⊂ Z×Z be a set such that |π0(G)|, |π1(G)|, |π∞(G)| .

N . Then |π−1(G)| . N2−1/6.

This bound then leads to the improved bound |E| & N (6n+5)/11 for Besicovitch sets
when the characteristic is greater than 2.

Proof We use the same vertical line segments V as before. Again we assume π−1

is injective on G.
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Now we define some relations between vertical line segments. If v1 = (g1, g
′
1) and

v2 = (g2, g
′
2) are vertical line segments, we set v1 ∼1 v2 if π∞(g1) = π∞(g2) and

π∞(g′1) = π∞(g′2) (i.e. v1 and v2 form a rectangle). Equivalently, v1 ∼1 v2 if v1

and v2 have the same image under π∞ ⊕ π∞ : V → π∞(G) × π∞(G).

Similarly, we define a relation ∼2 on vertical line segments by setting v1 ∼2 v2 if
v1 and v2 have the same image under π1 ⊕ π1 (so v1 and v2 form a parallelogram),
and finally define v1 ∼3 v2 if v1 and v2 have the same inage under π1 ⊕ π∞ (so v1

and v2 form a certain type of trapezoid).

Heuristically speaking, given two randomly selected vertical line segments v1, v2,
the probability that v1 ∼1 v2 should be about 1/N2, since the image of the map
π1 ⊕ π1 has cardinality O(N2). Similarly for ∼2 and ∼3. Thus, if we pick four
vertical line segments at random, v1, v2, v3, v4, the probability that

v1 ∼1 v2 ∼2 v3 ∼3 v4

should be about 1/N6, and so the number of such quadruplets should be about
|V |4/N6. In general, we have this as a lower bound:

|{(v1, v2, v3, v4) ∈ V 4 : v1 ∼1 v2 ∼2 v3 ∼3 v4}| & |V |4/N6;

this is part of an abstract combinatorial lemma, see Q6.

We now claim an upper bound

|{(v1, v2, v3, v4) ∈ V 4 : v1 ∼1 v2 ∼2 v3 ∼3 v4}| . |V |N2;

combining this with the previous bound and (1) we obtain the desired bound on |G|
after some algebra. The point of this upper bound |V |N2 is that it improves some-
what on the trivial bound on |V |N3 (since one can completely specify a quadruple
(v1, v2, v3, v4) in the above set by first specifying v1, then (say) specifying π0(v2),
π0(v3), and π0(v4)). Of course, to do so we have to use our hypothesis that G has
distinct differences (i.e. π−1 is injective on G). Basically, the idea is to use this
injectivity to cut down the number of degrees of freedom inherent in this system
(v1, v2, v3, v4) of vertical line segments.

Write vj = (gj, g
′
j) for j = 1, 2, 3, 4. There are two observations. The first is that

v1, v2, v3 all have the same length:

g1 − g′1 = g2 − g′2 = g3 − g′3.

In particular, if one specifies v1, then this already fixes the length of v2 and v3.

The second observation is that the length of v3, combined with the projections
π0(v3) and π∞(g4), determines the projection π−1(g

′
4) by the identity

π−1(g
′
4) = π∞(g4) − π0(v3) − (g3 − g′3).

Thus if one specifies v1, π0(v3), and π∞(g4), this determines π−1(g
′
4). But since

π−1 is injective, this determines g′4; this, together with π∞(g4) determines v4. This,
together with π0(v3), determines v3; and this together with v1 determines v2. Thus
(v1, v2, v3, v4) is completely determined by the three parameters v1, π0(v3), π∞(g4),
which explains the upper bound of |V |N2.
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For future application we note an extension of this Proposition, in which we impose
some precise control on the multiplicity of π−1.

Proposition 4.4. [5] Let G ⊂ Z×Z be a set such that |π0(G)|, |π1(G)|, |π∞(G)| .

N . Suppose also that π−1 has multiplicity exactly K on G, in the sense that

|{x ∈ G : π−1(G) = y}| = K

for all y ∈ π
1
(G). Then |π−1(G)| . N2−1/6K−5/6.

We leave the proof of this Proposition (which is a mild generalization of the previous
one) to Q9.

There is however a limit as to how far these methods can go if we refuse to admit
too many slices. For instance, the following argument of Ruzsa shows that the 1/6
in the above estimate cannot be improved to beyond 0.20824 . . . :

Proposition 4.5. Let m be a large number, and let N := (27/4)m. There exists a

torsion-free abelian group Z and a G ⊆ Z × Z such that

|π0(G)|, |π1(G)|, |π2(G)|, |π∞(G)| . N

but

|π−1(G)| & 27m = N log(27)/ log(27/4) = N2−0.20824....

Proof Let m be a large integer. We take Z = Z3m, the space of 3m-tuples of
integers. Let A ⊂ Z denote the space of 3m-tuples t which consist of 2m zeroes
and m ones; clearly

N := |A| =
(3m)!

m!(2m)!
≈ (27/4)m = N,

where we have used Stirling’s formula n! ∼ n1/2(n/e)n (see Q8).

Now let G ⊂ A×A denote the space of pairs (t1, t2) of 3m-tuples, such that the m
ones in t1 occupy a completely disjoint set of co-ordinates than the m ones in t2.
Thus

|G| =
(3m)!

m!m!m!
≈ (27)m = N log(27)/ log(27/4).

One can easily check that π0, π1, π∞ all map G to a space isomorphic to A, and
so we are done.

5. Application to multilinear convolution-type operators

This section is set in the continuous case R, and so we now use |E| to denote
Lebesgue measure rather than cardinality of E.

We now present an argument of Michael Christ [3] which uses Proposition 4.4 to
give a non-trivial estimate for the multilinear convolution-type operator T , defined
by

T (f, g, h)(x) :=

∫

R
f(x + t)g(x − t)h(t) dt,
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where f, g, h are functions on the real line. (If we set h(t) := 1/t then this is
the famous bilinear Hilbert transform, but the results here will not address this
important operator).

To simplify the discussion, let us assume that f , g, h are characteristic functions

f = χF , g = χG, h = χH

and F , G, H have Lebesgue measure O(1). Then the function T (f, g, h)(x) is just

T (f, g, h)(x) =

∫

R
χF (x + t)χG(x − t)χH(t) dt = |H ∩ (x − G) ∩ (F − x)|.

In particular, T (f, g, h) is non-negative and uniformly bounded. Furthermore, since
T (f, g, h) is pointwise dominated by χF ∗χG(2x), it is in L1. In particular, we have
the distributional bounds

|{T (f, g, h) ≥ λ}| . λ−1

for 0 < λ . 1.

One can ask the question as to whether these bounds can be improved. Interestingly,
one can do so by means of the argument in Proposition 4.4, with the same gain of
1/6:

Proposition 5.1. [3] For 0 < λ . 1, we have

|{T (f, g, h) ≥ λ}| . λ−1+1/6

Fix λ. First of all, we observe by a standard limiting argument that we may assume
that F , G, H are all unions of intervals of some very small length 0 < δ ≪ λ. Next,
we observe the following continuous version of Proposition 4.4:

Proposition 5.2. [5] Let G ⊂ R×R be a set consisting of unions of δ× δ squares

such that |π0(G)|, |π1(G)|, |π∞(G)| . N . Suppose also that π−1 has fibers of mea-

sure ∼ K on G, in the sense that

|{x ∈ G : π−1(G) = y}| ∼ K

for all y ∈ π−1(G). Then |π−1(G)| . N2−1/6K−5/6.

Indeed, one can rescale δ to be 1 (replacing N by N/δ and K by K/δ, replace the
set G with a discretized variant on Z × Z, and apply Proposition 5.2. (We leave
this as an exercise).

To apply this lemma, what we do is that we let E be the set

E := {x ∈ R : T (f, g, h) ≥ λ} + O(δ),

and for each x ∈ E we choose a subset Tx of H∩(x−G)∩(F −x)+O(δ) of measure
∼ λ. We then set

G := {(t + x, t − x) : x ∈ E, t ∈ Tx}.
Then G is essentially the union of δ × δ-squares, and one has the estimates

|π0(G)|, |π1(G)|, |π∞(G)| . 1
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by the hypotheses on F , G, H . Furthermore we have

|{x ∈ G : π−1(G) = y}| ∼ λ

for all y ∈ π−1(G). Thus by Proposition 5.2 we have

|π−1(G)| . λ−5/6

and the claim follows.

One can modify Proposition 4.5 to show that one cannot improve the 1/6 in this
estimate to beyond 0.20824 . . . . Also, if one replaces T by the superficially similar
operator

T (f, g, h)(x) :=

∫

R
f(x + t)g(x −

√
2t)h(t) dt,

(or indeed replacing
√

2 by any other irrational number) then there is no improve-
ment over the trivial bound of λ−1). Intuitively, this is because irrational projec-
tions cannot be used in arithmetic ways to control the size of rational projections;
the actual construction however is a bit complex, and can be found in [3].

6. Exercises

• Q1. Show that if there is a map f : X → Y from one finite non-empty set X
to another Y , then we have

|{(x, x′) ∈ X : f(x) = f(x′)}| ≥ |X |2
|Y | .

If |X | ≫ |Y |, strengthen this to

|{(x, x′) ∈ X : f(x) = f(x′) and x 6= x′}| &
|X |2
|Y | .

We refer to this estimate as the Cauchy-Schwarz estimate.
• Q2. Let f : X → Y be a map from one finite non-empty set to another. Call

an element y ∈ Y popular if

|{x ∈ X : f(x) = y}| ≥ 1

2

|X |
|Y | ,

i.e. y receives at least half of the expected number of points from X . Then
show that

|{x ∈ X : f(x) is popular }| ≥ 1

2
|X |.

In other words, over half of the points in X have popular images under f .
(We refer to this result as the popularity argument). Can you see how Q2 can
be used to imply (a slightly weaker form of) the result in Q1?

• Q3. Let N be a large integer, and let A and B be two sets of cardinality
N . Show that there exists a set G ⊂ A × B of cardinality ∼ N2 (i.e. a
refinement of A × B) which does not contain any Cartesian product of the
form A′ ×B′ for any refinements A′, B′ of N . (Hint: There are deterministic
constructions, but a random construction is simplest: let G be constructed
randomly by permitting each pair (a, b) to lie in G with probability 1/2,
with all the probabilities being independent. Show that for each A′, B′, the
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probability that G contains A′×B′ is extremely small - of the order of e−CN2

or so, while the number of sets A′, B′ are only eCN or so).
• Q4*. Prove the (non-quantitative) modified Balog-Szemerédi theorem.
• Q5*. Let n ≥ 2. A Besicovitch set E in Rn is a compact set which contains a

unit line segment in every direction; thus for every unit vector ω there exists
a line segment lω in E of length 1 and direction ω. For any δ > 0, let Nδ(E)
be the δ-neighborhood of E, and let |Nδ(E)| be the n-dimensional volume of
this δ-neighborhood.

(a) Prove the bound

|Nδ(E)| ≥ c(E, n)δ(n−1)/2,

where the constant c(E, n) depends on E and n but not δ. (This implies that
the Minkowski dimension of E is at least (n + 1)/2).

(b) Use Bourgain’s argument to improve this bound to

|Nδ(E)| ≥ c(E, n)δ12(n−1)/25.

(This implies that the Minkowski dimension of E is at least (13n + 12)/25).
(c) Use the Katz-Tao argument to improve this to

|Nδ(E)| ≥ c(E, n)δ4(n−1)/7.

(This implies that the Minkowski dimension of E is at least (4n + 3)/7).
Q6. Let f1 : V → X1, f2 : V → X2, f3 : V → X3 be functions from one

finite nonempty set to another. Show that

|{(v1, v2, v3, v4) ∈ V 4 : f1(v1) = f1(v2); f2(v2) = f2(v3); f3(v3) = f3(v4)}| &
|V |4

|X1||X2||X3|
.

Hint: Apply the popularity argument in Q2 three times, each time refining
V slightly. Note that the right-hand side is consistent with the probabilistic
intuition that two random elements of X1 should be equal with probability
1/|X1|, etc.

Q7. Use the Cartesian product trick (cf. the proof of Plünnecke’s theorem
in Week 1 notes) to show that the .’s in the Katz-Tao estimate can be re-
placed by ≤’s. More precisely, show that if |π0(G)|, |π1(G)|, |π2(G)|, |π∞(G)| ≤
N , then |π−1(G)| ≤ N2−1/4.

Q8. Prove Stirling’s formula n! ∼ n1/2(n/e)n by comparing the sum
∑n

j=1 log j with the integral
∫ n

1 log x dx (using for instance the trapezoid

rule).
Q9. Prove Proposition 4.4, and then deduce Proposition 5.2.
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1. Arithmetic progressions

In this weeks notes we begin a new topic - that of finding arithmetic progressions
inside a reasonably dense set of integers. The basic question is the following: let
k be a small integer (in practice, we only take k = 3 or k = 4), and let N be a
very large integer. If A is a subset of {1, . . . , N}, how large does A have to be
in order to ensure that it contains at least one proper arithmetic progression of
length k? (In this set of notes all our arithmetic progressions shall be of rank 1;
i.e. no generalized arithmetic progressions will be considered here). Of course we
take k ≥ 3 since the k ≤ 2 cases are quite trivial.

One famous conjecture in this direction is Erdös’s conjecture that the primes contain
infinitely many arithmetic progressions of arbitrary length. More generally, he
conjectured that any subset A of the natural numbers with

∑

n∈A 1/n = ∞ should
contain infinitely many progressions of arbitrary length. In the above language of
subsets of {1, . . . , N}, this roughly corresponds to sets A of density ∼ 1/ logN
(and in particular this is what happens to the primes, thanks to the prime number
theorem). However, it is not yet known whether subsets of {1, . . . , N} of density
∼ 1/ logN must contain progressions of length k for large enough N , even when
k = 3; the best result in this direction is by Bourgain, who showed that we have
progressions of length 3 when the density is at least ∼

√
log logN/

√
logN . We will

prove this result in next week’s results. (Remark: In the special case of the primes,
Van der Corput in 1935 proved the infinitude of arithmetic progressions of length 3,
but this is because the primes have better distributional properties than a generic
set of density 1/logN . The corresponding question about progressions of primes of
length 4 is still open).

In this set of notes we prove a basic result in this area, known as Szemerédi’s

theorem:

Theorem 1.1. Let 0 < δ ≤ 1 and k ≥ 3. Then there exists an N(δ, k) such that

for any N > N(δ, k) and any subset A of {1, . . . , N} of cardinality |A| ≥ δN , there

exists an proper arithmetic progression in A of length k.

Actually, we shall just prove this for k = 3 (this is due to Roth) and k = 4 (using
an argument by Gowers). The k = 4 argument does eventually extend to general
k, but the details are quite technical and will not be pursued here. The methods
used will incorporate almost everything we have done in previous lecture notes.

1
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2. Roth’s argument

We now prove Theorem 1.1 when k = 3. The idea is to induct downwardly on δ.
Of course when δ = 1 the claim is trivial. Indeed, even when δ > 2/3 the claim is
easy, for the set {a ∈ {1, . . . , N−2} : at least one of a, a+1, a+2 is not in A} has
cardinality at least 3(1−δ)N , and so as soon as N is large enough that 3(1−δ)N <
N − 2 we can find a ∈ {1, . . . , N} such that a, a+ 1, a+ 2 are all in A.

Of course, δ is a continuous parameter, not a discrete one, and so the induction has
to be slightly careful - in particular, the step size of the induction should not be
allowed to vanish to zero unexpectedly. Let P (δ) be the property that Theorem 1.1
holds for δ (and k = 3), thus we already have P (δ) for δ > 2/3. Our task is to show
P (δ) is true for all δ > 0. To show this, the main inductive step is the following:

Proposition 2.1. For each 0 < δ < 1 there exists an ε = ε(δ) > 0 such that ε
depends continuously on δ, and such that P (δ + ε) implies P (δ).

We now indicate why Proposition 2.1 implies Theorem 1.1 for k = 3. To see this,
suppose for contradiction that P (δ) failed for some δ (and thus for all smaller δ).
Let δ∗ be the supremum of all the δ for which P (δ) failed, so that P (δ) is true for
δ∗ > δ and false for δ∗ < δ. But then by continuity and positivity of ε(δ) we can
find a δ < δ∗ for which δ + ε(δ) > δ∗, contradicting Proposition 2.1.

So it remains to prove Proposition 2.1. Fix δ: we let ε = ε(δ) > 0 be chosen
later. By hypothesis, there exists an integer M0 such that for any M > M0 subset
B of {1, . . . ,M} of density |B| ≥ (δ + ε)M , that B contains a orioer arithmetic
progression of length 3. Clearly, this also implies that for any proper arithmetic
progression P of cardinality |P | ≥M0, and any subset B ⊆ P with |B| ≥ (δ+ε)|P |,
that B must also contain an arithmetic progression of length 3. Our task is thus
to show that for N large enough (depending on M , δ, ε) and any A in Z/NZ of
density |A| ≥ δN , that A also contains a progression of length 3.

The idea is to introduce a dichotomy - either A contains a “compact factor” - a
subprogression of Z/NZ of size at least M0 where the density of A increases from
δ to δ + ε - in which case we can apply the inductive hypothesis. Otherwise, A is
“mixing” - it has uniformly density δ+O(ε) even when restricted to subprogressions.
In such cases we can use some theory of exponential sums to show that the Fourier
coefficients of A are small, which by some Fourier analysis will easily deduce the
existence of many arithmetic progressions. The intuition here is that in the mixing
case, A behaves like a random subset of {1, . . . , N} of density δ (i.e. it is as if each
element of {1, . . . , N} would be in A with probability δ independently), and for
random sets it is clear that one has ∼ δ3N2 arithmetic progressions (since there
are ∼ N2 progressions overall, and each progression has probability ∼ δ3 of being
contained in A).

(This terminology of compact factor and mixing is not completely accurate, but I
use it by analogy with another, ergodic theory proof of Szemeredi’s theorem given
by Furstenburg).
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If there exists an arithmetic progression P ⊆ {1, . . . , N} of length at least M for
which |A ∩ P | ≥ (δ + ε)|P |, then by the inductive hypothesis we know that A ∩ P ,
and hence A, contains a proper arithmetic progression of length 3. So, we may
assume without loss of generality that

Assumption. We have

|A ∩ P | ≤ (δ + ε)|P | (1)

for every proper arithmetic progression P ⊆ {1, . . . , N} of size |P | ≥ M . In
particular, we know that |A| = (δ +O(ε))N .

This assumption means that A is very evenly distributed; for instance, if we parti-
tion {1, . . . , N} into ∼ k progressions of length ∼ N/k, then the δN elements of A
are almost perfectly divided among those progressions. This will eventually show
that the Fourier coefficients of χA are very small. But to do that, we must first
place A inside a cyclic group, similarly to our treatment of Freiman’s theorem.

Let p be a prime between N and (1− ε)N (which we can always choose for N large
enough, thanks to the prime number theorem), and let A′ be the set A∩{1, . . . , p},
thought of as a subset of Z/pZ; observe that |A′| = (δ + O(ε))p. We know that
|A′ ∩ P | ≤ (δ + ε)|P | for all sufficiently long progressions P in {1, . . . , p}. But this
is not the same as all sufficiently long progressions in Z/pZ, because of wraparound
issues; to make this distinction let us call a genuine arithmetic progression in Z/pZ,
one which is still a genuine progression when Z/pZ is replaced with {1, . . . , p} in
the obvious manner.

Fortunately, our density bound for genuine arithmetic progressions can easily be
extended to (sufficiently long) Z/pZ arithmetic progressions, because very such
progression can be decomposed into genuine arithmetic progressions:

Proposition 2.2. There exists an M1 = M1(M, ε) such that one has

|A′ ∩ P | ≤ (δ +O(ε))|P |
for any proper arithmetic progression P in Z/pZ (not necessarily genuine) of length

|P | ≥M1.

Proof Let r 6= 0 be the spacing of a proper progression P in Z/pZ. Let us
first consider the case when 0 < r ≪ p/M . Then we can partition P into the
disjoint union of genuine arithmetic progressions of the same step size r, simply
by making a cut every time the progression wraps around the end of {1, . . . , p}.
Except possibly for the first and last progression, each of the genuine progressions
has length at least M , and so the density of A in those genuine progressions is at
most δ+ ε by assumption. Adding up all these density estimates for those genuine
progressions of length at least M , we obtain the bound

|A′ ∩ P | ≤ (δ + ε)|P | + 2M.

A similar bound obtains when 0 < −r ≪ p/M .

Now suppose that r is arbitrary. Consider the first O(M) multiples of r in Z/pZ.
By the pigeonhole principle, two of them must be ≪ p/M apart, thus we can find
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a non-zero j = O(M) such that |jr mod p| ≪ p/M . We can then (if P is long
enough) partition P into |j| disjoint progressions, all of length ∼ |P |/|j|, with step
size jr mod p. Applying the previous estimate to all of these progressions and
adding up, we obtain

|A′ ∩ P | ≤ (δ + ε)|P | + 2|j|M ≤ (δ + ε)|P | +O(M2),

and the claim follows if |P | is large enough.

Let f(x) denote the function

f(x) := χA′(x) − |A′|/p
on Z/p/Z; in other words, f is the characteristic function of A′, normalized to have
mean zero. Then from the previous proposition we see that

∑

x∈P

f(x) . ε|P |

for any arithmetic progression P of length ≥ M1. In other words, f has mean at
most O(ε) on any sufficiently long progression. To put it another way, we have an
upper bound

f ∗ χP|P | (x) . ε

for any x (since we just replace P by x− P in the previous. It would be nice if we
also could have a lower bound too:

|f ∗ χP|P | (x)| . ε

since this would be a very strong statement about f . However, we cannot quite
deduce this from what we know; it asserts that on every sub-progression, that not
only is |A′ ∩P | have density at most δ+O(ε), it also has density at least δ−O(ε).
Nevertheless, despite the fact that we cannot obtain this bound directly, we can
obtain a usable substitute, namely

‖f ∗ χP|P | (x)‖1 . ε;

in other words, we don’t have uniform control on how negative f ∗ χP |P | can be,
but we do have L1 control. The reason for this is very simple: since f has mean
zero, we know that f ∗ χP

|P | also has mean zero, and in particular the positive and

negative parts have equal L1 norm. But the positive part is uniformly O(ε), and
hence O(ε) in L1 norm as well, thus the negative part is also.

This has some consequences for the Fourier transform of f :

Lemma 2.3. For any ξ ∈ Z/pZ, we have |f̂(ξ)| . ε.

This statement is sometimes referred to as linear uniformity of f ; f(x) is somewhat
orthogonal to all functions of the form e2πixξ/p, which have phases linear in x. For

comparision, if A is chosen randomly, then one almost surely has |f̂(ξ)| . p−1/2+

(see Q1). Thus this lemma asserts that sets which do not concentrate on arithmetic
progressions have linear uniformity; for a partial converse, see Q3.
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If we pretend that f is itself a phase function, f(x) = e2πiφ(x), then the above
lemma asserts that φ does not behave like a linear phase, i.e. φ(x) 6≈ xξ/p+ c for
any ξ and constant c, where we are vague as to what the symbol ≈ means.

Proof The case ξ = 0 is trivial, so let us assume ξ 6= 0. Since Z/pZ is a field, we can
find r 6= 0 such that rξ = 1 mod p. Let P be the progression {jr : 0 ≤ j < M1};
by the preceding discussion we have

|f̂(ξ)| p|P | |χ̂P (ξ)| . ε.

On the other hand, by construction we easily see that

χ̂P (ξ) =
1

p

M1−1
∑

j=0

e2πij/p ∼ |P |/p

if p is sufficiently large depending on M1. The claim follows.

Now armed with this Fourier information, we can finish the proof. We introduce
the trilinear form T (f, g, h) for three functions on Z/pZ defined by

T (f, g, h) :=

∫

Z/pZ

∫

Z/pZ
f(x)g(x+ r)h(x + 2r) dxdr.

Observe that the number of proper (but non-genuine) arithmetic progressions in A′

of length 3 is precisely
p2T (χA′ , χA′ , χA′) − |A′|

(the −|A′| being there just to remove the trivial progressions of step 0; we count
a, a+ r, a+ 2r as being a different progression from a+2r, a+ r, a). So we can find
(non-genuine) progressions as soon as we prove an estimate of the form

T (χA′ , χA′ , χA′) ≫ δ/p. (2)

Later on we will see how we need to modify this to obtain genuine progressions.

The basic estimate we need here is that T (f, g, h) is small if one of f , g, h has small
Fourier coefficients:

Proposition 2.4. We have

|T (f, g, h)| ≤ ‖f‖2‖g‖2‖ĥ‖∞
and similarly for permutations.

To get some intuition for this proposition, suppose that f(x) = e2πiφ(x), g(x) =
e2πiψ(x), and h(x) = e2πiη(x). Then the quantity T (f, g, h) is large if φ(a) + ψ(a+
r) + η(a+ 2r) behaves like a constant, i.e.

φ(a) + ψ(a+ r) + η(a+ 2r) ≈ c for most a, r

where we are vague about what ≈ and “for most” mean. This Proposition says
that this type of phase cancellation can happen only when φ, ψ, and η all behave
somewhat linearly - each of f , g, and h need to have one large Fourier coefficient
in order to obtain the above type of estimate. In fact, the proof will show that the
only way T (f, g, h) can be large is if there exists a ξ such that φ(a) ≈ aξ/p + c1,
ψ(a) ≈ −2aξ/p+ c2, and η(a) ≈ aξ/p+ c3. (See Q6.)
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Proof We use the Fourier inversion formula to write

f(x) =
∑

ξ1∈Z/pZ

f̂(ξ1)e
2πixξ1/p

g(x+ r) =
∑

ξ2∈Z/pZ

ĝ(ξ2)e
2πi(x+r)ξ2/p

h(x+ 2r) =
∑

ξ3∈Z/pZ

ĥ(ξ3)e
2πi(x+2r)ξ3/p

which allows us to write T (f, g, h) as

∑

ξ1,ξ2,ξ3∈Z/pZ

f̂(ξ1)ĝ(ξ2)ĥ(ξ3)

∫

Z/pZ

∫

Z/pZ
e2πi(xξ1+(x+r)ξ2+(x+2r)ξ3)/p dxdr.

The inner r integral vanishes unless ξ2 + 2ξ3 = 0 mod p; the inner x integral
vanishes unless ξ1 + ξ2 + ξ3 = 0 mod p. Thus the only non-zero contribution arises
when ξ3 = ξ1 and ξ2 = −2ξ1, thus

T (f, g, h) =
∑

ξ∈Z/pZ

f̂(ξ)ĝ(−2ξ)ĥ(ξ).

The claim then follows by taking ĥ out in supremum, and applying Cauchy-Schwarz
and Plancherel to what remains.

To apply this proposition, we write χA′ = |A′|/p + f , and split T (χA′, χA′ , χA′)
accordingly into 8 terms. 7 of these can be estimated using the above proposition
and lemma as O(δ2ε) +O(δε2) +O(ε3), while the 8th is T (|A′|/p, |A′|/p, |A′|/p) =
|A′|3/p3, which is roughly δ3. Thus if we choose ε ≪ δ we obtain (2) as desired.
This gives us a non-genuine arithmetic progression of length 3; in fact, it gives us
∼ δ3p2 such progressions, which is consistent with the random case.

To upgrade this to a genuine arithmetic progression, we use a cutoff function. Let
ψ be a bump function adapted to [p/3, 2p/3]. We will show that

T (ψχA′ , ψχA′ , ψχA′) ≫ δ/p;

this will show that A′ ∩ [p/3, 2p/3] contains an arithmetic progression, which must
then necessarily be genuine. We split ψχA′ = ψ|A′|/p + ψf . Observing that the
Fourier transform of ψ is bounded and decays rapidly away from the origin, we
see that ψf is also linearly uniform (its Fourier coefficients are also O(ε)). Also,
T (ψ, ψ, ψ) ∼ c for some c > 0 independent of p, depending only on ψ. The claim
follows. This concludes the proof of Roth’s theorem. �

We now remark on what the exact dependence of N(δ) is on δ, as predicted by
the above proof. Let N(δ) be the smallest number for which the conclusion of
Szemeredi’s theorem (with k = 3) holds for that valaue of δ. An inspection of
the above argument shows that we can take ε = cδ for some absolute constants
c, C, and can take N0 = CMCδ−Cε−C for some other absolute constants C. If we
assume that M ≥ δ−1 (which is quite reasonable, given it is difficult to find many
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sets in {1, . . . ,M} of density δ if M < δ−1, we can thus take N0 = CMC . Thus
the above argument gives a recursive bound of the form

N(δ) ≤ CN(δ + cδ)C .

Also, we have N(δ) < 10 when δ > 0.9 (for instance), by the argument given for
δ > 2/3. Putting these two together, we can obtain a bound of the form

N(δ) ≤ exp(exp(C/δ))

for some other absolute constant C; see Q2. Inverting this, we thus see that for any
large N that every subset of {1, . . . , N} of density at least C/ log logN will contain
a non-trivial arithmetic progression of length 3. Note that this is far too weak to
address the question of what happens for the primes, which have a density of about
1/ logN ; in the next week’s notes we will give some progress toward closing this
gap.

Call a set A′ ⊆ Z/pZ linearly uniform if the function f = χA′ − |A′|/p has small

Fourier coefficients, say ‖f̂‖∞ . ε. The above argument says that if A′ is linearly
uniform and has density ∼ δ, then A′ contains ∼ δ3p2 arithmetic progressions;
roughly speaking, this is because the linear uniformity guarantees that the events
a ∈ A′, a + r ∈ A′, and a + 2r ∈ A′ behave more or less “independently”. Note
that if A′ had a high concentration in an arithmetic progression then we would not
have this independence.

3. Gowers proof of Szemeredi’s theorem when k = 4.

Roth’s argument above appeared all the way back in 1953. One might think that
it would be an easy manner to extend that k = 3 argument to, say, k = 4, but the
first such proof had to wait until 1969 by Szemeredi, and required some very deep
combinatorial results (in particular, Szemeredi’s uniformity lemma). Only in 1998
did Gowers finally extend the Fourier-analytic stile of Roth’s argument to k = 4,
and then in 2001 to all k.

The main difficulty when k = 4 is the following. We can once again give the
dichotomy between “compact factor” (where A ∩ P is denser than A) or “mixing”
(when A is uniformly of density δ). The compact factor case is again easy by
induction; the problem is how to use the mixing hypothesis. In theory, in this
case one expects about δ4p2 arithmetic progressions of length 4 in A′, which is of
course much larger than the ∼ δp trivial arithmetic progressions when p is large.
Unfortunately, in this case the Fourier argument is not as useful. If we introduce
the quadrilinear form

Q(f, g, h, k) :=

∫

Z/pZ

∫

Z/pZ
f(x)g(x+ r)h(x + 2r)k(x + 3r) dxdr

then the number of Z/pZ arithmetic progressions of length 4 in A′ is

p2Q(χA′ , χA′ , χA′ , χA′) − |A′|.
The main term is

p2Q(|A′|/p, |A′|/p, |A′|/p, |A′|/p) ∼ δ4p2
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as expected, and most of the other terms can be treated using Proposition 2.4
(because if there is at least one constant factor |A′|/p then one can collapse the
quadrilinear form to a trilinear one, which can then be treated using some variant
of Proposition 2.4). However, the term p2Q(f, f, f, f) is more resistant to analysis.
A Fourier argument shows that p2Q(f, f, f, f) is equal to

p2
∑

ξ1,ξ2,ξ3,ξ4∈Z/pZ:ξ1+ξ2+ξ3+ξ4=ξ2+2ξ3+3ξ4=0

f̂(ξ1)f̂(ξ2)f̂(ξ3)f̂(ξ4),

or equivalently

p2
∑

ξ3,ξ4∈Z/pZ

f̂(ξ3 + 2ξ4)f̂(−2ξ3 − 3ξ4)f̂(ξ3)f̂(ξ4).

Using the bounds ‖f̂‖l2 ∼ δ1/2 and ‖f̂‖∞ . ε, the best bound that one can ob-
tain on expression term is O(δ2p2) (how? Use Cauchy-Schwarz on Z/pZ × Z/pZ,
splitting the four factors into pairs of two), which dominates the main term.

The basic problem is that linear uniformity is not strong enough to control Q. How-
ever, if we strengthen linear uniformity to something called quadratic uniformity,
then we will be in good shape. At this point it is not quite clear what quadratic
uniformity should mean; in fact, the difficulty in even coming up with the correct
notion here is one of the key stumbling blocks in the argument. (An obvious guess
for quadratic uniformity is that the function f should be somewhat orthogonal, not
just to linear phase functions, but also to quadratic phase functions as well; it turns
out that this WILL imply the notion of quadratic uniformity which we will use,
but only if we localize it to relatively short sub-progressions, and the implication is
highly nontrivial, using both Freiman’s theorem and the Balog-Szemeredi theorem).

Let us first make some notation. Let us use o(1) to denote any quantity depending
on ε which goes to zero as ε goes to 0, so in particular we can make o(1) much
smaller than δ by choosing ε sufficiently small. We say that a statement P (k) is
true for most k ∈ Z/pZ if the number of exceptional k for which P (k) false is only
o(p).

We say that a function f on Z/pZ is linearly uniform if ‖f‖∞ . 1, but ‖f̂‖∞ = o(1);
as we saw earlier, this basically meant that f did not concentrate on any arithmetic
progression. We say that f is quadratically uniform if ‖f‖∞ . 1, and f(x+ k)f(x)
is linearly uniform for most k ∈ Z/pZ. In other words (see Q5), f is quadratically
uniform if

∑

k∈Z/pZ

‖ ̂f(· + k)f‖∞ = o(p).

To understand this concept, let us first suppose that f is a phase function, i.e.
f(x) = e2πiφ(x) for some real-valued φ; thus the condition ‖f‖∞ . 1 is auto-
matic. Saying that f is linearly uniform is the same as saying that the function
e2πi(φ(x)−xξ/p) has mean o(1) for all ξ; thus the function φ(x) is never “aligned”
with any linear function xξ/p. Saying that f is quadratically uniform is the same
as saying that for most k, the function φ(x + k) − φ(x) is linearly uniform; this is
somewhat like saying that the “derivative” of φ never “behaves linearly”, and is
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thus a statement that φ “never behaves quadratically”. For instance, the function

f(x) = e2πix
2/p can easily be shown to be linearly uniform but not quadratically

uniform (see Q4, Q7(a)).

Let’s say that a subset A′ of Z/pZ is quadratically uniform if the mean-zero function
F = χA′ −|A′|/p is quadratically uniform. We now claim that if A′ is quadratically
uniform and has density ∼ δ, then it will contain ∼ δ4p2 arithmetic progressions
(i.e. the number predicted by a random argument). Roughly speaking, the reason
why we need quadratic uniformity is that this is what it takes to make the events
a ∈ A, a+r ∈ A, a+2r ∈ A, and a+3r ∈ A behave “independently”. For instance,
take A to be the set

A = {x ∈ Z/pZ : e2πix
2/p = 1 +O(δ)}.

Then A has density ∼ δ, and it turns out to be linearly uniform (for much the

same reason that e2πix
2/p is linearly uniform), but is not quadratically uniform; if

a, a+ r, a+ 2r all lie in A, then there is a very high probability that a+ 3r also lies
in A, basically because of the identity

(a+ 3r)2 = a2 − 3(a+ r)2 + 3(a+ 2r)2.

Now we prove that quadratic uniformity implies ∼ δ4p2 arithmetic progressions of
length 4:

Lemma 3.1. Suppose χA′ − |A′|/p is both linearly uniform and quadratically uni-

form. Then A′ contains ∼ δ4p2 Z/pZ-progressions of length 4.

Proof We first recall the analysis from Roth’s argument: if f , g, h are bounded
functions, and at least one of f, g, h are linearly uniform, then

∫

Z/pZ

∫

Z/pZ
f(a)g(a+ r)h(a + 2r) dadr = T (f, g, h) = o(1). (3)

Also, since F is quadratically uniform, we know the function F (x+k)F (x) linearly
uniform for most k. Applying (3) with f(x) = F (x+k)F (x), g(x) = F (x+2k)F (x),
h(x) = F (x+ 3k)F (x), we thus have
∫

Z/pZ

∫

Z/pZ
F (a)F (a+k)F (a+r)F (a+2k+r)F (a+2r)F (a+3k+2r) dadr = o(1)

for most k. For those exceptional values of k, this integral is still bounded, of
course. Thus we can integrate over all k and obtain
∫

Z/pZ

∫

Z/pZ

∫

Z/pZ
F (a)F (a+k)F (a+r)F (a+2k+r)F (a+2r)F (a+3k+2r) dadrdk = o(1).

Replacing k by the variable s := r+k, and a by the variable b := a−r, this becomes
∫

Z/pZ

∫

Z/pZ

∫

Z/pZ
F (b+r)F (b+s)F (b+2r)F (b+2s)F (b+3r)F (b+3r) dbdrds = o(1),

thus
∫

Z/pZ
|
∫

Z/pZ
F (b+ r)F (b + 2r)F (b + 3r) dr|2db = o(1),
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In particular, by Cauchy-Schwarz we have Q(F, F, F, F ) = o(1), which implies that
Q(χA′ , χA′ , χA′ , χA′) ∼ δ4 as desired (since we can split χA′ = |A′|/p + F and
use Proposition 2.4 and its variants (using the linear uniformity of A′) to control
crossterms.

In light of this lemma, and the linear uniformity already obtained from Roth’s
argument, it thus suffices to show

Proposition 3.2. Let A′ be a subset of Z/pZ of density δ + O(ε), which obeys

the conclusions of Proposition 2.2 (i.e. A′ has uniform density on reasonably long

arithmetic progressions). Then, if p is large enough, then A′ is quadratically uni-

form.

To prove this proposition, we will argue by contradiction. Let σ = o(1) be a
quantity to be chosen later. Suppose that A′ is not quadratically uniform; this
means that for at least σp values of k, we have a frequency ξ(k) such that

| ̂F (x)F (x+ k)(ξ(k))| ≥ σ. (4)

Let B be the set of all such k, and let Ω ∈ Z/pZ× Z/pZ be the graph

Ω := {(k, ξ(k))}.

One can think of Ω as the set of “resonant frequencies” of the two-variable function

F (x)F (x+ k) (if we take Fourier transforms in x but not in k).

We now perform a number of somewhat mysterious Fourier manipulations to even-
tually discover some additive information about Ω. Before we proceed, let us give
an intuitive argument. Suppose that F (x) = e2πiφ(x). Then the estimate (4) says,
essentially, that φ(x + k) − φ(x) ≈ ξ(k)x/p + c for “most” x and k. It turns out
the only way this can work out is if ξ is roughly additive, i.e. Ω is in some sense
somewhat closed under addition. Indeed, we heuristically expect φ to be linear,
and ξ(k) should be something like the slope of φ, multiplied by k. (See Q7(b)).

For all k ∈ B, we expand (4), using the fact that F is real, to obtain

|
∫

F (x)F (x + k)e2πixξ(k)/p dx| ≥ σ.

We square this to get
∫ ∫

F (x)F (y)F (x + k)F (y + k)e2πi(x−y)ξ(k)/p dxdy ≥ σ2.

Writing y = x+ u, and writing Gu(x) := F (x)F (x + u), this becomes
∫ ∫

Gu(x)Gu(x+ k)e−2πiuξ(k)/p dxdu ≥ σ2p.

Integrating this over all k ∈ B, we obtain
∫

(

∫ ∫

Gu(x)Gu(x+ k)Hu(k) dxdk) du ≥ σ3
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where Hu(k) := χB(k)e−2πiuξ(k)/p. But by Proposition 2.4, we have that

|
∫ ∫

Gu(x)Gu(x + k)Hu(k) dxdk| . ‖Ĥu‖∞

since Gu is bounded. Thus we have
∫

‖Ĥu‖∞du ≥ σ3.

Thus we must have ‖Ĥu‖∞ & σC for at least O(σCp) values of u. For all such u,

we have
∑

η∈Z/pZ |Ĥu(η)|4 & σC ; thus we have
∫

∑

η∈Z/pZ

|Ĥu(η)|4du ≥ σC .

Note however that

Ĥu(η) =

∫

B

e−2πi(ηk+uξ(k)) dk =

∫

Ω

e−2πi(k,ξ)·(η,u) dkdξ = χ̂Ω(η, u)

where we give Ω the product of normalized measure dk and counting measure dξ.
Thus by Plancherel

∫

∑

η∈Z/pZ

|Ĥu(η)|4du = ‖χΩ ∗ χΩ‖2
2 = p−3|{a, b, c, d ∈ Ω : a+ b = c+ d}|.

Thus we have

|{a, b, c, d ∈ Ω : a+ b = c+ d}| & σCp3 & σC |Ω|3.
In other words, Ω is partly closed under addition, in the language of last week’s
notes. Thus by the Balog-Szemeredi theorem, there exists Ω′ ⊆ Ω with |Ω′| & σC |Ω|
such that Ω′ is totally closed under addition, |Ω′ + Ω′| . σC |Ω′|. By Freiman’s
theorem (adapted to Z/pZ×Z/pZ; this is not a torsion-free abelian group, but the
argument still essentially extends), Ω′ is thus contained inside a proper generalized
arithmetic progression P of rank C(σ) and size at most C(σ)p, thus in particular
|Ω′| & C(σ)|P |. But this progression P can be partitioned into one-dimensional
progressions of size at least & pc(σ); thus by the pigeonhole principle we can thus
find a one-dimensional arithmetic progression Q of size at least & pc(σ) such that

|Ω ∩Q| ≥ |Ω′ ∩Q| & c(σ)|Q|.

This progression Q takes the form

Q := {(k, ak + b : k ∈ R}
where R is an arithmetic progression in Z/pZ of size & pc(σ), and a, b ∈ Z/pZ.
Thus we have

| ̂F (x)F (x+ k)(ak + b)| ≥ σ

for at least c(σ)|R| values of k ∈ R. In particular we have
∑

k∈R

| ̂F (x)F (x+ k)(ak + b)|2 ≥ c(σ)|R|.

To obtain a contradiction, it will thus suffice to show the following “localized,
linearized” form of quadratic uniformity:
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Proposition 3.3. Let A′ be a subset of Z/pZ of density δ + O(ε), which obeys

the conclusions of Proposition 2.2 (i.e. A′ has uniform density on reasonably long

arithmetic progressions). Then, if p is large enough, then

∑

k∈R

| ̂F (x)F (x+ k)(ak + b)|2 = o(|R|)

for all a, b ∈ Z/pZ and all arithmetic progressions R of size at least |R| ≥ M2 =
M2(M1, δ, ε).

We now prove this in the next section to finish the proof of Gowers’ theorem.

4. Linearized quadratic uniformity

Let R be a reasonably long arithmetic progression, and let a, b be in Z/pZ. We
now have to bound the expression

∑

k∈R

| ̂F (x)F (x+ k)(ak + b)|2. (5)

Since
̂F (x)F (x+ k)(ak + b) =

∫

F (x)F (x+ k)e−2πi(ak+b)x/p dx

we can write

| ̂F (x)F (x+ k)(ak+b)|2 =

∫ ∫

F (x)F (y)F (x+k)F (y + k)e−2πi(ak+b)(x−y)/p dxdy.

Making the substitution y = x+ u, we can thus rewrite (5) as
∫

F (x)
∑

k∈R

∫

F (x+ u)F (x+ k)F (x+ u+ k)e2πi(ak+b)u/p du dx.

We need to show that this is o(|R|). It suffices to prove this uniformly in x, i.e. it
suffices to show that

|
∑

k∈R

∫

F (x+ u)F (x+ k)F (x+ u+ k)e2πi(ak+b)u/p du| = o(|R|).

By translation invariance we may take x = 0:

|
∑

k∈R

∫

F (u)F (k)F (u + k)e2πi(ak+b)u/p du| = o(|R|).

Now for the key trick. The phase function (ak + b)u is bilinear in k and u. Thus
we can write it (mod p) as

(ak + b)u = Q1(u) +Q2(k) +Q3(u+ k)

for some (inhomogeneous) quadratic polynomials Q1, Q2, Q3 with integer coeffi-
cients. Thus it will suffice to show

|
∫ ∫

F1(u)F2(k)F3(u+ k) dudk| = o(|R|/p), (6)

where
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F1(u) := F (u)e2πiQ1(u)/p

F2(k) := F (k)e2πiQ2(k)/pχR(k)

F3(x) := F (x)e2πiQ3(x)/p.

At this point we shall oversimplify the argument for sake of exposition, and clean
up the oversimplification later.

The left-hand side of (6) is T (F1, F2, F3), and F1 and F3 are clearly bounded in L2.
Thus by Proposition 2.4 it thus suffices to show that

‖F̂2‖∞ = o(|R|/p),
or in other words

∑

k∈R

F (k)e2πiQ2(k)/pe−2πiξk/p = o(|R|).

The linear phase −ξk can be absorbed into the arbitrary quadratic phase Q2, and
so it suffices to show

Proposition 4.1. For any progression R of length at least M2, and any quadratic

polynomial Q(k) with integer coefficients, we have
∑

k∈R

F (k)e2πiQ(k)/p = o(|R|).

This is a much stronger version of Lemma 2.3, which dealt with linear phase func-
tions instead of quadratic ones, and worked on all of Z/pZ instead of localizing to
the relatively short interval R. As it turns out, this Proposition is not quite true
(and so this proof is not quite rigorous), however we will indicate the fix needed for
this proposition a bit later.

Proof (Informal) As mentioned above, we cannot quite prove this proposition
using only the hypothesis we have, which is the upper bound

F ∗ χP|P | (x) . ε

for all x and all progressions P of length at least M1. However, we can derive it if
we assume that we can have the lower bound as well as the upper bound:

|F ∗ χP|P | (x)| . ε = o(1). (7)

As mentioned earlier, we do not actually have this estimate, except in an L1-
averaged sense; so as it turns out we only get an L1-averaged version of this propo-
sition, but this turns out to be sufficient to close the argument. More on this
later.

Anyway, suppose we have (7). The idea is to split R into sub-progressions, on which
Q(k)/p is essentially constant (mod 1), more precisely

Lemma 4.2. If M2 is sufficiently large, then one can partition R as the disjoint

union of progressions P1, . . . , PK , such that each progression Pj is of length between

M1 and 2M1, and such that e2πiQ(k)/p is within o(1) of a constant cj on each

progression Pj .
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Assuming this lemma and (7), we have
∑

k∈Pj

F (k)e2πiQ(k)/p = c
∑

k∈Pj

F (k) + o(|Pj |) = co(|Pj |) + o(|Pj |) = o(|Pj |)

and the claim follows by summing over j.

It remains to prove the lemma. By applying a linear transformation we may assume
that R = {1, 2, . . . , r} for some r ≥M2.

Now we write Q(k) = ak2 + bk + c. We need to partition R into progressions Pj
for which Q/p is essentially constant mod p, or more precisely

‖ak
2 + bk + c− Cj

p
‖ = o(1)

for all k ∈ Pj , where ‖x‖ denotes the distance from x to the nearest integer. Another
way of saying this is that

‖a(k
2 − (k′)2) + b(k − k′)

p
‖ = o(1)

for all k, k′ ∈ Pj .

We first observe from Weyl’s theorem on the distribution of squares1 that we can
find 1 ≤ d ≤ C(M1, ε) such that

‖ad
2

p
‖ = o(M−100

1 ).

We can then partition R into progressions Qi of length ∼M10
1 and spacing d. Let

Qi = {k0 + jd : j = O(M10
1 )} be one of these progressions. Then if k = k0 + jd and

k′ = k0 + j′d, ten

‖a(k
2 − (k′)2) + b(k − k′)

p
‖ = ‖a(j

2 − (j′)2)d2

p
+

(2ak0 + bd)(j − j′)

p
‖ = ‖ (2ak0 + bd)(j − j′)

p
‖+o(1)

by choice of d. So now we use Kronecker’s theorem2 to find a number J = O(M5
1 )

such that

‖ (2ak0 + bd)

p
J‖ = O(M−5

1 ).

If we then divide Qi into progressions Ps of length between M1 and M1, and of
spacing Jd, we thus have

‖ (2ak0 + bd)(j − j′)

p
‖ = O(M−4

1 ) = o(1)

1This theorem states that the integer parts of ‖αn
2)∞n=1

are uniformly distributed if α is
irrational. There is a quantitative version of this which says that these integer parts are “approx-
imately uniformly distributed” if α is not too close to a rational of small denominator. On the
other hand, if α is close to a rational of small denominator, then αn

2 is close to an integer quite
often. We omit the precise treatment of Weyl’s theorem here due to lack of time; however Gowers

[2] has shown that given any a ∈ Z/pZ and any integer D > 1, we can find 1 ≤ d ≤ D such that

‖
ad2

p
‖ . D

−1/8.
2This is the same as Weyl’s theorem, but for αn instead of αn

2: specifically, given any α and
any N , there exists 1 ≤ n ≤ N such that ‖αn‖ . 1/N . Actually the argument here is quite
simple, based on the pigeonhole principle; at least two of the multiples of α must be within 1/N

of each other, so the difference will be within O(1/N) of the nearest integer.
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for all k0 + jd, k0 + j′d ∈ Ps (so that (j − j′)/J = O(M1)) and the claim follows.

The problem with this Proposition, of course, is that assumes (7), when in fact we
only have this bound on the average in an L1 sense. If one works one’s way through
the above argument, this implies that we have the following weaker averaged version
of the Proposition: if R is as above, and for each y ∈ Z/pZ we assign a quadratic
polynomial Qy, then we have

∫

|
∑

k∈R+y

F (k)e2πiQy(k)/p| dy = o(|R|).

It turns out that this is still enough to prove (6). The trick is to partition the u
variable into translates of R, apply the preceding argument to each translate, and
then average up. We omit the details.

5. Exercises

• Q1. Let p be a large prime and 0 < δ < 1. Let A be a random subset of
Z/pZ, formed by letting each element of Z/pZ lie in A with an independent
probability of δ.

(a) Show that the expected number of proper arithmetic progressions in A
is exactly δ3p(p− 1).

(b) Let f := χA − δ. Show that for any frequency ξ, we have

E(exp(
√
pRef̂(ξ)) . 1

where the implicit constant is allowed to depend on δ. Hint: write

√
pRef̂(ξ) =

p
∑

j=1

p−1/2 cos(2πjξ/p)Xj

where the Xj are iid random variables which equal 1 − δ with probability δ,
and −δ with probability 1−δ (so in particular Xj , and all products of distinct
Xj , have mean zero). Now argue as in the dissociated set estimates in the
last set of notes.

A similar estimate obtains if Ref̂ is replaced by −Ref̂ or ±Imf̂ . Conclude

that one has ‖f̂‖∞ . p−1/2 log p with probability at least 1 − p−100.
• Q2. Given the bounds

N(δ) ≤ CN(δ + cδ)C .

Also, we have N(δ) < 10 when δ > 0.9, deduce a bound of the form

N(δ) ≤ exp(exp(Cδ))

for all 0 < δ ≤ 1. (Use induction. It may help to make the constants C more
explicit to distinguish them from each other (i.e. use C1, C2, etc.)

• Q3. Let A be a subset of Z/pZ of density |A| = δp, and suppose that χA − δ
is linearly uniform, thus |χ̂A(ξ)| = o(1) for all ξ 6= 0. Let P be a proper arith-
metic progression in Z/pZ of size |P | ∼ p. Show that |A∩P | = (δ+ o(1))|P |.
Thus we have a partial converse to Roth’s argument (which derives linear uni-
formity from uniform density on moderately long progressions); given linear
uniformity, we can derive uniform density on very long progressions. (Hint:
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by an affine transformation we may assume that P is an interval. Use Par-
seval to estimate

∫

(χA − δ)ψ, where ψ is a suitable bump function which is
supported on P and equals 1 on most of P .

• Q4. Let p be an odd prime. Let f be the function f(x) := exp(2πix2/p)

on Z/pZ. Show that ‖f‖∞ = 1, that ‖f̂‖∞ = p−1/2, but that for every k,

‖ ̂f(· + k)f‖∞ = 1. Thus f is linearly uniform but not quadratically uniform.
• Q5. Let f(x) be any bounded function on Z/pZ, thus ‖f‖∞ . 1. Show that

the statement
∫

Z/pZ |f(x)| = o(1) is true if and only if f(x) = o(1) for most

x ∈ Z/pZ.
• Q6. Let f(x), g(x), h(x) be maps from one abelian group Z to another Z ′ such

that we have the identity f(a) + g(a+ r) + h(a+ 2r) = c for all a, r ∈ Z and
some fixed c ∈ Z ′. Show that f and g and h are affine homomorphisms from Z
to Z ′ (e.g. f(x) = F (x)+ k, where k ∈ Z ′ and F is a genuine homomorphism
from Z to Z ′). Hint: first normalize so that f(0) = g(0) = h(0) = 0. (Why is
this result analogous to Proposition 2.4?)

• Q7* (a). Let f(x), g(x), h(x), k(x) be maps from one abelian group Z to
another Z ′ such that we have the identity f(a) + g(a + r) + h(a + 2r) +
k(a + 3r) = c for all a, r ∈ Z and some fixed c ∈ Z ′. Show that for every
k ∈ Z, the function f(x + k) − f(x) is an affine homomorphism from Z to
Z ′, thus f(x + k) − f(x) = φ(k)(x) + c(k), where φ(k) is a homomorphism
from Z to Z ′ and c(k) is an element of Z ′. (Why is this result analogous
to the statement that quadratic uniformity implies the expected number of
arithmetic progressions of length 4?)

(b) Show that the map k → φ(k) is itself a homomorphism (from Z to
Hom(Z,Z ′)). Conclude that f is an affine quadratic form, i.e. f(x) =
Q(x, x) + L(x) + C for some bilinear form Q : Z × Z → Z ′, some linear
form (i.e. homomorphism) L : Z → Z ′, and some constant C ∈ Z ′. Simi-
larly for g, h, k. (Why is this result analogous to the claim that the set Ω of
resonant frequencies is partly closed under addition?)
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1. More on arithmetic progressions of length 3

In last week’s notes we proved (among other things) Roth’s theorem, which is the
following:

Theorem 1.1. Let 0 < δ ≤ 1. Then there exists an N(δ) such that for any

N > N(δ, k) and any subset A of {1, . . . , N} of cardinality |A| ≥ δN , there exists

an proper arithmetic progression in A of length 3.

Roth’s argument is ultimately based on proving the recursive inequality

N(δ) . N(δ + cδ2)2

which ultimately leads to an estimate for N(δ) of the form

N(δ) . ee
C/δ

.

To put this another way, to ensure that a subset A of {1, . . . , N} contains a non-
trivial arithmetic progression of length 3, Roth’s argument requires that A have
density at least & 1/ log logN .

One can ask whether this can be improved. Heath-Brown and Szemeredi [4] were
able to improve this bound from 1/ log logN to 1/(logN)1/20; the main new idea
over Roth’s argument is to try to exploit data from several Fourier coefficients
simultaneously, rather than Roth’s approach of locating one large Fourier coeffi-
cient and using that to refine the set. Bourgain [2] then improved this further, to
(log logN)1/2/(logN)1/2, which is the best known result to date.

It is not known what the sharp relationship between N and δ should be. An
old conjecture of Erdös and Turan [3] suggests that the correct density should
be roughly 1/ logN (more precisely, one should have infinitely many progressions
whenever A is a subset of the natural numbers with

∑

n∈A 1/n divergent; this

corresponds to a density somewhere between 1/ logN and 1/(logN)1+ε, roughly
speaking; see Q1).

The best known counterexample of a set with no arithmetic progressions of length
3 is almost sixty years old, and is due to Behrend [1] (see also [8]). This example
has density exp(−C

√
logN), which is substantially less dense than the positive

results (which require a density of at least exp(−C log logN) or so). It is quite
remarkable that this simple example has not been improved in so long a span of
time. (The best that is known is that there are slightly larger sets, of density

1
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exp(−C(logN)1/(k−1)), which contain no arithmetic progressions of length k; see
[6], [5]).

We begin with Behrend’s example.

2. Behrend’s example

The objective of this section is to prove

Theorem 2.1. Let N ≫ 1 be a large number. Then there exists a subset A ⊂
{1, . . . , N} of cardinality |A| & N exp(−C

√
logN) which does not contain any

proper arithmetic progressions of length 3.

Behrend’s key observation is the following: in any Euclidean space Rd, no matter
how large the dimension d, a sphere {x ∈ Rd : |x| = r} cannot contain any proper
arithmetic progressions of length 3. This is basically because the sphere is the
boundary of a strictly convex body.

Moving from continuous space back to discrete, we see that any set of the form

{(x1, . . . , xd) ∈ Zd : x2
1 + . . .+ x2

d = R}
for any integers d ≥ 1 and R > 0, cannot contain any proper arithmetic progressions
of length 3.

Now we have to map this example back to {1, . . . , N}. Let n, d, and R be large
integers to be chosen later, and consider the set

Sn,d,R := {(x1, . . . , xd) ∈ {1, 2, . . . , n}d : x2
1 + . . .+ x2

d = R};
thus Sn,d,R is free of proper arithmetic progressions of length 3 (or higher). Note
that as R ranges from n to nd2, the sets Sn,d,R cover the cube {1, 2, . . . , n}d, which
has cardinality nd. Thus by the pigeonhole principle there exists an R with

|Sn,d,R| & nd/(nd2).

Now we map Sn,d,R to {1, . . . , N}. Recall that the map φ : {1, . . . , n}d →
φ({1, . . . , n})d defined by

φ(x1, . . . , xd) :=

d
∑

j=1

xj(2n)j−1

is a Freiman isomorphism of order 2. In particular, φ(Sn,d,R) also has cardinality
& nd/(nd2) and has no arithmetic progressions of length 3. It is also contained in
{1, . . . , N} if N ≫ Cdnd. Thus if we set n := cN1/d, then we have found a subset
A of {1, . . . , N} without arithmetic progressions of length 3, which has cardinality

|A| & cdN/(N1/dd2) & N exp(−Cd− logN

d
− C log d).

Thus if we set d ∼ logN , we obtain the result.
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3. Bourgain’s argument

We now present Bourgain’s argument, which states that any subset of {1, . . . , N}
with density ≫

√
log logN/

√
logN will contain an arithmetic progression. Equiv-

alently, this asserts that N(δ) . (1
δ )
C/δ2 ; see Q2.

By embedding {1, . . . , N} in a cyclic group of order p ∼ 3N , it suffices to prove
the following:

Theorem 3.1. Let 0 < δ0 ≤ 1, and let p ≫ ( 1
δ0

)C/δ
2

0 be a prime. Then every

subset A of Z/pZ of density at least δ0 contains a proper arithmetic progression (in

Z/pZ) of length 3.

We now begin the proof of Theorem 3.1. Assume for contradiction that A contains
no proper arithmetic progressions of length 3. We will also assume that |A| = δ0p
(since one can just adjust δ0 if necessary if |A| > δ0p).

We recall the trilinear form T (f, g, h) defined by

T (f, g, h) :=

∫

Z/pZ

∫

Z/pZ
f(a)g(a+r)h(a+2r) dadr = p−2

∑

a,r∈Z/pZ

f(a)g(a+r)h(a+2r)

where integration is over normalized counting measure on Z/pZ. Then, since A has
no proper arithmetic progressions, we see that

T (χA, χA, χA) = p−2
∑

a∈Z/pZ

χA(a)χA(a)χA(a) = |A|/p2 = δ0/p.

More generally, we see that for any functions ψ1, ψ2, ψ3 on Z/pZ, we have

T (χAψ1, χAψ2, χAψ3) = p−2
∑

a∈A

ψ1(x)ψ2(x)ψ3(x). (1)

On the other hand, we have the identity

T (f, g, h) =
∑

ξ∈Z/pZ

f̂(ξ)ĝ(−2ξ)ĥ(ξ). (2)

As before, the idea is to use both (1) and (2) to force χA − δ to have a large

Fourier coefficient, say χ̂A − δ(ξ) is large. This rather directly shows that A is
fairly dense (density at least δ + cδ2) on a Bohr neighborhood - some translate of
the set {x ∈ Z/pZ : ‖xξ/p‖ ≪ δ2}. Roughly speaking, the idea is to let ψ be

a probability distribution on this Bohr neighborhood, and then note that ψ̂(ξ) is
large, thus (χA−δ)∗ψ is large, thus χA−δ is large on some translate of the support
of ψ.

In our previous proof of Roth’s theorem, we then passed from the Bohr neighbor-
hood to an arithmetic progression, since that was Freiman equivalent to an interval
{1, . . . ,M} and we could continue the induction. However, this step of passing
from neighborhoods to progressions is quite inefficient (in particular, it causes the
square in the recursion N(δ) . N(δ + cδ2)2). Bourgain’s trick is to avoid this step
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by staying with the Bohr neighborhood. At the first iteration we only restrict to
a Bohr neighborhood of dimension 1, but each stage introduces another dimen-
sion to the Bohr neighborhood, because we add another frequency restriction to
the previous neighborhood at each stage. Also while Bohr neighborhoods are very
similar in spirit to arithmetic progressions and intervals, they are not quite as well-
behaved under sums; for instance the sumset of {x : ‖xω/p‖ ≤ 1/K} with itself can
have significantly larger cardinality (about 2d as large, if d is the dimension of the
Bohr neighborhood). However, things are much better if one takes the sumset of
{x : ‖xω/p‖ ≤ 1/K} with {x : ‖xω/p‖ ≤ 1/K ′} if K ′ ≫ K (e.g. K ′ ≥ d2K), so we
will be using tricks like this to keep the Bohr neighbourhoods behaving as much like
intervals or arithmetic progressions as possible. Actually to make this work neatly
we will not quite use Bohr neighborhoods, but rather exponential cutoff functions
which are localized near Bohr neighborhoods. Each new Bohr neighborhood has
a density which is δ2 better than the previous one, but has one higher dimension,
and the width K has to narrow by a factor of δC (mostly because of this K versus
K ′ issue). Thus the procedure has to halt after O(1/δ) iterations, in which case we
have a Bohr neighborhood of dimension O(1/δ) and width O(δC/δ), so a net density

of about O(δC/δ
2

). This is only meaningful if p ≫ δ−C/δ
2

, whence the restriction
on p.

We now turn to the details.

4. Bohr cutoff functions

We shall need the following cutoff functions.

Given any x ∈ Z/pZ, write ‖x/p‖ for the distance from x/p to the nearest integer,
thus ‖x/p‖ ranges between 0 and 1/2. Given any d ≥ 0 and any vector ω =
(ω1, . . . , ωd) ∈ (Z/pZ)d, write

‖xω/p‖ :=

d
∑

j=1

‖xωj/p‖,

and let φω be the function

φω(x) := exp(−‖xωj/p‖).
We shall be using cutoff functions of the form φKω for various large numbers K ≫ 1.
Roughly speaking, this is a smooth projection to the Bohr neighborhood

{x ∈ Z/pZ :

d
∑

j=1

‖xωj
p

‖ . 1/K}, (3)

and is somewhat similar to the characteristic function of a subgroup or of an arith-
metic progression (since the above set is somewhat closed under addition, especially
if d is not too large.

Note that φω is always even and positive, and in particular equals 1 at the origin
0. We observe the following crude lower bound on φKω .
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Lemma 4.1. We have
∫

φKω & (CdK)−d.

Proof This is Minkowski’s theorem again. We cover the torus Rd/Zd into about
(CdK)d cubes of side length 1/CdK. By the pigeonhole principle, one of these
cubes must contain at least (CdK)−dp points of the form xω, where x ∈ Z/pZ.
Subtracting, we thus see that the cube centered at the origin of sidelength 2/CdK
also contains at least (CdK)−dp points of the form xω. Since φKω ∼ 1 on this cube,
the claim follows.

We now introduce the normalized functions ψω,K by

ψω,K :=
φKω

∫

φKω
;

thus ψω,K is the L1-normalized version of ψKω , and can be thought of as a probability
measure concentrated on the Bohr neighborhood (3).

One measure of this is the following localization estimate.

Lemma 4.2. For any λ≫ d2, we have
∫

‖xω/p‖≥λ/K

ψω,K(x) dx . e−λ/2.

Proof It suffices to show that
∫

(λ+1)/K≥‖xω/p‖≥λ/K

ψω,K(x) dx . e−λ/2,

since the claim then follows by summing in λ. Since φKω (x) ∼ e−λ on this set, it
thus suffices to show that

|{x ∈ Z/pZ : (λ + 1)/K ≥ ‖xω/p‖ ≥ λ/K}| . eλ/2
∫

φKω .

But we have
∫

φKω . |{x ∈ Z/pZ : ‖xω/p‖ ≤ 1/K}|.

Now we can cover the region

{y ∈ Rd/Zd : (λ + 1)/K ≥ ‖y‖ ≥ λ/K}
by O((Cλ)d) = O(eλ/2) l1-balls of radius 1/2K. Each one of these balls can contain
at most |{x ∈ Z/pZ : ‖xω/p‖ ≤ 1/K}| points of the form xω/p by the Minkowski’s
theorem argument, and the claim follows.

We now prove a basic estimate, that narrower projections are essentially convolution
idempotents for wider projections.

Lemma 4.3. Let ω ∈ (Z/pZ)d and K ′ ≫ d2K. Then we have the pointwise

estimate
∫

ψω,K(x − jy)ψω/k,K′(y) dy = (1 +O(
K

K ′
))ψω,K(x)
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for j = 1, 2 and k = 1, 2. More generally, for any subset A′ of Z/pZ and any

ωd+1 ∈ Z/pZ, we have
∫

ψω,K(x− jy)χA′(x− jy)ψ(ω/k,ωd+1),K′(y) dy = (

∫

χA′(x− jy)ψω,K′(y) dy +O(d2 K

K ′
))ψω,K(x).

(4)

In particular we have

‖ψω,K ∗ ψω/k,K′ − ψω,K‖1 . d2 K

K ′
.

Proof It suffices to prove (4). Fix x. We have to show that
∫

(ψω,K(x− jy) − ψω,K(x))χA′ (x− jy)ψ(ω/k,ωd+1),K′(y) dy = O(d2 K

K ′
)ψω,K(x).

Dividing out by ψω,K(x) and using the triangle inequality, it will suffice to show
∫

(eK‖kyω′/p‖ − 1)ψω′,K′(y) dy = O(d2 K

K ′
)

where ω′ := (ω/k, ωd+1) ∈ (Z/pZ)d+1. We split this into the region where ‖yω′/p‖ ≫
d2/K ′ and ‖yω′/p‖ . d2/K ′. In the first part we use Lemma 4.2 and decompo-
sition into shells λ ≤ ‖yω′/p‖ ≤ λ + 1; for the second part we use the Taylor
approximation

eK‖kyω′/p‖ − 1 = O(d2 K

K ′
)

and the L1-normalization of ψω′,K′ .

This estimate has two important consequences for our application. First, the func-
tional T is large when applied to these measures ψω,K :

Corollary 4.4. Let ω ∈ (Z/pZ)d and K ′ ≫ d2K. Then we have

T (ψ
1/2
ω,K , ψω,K′ , ψ

1/2
ω,K) = 1 +O(d2K/K ′).

More generally, for any subset A′ ⊆ Z/pZ we have

T (ψ
1/2
ω,K , ψω,K′ , χA′ψ

1/2
ω,K) = (1 +O(d2K/K ′))

∫

χA′ψω,K . (5)

Proof It suffices to prove (5). The left-hand side is
∫

χA′(x)ψω,K(x)1/2(

∫

ψω,K(x− 2y)1/2ψω,K′(y) dy) dx,

where we have used the even-ness of ψω,K . Since ψ
1/2
ω,K is a scalar multiple of ψω,K/2,

we may use Lemma 4.3 to write this as
∫

χA′(x)ψω,K(x)1/2ψω,K(x)1/2(1 +O(d2K/K ′)) dx

and the claim follows from the L1 normalization of ψω,K .

Secondly, if the Fourier coefficient of a wide projection is large, then so is the
coefficient of the narrow projection:
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Lemma 4.5. Let ω ∈ (Z/pZ)d and K ′ ≫ d2K. Suppose that ξ ∈ Z/pZ is such

that

|ψ̂ω,K(−2ξ)| ≫ d2 K

K ′
.

Then we have

|ψ̂ω/2,K′(ξ)| ∼ 1.

Proof Write ω′ := ω/2. Let y ∈ Z/pZ be such that ‖yω′/p‖ ≤ d2/K ′. Then if we
write y′ := y/2 in Z/pZ, then ‖y′ω/p‖ ≤ d2/K ′. In particular, we have

ψω,K(x+ y′) − ψω,K(x) = O(d2 K

K ′
ψω,K).

Integrating this against e−2πi(−2ξ)x/p, we obtain

(e2πii(2ξ)y
′/p − 1)ψ̂ω,K(−2ξ) = O(d2 K

K ′
).

By hypothesis we thus have

|e2πii(2ξ)y′/p − 1| ≪ 1,

so in particular

|e−2πiiξy/p − 1| ≪ 1.

Integrating this against ψω′,K′ we obtain
∫

‖yω′/p‖≤d2/K′

(e−2πiiξy/p − 1)ψω′,K′(y) dy| ≪ 1.

On the other hand, from Lema 4.2 we have
∫

‖yω′/p‖≥d2/K′

(e−2πiiξy/p − 1)ψω′,K′(y) dy| ≪ 1.

Adding the two, we obtain the claim.

Finally, we present one of the inductive steps, reminiscent of Roth’s argument: if
χA′ has density δ on ψω,K , and (χA′ − δ)ψω,K has a large Fourier coefficient, then
some translate of χA′ has density strictly greater than δ for some refined cutoff
ψω′,K′ .

Lemma 4.6. Let ω ∈ (Z/pZ)d and K ′ ≫ d2K. Suppose that A′ is a subset of

Z/pZ, and set δ :=
∫

χA′ψω,K . Write f := (χA′ − δ)ψω,K . Suppose we have a

frequency ξ ∈ Z/pZ such that |f̂(ξ)| ≫ d2K
K′

. Then there exists an ω′ ∈ (Z/pZ)d+1

and a translate A′′ of A′ such that
∫

χA′′ψω′,K′ ≥ δ + c|f̂(ξ)|.

Proof Write ω′ := (ω, ξ). By construction (and Lemma 4.2), we see that

ψ̂ω′,K′(ξ) ∼ 1

since the phase e−2πixξ/p is close to 1 on the effective support of ψω′,K′ . Thus we
have

|f̂(ξ)ψ̂ω′,K′(ξ)| ∼ |f̂(ξ)|
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and in particular that

‖f ∗ ψω′,K′‖1 & |f̂(ξ)|.
Since f has mean zero, so does f ∗ ψω′,K′ . Thus we have

∫

(f ∗ ψω′,K′)+ & |f̂(ξ)|,

and by the pigeonhole principle so there exists an x such that

f ∗ ψω′,K′(x) & |f̂(ξ)|ψω,K(x).

But by Lemma 4.3, we have

ψω,K ∗ ψω′,K′(x) = (1 +O(
d2K

K ′
))ψω,K(x)

and

χA′ψω,K ∗ ψω′,K′(x) = (1 +O(
d2K

K ′
))(χA′ ∗ ψω′,K′)(x)ψω,K(x),

so we conclude that
χA′ ∗ ψω′,K′(x) − δ & |f̂(ξ)|

and the claim follows.

5. Putting it all together

Using all the above tools, we can now conclude Bourgain’s argument. Recall that
we are assuming A to have density δ0 and no proper arithmetic progressions of
length 3. Let C0 be a large absolute constant (e.g. C0 = 1000); assume that

p≫ (1/δ)C
5

0
/δ2 . The key inductive step is the following:

Proposition 5.1. Let d ≤ C0/δ0, let ω ∈ (Z/pZ)d, and let 1 ≤ K ≤ δC0/δ0 .

Suppose we have a translate A′ of A such that
∫

χA′ψω,K = δ

for some δ0 ≤ δ ≤ 1. Then there exists ω′ ∈ (Z/pZ)d+1 , K ′ ≤ δ−CK and a

translate A′′ of A′ such that
∫

χA′′ψω,K′ = δ′

where δ′ ≥ δ + cδ2.

Proof The first step is to refine ψω,K a little bit in such a way that the density of
A′ remains close to δ.

Set Kj := (cd2δ2)jK for j = 1, 2, 3. From Lemma 4.3 we have
∫

χA′(ψω,K ∗ ψω,Kj
− ψω,K) = O(cδ2)

for j = 1, 2, and hence
∫

χA′(ψω,K ∗ ψω,Kj
) = δ +O(cδ2)
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which can be rewritten (using the L1 normalization of ψω,K) as
∫

χA′(ψω,K ∗ ψω,Kj
) = δ +O(cδ2)

∫

(χA′ ∗ ψω,Kj
− δ)ψω,K = O(cδ2).

Also we can assume that

(χA′ ∗ ψω,Kj
− δ)(x) < cδ2

for all x ∈ Z/pZ, since we are done otherwise (by setting K ′ := K, ω′ = (ω, 0), and
A′′ := A′ − x). In particular we have

∫

(χA′ ∗ ψω,Kj
− δ)+ψω,K = O(cδ2).

Combining this with the previous we see that
∫ 2

∑

j=1

|χA′ ∗ ψω,Kj
− δ|ψω,K = O(cδ2).

By the pigeonhole principle we can thus find an x0 such that

2
∑

j=1

|χA′ ∗ ψω,Kj
− δ|(x0) = O(cδ2).

Without loss of generality we can take x0 = 0. Thus we have
∫

χA′(x)ψω,Kj
(x) = δ +O(cδ2) (6)

for j = 1, 2.

Now we compute the quantity

T (χA′ψ
1/2
ω,K1

, χA′ψω,K2
, χA′ψ

1/2
ω,K1

) − T (δψ
1/2
ω,K1

, δψω,K2
, δψ

1/2
ω,K1

). (7)

Since A has no proper arithmetic progressions of length 3, we have (1). In particular
from Lemma 4.1 we have the very crude bound

T (χA′ψ
1/2
ω,K1

, χA′ψω,K2
, χA′ψ

1/2
ω,K1

) ≤ (CdK2)
Cd/p.

On the other hand, from Corollary 4.4 we have

T (δψ
1/2
ω,K1

, δψω,K2
, δψ

1/2
ω,K1

) ∼ δ3.

From our lower bounds on p and upper bounds on d, K2 we thus have

|(7)| ∼ δ3.

Now we split (7) into pieces. We first investigate the quantity

T (χA′ψ
1/2
ω,K1

, χA′ψω,K2
, χA′ψ

1/2
ω,K1

) − T (χA′ψ
1/2
ω,K1

, δψω,K2
, χA′ψ

1/2
ω,K1

). (8)

Suppose first that |(8)| & δ3. By (2) we thus have

∑

ξ

| ̂
χA′ψ

1/2
ω,K1

(ξ)|2| ̂(χA′ − δ)ψω,K2
(−2ξ)| & δ3.
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But by Plancherel we have

∑

ξ

| ̂
χA′ψ

1/2
ω,K1

(ξ)|2 =

∫

χA′ψω,K1
∼ δ

and hence we have a frequency ξ such that

| ̂(χA′ − δ)ψω,K2
(−2ξ)| & δ2.

By Lemma 4.6 we can thus find a translate A′′ of A, an ω′ ∈ (Z/pZ)d+1 such that
∫

χA′′ψω′,K3
≥ δ + cδ2

as desired.

We may now suppose that |(8)| ≪ δ3, which implies that

T (χA′ψ
1/2
ω,K1

, δψω,K2
, χA′ψ

1/2
ω,K1

) − T (δψ
1/2
ω,K1

, δψω,K2
, δψ

1/2
ω,K1

)

has magnitude ∼ δ3. We split this as a linear combination of

T (δψ
1/2
ω,K1

, δψω,K2
, (χA′ − δ)ψ

1/2
ω,K1

) (9)

and

T ((χA′ − δ)ψ
1/2
ω,K1

, δψω,K2
, (χA′ − δ)ψ

1/2
ω,K1

) (10)

where we use the symmetry T (f, g, h) = T (h, f, g). To estimate (9), we observe
from Corollary 4.4 that

T (δψ
1/2
ω,K1

, δψω,K2
, δψ

1/2
ω,K1

) = δ3 +O(cδ4)

and

T (δψ
1/2
ω,K1

, δψω,K2
, χA′ψ

1/2
ω,K1

) = δ2(1 +O(cδ))(

∫

χA′ψω,K1
) = δ3 +O(cδ4)

and so (9) is O(cδ4). Thus we must have |(10)| ∼ δ3, thus by (2)

∑

ξ

| ̂
(χA′ − δ)ψ

1/2
ω,K1

(ξ)|2|ψ̂ω,K2
(−2ξ)| & δ3.

On the other hand, from Plancherel we have

∑

ξ

| ̂
(χA′ − δ)ψ

1/2
ω,K1

(ξ)|2 =

∫

(χA′ − δ)2ψω,K1
= O(δ),

and thus we have
∑

ξ:|ψ̂ω,K2
(−2ξ)|&cδ2

| ̂
(χA′ − δ)ψ

1/2
ω,K1

(ξ)|2|ψ̂ω,K2
(−2ξ)| & δ3.

By Lemma 4.5 we thus have

∑

ξ

| ̂
(χA′ − δ)ψ

1/2
ω,K1

(ξ)|2|ψ̂ω/2,K3
(ξ)|2 & δ3,

which by Plancherel implies that
∫

|((χA′ − δ)ψ
1/2
ω,K1

) ∗ ψω/2,K3
|2 & δ3. (11)
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So now let us investigate the quantity

|((χA′ − δ)ψ
1/2
ω,K1

) ∗ ψω/2,K3
|(x).

We can rewrite this as
∫

(χA′(x− y) − δ)ψ
1/2
ω,K1

(x− y)ψω/2,K3
(y) dy.

By Lemma 4.3, this is equal to
∫

(χA′(x − y) − δ)ψω/2,K3
(y) dyψ

1/2
ω,K1

(x) +O(cδ2ψ
1/2
ω,K1

(x)).

The error term contributes O(cδ4) to (11), and hence we have
∫

|
∫

(χA′(x − y) − δ)ψω/2,K3
(y) dy|2ψω,K1

(x) dx & δ3. (12)

Note that we may assume as before that
∫

(χA′(x − y) − δ)ψω/2,K3
(y) dy ≤ cδ2 (13)

for all x, since we are done otherwise. In particular, the expression in absolute
values in (12) is bounded by δ, and we thus have

∫

|
∫

(χA′(x− y) − δ)ψω/2,K3
(y) dy|ψω,K1

(x) dx & δ2.

From this and (13) we have

|
∫ ∫

(χA′(x− y) − δ)ψω/2,K3
(y) dyψω,K1

(x) dx| & δ2.

or equivalently,

|
∫

(χA′ − δ)(ψω/2,K3
∗ ψω,K1

)| & δ2.

From Lemma 4.3 we may replace ψω/2,K3
∗ψω,K1

by ψω,K1
with an acceptable error,

thus

|
∫

(χA′ − δ)ψω,K1
| & δ2.

But this contradicts (6). This proves the Proposition.

Observe that the map δ → δ + cδ2 will reach size > 1 after most C/δ0 steps,
starting from δ0. Thus iterating Proposition 5.1 this many times (starting with
d = 0, K = 1, and A′ = A), we can eventually get the density greater than 1, a
contradiction. Thus A must contain a progression of length 3.

6. Exercises

• Q1. Let ε > 0 be a small number. Suppose we knew that for every large
N ≫ 1 and every subset A ⊆ {1, . . . , N} of density at least 1/(logN)1+ε

contained a non-trivial arithmetic progression of length 3. Deduce that for
any subset B ⊂ Z+ with

∑

n∈A 1/n = ∞ contains an infinite number of
arithmetic progressions of length 3.
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• Q2. Show that the following two statements are equivalent: (a) For every
N ≫ 1 and every subset A of {1, . . . , N} of density ≫

√
log logN/

√
logN , A

contains a proper arithmetic progression of order 3. (b) For every δ and every

N ≫ (1
δ )
C/δ2 , any subset A of {1, . . . , N} of density at least δ will contain

an arithmetic progression of order 3. (Note: this equivalence has nothing to
do with arithmetic progressions, and is basically a matter of algebra.)
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1. Sums and products

We now leave the topic of arithmetic progressions, and return to topics closer to
those studied upon at the beginning of the course, where we studied the relationship
between such sets as A + A and A − A. This time, however, we shall look at the
sets A + A and A · A, where

A · A = {ab : a, b ∈ A}.
Note that if one wanted to study A · A and A/A (where A does not contain 0, of
course), one could just take logarithms and reduce things to a problem and sums
and differences. But to study A+ A and A ·A simultaneously is a different matter,
and the theory here is much less well understood.

From Freiman’s theorem we expect |A + A| ∼ |A| only when A resembles an arith-
metic progression; similarly we expect |A · A| ∼ |A| only when A resembles a geo-
metric progression. Since arithmetic progressions and geometric progressions do
not resemble each other, it thus seems reasonable to expect at least one of |A + A|
and |A · A| to be large, at least when A is a subset of R. This is indeed the case;
the best known bound on this is Elekes’s theorem max(|A + A|, |A · A|) & |A|5/4,
which we shall prove shortly.

Interestingly, the geometry of the plane now begins to play a role. The reason can
already be seen in the familiar equation y = mx + b for a line in the plane; this is
an equation which involves both multiplication and addition, which is exactly the
problem encountered above.

To address the geometry of the plane, we first need to understand the topology of
the plane - and in particular, the concept of crossing numbers. This will be handled
next.

2. Crossing numbers

Let G = (V, E) be a finite undirected, multiplicity-free graph with a collection V
of vertices, and E of edges. A drawing φ(G) of G is a map φ on (V, E) which maps
each vertex v in V to a point φ(v) in R2, while mapping each edge e in E, with
vertices v1 and v2, to an (open) curve φ(e) in R2 with vertices φ(v1) and φ(v2).
We say that a drawing of G is proper if (a) the points φ(v) are all distinct, (b) the

1
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(open) curves φ(e) are simple and do not pass through any points in φ(V ), (c) any
two distinct open curves φ(e), φ(e′) only intersect in a finite number of points, (d)
any two distinct open curves with a shared endpoint are disjoint. It is clear that
every finite graph G has at least one drawing which is proper (map the vertices
to randomly selected points, and the edges to line segments). Given any proper
drawing φ(G) of a graph G, define the crossing number cr(φ(G)) to be the number
of times the edges φ(e), φ(e′) cross each other, i.e.

cr(φ(G)) =
∑

{e,e′}∈E×E:e6=e′

|φ(e) ∩ φ(e′)|.

Thus cr(φ(G)) is a non-negative integer. We define the crossing number cr(G) of a
graph G to be

cr(G) := inf
φ

cr(φ(G)),

i.e. the minimal crossing number over all proper drawings φ of G.

We now pursue the question of how to estimate cr(G), especially from below.
Clearly we have cr(G′) ≤ cr(G) if G′ is a subgraph of G; we can convert this
monotonicity property into a strict monotonicity property if cr(G) is positive.

Lemma 2.1. Let G = (V, E) be a graph such that cr(G) is positive. Then there

exists an edge e in E such that cr(G) ≥ cr(G − {e}) + 1.

Proof Let M := infe∈E cr(G−{e}), and let φ be a proper drawing of G. We know
that cr(φ(G)) is positive; we need to show that it is at least M + 1.

Since cr(φ(G)) is positive, we have distinct edges φ(e) and φ(e′) which intersect at
least 1. But we know that cr(φ(G − {e}) intersects at least M times. The claim
follows.

Next, we give a simple condition to show when cr(G) is positive.

Lemma 2.2. If |E| > 3|V | − 6, then cr(G) is positive.

Proof Suppose for contradiction that we had a graph G and a drawing φ with no
crossings, but for which |E| > 3|V |−6. The drawing φ(G) subdivides the plane into
a collection F of open regions (including one infinite region). By Euler’s formula
we have |V | − |E|+ |F | = 2. But also, since each edge is adjacent to two faces, and
each face is adjacent to at least three edges, we have 3|F | ≤ 2|E|. Combining the
two equations we obtain |E| ≤ 3|V | − 6, contradiction.

Combining these two Lemmas together we immediately obtain the bound

cr(G) ≥ max(|E| − 3|V | + 6, 0).

Now we improve this estimate using randomization arguments. Let G = (V, E) be
a graph, and let 0 < p < 1 be a parameter to be chosen later. Let G′ = (V ′, E′)
be the (random) sub-graph of G formed by allowing each vertex v ∈ V to lie in
V ′ with independent probability p, and let e ∈ E lie in E′ if both its vertices lie
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in V ′ (so each edge has a probability p2 of occurring in E′, in particular we have
E(|E′|) = p2|E|. Let φ(G) be a drawing of G, which of course induces a drawing
φ(G′) of G′. Each crossing of φ(G) requires two distinct edges arising from four
distinct points, and thus has a probability p4 of also occurring in φ(G′). These
events are not independent, but expectation is still linear, so we have

E(cr(φ(G′)) = p4cr(G).

On the other hand, using the above bound we have

E(cr(φ(G′)) ≥ E(|E′| − 3|V | + 6) = E(|E′|) − 3E(|V |) + 6 = p2|E| − 3p|V | + 6.

Thus we have the estimate

cr(G) ≥ p2|E| − 3p|V | + 6

p4
.

If |E| ≥ 5|V |, then we can pick p = 4|V |/|E|, and obtain the crossing number bound

cr(G) & |E|3/|V |2 when |E| ≥ 5|V |.
This bound is quite sharp (see Q1). It can be rewritten as

|E| . cr(G)1/3|V |2/3 + |V |. (1)

3. The Szemerédi-Trotter theorem

We now use the crossing number estimate to obtain a basic estimate on incidences
between points and lines.

Let P be a finite collection of points in the plane, and let L be a finite collection
of lines. We consider the quantity I(P, L) := |{(p, l) ∈ P × L : p ∈ l}|, the set of
incidences between P and L.

Form the graph G whose vertices V are the set P of points, and whose edges E are
the bounded line segments in L formed by any two points in P . Clearly |V | = |P |.
As for |E|, note that

|E| =
∑

l∈L

(|P ∩ l| − 1)+ ≥
∑

l∈L

|P ∩ l| − |L| = I(P, L) − |L|.

On the other hand, since each two lines in L intersect in at most one point, we have
cr(G) ≤ |L|2. Applying (1), we thus see that

I(P, L) . |L|2/3|P |2/3 + |P | + |L|. (2)

This is the Szemerédi-Trotter theorem (which initially had a much longer proof
[16]!). This bound is sharp (Q2).

4. Elekes’s theorem

Now we can prove a bound on A + A and A · A, when A is a finite subset of the
reals R. Let P be the set

(A + A) × (A · A),
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and let L consist of all the lines {(x, y) : y = a(x − a′)} where a, a′ ∈ A. Then
|P | = |A+A||A ·A| and L = |A|2. Also, each line L is incident to at least |A| points
in P (why?), so I(P, L) ≥ |L||A| = |A|3. From the Szemerédi-Trotter theorem we
conclude that

|A|3 . |A|4/3|P |2/3 + |P | + |A|2,
from which we conclude (if |A| ≫ 1; the case |A| . 1 can be dealt with manually)
that

|P | & |A|5/2,

and thus we obtain Elekes’s theorem [7]

max(|A + A|, |A · A|) & |A|5/4. (3)

It is not known what the best bound on this quantity is; (3) has not been improved
despite the argument being remarkably simple. An old conjecture of Erdös and
Szemerédi [9] claims that

max(|A + A|, |A · A|) & |A|2−ε,

i.e. either A is almost totally non-closed under addition or totally non-closed under
multiplication.

5. The finite field case

Elekes’s theorem showed that when A was a finite subset of R, then there was
some significant failure of A to be closed under either addition or multiplication.
We could ask whether the same is true in finite fields F . Of course, if A is a subfield
of F , then A + A and A · A are both equal to A, so in that case there is no failure
of closure under either multiplication or addition. (Of course the crossing number
argument relied on Euler’s formula, and thus on the topology of the plane, and so
does not work in finite fields).

However, suppose F was a prime finite field F := Z/pZ. Then F has no non-trivial
subfields, and so the above counterexample does not apply. In this case we can get
a small improvement, though not yet on the level of Elekes’s theorem:

Theorem 5.1. [4] Let F be a finite field of prime order, and let A be a subset of F
such that |F |δ < |A| < |F |1−δ for some δ > 0. Then we have max(|A+A|, |A·A|) &

|A|1+ε for some ε = ε(δ) > 0.

This theorem requires a certain amount of machinery, though fortunately we have
already developed most of it. The idea is to prove by contradiction, assuming that
|A+A| and |A·A| are close to |A|, and conclude that A is behaving very much like a
subfield of F - enough so that one can do some basic linear algebra, and eventually
conclude that |F | is a power of |A| (or more precisely |A′| for some variant A′ of
A), a contradiction since |F | is prime.
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6. First ingredient: Sum-product estimates

Recall the sum-set estimates from week 1 notes, which said (among other things)
that if |A + A| ∼ |A|, then in fact |A ± A ± . . . ± A| ∼ |A|. Exponentiating this,
we see that if A does not contain 0 and |A · A| ∼ |A|, then in fact we have the
product-set estimates |A · A · . . . · A/(A · . . . · A)| ∼ |A|.

Now suppose that (to prove Theorem 5.1 by contradiction) we knew that we had
both |A + A| ∼ |A| and |A · A| ∼ |A|. Then sum estimates and product estimates
allow us to control any expression of A which involves just sums and differences, or
just products and quotients. But we do not yet know how to control expressions
which involve both, e.g. A · A + A · A. However, it turns out that we can do so if
we refine A a little:

Lemma 6.1. [11] Let A be a non-empty subset of F such that

|A + A|, |A · A| ≤ K|A|.
We shall use X / Y to denote the estimate X ≤ CKCY . Then there is a subset

A′ of A with |A′| ' |A| such that

|A′ · A′ − A′ · A′| / |A′|.

This only controls one joint expression of A′; we shall control all the others as well
in the next section.

To prove Lemma 6.1, we recall Gowers’ quantitative formulation [10] of the Balog-
Szemeredi lemma [1]:

Theorem 6.2. [10], [3] Let A, B be finite subsets of an additive group with cardi-

nality |A| = |B|, and let G be a subset of A × B with cardinality

|G| ≈ |A||B|
such that we have the bound

|{a + b : (a, b) ∈ G}| / |A|.
Then there exists subsets A′, B′ of A and B respectively with |A′| ≥ cK−C |A|,
|B′| ≥ cK−C |B| such that

|A′ − B′| / |A|.
Indeed, we have the stronger statement that for every a′ ∈ A and b′ ∈ B, there are

' |A|5 solutions to the problem

a′ − b′ = (a1 − b1) − (a2 − b2) + (a3 − b3); a1, a2, a3 ∈ A; b1, b2, b3 ∈ B.

Proof (Sketch) Call an element d a popular difference if it can be written in the
form a − b for ' |A| pairs (a, b) ∈ A × B. The hypotheses on G ensure that there
are ' popular differences. Thus by the construction in previous notes, we can find
large subsets A′ and B′ of A and B respectively with size ' |A| such that every
element a′ of A′ is aware of every element b′ of B′, thus there are ' |A|2 solutions
to the problem

a′ − b′ = d1 − d2 + d3
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where d1, d2, d3 are popular differences. The claim follows.

Now we can prove Lemma 6.1. Without loss of generality we may assume that
|A| ≫ 1 is large, and that 0 6= A (since removing 0 from A does not significantly
affect any of the hypotheses).

We first observe from Theorem 6.2 that we can find subsets C, D of A with
|C|, |D| ≈ |A| such that every element in C − D has ' |A|5 representations of
the form

a1 − a2 + a3 − a4 + a5 − a6; a1, . . . , a6 ∈ A.

Multiplying this by an arbitrary element of A ·A ·A/A ·A, we see that every element
of (C − D) · A · A · A/A · A has ' |A|5 representations of the form

b1 − b2 + b3 − b4 + b5 − b6; b1, . . . , b6 ∈ A · A · A · A/A · A.

However, by the multiplicative form of sumset estimates, the set A ·A ·A ·A/A ·A
has cardinality ≈ |A|. Thus by Fubini’s theorem we have

|(C − D) · A · A · A/A · A| / |A|. (4)

Now we refine C and D. Since |C|, |D| ≈ |A| and |A · A| ≈ |A|, we have |CD| ≈
|C|, |D|, and hence by the multiplicative form of Theorem 6.2, we can find subsets
C′, D′ of C, D with |C′|, |D′| ≈ |A| such that every element in C′D′ has ' |A|5
representations in the form

c1d1c3d3

c2d2
; c1, c2, c3 ∈ C; d1, d2, d3 ∈ D.

Now let c, c′ ∈ C′ and d, d′ ∈ D be arbitrary. By the pigeonhole principle there
thus exist c2 ∈ C, d2 ∈ D such that we have ' |A|3 solutions to the problem

cd =
c1d1c3d3

c2d2
; c1, c3 ∈ C; d1, d3 ∈ D.

We can rewrite this as

cd − c′d′ = x1 − x2 + x3 + x4

where

x1 =
(c1 − d′)d1c3d3

c2d2

x2 =
d′(c′ − d1)c3d3

c2d2

x3 =
d′c′(c3 − d2)d3

c2d2

x4 =
d′c′d2(c2 − d3)

c2d2
.

For fixed c, d, c′, d′, c2, d2, it is easy to see that the map from (c1, c3, d1, d3) to
(x1, x2, x3, x4) is a bijection. Since all the xj lie in (C − D) · A · A · A/A · A, we
thus have ' |A|3 ways to represent cd − c′d′ in the form x1 − x2 + x3 − x4, where
x1, x2, x3, x4 all lie in (C − D) · A · A · A/A · A. By (4) and Fubini’s theorem we
thus have

|C′D′ − C′D′| / |A|.
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In particular we have |C′D′| / |A| / |C′|, which by the multiplicative form of
sumset estimates implies |C′/D′| ≈ |C′|. By considering the fibers of the quotient
map (x, y) → x/y on C′ × D′ and using the pigeonhole principle, we thus see that
there must be a non-zero field element x such that |C′ ∩D′x| ≈ |A|. If we then set
A′ := C′ ∩ D′x we have |A′A′ − A′A′| / |A| as desired.

7. Second ingredient: Iterated sum and product set estimates

We now prove the following lemma, which is in the spirit of sum-set estimates:

Lemma 7.1. Let A be a non-empty subset of a finite field F , and suppose that we

have the bound

|A · A − A · A| ≤ K|A|
for some K ≥ 1. We adopt the normalization that 1 ∈ A. Then for any polynomial

P of several variables and integer coefficients, we have

|P (A, A, . . . , A)| ≤ CKC |A|
where the constants C depend of course on P .

Proof We need some notation. We say that a set A is essentially contained in B,
and write A ⋐ B, if we have A ⊆ X + B for some set X of cardinality |X | ≤ CKC .

We have the following simple lemma of Ruzsa [14]:

Lemma 7.2. Let A and B be subsets of F such that |A+B| ≤ CKC |A| or |A−B| ≤
CKC |A|. Then B ⋐ A − A.

Proof By symmetry we may assume that |A+B| ≤ CKC |A|. Let X be a maximal
subset of B with the property that the sets {x + A : x ∈ X} are all disjoint. Since
the sets x + A all have cardinality |A| and are all contained in A + B, we see from
disjointness that |X ||A| ≤ |A + B|, and hence |X | ≤ CKC . Since the set X is
maximal, we see that for every b ∈ B, the set b + A must intersect x + A for some
x ∈ X . Thus b ∈ x + A − A, and hence B ⊆ X + A − A as desired.

Call an element x ∈ F good if we have x · A ⋐ A − A.

Proposition 7.3. The following three statements are true.

• Every element of A is good.

• If x and y are good, then x + y and x − y is good.

• If x and y are good, then xy is good.

(Of course, the implicit constants in “good” vary at each occurence).

Proof Let us first show that every element of A is good. Since 1 ∈ A, we have

|A.A − A| ≤ |A.A − A.A| ≤ K|A|
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and hence by Lemma 7.2

A.A ⋐ A − A (5)

which implies in particular that every element of x is good.

Now suppose that x and y are good, thus x · A ⋐ A − A and y · A ⋐ A − A. Then

(x + y) · A ⊆ x · A + y · A ⋐ A − A + A − A.

On the other hand, since |A − A| ≤ |A.A − A.A| ≤ K|A|, we have from sumset
estimates that

|A − A + A − A + A| ≤ CKC |A|
and hence by Lemma 7.2

A − A + A − A ⋐ A − A. (6)

Thus by transitivity of ⋐ we have (x + y) · A ⋐ A − A and hence x + y is good. A
similar argument shows that x − y is good.

Now we need to show that xy is good. Since x · A ⋐ A − A we have

xy · A ⋐ y · A − y · A.

But since y · A ⋐ A − A, we have

xy · A ⋐ A − A − A + A.

By (6) we conclude that xy is good.

By iterating this proposition we see that for any integer polynomial P , every element
of P (A, . . . , A) is good1.

Write A2 := A ·A, A3 := A ·A ·A, etc. We now claim inductively that Ak ⋐ A−A
for all k = 0, 1, 2, 3, . . . . The case k = 0, 1 are trivial, and k = 2 has already been
covered by (5). Now suppose inductively that k > 2, and that we have already
proven that Ak−1 ⋐ A − A. Thus

Ak−1 ⊆ X + A − A

for some set X of cardinality |X | ≤ CKC . Clearly we may restrict X to the set
Ak−1 − (A−A). In particular, every element of X is good. We now multiply by A
to obtain

Ak ⊆ X · A + A · A − A · A.

Since every element of X is good, and |X | ≤ CKC , we see that X ·A ⋐ A−A. By
(5) we thus have

Ak ⋐ A − A + A − A − (A − A).

But by arguing as in the proof of (6) we have

A − A + A − A − (A − A) ⋐ A − A,

and thus we can close the induction.

1An alternate way to proceed at this point is to show that the number of good points is at most
/ N ; indeed, it is easy to show that any good point is contained inside (A− A + A− A)/(A −A)
if N is sufficiently large, where we exclude 0 from the denominator A− A of course. We omit the
details.
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Since Ak ⋐ A − A for every k, and A − A ± (A − A) ⋐ A − A by (6), we thus see
that every integer combination of Ak is essentially contained in A−A. In particular
P (A, . . . , A) ⋐ A − A for every integer polynomial A, and the claim follows.

8. Third ingredient: Expanding sum estimates

The third and final ingredient is a statement of the form that |A + B| can be-
come much larger than |A| or |B| separately. We first recall the Cauchy-Davenport
inequality

|A + B| ≥ min(|A| + |B| − 1, |F |) (7)

for any non-empty subsets A, B of F . If we are allowed to arbitrarily dilate one of
the sets A, B then we can improve subtantially on this inequality:

Lemma 8.1. Let A, B be finite non-empty subsets of a finite field F , and lte

F ∗ := F − {0} denote the invertible elements of F . Then there exists ξ ∈ F ∗ such

that

|A + Bξ| ≥ min(
1

2
|A||B|, 1

10
|F |). (8)

Proof We may assume without loss of generality that |A||B| ≤ 1
2 |F |, since if

|A||B| > 1
2 |F | we may remove some elements from A and B without affecting the

right-hand side of (8). Let ξ be an element of F ∗. We use the inclusion-exclusion
principle2 and the invertibility of ξ to compute

|A + Bξ| = |
⋃

a∈A

a + Bξ|

≥
∑

a∈A

|a + Bξ| − 1

2

∑

a,a′∈A:a6=a′

|(a + Bξ) ∩ (a′ + Bξ)|

≥
∑

a∈A

|B| − 1

2

∑

a,a′∈A:a6=a′

∑

b,b′∈B

δa+bξ,a′+b′ξ

= |A||B| − 1

2

∑

a,a′∈A:a6=a′

∑

b,b′∈B:b6=b′

δξ,(a−a′)/(b−b′),

2To verify our use of the principle, suppose an element x lies in N of the sets a+Bξ for some N ≥

1. Then the sum
P

a∈A |a+Bξ| counts x N times, while the sum
P

a,a′
∈A:a 6=a′ |(a+Bξ)∩(a′+Bξ)|

counts x N(N − 1) times. Since N −

N(N−1)

2
is always less than or equal to 1, the claim follows.

An alternate way to obtain this lemma (which gives slightly worse bounds when |A||B| ≪ |F |,
but somewhat better bounds when |A||B| ≫ |F |) is by using the Cauchy-Schwarz inequality
‖χA ∗ χBξ‖

2

l1
≤ ‖χA ∗ χBξ‖l2 |A + Bξ| and again randomizing over ξ.
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where δi,j is the Kronecker delta function. If we average this over all ξ ∈ F∗ we
obtain

1

|F∗|
∑

ξ∈F∗

|A + Bξ| ≥ |A||B| − 1

2

∑

a,a′∈A:a6=a′

∑

b,b′∈B:b6=b′

1

|F | − 1

≥ |A||B| − 1

2

|A|2|B|2
|F | − 1

≥ 1

2
|A||B|

by our hypothesis |A||B| ≤ 1
2 |F |. The claim (8) then follows by the pigeonhole

principle.

9. Proof of Theorem 5.1

We now have all the machinery needed to prove Theorem 5.1. We basically follow
the Edgar-Miller approach, see [6]. We write F for Z/qZ, and let F ∗ := F − {0}
be the invertible elements of F . Let δ > 0, and let A be a subset of F such that
|F |δ < |A| < |F |1−δ.

Let 0 < ε ≪ 1 be a small number depending on δ to be chosen later. In this section
we use X . Y to denote the estimate X ≤ C(δ, ε)Y for some C(δ, ε) > 0. Suppose
for contradiction that

|A + A|, |A · A| . |A|1+ε;

Then by Lemma 6.1, and passing to a refinement of A if necessary, we may assume
that

|A · A − A · A| . |A|1+Cε.

We may normalize 1 ∈ A. By Lemma 7.1 we thus have

|P (A, . . . , A)| . |A|1+Cε (9)

for any polynomial P with integer coefficients, where the constants C depend of
course on P .

Our first objective is to obtain a linear surjection from Ak to F for sufficiently large
k:

Lemma 9.1. There exists a positive integer k ∼ 1/δ, and invertible field elements

ξ1, . . . , ξk ∈ F ∗, such that

F = Aξ1 + · · · + Aξk.

In other words, we have a linear surjection from Ak to F .

Proof Iterating Lemma 8.1 about O(1/δ) times, we obtain ξ1, . . . , ξk ∈ F ∗ such
that

|Aξ1 + · · · + Aξk| ≥
|F |
10

.

The lemma then obtains after O(1) applications of the Cauchy-Davenport inequality
(7), increasing k as necessary.
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Next, we reduce the rank k of this surjection, at the cost of replacing A by a
polynomial expression of A.

Lemma 9.2. Let B be a non-empty subset of F , and suppose k > 1 is such that

there is a linear surjection from Bk to F . Then there is a linear surjection from

B̃k−1 to F , where B̃ := B · (B − B) + B · (B − B).

Proof By hypothesis, we have a surjection

Bk → F : (a1, . . . , ak) 7→
∑

j≤k

ajξj

for some ξ1, . . . , ξk ∈ F . Our map cannot be one-to-one, since otherwise

|B|k = |F | (contradicting primarily of |F |).

Thus there are (b1, . . . , bk) 6= (b′1, . . . b
′
k) ∈ Bk with

(b1 − b′1)ξ1 + · · · + (bk − b′k)ξk = 0. (10)

Let bk 6= b′k. By the surjection property

F = Bξ1 + . . . + Bξk;

since F is a field, we thus have

F = Bξ1(bk − b′k) + · · · + Bξk(bk − b′k)

and substituting (bk − b′k)ξk from (10)

F = Bξ1(bk − b′k) + · · · + Bξk−1(bk − b′k) − B(b1 − b′1)ξ1 − · · · − B(bk−1 − b′k−1)ξk−1

⊂ B̃ξ1 + · · · + B̃ξk−1

and the claim follows.

Starting with Lemma 9.1 and then iterating Lemma 9.2 k times, we eventually get
a linear surjection from a polynomial expression P (A, . . . , A) of A to F , and thus

|P (A, . . . , A)| ≥ |F |.

But this contradicts (9), if ε is sufficiently small depending on δ. This contradiction
proves Theorem 5.1.

Remark. Suppose the finite field F did not have prime order. Then the analogue
of Theorem 5.1 fails, since one can take A to be a subfield G of F , or a large subset
of such a subfield G. It turns out that one can adapt the above argument to show
that these are in fact the only ways in which Theorem 5.1 can fail (up to dilations,
of course):

Theorem 9.3. Let A be a subset of a finite field F such that |A| > |F |δ for some

0 < δ < 1, and suppose that |A + A|, |A · A| ≤ K|A| for some K ≫ 1. Then there

exists a subfield G of F of cardinality |G| ≤ KC(δ)|A|, a non-zero field element

ξ ∈ F − {0}, and a set X ⊆ F of cardinality |X | ≤ KC(δ) such that A ⊆ ξG ∪ X.
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It is interesting to compare the above theorem to Freiman’s theorem which does not
assume control on |A · A| but has a dependence on constants which is significantly
worse than polynomial. It seems possible that the constant C(δ) can be made
independent of δ, but we do not know how to do so.

Proof (Sketch) Of course, we may assume that |F | ≥ KC(δ) for some large C(δ).
We repeat the argument used to prove Theorem 5.1. This argument allows us to
find a refinement A′ of A with |A′| ≥ K−CA such that |A′ ·A′ − A′ ·A′| ≤ KC |A|.
By dilating A and A′ if necessary we may assume as before that 1 ∈ A′ (as we shall
see, this normalization allows us to take ξ = 1 in the conclusion of this theorem).
By Lemma 7.1 we thus have |P (A′, . . . , A′)| ≤ KC |A′| for all integer polynomials
P , with the constant C depending on P of course. We may assume 0 ∈ A′ since
adding 0 to A′ and A do not significantly affect the above polynomial bounds.

We now claim that A′ is contained in some subfield G of F of cardinality |G| ≤
KC(δ)|A|. The argument in Lemma 9.1 still gives a surjection from (A′)k to F
for some k ∼ 1/δ. We then attempt to use Lemma 9.2 to drop the rank of this
surjection down to 1. If we can reduce the rank all the way to one, then we have
by arguing as before that |F | ≤ KC(k)|A|, so the claim follows by setting G := F .
The only time we run into difficulty in this iteration is if we discover a linear
surjection from some Ãk′

to F with k′ > 1 which is also injective, where Ã is some
polynomial expression of P (A′, . . . , A′). An inspection of the proof of Lemma 9.2,

combined with the normalizations 0, 1 ∈ A′, reveals that Ã must contain A′. If
we have |Ã + Ã| > |Ã|, then the linear map from (Ã + Ã)k′ → F is surjective but
not injective, which allows us to continue the iteration of Lemma 9.2. Similarly if
|Ã · Ã| > |Ã|. Thus the only remaining case is when |Ã| = |Ã + Ã| = |Ã · Ã|. But

this, combined with the fact that 0, 1 ∈ Ã, implies that Ã = Ã + Ã = Ã · Ã, and
hence that Ã is a subfield of F . Since |Ã| ≤ KC(k)|A′|, the claim follows. This
shows that A′ is a subset of G. Since |A + A′| ≤ K|A|, we see from Lemma 7.2
that A ⋐ A′ − A′, and hence A ⋐ G. Thus there exists a set Y of cardinality
|Y | ≤ KC(δ) such that A ⊆ G + Y .

Let y ∈ Y −G. To finish the proof it will suffice to show that |A∩ (G+y)| ≤ KC(δ)

for all such y. But observe that for any two distinct x, x′ ∈ G + y, the sets xG and
x′G do not intersect except at the origin (for if xg = x′g′, then g 6= g′, and hence

x = (x′ − x) g′

g−g′
∈ G, contradicting the hypotheses that x ∈ G + y and y 6∈ G). In

particular, the sets x(A′ − {0}) and x′(A′ − {0}) are disjoint. Thus

K|A| ≥ |A · A| ≥ |A ∩ (G + y)||A′ − {0}| ≥ |A ∩ (G + y)|K−C |A|
and the claim follows.

10. Some basic combinatorics

In later sections we shall use the sum-product estimate in Theorem 5.1 to various
combinatorial problems in finite geometries. In doing so we will repeatedly use a
number of basic combinatorial tools, which we collect here for reference.
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We shall frequently use the following elementary observation: If B is a finite set,
and µ : B → R+ is a function such that

∑

b∈B

µ(b) ≥ X,

then we have

∑

b∈B:µ(b)≥X/2|B|

µ(b) ≥ X/2.

We refer to this as a “popularity” argument, since we are restricting B to the values
b which are “popular” in the sense that µ is large.

We shall frequently use the following version of the Cauchy-Schwarz inequality.

Lemma 10.1. Let A, B be finite sets, and let ∼ be a relation connecting pairs

(a, b) ∈ A × B such that

|{(a, b) ∈ A × B : a ∼ b}| & X

for some X ≫ |B|. Then

|{(a, a′, b) ∈ A × A × B : a 6= a′; a, a′ ∼ b}| &
X2

|B| .

Proof Define for each b ∈ B, define µ(b) := |{a ∈ A : a ∼ b}|. Then by hypothesis
we have

∑

b∈B

µ(b) & X.

In particular, by the popularity argument we have
∑

b∈B:µ(b)&X/|B|

µ(b) & X.

By hypothesis, we have X/|B| ≫ 1. From this and the previous, we obtain
∑

b∈B:µ(b)&X/|B|

µ(b)(µ(b) − 1) & X(X/|B|)

and the claim follows.

A typical application of the above Lemma is the standard incidence bound on lines
in a plane F 2, where F is a finite field.

Corollary 10.2. Let F 2 be a finite plane. For an arbitrarily collection P ⊆ F 2 of

points and L of lines in F 2, we have

|{(p, l) ∈ P × L : p ∈ l}| . |P |1/2|L| + |P | (11)

Proof We may of course assume that the left-hand side of (11) is ≫ |P |, since the
claim is trivial otherwise. From Lemma 10.1 we have

|{(p, l, l′) ∈ P × L × L : p ∈ l ∩ l′; l 6= l′}| & |P |−1|{(p, l) ∈ P × L : p ∈ l}|2.
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On the other hand, |l ∩ l′| has cardinality O(1) if l 6= l′, thus

|{(p, l, l′) ∈ P × L × L : p ∈ l ∩ l′; l 6= l′}| . |L|2.
Combining the two estimates we obtain the result.

Note that this is markedly inferior to the Szemerédi-Trotter theorem.

11. Application: A Szemerédi-Trotter type theorem in finite fields

We now use the one-dimensional sum-product estimate to obtain a key two-dimensional
estimate, namely an incidence bound of Szemerédi-Trotter type.

Let F be a finite field, and consider the projective finite plane PF 3, which is the
set F 3 − {(0, 0, 0)} quotiented by dilations. We embed the ordinary plane F 2 into
PF 3 by identifying (x, y) with the equivalence class of (x, y, 1); PF 3 is thus F 2

union the line at infinity. Let 1 ≤ N ≤ |F |2 be an integer, and let P be a collection
of points and L be a collection of lines in F 2. We consider the problem of obtaining
an upper bound on the number of incidences

|{(p, l) ∈ P × L : p ∈ l}|.
From Corollary 10.2 and the duality between points and lines in two dimensions
we have the easy bounds

|{(p, l) ∈ P × L : p ∈ l}| ≤ min(|P ||L|1/2 + |L|, |L||P |1/2 + |P |), (12)

see e.g. [2]. In a sense, this is sharp: if we set N = |F |2, and let P be all the points
in F 2 ⊂ PF 3 and L be most of the lines in F 2, then we have roughly |F |3 ∼ N3/2

incidences. More generally if G is any subfield of F then one can construct a similar
example with N = |G|2, P being all the points in G2, and L being the lines with
slope and intercept in G.

We can use the sum-product estimate (Theorem 5.1) to obtain a non-trivial im-
provement to this:

Theorem 11.1. [4] Let F be the finite field F := Z/qZ for some prime q, and let

P and L be points and lines in PF 3 with cardinality |P |, |L| ≤ N = |F |α for some

0 < α < 2. Then we have

|{(p, l) ∈ P × L : p ∈ l}| ≤ CN3/2−ε

for some ε = ε(α) > 0 depending only on the exponent α.

Proof We may assume that N ≫ 1 is large. By adding dummy points and lines
we may assume that |P | = |L| = N .

Fix N = |F |α, and let 0 < ε ≪ 1, be chosen later. Suppose for contradiction that
we can find points P and lines L with |P | = |L| = N such that

|{(p, l) ∈ P × L : p ∈ l}| & N3/2−ε;
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we shall use the sum-product estimates to obtain a contradiction if ε is sufficiently
small. Our arguments follow those in [11], [17].

We first use the popularity argument to control how many points are incident to a
line and vice versa. For each p ∈ P , define the multiplicity µ(p) at p by

µ(p) := |{l ∈ L : p ∈ l}|.

Then by hypothesis
∑

p∈P

µ(p) & N3/2−ε

and hence by the popularity argument and the hypothesis |P | = N

∑

p∈P :µ(p)&N1/2−ε

µ(p) & N3/2−ε.

On the other hand, we observe that
∑

p∈P :µ(p)≫N1/2+ε

µ(p)2 ≪ N−1/2−ε
∑

p∈P

µ(p)(µ(p) − 1)

. N−1/2−ε
∑

p∈P

|{(l, l′) ∈ L × L : p ∈ l, l′; l 6= l′}|

= N−1/2−ε
∑

l,l′∈L:l 6=l′

|{p ∈ P : p ∈ l, l′}|

≤ N−1/2−ε
∑

l,l′∈L:l 6=l′

1

≤ N1/2+ε.

Thus if we set P ′ ⊆ P to be the set of all points p in P such that

N1/2−ε . µ(p) . N1/2+ε

then we have
∑

p∈P ′

µ(p) & N3/2−ε.

For each l ∈ L, define the multiplicity λ(l) by

λ(l) := |{p ∈ P ′ : p ∈ l}|,

then we can rewrite the previous as
∑

l∈L

λ(l) & N3/2−ε.

By the popularity argument we thus have
∑

l∈L:λ(l)&N1/2−ε

λ(l) & N3/2−ε.
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On the other hand, we have
∑

l∈L:λ(l)≫N1/2+ε

λ(l) . N−1/2−ε
∑

l∈L

λ(l)(λ(l) − 1)

. N−1/2−ε
∑

l∈L

|{(p, p′) ∈ P ′ × P ′ : p, p′ ∈ l; p 6= p′}|

= N−1/2−ε
∑

p,p′∈P ′:p6=p′

|{l ∈ L : p, p′ ∈ l}|

≤ N−1/2−ε
∑

p,p′∈P ′:p6=p′

1.

Thus if we set L′ ⊂ L to be the set of all lines l in L such that

N1/2−ε . λ(p) . N1/2+ε

then we have
∑

l∈L′

λ(l) & N3/2−ε.

For each p ∈ P ′, let µ′(p) denote the multiplicity

µ′(p) := |{l ∈ L′ : p ∈ l}|;

clearly µ′(p) ≤ µ(p). We can then rewrite the previous estimate as
∑

p∈P ′

µ′(p) & N3/2−ε.

Thus by the popularity argument, if we set P ′′ ⊆ P ′ to be the set of all points p in
P ′ such that

µ′(p) & N1/2−ε

then we have
∑

p∈P ′′

µ′(p) & N3/2−ε.

or equivalently

|{(p, l) ∈ P ′′ × L′ : p ∈ l}| & C0N
3/2−ε.

Since |L′| ≤ N , we have in particular that

|P ′′| & N1/2−ε. (13)

The next step is to capture a large portion of the popular point set P ′ inside a
Cartesian product A × B, possibly after a projective transformation. The key ob-
servation is that such a product arises, modulo projective transformations, whenever
one intersects two “bushes” of lines.

Let p0 be any point in P ′′. Then by construction there are & N1/2−ε lines l in L′

containing p0. Each of these lines l contains & N1/2−ε points p in P ′; of course, all
but one of these are distinct from p0. Thus we have

|{(p, l) ∈ P ′ × L′ : p, p0 ∈ l, p 6= p0}| & N1−2ε.
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Let us define a relation ∼ on P by defining p ∼ p′ if p 6= p′ and there is a line in L′

containing both p and p′. Since two distinct points determine at most one line, we
thus have

|{p ∈ P ′ : p ∼ p0}| & N1−2ε for all p0 ∈ P ′′.

Summing this over all p0 in P ′′, we obtain

|{(p0, p) ∈ P ′′ × P ′ : p ∼ p′}| & N1−2ε|P ′′|.

Since |P ′| ≤ N , we thus see by Lemma 10.1 that

|{(p0, p1, p) ∈ P ′′ × P ′′ × P ′ : p ∼ p0, p1; p0 6= p1}| & N1−Cε|P ′′|2.
By the pigeonhole principle, there thus exist distinct points p0, p1 ∈ P ′′ such that

|{p ∈ P ′ : p ∼ p0, p1}| & N1−Cε. (14)

Fix these p0, p1. By applying a projective linear transformation (which maps lines
to lines and preserves incidence) we may assume that p0, p1 are both on the line
at infinity. Indeed, we may assume that p0 = [(1, 0, 0)] and p1 = [(0, 1, 0)], where
[(x, y, z)] is the equivalence class of (x, y, z) in PF 3.

We first eliminate those points p in (14) on the line at infinity. Such points can only
occur if the line at infinity is in L′. But then that line contains at most O(N1/2+ε)
points in P ′, by the definition of L′. Thus if ε is sufficiently small we have

|{p ∈ P ′ ∩ F 2 : p ∼ [(1, 0, 0)], [(0, 1, 0)]}| & N1−Cε.

Consider the lines in L′ which pass through [(1, 0, 0)]. In the plane F 2, these lines
be horizontal, i.e. they are of the form {(x, y) ∈ F 2 : y = b} for some b ∈ F . Let
B ⊆ F denote the set of all such b. Since each line contains at least cN1/2−ε points
in P ′, and |P ′| ≤ N , we know that |B| . N1/2+ε. Similarly the lines in L′ which
pass through [(0, 1, 0)] must in F 2 be vertical lines of the form {(x, y) ∈ F 2 : x = a}
for a ∈ A, where |A| ≤ CN1/2+ε. We thus have

|P ′ ∩ (A × B)| & N1−Cε (15)

and

|A|, |B| ≤ CN1/2+ε (16)

Now that we have placed P ′ in a Cartesian grid, the next step is to exploit the form
y = mx + b of lines in F 2 to obtain some additive and multiplicative information
on A and B.

Define P0 := P ′ ∩ (A × B). By definition of P ′ we have

|{l ∈ L : p ∈ l}| & N1/2−ε for all p ∈ P0;

summing over P0 using (15) and rearranging, we obtain

|{(p, l) ∈ P0 × L : p ∈ l}| & N3/2−Cε.
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Let L0 be those lines in L which are not horizontal. Since horizontal lines can
contribute at most |P0| ≤ N incidences to the above expression, we have (if ε is
sufficiently large)

|{(p, l) ∈ P0 × L0 : p ∈ l}| & N3/2−Cε.

By the popularity argument, if we let L1 denote those lines in L0 such that

|{p ∈ P0 : p ∈ l}| & N1/2−Cε

we thus have

|{(p, l) ∈ P0 × L1 : p ∈ l}| & N3/2−Cε

if the implicit constants are chosen appropriately.

Define a relation ∼ between B and L1 by defining b ∼ l if there is a point p in the
row P0 ∩ (A×{b}) such that p ∈ l. Note that such a point p is unique since l is not
horizontal, and thus

|{(b, l) ∈ B × L1 : b ∼ l}| & N3/2−Cε.

By Lemma 10.1, we thus have

|{(b, b′, l) ∈ B × B × L1 : b, b′ ∼ l}| & N2−Cε.

By (16) and the pigeonhole principle, we thus conclude that there exists distinct
heights b, b′ ∈ B such that

|{l ∈ L1 : b, b′ ∼ l}| & N1−Cε.

Fix this b, b′. By an affine transformation of the vertical variable (which does not
affect the line at infinity) we may assume that b = 0 and b′ = 1. Since each line
l ∈ L1 contains & N1/2−Cε points (x, t) in P0, and hence in A × B, and most of
these have t 6= 0, 1 since l is not horizontal, we have

|{(x, t, l) ∈ A × B × L1 : 0, 1 ∼ l; (x, t) ∈ l; t 6= 0, 1}| & N3/2−Cε.

By definition of the relation a ∼ l, we thus have

|{(x, t, l, x0, x1) ∈ A×B×L1×A×A : (x0, 0), (x, t), (x1, 1) ∈ l; t 6= 0, 1}| & N3/2−Cε.

Since the three points (x0, 0), (x, t), (x1, 1) determine l, and

x = x0 + (x1 − x0)t,

we thus have

|{(t, x0, x1) ∈ B × A × A : (1 − t)x0 + tx1 ∈ A; t 6= 0, 1}| & N3/2−Cε.
(17)

Note that this is somewhat similar to saying that (1 − B).A + B.A ⊆ A, so we are
getting close to being able to apply our sum-product estimate. But first we must
perform some Balog-Szemerédi type refinements.

Let A′ ⊆ A denote those x1 in A for which

|{(t, x0) ∈ B × A × A : (1 − t)x0 + tx1 ∈ A; t 6= 0, 1}| & N1−Cε.
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From (16), (17) and the popularity argument we have

|{(t, x0, x1) ∈ B × A × A′ : (1 − t)x0 + tx1 ∈ A; t 6= 0, 1}| & N3/2−Cε

(18)

if the implicit constants are chosen correctly.

In particular, from (16) again we have

|A′| & N3/2−Cε/|A||B| & N1/2−Cε. (19)

Also, by (18), the pigeonhole principle and (16) we may find t0 ∈ B such that
t0 6= 0, 1 and

|{(x0, x1) ∈ A × A′ : (1 − t0)x0 + t0x1 ∈ A}| & N1/2−Cε

By (16) we have

|{(x0, x1) ∈ A × A′ : (1 − t0)x0 + t0x1 ∈ A}| & N−Cε|A||A′|.

By (19), (16) and Theorem 6.2 applied to the sets (1 − t0)A and t0A
′, we thus

have a subsets (1 − t0)Ã of (1 − t0)A and t0A
′′ of t0A

′ with cardinalities at least
& N1/2−Cε such that

|(1 − t0)Ã + t0A
′| . N1/2+Cε.

By (19), (16) and sumset estimates, this implies in particular that

|t0A′ + t0A
′| . N1/2+Cε

and hence

|A′ + A′| . N1/2+Cε. (20)

Now we return to (18). From (16) and the pigeonhole principle we may find an
x0 ∈ A such that

|{(t, x1) ∈ B × A′ : (1 − t)x0 + tx1 ∈ A; t 6= 0, 1}| & N1−Cε.

By a translation in the horizontal variables x0, x1, A, A′ we may assume that
x0 = 0. Thus

|{(t, x1) ∈ (B\{0}) × (A′\{0}) : tx1 ∈ A}| & N1−Cε,

since the contribution of 0 is easily controlled by (16). By (16) and the multiplicative
form of Theorem 6.2, we can thus find a subset A′′ of A′\{0} with |A′′| & N1/2−Cε

and

|A′′ · A′′| . N1/2+Cε.

On the other hand, from (20) we have

|A′′ + A′′| . N1/2+Cε.

But this gives a contradiction to the sum product estimate (Theorem 5.1) if ε is
sufficiently small.
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12. Application to the distance set problem

We now work in the finite field plane F 2. Given any two points (x1, y1), (x2, y2),
we define the distance d((x1, y1), (x2, y2)) ∈ F by

d((x1, y1), (x2, y2)) = (x1 − x2)
2 + (y1 − y2)

2

(we omit the square root to avoid some distracting technicalities). Given any col-
lection P of points in F 2, we define the distance set ∆(P ) ⊆ F by

∆(P ) := {d(p, p′) : p, p′ ∈ P}.
The Erdös distance problem is to obtain the best possible lower bound for |∆(P )|
in terms of |P |. If −1 is a square, thus i2 = −1 for some i ∈ F , then the set
P := {(x, ix) : x ∈ F} has cardinality |P | = |F | but ∆(P ) = {0} has cardinality 1.
To avoid this degenerate case3 we assume that −1 is not a square, so any two distinct
points have a non-zero distance. From the fact that any two “circles” intersect in
at most two points, it is possible to use extremal graph theory to obtain the bound

|∆(P )| ≥ c|P |1/2;

see also [8]. This bound is sharp if one takes P = F 2, so that ∆(P ) is essentially
all of F . Similarly if one takes P = G2 for any subfield G of F . However, as in
the previous section one can hope to improve this bound when no subfields are
available.

From the obvious identity

∆(A × A) = (A − A)2 + (A − A)2

it is clear that this problem has some connection to the sum-product estimate. In-
deed, any improvement to the trivial bound on |∆(P )| can be used (in combination
with Lemma 6.1 and Lemma 7.1) to obtain a bound of the form in Lemma 5.1.
We now present the converse implication, using the sum-product bounds already
obtained to derive a new bound on the distance problem.

Theorem 12.1. [4] Let F = Z/pZ for some prime p = 3 mod 4 (so −1 is not

a square), and let P be a subset of F 2 of cardinality |P | = N = |F |α for some

0 < α < 2. Then we have

|∆(P )| & N1/2+ε

for some ε = ε(α) > 0.

Remark. In the Euclidean analogue to this problem, with N points in R2, it is
conjectured [8] that the above estimate is true for all ε < 1/2. Currently, this is
known for all ε < 4e

5e−1 − 1
2 ≈ 0.364 [15]. However, the Euclidean results depend

(among other things) on crossing number technology and thus do not seem to
obviously extend to the finite field case.

Proof We shall exploit the Szemerédi-Trotter-type estimate in Theorem 11.1 in
much the same way that the actual Szemerédi-Trotter theorem [16] was exploited
in [5] for the Euclidean version of Erdös’s distance problem, or how a Furstenburg

3We thank Alex Iosevich for pointing out the need to exclude this case.
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set estimate was used in [11], [17] to imply a Falconer distance set problem result.
The key geometric observation is that the set of points which are equidistant from
two fixed points lie on a line (the perpendicular bisector of the two fixed points).

We may assume that |F | and |P | are large; in particular, we may assume that F
has characteristic greater than 2. Fix N , and suppose for contradiction that

|∆(P )| . N1/2+ε

for some small 0 < ε ≪ 1 to be chosen later. For any point p ∈ P , we clearly have
the identity

{(p′, r) ∈ P × ∆(P ) : d(p, p′) = r}| = |P | = N

so by Lemma 10.1

{(p′, p′′, r) ∈ P × P × ∆(P ) : d(p, p′) = d(p, p′′) = r; p′ 6= p′′}| & N3/2−ε.

We can of course eliminate the r variable:

{(p′, p′′) ∈ P × P : d(p, p′) = d(p, p′′); p′ 6= p′′}| & N3/2−ε.

Summing this over all p ∈ P and rearranging, we obtain

∑

p′,p′′∈P :p′ 6=p′′

|{p ∈ P : d(p, p′) = d(p, p′′)}| ≥ cN5/2−ε.

By the pigeonhole principle, there thus exists p0 ∈ P such that

∑

p′∈P :p′ 6=p0

|{p ∈ P : d(p, p′) = d(p, p0)}| ≥ cN3/2−ε.

By translation invariance we may take p0 = (0, 0). Writing p′ = (a, b) and p =
(x, y), this becomes

∑

(a,b)∈P :(a,b) 6=(0,0)

|{(x, y) ∈ P : (x − a)2 + (y − b)2 = x2 + y2}| ≥ cN3/2−ε.

Thus if we let l(a, b) denote the perpendicular bisector of (0, 0) and (a, b):

l(a, b) := {(x, y) ∈ F 2 : (x−a)2+(y−b)2 = x2+y2} = {(x, y) ∈ F 2 : 2ax+2by = a2+b2}

and let L be the collection of lines {l(a, b) : (a, b) ∈ P\{0, 0}}, then we have

{(p, l) ∈ P × L : p ∈ l} ≥ cN3/2−ε.

But since all the lines l(a, b) are distinct, we have |L| = N − 1, while |P | = N .
Thus this clearly contradicts Theorem 11.1, and we are done.

The sum-product estimate has a number of other applications, for instance it gives
the best known bound on the Kakeya problem for finite fields in three dimensions.
We will not detail this here, but refer the interested reader to [4].



22 TERENCE TAO

13. Exercises

• Q1. Show that (1) is sharp in the following sense: given any |E| ≥ 5|V |,
one can find a graph G with cr(G) ∼ |E|3/|V |2. (Hint: consider n equally
spaced points in a circle, and consider the drawing formed by connecting
only those points which have at most k points between them using straight
line segments).

• Q2. Find a set of N3 points and N3 lines which have N4 incidences between
them. (Hint: use the grid {1, . . . , N} × {1, . . . , N2}). Conclude that the
bound (2) is sharp in the case |L| = |P |. (For an additional challenge: can
you show it is sharp in the general case?)
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