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ABSTRACT
Random k-SAT is the single most intensely studied example
of a random constraint satisfaction problem. But despite
substantial progress over the past decade, the threshold for
the existence of satisfying assignments is not known precisely
for any k ≥ 3. The best current results, based on the second
moment method, yield upper and lower bounds that differ by
an additive k · ln 2

2
, a term that is unbounded in k (Achliop-

tas, Peres: STOC 2003). The basic reason for this gap is the
inherent asymmetry of the Boolean value ‘true’ and ‘false’
in contrast to the perfect symmetry, e.g., among the various
colors in a graph coloring problem. Here we develop a new
asymmetric second moment method that allows us to tackle
this issue head on for the first time in the theory of random
CSPs. This technique enables us to compute the k-SAT
threshold up to an additive ln 2 − 1

2
+ O(1/k) ≈ 0.16. In-

dependently of the rigorous work, physicists have developed
a sophisticated but non-rigorous technique called the “cav-
ity method” for the study of random CSPs (Mézard, Parisi,
Zecchina: Science 2002). Our result matches the best bound
that can be obtained from the so-called “replica symmetric”
version of the cavity method, and indeed our proof directly
harnesses parts of the physics calculations.
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1. INTRODUCTION
Since the early 2000s physicists have developed a sophis-
ticated but highly non-rigorous technique called the “cav-
ity method” for the study of random constraint satisfac-
tion problems. This method allowed them to put forward
a very detailed conjectured picture according to which var-
ious phase transitions affect both computational and struc-
tural properties of random CSPs. In addition, the cavity
method has inspired new message passing algorithms called
Belief/Survey Propagation guided decimation. Over the past
few years there has been significant progress in turning bits
and pieces of the physics picture into rigorous theorems.
Examples include results on the interpolation method [2, 7]
or the geometry of the solution space [1, 26, 27] and their
algorithmic implications [3, 9].

In spite of this progress, substantial gaps remain. Per-
haps most importantly, in most random CSPs the thresh-
old for the existence of solutions is not known precisely. In
the relatively simple case of the random k-NAESAT (“Not-
All-Equal-Satisfiability”) problem the difference between the

best current lower and upper bounds is as tiny as 2−Ω(k) [11].
By contrast, in random graph k-coloring, a problem already
studied by Erdős and Rényi in the 1960s, the best current
bounds differ by Θ(ln k) [5]. Hence, the difference is un-
bounded in terms of the number of colors. Even worse, in
random k-SAT the gap is as big as Θ(k) [6]. Yet random
k-SAT is probably the single most important example of a
random CSP, not least due to the great amount of experi-
mental and algorithmic work conducted on it (e.g., [21, 23]).

The reason for the large gap in random k-SAT is that the sat-
isfiability problem lacks a certain symmetry property. This
property is vital to the current rigorous proof methods, par-
ticularly the second moment method, on which most of the
previous work is based (e.g., [4, 5, 6]). More precisely, in
random graph coloring the different colors all play the ex-
act same role: for any proper coloring of a graph, another
proper coloring can be obtained by simply permuting the
color classes (e.g., color all red vertices blue and vice versa).
Similarly, in k-NAESAT, where the requirement is that in
each clause at least one literal must be true and at least
one false, the binary inverse of any NAE-solution is a NAE-
solution as well. By contrast, in k-SAT there is an inherent
asymmetry between the Boolean values ‘true’ and ‘false’.

As has been noticed in prior work [4, 6], the second moment



method is fundamentally ill-posed to deal with such asym-
metries. Roughly speaking, the second moment method is
based on the assumption that in a random CSP instance, two
randomly chosen solutions are perfectly uncorrelated. But
in random k-SAT, this is simply not the case. Indeed, sup-
pose that a variable x appears much more often positively
than negatively throughout the formula. Then it seems rea-
sonable to expect that most satisfying assignments set x to
‘true’, thereby satisfying all clauses where x appears pos-
itively. More generally, define the majority vote σmaj to
be the assignment that sets variable x to true if it appears
more often positively than negatively, and to false otherwise.
Then we expect that the satisfying assignments of a random
formula “gravitate toward” σmaj. Unfortunately, the corre-
lations among satisfying assignments induced by this drift
toward σmaj doom the second moment method. Previously
this issue was sidestepped by symmetrizing the problem ar-
tificially [4, 6]. But this inevitably leaves a Θ(k) gap.

The main contribution of the present work is a new asym-
metric second moment method that enables us to tackle this
problem head on. A key feature of this method is that
we harness the Belief Propagation calculation from physics,
called the “replica symmetric case” of the cavity method in
physics jargon. We are going to employ Belief Propagation
directly as an “educated guess” in the design the random
variable upon which our proof is based in order to quantify
how much a typical satisfying assignment leans toward σmaj.

This is in contrast to most prior work on the subject, where
individual statements hypothesized on the basis of physics
arguments were proved via completely different methods
(with the notable exception of the interpolation technique [2,
7, 16]). Hence, we view the present work as a pivotal step in
the long-term effort of providing a rigorous foundation for
the physicists’ cavity method. In fact, the general approach
developed here does not hinge on particular properties of
the k-SAT problem, and thus we expect the technique will
extend to other asymmetric problems as well. Examples
include not only other random CSPs that are asymmetric
per se, but also instances of random problems that arise
at intermediate steps of message passing algorithms such
as Belief/Survey Propagation guided decimation, even if the
initial problem is symmetric. In particular, we believe that
getting a handle on asymmetric problems is a necessary step
to analyze such message passing algorithms accurately.

To state our results precisely, we let k ≥ 3, n > 0 be integers
and we let V = {x1, . . . , xn} be a set of n Boolean variables.
Further, let Φ = Φk(n,m) denote a Boolean formula with
m clauses of length k over the variables V chosen uniformly
at random among all (2n)km such formulas. Let r = m/n
denote the density. We say that an event occurs with high
probability (‘w.h.p.’) if its probability tends to 1 as n→∞.

Friedgut [17] showed that for any k ≥ 3 there exists a thresh-
old sequence1 rk−SAT(n) such that for any (fixed) ε > 0
w.h.p. Φ is satisfiable if m/n < (1− ε)rk−SAT(n), while for
m/n > (1 + ε)rk−SAT(n) Φ is unsatisfiable w.h.p.

Upper bounds on rk−SAT can be obtained via the first mo-

1It is widely conjecture but as yet unproved that rk−SAT(n)
converges for any k ≥ 3.

ment method. The best current ones [16, 22] are

rk−SAT ≤ rupper = 2k ln 2− (1 + ln 2) /2 + ok(1), (1)

where ok(1) hides a term that tends to 0 for large k. The
best prior lower bound is due to Achlioptas and Peres [6],
who used a “symmetric” second moment argument to show

rk−SAT ≥ rbal = 2k ln 2− k · ln 2

2
−
(

1 +
ln 2

2

)
+ ok(1). (2)

The bounds (1) and (2) leave an additive gap of k · ln 2
2

+
1
2

+ ok(1), i.e., the gap is unbounded in terms of k.

Theorem 1. There is εk = ok(1) such that

rk−SAT ≥ rBP = 2k ln 2− 3 ln 2

2
− εk. (3)

Achlioptas and Peres asked whether the gap rupper−rk−SAT

is bounded by an absolute constant (independent of k). The-
orem 1 answers this question, reducing the gap to ln 2− 1

2
≈

0.19. No attempt at optimizing the error term εk has been
made, but our proofs yield rather directly that εk = O(1/k).

Apart from the quantitative improvement, the main point of
this paper is that we manage to solve the problem of asym-
metry in random CSPs for the first time. To explain this
point, we start by discussing what we mean by asymmetry
and how it derails the second moment method. That this is
so was already intuited in [4, 6]. In the next section, we are
going to verify and elaborate on those discussions.

2. ASYMMETRY AND THE SECOND MO-
MENT METHOD

The second moment method. In general, the second mo-
ment method works as follows. Suppose that Z = Z(Φ) is a
non-negative random variable such that Z > 0 only if Φ is
satisfiable. Moreover, suppose that for some density r > 0
there is a number C = C(k) > 0 that may depend on k but
not on n such that

0 < E
[
Z2] ≤ C · E [Z]2 . (4)

We claim that then rk−SAT ≥ r. Indeed, the Paley-Zygmund
inequality

P [Z > 0] ≥ E [Z]2

E [Z2]
(5)

implies that P [Φ is satisfiable] ≥ P [Z > 0] ≥ 1/C. Because
the right hand side remains bounded away from 0 as n→∞,
the following simple consequence of Friedgut’s sharp thresh-
old result implies rk−SAT ≥ r.

Lemma 1 ([17]). Let k ≥ 3. If for some r we have

lim inf
n→∞

P [Φ is satisfiable] > 0,

then rk−SAT ≥ r − o(1).

Hence, we “just” need to find a random variable that satis-
fies (5). Let S(Φ) denote the set of satisfying assignments;



then certainly Z = |S(Φ)| is the most obvious choice. How-
ever, this “vanilla” second moment argument turns out to
fail spectacularly. We need to understand why.

Asymmetry and the majority vote. The origin of the
problem is that k-SAT is asymmetric in the following sense.
Suppose that all we know about the random formula Φ is
for each variable x the number dx of times that x appears
as a positive literal in the formula, and the number d¬x of
negative occurrences. Then our best stab at constructing a
satisfying assignment seems to be the “majority vote” assig-
ment σmaj where we set x to true if dx > d¬x and to false
otherwise. Indeed, by maximizing the total number of true
literal occurrences, of which a satisfying assignment must
put one in every clause, σmaj also maximizes the probability
of being satisfiable.

Our proof of Theorem 1 allows us to formalize this obser-
vation, thereby verifying a conjecture from [6]. Let dist(·, ·)
denote the Hamming distance.

Corollary 1. There is a number δ = δ(k) > 0 such that
for 2k/k < r < rBP w.h.p. we have∑

σ∈S(Φ)

dist(σ, σmaj)

|S(Φ)| ≤
(

1

2
− δ
)
· n. (6)

Hence, the average Hamming distance of σ ∈ S(Φ) from
σmaj is strictly smaller than n/2, i.e., the set S(Φ) is“skewed
toward” σmaj w.h.p.

This asymmetry dooms the second moment method. To see
why, let

wmaj = wmaj(Φ) =
∑
x∈V

max {dx, d¬x}
km

denote the majority weight of Φ. Then the larger wmaj,
the more likely σmaj and assignments close to it are to be
satisfying. In effect, the bigger wmaj , the more satisfying
assignments we expect to have. The consequence of this
is that the number |S(Φ)| of satisfying assignments behaves
like a“lottery”: its expectation is driven up by a tiny fraction
of “lucky” formulas with wmaj much bigger than expected.

Let us highlight this tradeoff, as it is characteristic of the
kind of trouble that asymmetry causes. For ξ > 0 indepen-
dent of n but sufficiently small it turns out that for a certain
constant c > 0,

P [wmaj ∼ E [wmaj] + ξ] = exp
[
−(cξ2 +O(ξ3))n

]
. (7)

That is, the probability is exponentially small but, like in
the Chernoff bound, the exponent is a quadratic function
of ξ. By comparison, increasing the majority weight by ξ
boosts the expected number of satisfying assignments by a
linear exponential factor: there is c′ > 0 such that

E
[
|S(Φ)|

∣∣ wmaj ∼ E [wmaj] + ξ
]

= (8)

exp
[
(c′ξ +O(ξ2))n

]
· E
[
|S(Φ)|

∣∣wmaj ∼ E [wmaj]
]
.

The exponent in (8) is linear because for a typical assignment
τ at distance ( 1

2
−δ)n from σmaj increasing wmaj by ξ boosts

the number of literals that are true under τ by 2δξ · km, a
term that is linear in ξ.

Since the exponent is linear in (8) but quadratic in (7), there
is a (small but) strictly positive ξ > 0 such that the “gain”
exp

[
(c′ξ +O(ξ2))n

]
in the expected number of satisfying as-

signments exceeds the “penalty” exp
[
−(cξ2 +O(ξ3))n

]
for

deviating from E [wmaj]. With little extra work, this obser-
vation leads to

Lemma 2. For any k ≥ 3 and r > 2k/k we have

|S(Φ)| ≤ exp
(
−Ω(4−k) · n

)
· E [|S(Φ)|] w.h.p.

Lemma 2 entails rather easily that the “vanilla” second mo-
ment argument fails dramatically. Indeed, as already no-
ticed in [4, 6], we have E

[
|S(Φ)|2

]
≥ exp(Ω(n)) ·E [|S(Φ)|]2.

Hence, we miss our mark (4) by an exponential factor. But
Lemma 2 is witness to an even worse failure: not only
does (4) fail to hold, but even the normally much more de-
pendable first moment overshoots the “actual” number of
satisfying assignments by an exponential factor! (Lemma 2
is an improvement of an observation from [1], showing that
|S(Φ)| ≤ exp(−ξn) · E [|S(Φ)|] w.h.p. for some tiny ξ =
ξ(k) > 0; we conjecture that the 4−k term in Lemma 2 is
tight.)

In summary, the drift toward σmaj and the resulting fluctu-
ations of the majority weight induce a tremendous source of
variance, derailing the “vanilla” second moment argument.

Balanced assignments. A natural way to sidestep this
issue is to work with a ‘symmetric’ subset of S(Φ). Per-
haps the most obvious choice is the set SNAE(Φ) of NAE-
solutions. In a landmark paper, Achlioptas and Moore [4]
proved that indeed there is C = C(k) > 0 such that for
ZNAE = |SNAE(Φ)| we have

E
[
Z2

NAE

]
≤ C · E [ZNAE]2 for r ≤ 2k−1 ln 2−Ok(1). (9)

As we saw above (cf. Lemma 1), this implies that rk−SAT ≥
2k−1 ln 2−O(1). However, a simple (first moment) calcula-
tion shows that for r > 2k−1 ln 2, the set SNAE(Φ) is empty
w.h.p. Thus, the idea of working with NAE-solutions stops
working at r ∼ 2k−1 ln 2, about a factor of two below the
satisfiability threshold.

Achlioptas and Peres [6] obtained a better bound by pre-
cipitating symmetry in a more subtle manner. Let us call
σ ∈ {0, 1}n balanced if under σ out of the km literal oc-
currences in Φ exactly half are true (i.e., km

2
± 1). Thus,

balanced assignments are expressly forbidden from pander-
ing to σmaj. Now, let Sbal(Φ) be the set of all balanced
satisfying assignments, and set Zbal = |Sbal(Φ)|. Achlioptas
and Peres used a clever weighting scheme to prove that

E
[
Z2

bal

]
≤ C · E [Zbal]

2 for r ≤ rbal (cf. (2)). (10)

As before, this implies that rk−SAT ≥ rbal (Lemma 1).

Yet as in the case of NAE-solutions, balanced satisfying as-
signments cease to exist way before the satisfiability thresh-
old. Indeed, Achlioptas and Peres observed that Sbal(Φ) = ∅



for r > 2k ln 2− k ln 2
2

w.h.p. In effect, to close in further on
rk−SAT we will have to accommodate assignments that lean
toward σmaj. How can this be accomplished?

A quick fix? We saw that to make an asymmetric second
moment argument work, we need to rule out fluctuations of
the majority weight. A sensible way of implementing this
is by actually fixing the entire vector d = (dx, d¬x)x∈V that
counts the positively/negatively occurrences of each vari-
able. More precisely, given a non-negative integer vector
d = (dx, d¬x)x∈V with

∑
x∈V dx + d¬x = km let Φd denote

a uniformly random k-CNF in which each variable x appears
dx times positively and d¬x times negatively. Then we can
split the generation of a random formula Φ into two steps:

First, choose the occurrence vector d randomly from
the “correct” distribution D.

Then, choose a random formula Φd.

The “correct” D is as follows. Let e = (ex, e¬x)x∈V be
a family of independent Poisson variables with mean kr/2
each. Moreover, let E be the event that

∑
x∈V ex + e¬x =

km. Let D be the conditional distribution of e given E .
Then standard arguments show that the outcome of first
choosing d and then Φd is exactly the uniformly random Φ.

The point of generating Φ in two steps as above is that given
the outcome d of the first step, the majority weight is fixed.
Hence, if we could show that given a “typical”d, the second
moment succeeds for |S(Φd)| we would obtain a lower bound
on rk−SAT . Unfortunately, matters are not so simple.

Lemma 3. W.h.p. for a vector d chosen from D we have
E[|S(Φd)|2] ≥ exp (Ω(n)) · E [|S(Φd)|]2.

Let us stress the two levels of randomness in Lemma 3. First,
there is the choice of d. Then, for a given d, we compare
E[|S(Φd)|2] and E [|S(Φd)|]2. Of course, both of these quan-
tities depend on d, and we find that w.h.p. d is such that
the first exceeds the second by an exponential factor.

The explanation for this is that even if we fix d, various
other types of fluctuations remain, turning |S(Φd)| into a
“lottery”. For instance, even given d the number of clauses
that are unsatisfied under σmaj fluctuates. Hence, the inher-
ent asymmetry of k-SAT puts not only the majority weight
but also various other parameters on a slippery slope. What
we need is a way of controlling all these fluctuations simul-
taneously. We will present our solution in Section 4.

Catching the k-SAT threshold? Before we come to that,
let us discuss what it would take to eliminate the (small
but non-zero) gap left by Theorem 1, i.e., how far we are
from “catching” the k-SAT threshold. The physicists’ cavity
method comes in two installments. The (relatively speak-
ing) simpler “replica symmetric” version is based on Belief
Propagation. Theorem 1 provides a rigorous proof of the
best possible bound on the k-SAT threshold that can be ob-
tained from this version of the cavity method (up to possibly
the precise error term εk) [24].

Unfortunately, for r > rBP the replica symmetric version
(and in particular the Belief Propagation predictions that
we depend upon) are conjectured to break down. According
to the more sophisticated “1-step replica symmetry break-
ing”(1RSB) version of the cavity method, the reason for this
is that at r ∼ rBP a new type of correlation amongst sat-
isfying assignments arises. To deal with these correlations,
the physics methods replace Belief Propagation by the much
more intricate Survey Propagation technique.

In [11] we managed to prove rigorously that the 1RSB pre-
diction for the random k-NAESAT threshold is correct (up

to an additive 2−Ω(k)). However, [11] depends heavily on the
fact that k-NAESAT is symmetric. While it would be very
interesting to combine the merits of the present paper with
those of [11], this appears to be quite challenging. Thus,
putting the 1RSB calculation for random k-SAT on a rigor-
ous foundation remains an important open problem. That
said, we believe that any such attempt would need to build
upon the techniques developed in this paper.

3. RELATED WORK
The interest in random k-SAT originated largely from the
experimental observation that there seems to be a sharp
threshold for satisfiability and, moreover, that for certain
densities r < rk−SAT no polynomial time algorithm is known
to find a satisfying assignment w.h.p. [21, 23]. Currently, the
precise k-SAT threshold is known (rigorously) only in two
cases. Chvatal and Reed [8] and Goerdt [20] proved indepen-
dently that r2−SAT = 1. Of course, 2-SAT is special because
there is a simple criterion for (un)satisfiability, which en-
ables the proofs of [8, 20]. Unsurprisingly, these methods do
not extend to k > 2. Additionally, the threshold is known
precisely when k > log2 n, i.e., the clause length diverges
as a function of n [19]. In this case, the problem of asym-
metry evaporates because the majority weight is sufficiently
concentrated for the“vanilla”second moment method to suc-
ceed. (Note that Proposition 2 holds for any fixed k, but not
for k = k(n)→∞.) The issue of asymmetry also disappears
in the case of strongly regular formulas [29] where for some
fixed d we have dx = d¬x = d for all x ∈ V .

Also in random k-XORSAT (random linear equations mod
2) the threshold for the existence of solutions is known pre-
cisely [14]. The proof relies on computing the second mo-
ment of the number of solutions (after the instance has been
stripped down to a suitable core). In contrast to random k-
SAT, the random k-XORSAT problem is symmetric (cf. Re-
mark 3 below), albeit in a more subtle way than k-NAESAT.

Other problems where the second moment method succeeds
are symmetric as well. Pioneering the use of the second mo-
ment method in random CSPs, Achlioptas and Moore [4]
computed the random k-NAESAT threshold within an ad-
ditive 1/2. By enhancing this argument with insights from

physics this gap can be narrowed to a mere 2−Ω(k) [11,
12]. Moreover, the best current bounds on the random (hy-
per)graph k-colorability thresholds are based on “vanilla”
second moment arguments as well [5, 15]. In summary,
in all the previous second moment arguments, the issue of
asymmetry either did not appear at all by the nature of the
problem [4, 5, 11, 12, 14, 15, 19], or it was sidestepped [6].



The best current algorithms for random k-SAT find satisfy-
ing assignments w.h.p. for densities up to 1.817 · 2k/k (bet-
ter for small k) resp. 2k ln(k)/k (better for large k) [9, 18],
a factor of Θ(k/ ln k) below the satisfiability threshold. By
comparison, the Lovász Local Lemma and its algorithmic
version succeed up to r = Θ(2k/k2) [28].

Apart from experimental work [23], very little is known
about the physics-inspired message passing algorithms (“Be-
lief/Survey Propagation guided decimation”) [25]. The most
basic variant of Belief Propagation guided decimation is
known to fail w.h.p. on random formulas if r > c · 2k/k
for some constant c > 0 [10]. However, it is conceivable that
Survey Propagation and/or other variants of Belief Propa-
gation perform better.

4. THE RANDOM VARIABLE
Our goal is to make the second moment method work for
a random variable that counts “asymmetric” satisfying as-
signments. In this section, we develop this random variable.
The starting point, and the key ingredient, is simply a map
p : Z → [0, 1]. For the sake of clarity, we start by setting
up the framework for generic maps p; below we will use the
Belief Propagation formalism to pick the “optimal” p.

The idea is that p prescribes how strongly the assignments
that we work with lean toward the majority vote. Informally
speaking, we are going to work with assignments such that
a variable x that occurs dx times positively and d¬x times
negatively has a p(dx − d¬x) chance of being set to ‘true’.
Before we give a formal definition, we need to fix the number
of times that each variable appears positively or negatively.

Fixing the majority weight. As we saw in Section 2, in
order to make the second moment argument work, we need
to rule out fluctuations of the majority weight. To achieve
this, we follow the strategy outlined in Section 2. That is,
we are going to work with formulas Φd with a given vector
d = (dx, d¬x)x∈V of occurrence counts, where each vari-
able x appears precisely dx times positively and d¬x times
negatively. As in Section 2, we let D denote the (condi-
tional Poisson) distribution over sequences d such that first
choosing d from D and then generating Φd is equivalent to
choosing a k-CNF Φ uniformly at random.

Fixing the marginals. Now, fix one such vector d. Then
the map p : Z → [0, 1] induces a map pd from the set L =
{x,¬x : x ∈ V } of literals to [0, 1] in the natural way: we let

pd(x) = p(dx − d¬x) and pd(¬x) = 1− p(x). (11)

The idea is that, given d, we should set variable x to ‘true’
with probability pd(x).

To formalize this, we call pd(l) the pd-type of the literal l.
Let Td = {pd(l) : l ∈ L} be the set of all possible pd-types.
We say that σ : V → {0, 1} has pd-marginals if for any
type t ∈ Td we have2∑

l∈L:pd(l)=t

σ(l) · dl = t ·
∑

l∈L:pd(l)=t

dl.

2In this extended abstract we disregard rounding issues, i.e.,
we systematically omit all floor and ceiling signs.

i.e., among all occurrences of literals of type t, a t fraction is
true under σ. This definition captures the above idea that
variable x has a pd(x) chance of being ‘true’.

Fixing the clause types. We define the pd-type of a clause
l1∨· · ·∨ lk as the k-tuple (pd (l1) , . . . , pd (lk)) ∈ [0, 1]k com-
prising of the individual literal types. Let Ld = T kd be the
set of all possible clause types. For each ` ∈ Ld let MΦd(`)
be the set of indices i ∈ [m] such that the ith clause of Φd

has type `, and let mΦd(`) = |MΦd(`)|.

In addition to fluctuations of the majority weight, we also
need to suppress fluctuations of the numbers mΦd(`). We
are going to use the same trick as in the case of the majority
weight. Namely, we split the generation of a random formula
Φd into two steps:

First, choose a vector m = (m(`))`∈L from the “cor-
rect” distribution Md.

Then, generate a formula Φd,m uniformly at random
in which each variable x appears exactly dx times pos-
itively and exactly d¬x times negatively and that has
exactly m(`) clauses of type ` for all ` ∈ L.

Formally, the “correct” Md is just the distribution of the
random vector mΦd = (mΦd(`))`∈L that counts the clauses
by types in the “unrestricted” formula Φd. It is easily ver-
ified that the overall outcome of the above experiment is
identical to Φd. From now on, we fix both d and m.

Given d,m there is a simple way of generating the random
formula Φd,m. Namely, create dl clones of each literal l,
and put all the clones of a given pd-type on a pile. Then the
formula Φd,m is simply the result of matching the clones on
the type t pile randomly to all the clauses where a literal of
type t is required.

An assignment σ with p-marginals splits each pile into two
subsets, namely the clones that are true under σ and those
that are false. For each type among the clones on the type t
pile a t-fraction are true (because σ has p-marginals). There-
fore, we expect that under the random matching for each
clause type ` and each index j in an `j-fraction of clauses
the jth literal is matched to a ‘true’ clone.

Judicious assignment. This observation motivates the
following definition. We say that an assignment σ is pd-
judicious in Φd,m if for all clause types ` = (`1, . . . , `k) ∈ L
and all j ∈ [k] we have∑

i∈MΦd,m
(`)

σ(Φd,m,i,j) = m(`) · `j , (12)

where Φd,m,i,j denotes the jth literal of the ith clause of
Φd,m, and the sum is over all i such that the ith clause has
type `. Let Sp(Φd,m) be the set of p-judicious satisfying
assignments, and set Zp(Φd,m) = |Sp(Φd,m)|.

Given that σ is p-judicious, in order for σ to be satisfying we
just need that for each type ` the ‘true’ clones are distributed
so that each clause receives at least one. Thus, the event of
being satisfying is merely a matter of how exactly the ‘true’
clones are “shuffled” amongst the clauses of type `, while
for each j the total number of ‘true’ clones of type `j is



fixed. In particular, this shuffling occurs independently for
each clause type. Such random shuffling problems tend to
be amenable to the second moment method. Therefore, it
seems reasonable to expect that a second moment argument
succeeds for Zp(Φd,m). This is indeed the case for r <
rBP − 1 + ln 2 ≈ rBP − 0.3. However, to actually reach rBP

we need to control one further parameter.

Fixing the cluster size. According to the physics pre-
dictions [24, 25], for rbal < r < rBP the set of satisfying
assignments decomposes into an exponential number of well-
separated ‘clusters’. More precisely, we expect that w.h.p.
for any two satisfying σ, τ either dist(σ, τ) < 0.01n (if σ, τ
belong to the same cluster), or dist(σ, τ) > 0.49n (different
clusters). Formally, we simply define the cluster of σ as

Cσ(Φ) = {τ ∈ S(Φ) : dist(σ, τ) ≤ 0.01n} .

The intuitive reason why the second moment argument for
Zp(Φd,m) breaks down for r close to rBP is that the cluster
sizes |Cσ(Φd,m)| fluctuate. A similar problem occurred in
prior work on random k-NAESAT [11, 12].

As in those papers, the problem admits a remarkably simple
solution: let us call an assignment σ good in Φd,m if

|Cσ(Φd,m)| ≤ E [Zp(Φd,m)] . (13)

Let Sp,good(Φd,m) be the set of all good σ ∈ Sp(Φd,m). To
avoid fluctuations of the cluster size, we are just going to
work with Zp,good = |Sp,good(Φd,m)|.

The second moment bound. We now face the task of es-
timating the first and the second moment of Zp,good(Φd,m).
The result can be summarized as follows.

Theorem 2. Suppose rbal < r < rBP. There exists C =
C(k) and a map p = pBP : Z→ [0, 1] such that for d chosen
from D and for m chosen from Md w.h.p.

0 < E
[
Zp,good(Φd,m)2] ≤ C · E [Zp,good(Φd,m)]2 .

Together with Paley-Zygmund (5), Theorem 2 shows that
with d chosen from D and m chosen from Md w.h.p.

P [Φd,m is satisfiable] (14)

≥ P [Zp,good(Φd,m) > 0] ≥ E [Zp,good(Φd,m)]2

E [Zp,good(Φd,m)2]
≥ 1

C
.

The construction of D, Md ensures that choosing Φ at ran-
dom is the same as first picking d from D and m from
Md and then generating Φd,m. Therefore, (14) implies
lim infn→∞ P [Φ is satisfiable] > 0, so that Lemma 1 yields
rk−SAT ≥ rBP. Hence, we are left to prove Theorem 2. We
begin by constructing the map pBP.

Guessing the marginals. For a set ∅ 6= S ⊂ {0, 1}V and
a variable x we define the S-marginal of x as

µS(x) =
∑
σ∈S

σ(x)

|S| . (15)

The definition of ‘pd-judicious’ is guided by the idea that
pd(x) should prescribe the marginal of x in the set of all pd-
judicious satisfying assignments. Hence, in order to make
the set of pd-judicious assignments as good an approxima-
tion of the entire set of satisfying assignments as possible, we

better pick p so that pd(x) is a good approximation to the
actual marginal µS(Φd)(x) of x in the set of all satisfying
assignments. The problem is that, because of the asym-
metry of the k-SAT problem, these marginals are highly
non-trivial quantities. Indeed, on general formulas Φ the
marginals µS(Φ)(x) are #P -hard to compute.

However, according to the physicists’ cavity method, on ran-
dom formulas with density r < rBP the marginals can be
computed by means of an efficient message passing algo-
rithm called Belief Propagation [24]. While the mechanics
of this are not important in our context, the result is.

Conjecture 1. Suppose that rbal < r < rBP. Let d be
chosen from D and let x be a variable. Then w.h.p.

µS(Φd)(x) =
1

2
+
dx − d¬x

2k+1
+O

(
dx − d¬x

2k

)2

. (16)

We observe that (16) is in line with the notion that S(Φd)
is “skewed toward” σmaj. Indeed, the conjecture quantifies
how much so. Motivated by Conjecture 1, we define

pBP(z) =


1

2
+

z

2k+1
if |z| ≤ 10

√
k2k ln k,

1

2
otherwise.

(17)

Under the distribution D, the random variables dx, d¬x are
asymptotically independent Poisson with mean kr/2 (cf.
Section 2). Therefore,

Ed

[
(dx − d¬x)2] = kr ≤ k2k ln 2,

and standard concentration inequalities show that w.h.p.
there are no more than n/k30 variables x with (dx−d¬x)2 >
100k2k ln k. Hence, pd = pBP,d is (asymptotically) equal to
the conjectured value on the bulk of variables w.h.p.

In summary, the problem with the “vanilla” second moment
argument is that the drift toward the σmaj induces correla-
tions amongst the satisfying assignments. Indeed, they are
correlated with the majority assignment and thus with each
other. We circumvent this problem by explicitly prescribing
the marginal probability that each variable is set to ‘true’.
One could think of this as working with the intersection of
S(Φ) with a particular “surface” within the Hamming cube
{0, 1}n, namely the assignments with pd-marginals. Within
this surface, all assignments are slanted equally toward σmaj.
The Belief Propagation-informed definition of pBP is meant
to ensure that the surface that we consider with is (about)
the most populous one, i.e., the one with the largest num-
ber of satisfying assignments in it. The core of our argument
will be to show that with respect to the marginal distribution
pBP, i.e., within the surface that pBP defines, two random
elements of Sp(Φd,m) are typically uncorrelated (Proposi-
tion 2 below). But before we come to that, we need to
compute the “first moment”, i.e., the expected number of
good pBP -judicious satisfying assignments.

Remark 1. Belief Propagation actually leads to a stronger
prediction than Conjecture 1. Namely, it yields a conjecture
for µS(Φd)(x) up to an additive error then tends to 0 as



n→∞. However, (a) this stronger conjecture is not in ex-
plicit form, and (b) it does not only depend on dx, d¬x, but
also on various other parameters. In any case, even a more
accurate prediction would not yield a better constant than
3
2

ln 2 in Theorem 1.

Remark 2. In the present framework, the notion of bal-
anced satisfying assignments from [6] simply corresponds to
working with the constant map pbal : Z → [0, 1] , z 7→ 1

2
.

This hightlights that the improvement that we obtain here
stems from choosing the non-constant map pBP inspired by
Belief Propagation.

Remark 3. The definition (15) of the marginal of a set
gives rise to a formal notion of ‘symmetric problem’. Namely,
we could call a (binary) random CSP symmetric if its set
SCSP(Φ) of solutions is such that for each variable x w.h.p.
we have µx(SCSP(Φ)) = 1

2
+ o(1). Clearly, k-NAESAT

passes this test as µx(SNAE(Φ)) = 1
2

for all x with certainty.
Similarly, the problem of having a balanced satisfying assign-
ment is symmetric [6], as is random k-XORSAT.

From here on out we keep the assumptions of The-
orem 2. In particular, we assume rbal < r < rBP. Let
d be chosen from D, and let m be chosen from Md.
Let p = pBP be as in (17) and pd as in (11).

5. THE FIRST MOMENT
Let ρ > 3

2
ln 2 be such that r = 2k ln 2− ρ.

Proposition 1. W.h.p. d,m are such that

E [Zp,good(Φd,m)] = exp

[
n

2k

(
ρ− ln 2

2
+ ok(1)

)]
.

We begin by computing E [Zp(Φd,m)]. By definition, any
assignment that is pd-judicious has pd-marginals. Thus, let
Hp(d) ⊂ {0, 1}V denote the set of all assignments that have
pd-marginals. Then by the linearity of expectation,

E [Zp(Φd,m)] =
∑

σ∈Hp(d)

P [σ ∈ Sp(Φd,m)] . (18)

Hence, we need to compute |Hp(d)| and the probability
P [σ ∈ Sp(Φd,m)] for any σ ∈ Hp(d). Using basic properties
of the entropy, we obtain

Lemma 4. Let χ(z) = −z ln z − (1 − z) ln(1 − z) denote
the entropy function. Then w.h.p. d is such that

ln |Hp(d)| ∼ n ·
∑
x∈V

χ(p(x)).

Taylor expanding χ(z) around z = 1/2 and plugging in the
definition (17) of p, we obtain that w.h.p. d is such that

1

n
ln |Hp(d)| = ln 2− k ln 2

2k+1
+ ok(2−k). (19)

As a next step, we compute the probability of σ ∈ Sp(Φd,m)
for σ ∈ Hp(d).

Lemma 5. W.h.p. d, m are such that for any σ ∈ Hp(d),

1

n
ln P [σ ∈ Sp(Φd,m)] =

− ln 2 +
k ln 2

2k+1
+ 2−k

[
ρ− ln 2

2
+ ok(1)

]
. (20)

Let us defer the proof of Lemma 5, which is the core of
the first moment computation, for a little while. Combining
(18)–(20), we see that w.h.p. over the choice of d,m we have

ln E [Zp(Φd,m)] = ln |Hp(d)|+ ln P [σ ∈ Sp(Φd,m)]

∼ 2−k
[
ρ− ln 2

2
+ ok(1)

]
· n (21)

To obtain the expectation of Zp,good, we show the following.

Lemma 6. W.h.p. over the choice of d,m we have

E [Zp,good(Φd,m)] ∼ E [Zp(Φd,m)] .

The proof of Lemma 6 is based on arguments developed in [1]
for analyzing the geometry of the set of satisfying assign-
ments. Combining (21) and Lemma 6 yields Proposition 1.

Proof of Lemma 5. In the random formula Φd,m there
are dependencies amongst the clauses, arising, e.g., from pre-
scribing the precise number of occurrences for each literal.
The key idea of the proof is to work with a different prob-
ability space in which the clauses and even the individual
literals behave independently.

The elements of this new space Ω̂ are all 0/1 vectors

(σ̂ij(`))`∈L,i∈[m(`)],j∈[k].

The idea is that σ̂ij(`) is going to represent the truth value
of the jth literal of the ith clause of type `. The probability
distribution P̂ on Ω̂ is defined via a parameter vector

q = (q`,j)`∈L,j∈[k]

with entries in [0, 1]: each σ̂ij(`) is the result of a Bernoulli
experiment with success probability q`,j , and these experi-
ments are independent for all `, i, j. We will choose q below
so that we can compute the first moment (relatively) easily.

For each ` = (`1, . . . , `k) ∈ L and each i ∈ [m(`)] let Si(`) be
the event that maxj∈[k] σ̂ij(`) = 1. This is going to mirror
the event that the ith clause of type ` is satisfied. Let

S =
⋂
`∈L

⋂
i∈[m(`)]

Si(`),

which is going to reflect the event that all clauses are satis-
fied. Further, for any j ∈ [k] let Bj(`) be the event that∑

i∈m(`)

σ̂ij(`) = m(`) · `j .

Let B =
⋂
`∈L,j∈[k] Bj(`) to capture the event of being judi-

cious.

We observed in Section 4 that given d,m, choosing Φd,m

amounts to generating a random matching between literal
occurrences of each type t and clauses where literals of type
t are required. This observation leads to



Lemma 7. Assume that q satisfies P̂ [B] > 0. Then for
any σ ∈ Hp(d) we have

P [σ ∈ Sp(Φd,m)|σ is pd-judicious] = P̂ [S|B] .

Suppose that σ has p-marginals. Viewing Φd,m as a random
matching, we see that for each ` ∈ L and for each j ∈ [k]
the expected fraction of clauses of type ` whose jth literal is
true under σ equals `j . Hence, a local limit theorem yields

P [σ is pd-judicious] = n−O(1) for all σ ∈ Hp(d). (22)

We are left to compute P̂ [S|B]. By the definition of P̂, it

is quite easy to compute P̂ [S], P̂ [B] individually. Indeed,
because the σ̂i,j(`) are mutually independent, for any ` ∈ L
and any i ∈ [m(`)] we have

P̂ [Si(`)] = 1−
k∏
j=1

(1− q`,j), whence (23)

P̂ [S] =
∏
`∈L

[
1−

k∏
j=1

(1− q`,j)

]m(`)

. (24)

Once more by independence, for any ` ∈ L, j ∈ [k] the sum∑
i∈m(`) σ̂ij(`) has a binomial distribution Bin(m(`), q`,j).

As a consequence,

P̂ [B] =
∏
`,j

P [Bin(m(`), q`,j) = m(`) · `j +O(1)]

= exp

o(n) +
∑
`,j

m(`)ψ(q`,j , `j)

 , with (25)

ψ(x, y) = −y ln
( y
x

)
− (1− y) ln

(
1− y
1− x

)
(26)

the Kullback-Leibler divergence. We stress that (24) and (25)
hold for any q.

Hence, if we could choose q so that

P̂ [B|S] = exp(−o(n)), (27)

then

P̂ [S|B] = P̂ [B|S] · P̂ [S] /P̂ [B]

= exp(−o(n)) · P̂ [S] /P̂ [B] . (28)

Lemma 8. There is q such that (27) holds and

q`,j = `j − 2−k−1 + Õ(2−3k/2) for all `, j. (29)

Proof. By (23), for any `, j we have

E

[ ∑
i∈m(`)

σ̂ij(`)
∣∣S] =

m(`)q`,j

1−
∏k
j=1(1− q`,j)

.

Hence, if we could choose q so that

q`,j

1−
∏k
j=1(1− q`,j)

= `j for all `, j, (30)

then the local limit theorem for sums of independent ran-
dom variables would imply P̂ [B|S] = exp(−o(n)). Using the
inverse function theorem from analysis, one can show that
there is indeed a q that satisfies both (29) and (30).

Plugging the definition (17) of p = pBP into (24)–(29), we

can now compute ln P̂ [S|B] ∼ ln P̂ [S]− ln P̂ [B] asymptoti-
cally. The result of this is the expression given in (20). Thus,
Lemma 5 follows from Lemma 7 and (22).

6. THE SECOND MOMENT
We aim to prove the second part of Theorem 2. Thus, we
need to estimate the expected number Z = |Sp,good(Φd,m)|2
of pairs of good p-judicious satisfying assignments. The
very definition of ‘good’ entails an easy bound if dist(σ, τ)
is small. Indeed, let Znear be the number of pairs (σ, τ) ∈
Sp,good(Φd,m) with dist(σ, τ) ≤ 0.01n.

Lemma 9. We have E [Znear(Φd,m)] ≤ E [Zp(Φd,m)]2 .

Proof. The bound (13) ensures that with certainty for
any σ ∈ Sp,good(Φd,m) we have

|{τ ∈ Sp,good(Φd,m) : dist(σ, τ) ≤ 0.01n}|
≤ |Cσ(Φd,m)| ≤ E [Zp(Φd,m)] .

Hence, by the linearity of expectation,

E [Znear(Φd,m)]

= E
∑

σ∈Sp,good(Φd,m)

|{τ ∈ Sp,good(Φd,m) : dist(σ, τ) ≤ 0.01n}|

≤ E [Zp(Φd,m)] · E [Zp,good(Φd,m)] ≤ E [Zp(Φd,m)]2 ,

as claimed.

There is another range of distances for which we can get a
quick bound. Let ξ = k2−k/8 and let Zmed be the number
of pairs (σ, τ) ∈ S(Φd,m) such that dist(σ, τ) > 0.01n and
|dist(σ, τ) − n

2
| > ξn. A rather crude calculation yields the

following.

Lemma 10. W.h.p. over the choice of d,m we have

E [Zmed(Φd,m)] = o(1).

Thus, we are left to analyze the number Zcentre of pairs
(σ, τ) ∈ Sp(Φd,m)2 such that |dist(σ, τ) − n

2
| ≤ ξn. We

zoom in on this range by quantifying the similarity between
two assignments more accurately. Define the overlap of
σ, τ ∈ {0, 1}V in Φd,m to be the vector

ω(σ, τ) = ωΦd,m(σ, τ) = (ω`,j(σ, τ))`∈L,j∈[k], with

ω`,j(σ, τ) =
∑

i∈MΦd,m
(`)

σ(Φd,m,i,j)τ(Φd,m,i,j)

m(`)
.

Thus, ω`,j(σ, τ) is the fraction of clauses of type ` in Φd,m

whose jth literal is true under both σ, τ . Let

ω∗ = (ω∗`,j) with ω∗`,j = `2j for all `, j. (31)

Lemma 11. W.h.p. over the choice of d, m the follow-
ing is true. Choose two assignments σ, τ with p-marginals
uniformly and independently. Then E

[
ωΦd,m(σ, τ )

]
= ω∗.



For a vector ω = (ω`,j) we let Zω denote the number of
all (σ, τ) ∈ Sp(Φd,m)2 such that ‖ω(σ, τ)− ω‖∞ ≤ O(1/n).
The key step of the second moment analysis can be summa-
rized as follows.

Proposition 2. There is ζ = ζ(k) > 0 such that w.h.p.
over the choice of d,m for all ω such that ‖ω − ω∗‖∞ ≤ 2ξ
we have

E [Zω(Φd,m)] ≤ exp
[
−ζn · ‖ω − ω∗‖22

]
· E [Zω∗(Φd,m)] .

Before we come to the proof of Proposition 2, let us indi-
cate how it implies the second moment bound. For δ > 0
let Zω,δ be the number of (σ, τ) ∈ Sp(Φd,m)2 such that
‖ω(σ, τ)− ω‖∞ ≤ δ. Proposition 2 shows that the contri-

bution of Zω decays exponentially in ‖ω − ω∗‖22. Therefore,
with a bit of calculus we obtain

E [Zω∗,2ξ(Φd,m)] ≤ C · E
[
Zω∗,1/

√
n(Φd,m)

]
. (32)

Furthermore, for σ, τ with dist(σ, τ) ≤ ξ we have∥∥ω∗ − E
[
ωΦd,m(σ, τ)

]∥∥ ≤ ξ.
Indeed, ωΦd,m(σ, τ) is sufficiently concentrated about its ex-
pectation to obtain

E [Zcentre(Φd,m)] ∼ E [Zω∗,2ξ(Φd,m)] . (33)

As ω∗ is the expected overlap of two perfectly uncorrelated
assignments σ, τ with pd-marginals (cf. Lemma 11), it rela-
tively straightforward to verify that

E
[
Zω∗,1/

√
n(Φd,m)

]
≤ C′ · E [Zp(Φd,m)]2 (34)

for some C′ = C′(k) > 0. Combining (32)–(34), we find

E [Z(Φd,m)] ≤ C′′ · E [Zp(Φd,m)]2 (35)

for some C′′ = C′′(k) > 0. Finally, Theorem 2 follows by
combining (35) with Lemmas 6, 9 and 10.

Establishing Proposition 2. Assume that ‖ω − ω∗‖∞ ≤
ξ. To compute E [Zω(Φd,m)], we need to estimate for each
pair σ, τ with ωΦd(σ, τ) = ω the probability that σ, τ ∈
Sp(Φd,m). Similarly as in the computation of the first mo-
ment, we are going to work with a different probability space
(Ω̂, P̂). This time, Ω̂ consists of all vectors of 0/1 pairs

(σ̂ij(`), τ̂ij(`))`∈L,i∈[m(`)],j∈[k]

The distribution P̂ is defined by means of a vector

q = (qab`,j)`∈L,j∈[k],a,b∈{0,1}

that satisfies
∑
a,b∈{0,1} q

ab
`,j = 1 and q01

`,j = q10
`,j for all `, j.

Given q, we let

P̂ [σ̂ij(`) = a, τ̂ij(`) = b] = qab`,j (a, b ∈ {0, 1}),

independently for all `, i, j. The intended semantics is that
σ̂ij(`), τ̂ij(`) represent the truth values of the jth literal of
the ith clause of type ` under a pair of assignments. Let

q`,j = q10
`j + q11

`j

denote the marginal probability that σ̂ij(`) = 1.

Let Si(`) denote the event that

max
j∈[k]

σ̂ij(`) = max
j∈[k]

τ̂ij(`) = 1,

and let S =
⋂
`,i Si(`). Further, let Bj(`) denote the event∑

i∈m(`)

σ̂ij(`) =
∑
i∈m(`)

τ̂ij(`) = m(`) · `j ,

and let B =
⋂
`,j Bj(`). Finally, let ω̂ = (ω̂`,j) denote the

vector with entries

ω̂`,j =
∑

i∈[m(`)]

σ̂ij(`)τ̂ij(`)/m(`).

In analogy to Lemma 7, we obtain

Lemma 12. Let σ, τ ∈ {0, 1}V have pd-marginals. Then

P
[
σ, τ ∈ Sp(Φd,m)|ωΦd,m(σ, τ) = ω

]
= P̂ [S|B, ω̂ = ω] .

As in the proof of Lemma 7, to compute P̂ [S|B, ω̂ = ω] we

are going to choose q so as to maximize P̂ [B, ω̂ = ω]. This

allows us to express the P̂ [S|B, ω̂ = ω] as a quotient of a
term that factorises over clauses and a bunch of binomial
large deviations.

Lemma 13. There exists q = q(ω) such that

`j =
q`,j − (q`,j − q11

`,j)
∏
h 6=j(1− q`,h)

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)
,

ω`,j =
q11
`,j

1− 2
∏k
h=1(1− q`,h) +

∏k
h=1(1− 2q`,h + q11

`,h)

for all ` ∈ L, j ∈ [k]. For this q, and with ψ as in (26) let

P`(ω) = ln

[
1− 2

k∏
j=1

(1− q`,j) +

k∏
j=1

(1− 2q`,j + q11
`,j)

]

−
∑
j∈[k]

[
ψ(q11

`,j , ω`,j) +

(1− ω`,j)ψ

(
1− 2q`,j + q11

`,j

1− q11
`,j

,
1− 2`j + ω`,j

1− ω`,j

)]
for any ` ∈ L, and set P(ω) =

∑
`∈L

m(`)
n
P`(ω). Then

P̂ [S|B, ω̂ = ω] = Θ(1) · exp [n · P(ω)] .

To complete the proof, we need to analyze the function P(ω).

Lemma 14. The function P has two continuous deriva-
tives. These satisfy

∂

∂ω`,j
P(ω∗) = 0,

∂2

∂ω`,hω`,j
P(ω`) ≤ 4−k+o(k)

for all ` ∈ L, j, h ∈ [k] and all ω such that ‖ω − ω∗‖∞ ≤ 2ξ.



The fact that the first derivative of P vanishes at ω∗ is cru-
cial. Indeed, because of this we can use Taylor’s theorem to
bound P around ω∗ by a quadratic function, obtaining

P(ω) ≤ P(ω∗) + 4−k+o(k)
∑
`∈L

m(`)

n
‖ω` − ω∗` ‖

2
2 , (36)

where ω` = (ω`,j)j∈[k]. To obtain the desired bound on
E [Zω], we need to estimate the number of pairs (σ, τ) with
overlap ω. A somewhat delicate analysis shows that this
number can be bounded by a function H(ω) such that

H(ω)

H(ω∗)
≤ exp

[
−2−k+o(k)

∑
`∈L

m(`)

n
‖ω` − ω∗` ‖

2
2

]
. (37)

Combining (36) and (37) yields

E [Zω(Φd,m)]

E [Zω∗(Φd,m)]
≤ C′ · H(ω)P(ω)

H (ω∗)P(ω∗)

≤ C′ · exp
[
−ζ ‖ω − ω∗‖22

]
for certain C′ = C′(k), ζ = ζ(k) > 0, as desired.
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