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Abstract. The smoothed analysis of algorithms is concerned with the expected running time
of an algorithm under slight random perturbations of arbitrary inputs. Spielman and Teng
proved that the shadow-vertex simplex method had polynomial smoothed complexity. On a
slight random perturbation of arbitrary linear program, the simplex method finds the solution
after a walk on polytope(s) with expected length polynomial in the number of constraints n,
the number of variables d and the inverse standard deviation of the perturbation 1/σ.

We show that the length of walk in the simplex method is actually polylogarithmic in the
number of constraints n. Spielman-Teng’s bound on the walk was O(n86d55σ−30), up to loga-
rithmic factors. We improve this to O(max(d5 log2 n, d9 log4 d, d3σ−4)). This shows that the
tight Hirsch conjecture n − d on the the length of walk on polytopes is not a limitation for the
smoothed Linear Programming. Random perturbations create short paths between vertices.

We propose a randomized phase-I for solving arbitrary linear programs. Instead of finding a
vertex of a feasible set, we add a vertex at random to the feasible set. This does not affect the
solution of the linear program with constant probability. So, in expectation it takes a constant
number of independent trials until a correct solution is found. This overcomes one of the major
difficulties of smoothed analysis of the simplex method – one can now statistically decouple the
walk from the smoothed linear program. This yields a much better reduction of the smoothed
complexity to a geometric quantity – the size of planar sections of random polytopes. We also
improve upon the known estimates for that size.

1. Introduction

The simplex method is “the classic example of an algorithm that is known to perform well in
practice but which takes exponential time in the worst case” [2]. In an attempt to explain this
behavior, Spielman and Teng [2] introduced the concept of smoothed analysis of algorithms, in
which one measured the expected complexity of an algorithm under slight random perturbations
of arbitrary inputs. They proved that a variant of the simplex method has polynomial smoothed
complexity.

Consider a linear program of the form

maximize 〈z, x〉
subject to Ax ≤ b,

(LP)

where A is an n×d matrix, representing n constraints, and x is a vector representing d variables.
A simplex method starts at some vertex x0 of the polytope Ax ≤ b, found by a phase-I

method, and then walks on the vertices of the polytope toward the solution of (LP). A pivot
rule dictates how it chooses a next vertex in this walk. The complexity of the simplex method
is then determined by the length of the walk – the number of pivot steps.

So far, smoothed analysis has only been done for the shadow-vertex pivot rule introduced
by Gaas and Saaty [3]. The shadow-vertex simplex method first chooses an initial objective
function z0 optimized by the initial vertex x0. Then it interpolates between z0 and the actual
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objective function z. Namely, it rotates z0 toward z and computes the vertices that optimize all
the objective functions between z0 and z.

A smoothed linear program is a linear program of the form (LP), where the rows ai of A, called
the constraint vectors, and b are independent Gaussian random vectors, with arbitrary centers
āi and b̄ respectively, and with standard deviations σ maxi ‖(āi, b̄i)‖. Spielman and Teng proved

Theorem 1.1. [2] For arbitrary linear program with d > 3 variables and n > d constraints, the
expected number of pivot steps in a two-phase shadow-vertex simplex method for the smoothed
program is at most a polynomial P(n, d, σ−1).

Spielman-Teng’s analysis yields the following estimate on expected number of pivot steps:

P(n, d, σ−1) ≤ O∗(n86d55σ−30)

where the logarithmic factors are disregarded. The subsequent work of Deshpande and Spielman
[1] improved on the exponents of d and σ; however, it doubled the exponent of n. We shall prove
the following estimate:

Theorem 1.2 (Main). The expected number of pivot steps in Theorem 1.1 is at most

P(n, d, σ−1) ≤ O(max(d5 log2 n, d9 log4 d, d3σ−4)).

Perhaps the most surprising feature of Theorem 1.2 is that the number of pivot steps is
polylogarithmic in the number of constraints n, while the previous bounds were polynomial in n.

This can change our intuition of what Linear Programming can achieve. Hirsch conjecture
states that the diameter of the polytope Ax ≤ b (the maximal number of steps in the shortest
walk between any pair of vertices) is at most n−d. Hirsch conjecture is tight, so it is natural to
think of it as a lower bound on the worst case complexity of any variant of the simplex method
– any walk on vertices must be at least n−d long. Theorem 1.2 (and Theorem 6.1 below) claim
that a random perturbation destroys this obstacle by creating short paths between vertices.
Moreover, while Hirsch conjecture does not suggest any algorithm for finding a short walk, the
shadow-vertex simplex method already finds a much shorter walk!

The reason why a random perturbation creates a short path between vertices is not that it
destroys most of them. Even in the average case, when A is a matrix with independent i.i.d.
Gaussian entries, the expected number of vertices of the random polytope asymptotically equals
2dd−1/2(d − 1)−1(π log n)(d−1)/2 ([6], see [4]). This is exponential in d and sublinear but not
polylogarithmic in n (compare to log2 n in Theorem 1.2).

The smoothed complexity (expected running time) of the simplex method is O(P(n, d, σ−1) tpivot),
where tpivot is the time to make one pivot step under the shadow-vertex pivot rule. The depen-
dence of tpivot on n is at most linear, for one only needs to find an appropriate vector ai among
the n vectors to update the running vertex. However, for many well structured linear problems
the exhaustive search over all ai is not nesessary, which makes tpivot much smaller. In this case
Theorem 1.2 shows that the shadow-vertex simplex method can solve very large scale problems
(with exponentially many constraints).

2. Outline of the approach

Our smoothed analysis of the simplex method is largely inspired by that of Spielman and
Teng [2], but we have to resolve a few conceptual difficulties of [2]. Eventually this simplifies
and improves the overall picture.
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2.1. Interpolation: reduction to unit linear programs. First, we reduce arbitrary linear
program (LP) to a unit linear program, a program in which b = 1. This is done by a simple
interpolation. One more variable is introduced, and (LP) reduces to a unit program in dimension
d + 1 with constraint vectors of type (ai, bi). A simple but very useful consequence is that
this reduction preserves the Gaussian distribution of the constraints – if (LP) has independent
Gaussian constraints (as the smoothed program does), then so does the reduced unit program.

2.2. Duality: reduction to planar sections of random polytopes. Now that we have a
unit linear program, it is best viewed in the polar perspective. The polar of the feasible set
Ax ≤ 1 is the polytope P , which is the convex hull of the origin and of the constraint vectors
ai. The unit linear problem is then equivalent to finding facet(z), the facet of P pierced by the
ray {tz : t ≥ 0}. In the shadow-vertex simplex method, we assume that phase-I provides us
with an initial objective vector z0 and the initial facet(z0). Then phase-II of the simplex method
computes facet(q) for all vectors q in the plane E = span(z0, z) between z0 and z. Specifically,
it rotates q from z0 toward z and updates facet(q) by removing and adding one vertex to its
basis, as it becomes necessary. At the end, it outputs facet(z).

The number of pivot steps in this simplex method is bounded by the number of facets of P
the plane E meets. This is the size of the planar section of the random polytope P , the number
of edges of the polygon P ∩E. Under a hypothetical assumption that E is fixed or is statistically
independent of P , estimating the size of P ∩E becomes a solvable problem in asymptotic convex
geometry. Indeed, Spielman and Teng [2] and later Deshpande and Spielman [1] showed that
this size, called the shadow size in these papers, is polynomial in n, d and σ−1.

The main complication in the analysis in [2] was that plane E = span(z0, z) was also random,
and moreover correlated with the random polytope P . It is not clear how to find the initial
vector z0 independent of the polytope P and, at the same time, in such a way that we know the
facet of P it pierces. Thus the main problem rests in phase-I. None of the previously available
phase-I methods in linear programming seem to achieve this. The randomized Phase-I proposed
in [2] exposed a random facet of P by multiplying a random d-subset of the vectors ai by an
appropriately big constant to ensure that these vectors do become a facet. Then a random
convex linear combination of these vectors formed the initial vector z0. This approach brings
about two complications:

(a) the vertices of the new random polytope are no longer Gaussian;
(b) the initial objective vector z0 (thus the plane E) is correlated with the random polytope.

Our new approach will overcome both these difficulties.

2.3. Phase-I for arbitrary linear programs. We propose the following randomized phase-I
for arbitrary unit linear programs. It is of independent interest, regardless of its applications to
smoothed analysis and to the simplex method.

Instead of finding or exposing a facet of P , we add a facet to P in a random direction. We
need to ensure that this facet falls into the numb set of the linear program, which consists of
the points that do not change the solution when added to the set of constraint vectors (ai).
Since the solution of the linear program is facet(z), the affine half-space below the affine span
of facet(z) (on the same side as the origin) is contained in the numb set. Thus the numb set
always contains a half-space.

A random vector z0 drawn from the uniform distribution on the sphere Sd−1 is then in the
numb half-space with probability at least 1/2. A standard concentration of measure argument

shows that such a random point is at distance Ω(d−1/2) from the numb half-space with constant
probability. (This distance is the observable diameter of the sphere, see [5] Section 1.4). Thus a
small regular simplex with center z0 is also in the numb set with constant probability. Similarly,
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one can smooth the vertices of the simplex (make them Gaussian) without leaving the numb set.
Finally, to ensure that such simplex will form a facet of the new polytope, it suffices to dilate it
by the factor of

M = max
i=1,...,n

‖ai‖. (2.1)

Summarizing, we can add d linear constraints to any linear program at random, without
changing its solution with constant probability. Note that it is easy to check whether the solution
is correct, i.e. that the added constraints do not affect the solution. The latter happens if and
only if none of the added constraints turn into equalities on the solution x. Therefore, one
can repeatedly solve the linear program with different independently generated sets of added
constraints, until the solution is correct. Because of constant probability of success at every step,
this phase-I terminates in expectation after a constant number of steps, and it always produces
a correct initial solution.

When applied for the smoothed analysis of the simplex method, this phase-I resolves the
main difficulty of the approach in [2]. The initial objective vector z0 and thus the plane E
become independent of the random polytope P . Thus the smoothed complexity of the simplex
method gets bounded by the number of edges of a planar section of a random polytope P , whose
vertices have standard deviation of the order of min(σ, d−1/2 log−1/2 n, d−3/2 log−2.5 n), see (5.1).
In the previous approach [2], such reduction was made with the standard deviation of order
σ5d−8.5n−14 log−2.5 n.

A deterministic phase-I is also possible, along the same lines. We have used that a random
point in Sd−1 is at distance Ω(d−1/2) from a half-space. The same property is clearly satisfied by
at least one element of the canonical basis (e1, . . . , ed) of R

d. Therefore, at least one of d regular

simplices of radius 1
2d−1/2 centered at points ei, lies in the numb half-space. One can try them

all for added constraints; at least one will give a correct solution. This however will increase the
running time by a factor of d – the number of trials in this deterministic phase-I may be sa large
as d, while the expected number of trials in the randomized phase-I is constant. The smoothed
analysis with such phase-I will also become more difficult due to having d non-random vertices.

2.4. Remaining difficulties. There remain two problems though. One is a good estimate of
the size of the polygon P ∩E for a random polytope P and a fixed plane E. Known bounds ([2]
Theorem 4.0.1 and [1]) are not quite sufficient for us, for they are at least linear in n, while we
need a polylogarithmic dependence in our main Theorem 1.2. A loss of the factor of n occurs in
estimating the angle of incidence ([2] Lemma 4.2.1), the angle at which a fixed ray in E emitted
from the origin meets the facet of P it pierces.

Instead of estimating the angle of incidence from one viewpoint determined by the origin 0, we
will view the polytope P0 from three different points 01, 02, 03 on E. Rays will be emitted from
each of these points, and from at least one of them the angle of incidence will be good (more
precisely, the angle to the edge of P ∩ E, which is the intersection of the corresponding facet
with E). There is also an alternative method, which avoids estimating the angle of incidence.

The last and the least important problem is that the the dilation factor M , introduced to
ensure that the random simplex is a facet of the new polytope, depends on the magnitudes of
the constraint vectors ai. This makes the added facet somewhat correlate with P . The same
problem arose in [2] and was resolved there by quantizing M on an exponential scale, so that
there were few choices for M , while the probability of success for each given choice of M is big
enough. We prefer to retain the original definition of M , to keep phase-I most natural. We are
still able to write out and analyze the joint density of the new constraints, even though it does
not factor into a product of independent densities.
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3. Preliminaries

3.1. Notation. The positive cone of a set K in a vector space will be denoted by cone(K), and
its convex hull by conv(K) or 4(K). A half-space in R

d is a set of the form {x : 〈z, x〉 ≤ 0}
for some vector z. An affine half space takes the form {x : 〈z, x〉 ≤ a} for some number
a. The definitions of hyperplane and affine hyperplane are similar, with equalities in place of
inequalities. The normal to an affine hyperplane H which is not a hyperplane is the vector h
such that H = {x : 〈h, x〉 = 1}. A point x is said to be below H if 〈h, x〉 ≤ 1.

Throughout the paper, we will assume that the vectors (ai, bi) that define the linear program
(LP) are in a general position. This assumption simplifies our analysis and it holds with probabil-
ity 1 for a smoothed program. One can remove this assumption with appropriate modifications
of the results.

A solution x of (LP) is determined by a d-set I of the indices of the constraints 〈ai, x〉 ≤ bi

that turn into equalities on x. It is easy to obtain x from I by inverting AI on x. So we
sometimes call the index I a solution of (LP).

For a polytope P = conv{0, ai}n
i=1 and a vector z, we denote by facet(z) = facetP (z) the basis

of the facet of P pierced by the ray {tz : t ≥ 0}. More precisely, facet(z) is the family of all
d-sets I such that 4(ai)i∈I is a facet of the polytope P and z ∈ cone(ai)i∈I . If z is in general
position, facet(z) is an empty set or contains exactly one set I.

3.2. Vertices at infinity. For convenience in describing the interpolation method, we will
assume that one of the constraint vectors ai can be at infinity, in a specified direction u ∈ R

d. The
definitions of the positive cone and the convex hull are then modified in a straightforward way.
If, say, aj is such an infinite vector and j ∈ I, then one defines 4(ai)i∈I = 4(ai)i∈I−{j} + {tu :
t ≥ 0}, where the addition in the Minkowski sum of two sets, A + B = {a + b : a ∈ A, b ∈ B}.

Although having infinite vectors is convenient in theory, all computations can be performed
with numbers bounded by the magnitude of the input (e.g., checking I ∈ facet(z) for given z
and I has the same complexity whether or not some vertex of P is at infinity).

3.3. Polar shadow vertex simplex method. This method is described in detail in [2] Section
3.2. It works on unit linear programs of type (LP) with b = 1. A solution of such program
is a member of facet(z) of the polytope P = conv{0, ai}n

i=1. The program is unbounded iff
facet(z) = ∅. (See [2] Section 3.2).

Its input of the polar shadow vertex simplex method is the objective vector z, an initial
objective vector z0 and its initial objective facet facet(z0) (for the polytope P as above), provided
that facet(z0) consists of only one set of indices. The simplex method rotates z0 toward z and
computes facet(q) for all vectors q between z0 and z. At the end, it outputs the limit of facet(q)
as q approaches z. This is the last running facet(q) before q reaches z0.

If facet(z0) contains more than one index set, one can use the limit of facet(q) as q approaches
z0 as the input of the simplex method. This will be the first running facet(q) when q departs
from z0.

If z and z0 are linearly dependent, z0 = −cz for some c > 0, one can specify arbitrary direction
of rotation u ∈ R

n, which is linearly independent of z, so that the simplex method rotates q in
span(z, u) in the direction of u, i.e. one can always write q = c1z + c2u with c2 ≥ 0.

4. Interpolation on Linear Programs

We will show how to reduce arbitrary linear program (LP) to a unit linear program

maximize 〈z, x〉
subject to Ax ≤ 1.

(Unit LP)
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This reduction is general and independent from a particular method to solve linear programs.
We will interpolate between (Unit LP) and (LP). To this end, we introduce an additional (inter-
polation) variable t and a multiplier λ and consider the interpolated linear program with variables
x, t:

maximize 〈z, x〉 + λt

subject to Ax ≤ tb + (1 − t)1, 0 ≤ t ≤ 1.
(Int LP)

The interpolated linear program becomes (Unit LP) for t = 0 and (LP) for t = 1. We can
give bias to t = 0 by choosing the multiplier λ → −∞ and to t = 1 by choosing λ → +∞.
Furthermore, (Int LP) can be written as a unit linear program in R

d+1:

maximize 〈(z, λ), (x, t)〉

subject to

{

〈(ai, 1 − bi), (x, t)〉 ≤ 1,

〈(0, 1), (x, t)〉 ≤ 1, 〈(0,−∞), (x, t)〉 ≤ 1.

(Int LP’)

The constraint vectors are (ai, 1 − bi), (0, 1) and (0,−∞). (see Section 3.2 about vertices at
infinity). This has a very useful consequence: if constraints of the original (LP) are Gaussian,
then so are the constraints of (Int LP), except the two last ones. In other words, the reduction
to a unit program preserves the Gaussian distribution of the constraints.

The properties of interpolation are summarized in the following intuitive and elementary fact.

Proposition 4.1 (Interpolation).
(i) (LP) is unbounded iff (Unit LP) is unbounded iff (Int LP) is unbounded for all suffi-

ciently big λ.
(ii) Assume (LP) is not unbounded. Then the solution of (Unit LP) equals the solution of

(Int LP) for all sufficiently small λ; in this solution, t = 0.
(iii) Assume (LP) is not unbounded. Then (LP) is feasible iff t = 1 in the solution of

(Int LP) for all sufficiently big λ.
(iv) Assume (LP) is feasible and bounded. Then the solution of (LP) equals the solution of

(Int LP) for all sufficiently big λ.

Now assuming that we know how to solve unit linear programs, we will be able to solve
arbitrary linear programs. The correctness of this two-phase algorithm follows immediately
from Proposition 4.1.

Solver for (LP)

Phase-I: Solve (Unit LP) using Solver for (Unit LP) of Section 5. If this program
is unbounded, then (LP) is also unbounded. Otherwise, the solution of (Unit LP)
and t = 0 is a limit solution of (Int LP) as λ → −∞. Use this solution as the input
for the next step.

Phase-II: Use the polar shadow-vertex simplex method to find a limit solution of
(Int LP) with λ → +∞. If t = 1 is not satisfied by this solution, then the (LP) is
infeasible. Otherwise, this is a correct solution of (LP).

While this algorithm is stated in terms of limit solutions, one does not need to take actual
limits when computing them. This follows from the properties of the polar shadow-vertex
simplex method described in Section 3.3. Indeed, in phase-II of Solver for (LP) we can write
(Int LP) as (Int LP’) and use the initial objective vector z̄0 = (0,−1), the actual objective vector
z̄ = (0, 1), and the direction of rotation ū = (z, 0). Phase-I provides us with a limit solution
for the objective vectors (εz,−1) = z̄0 + εū as ε → 0+. These vectors approach z0 as we rotate
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from z toward z0 in span(z, u). Similarly, we are looking for a limit solution for the objective
vectors (εz, 1) = z̄ + εū as ε → 0+. These vectors approach z as we rotate from z0 toward z in
span(z, u). By Section 3.3, the polar shadow-vertex simplex method applied with vectors z̄0, z̄,
ū and the initial limit solution found in Phase-I, finds the correct limit solution in Phase-II.

5. Phase-I: Adding constraints

We describe a randomized phase-I for solving arbitrary unit linear problems of type (Unit LP).
Rather then finding an initial feasible vertex, we shall add a random vertex to the feasible set.
We thus add d constraints to (Unit LP), forming

maximize 〈z, x〉
subject to A+x ≤ 1,

(Unit LP+)

where A+ has the rows a1, . . . , an, an+1, . . . , an+d with some new constraint vectors an+1, . . . , an+d.
The first big question is whether the problems (Unit LP) and (Unit LP+) are equivalent, i.e.

whether (Unit LP+) is bounded if and only if (Unit LP) is bounded, and if they are bounded,
the solution of (Unit LP+) equals the solution of (Unit LP). This motivates:

Definition 5.1. A numb set of a unit linear program is the set of all vectors a so that adding
the constraint 〈a, x〉 ≤ 1 to the set of the constraints produces an equivalent linear program.

We make two crucial observations – that the numb set is always big, and that one can always
check if the problems (Unit LP) and (Unit LP+) are equivalent. As mentioned in Section 3.1,
we will assume that the constraint vectors ai are in general position.

Proposition 5.2. The numb set of a unit linear program contains a half-space (called a numb
half-space).

Proof. Given a convex set K containing the origin in a vector space, Minkowski functional
‖z‖K is defined for vectors z as ‖z‖K = inf{λ > 0 : 1

λz ∈ K} if the infimum exists, and infinity
if it does not exist. Then the duality shows that the solution maxAx≤1〈z, x〉 of (Unit LP) equals
‖z‖P . (It is infinity iff the problem is unbounded; we will use the convention 1/∞ = 0 in the
sequel). By Hahn-Banach (Separation) Theorem, there exists a vector z∗ such that

〈z∗, x〉 ≤ 〈z∗, 1
‖z‖P

z〉 := h for all x ∈ P .

0 ∈ P implies that h ≥ 0. We define the affine hyperplane

H− = {x : 〈z∗, x〉 ≤ h}
and claim that H− lies in the numb set of (Unit LP). To prove this, let a ∈ H−. Since P ⊂ H−,
we have conv(P ∪ a) ⊂ H−, thus

‖z‖P ≥ ‖z‖conv(P∪a) ≥ ‖z‖H− = ‖z‖P

where the first two inequalities follow from the inclusion P ⊂ conv(P ∪ a) ⊂ H−, and the last
equality follows from the definition of H−. So, we have shown that ‖z‖conv(P∪a) = ‖z‖P , which

says that the a and thus the affine half-space H− is in the numb set of (Unit LP). Since h ≥ 0,
H− contains the origin, thus contains a half-space.

In particular, if (Unit LP) is bounded, then its numb set is the affine half-space below facet(z).
Then a similar duality argument proves:
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Proposition 5.3 (Equivalence).
(i) If the added constraint vectors an+1, . . . , an+d lie in some numb half-space of (Unit LP),

then (Unit LP+) is equivalent to (Unit LP).
(ii) (Unit LP+) is equivalent to (Unit LP) if and only if either (Unit LP+) is unbounded or

its solution does not satisfy any of the added constraints 〈ai, x〉 ≤ 1, i = n + 1, . . . , n + d.

Proposition 5.2 implies that a constraint vector z0 whose direction is chosen at random in the
unit sphere Sd−1, is in the numb set with probability at least 1/2. By a standard concentration
of measure argument, a similar statement will be true about a small simplex centered at z0. It
is then natural to take the vertices of this simplex as added constraint vectors an+1, . . . , an+d

for (Unit LP+). To this end, we define the size ` of the simplex and the standard deviation σ1

for smoothing its vertices as

` =
c1√
log d

, σ1 = min
( 1

6
√

d log n
,

c1

d3/2 log d

)

, (5.1)

where c1 = 1
300 and c2 =

c2
1

100 . Then we form (Unit LP+) as follows:

Adding Constraints

Input: M > 0 and U ∈ O(d).
Output: “Failure” or vectors an+1, . . . , an+d and z0 ∈ cone(an+1, . . . , an+d).

(1) Form a regular simplex: let z ′0 be a fixed unit vector in R
d and ā′n+1, . . . , ā

′
n+d be

the vertices of a fixed regular simplex in R
d with center and normal z ′0, and radius

‖z′0 − ā′i‖ = `.
(2) Rotate and dilate: let z0 = 2MUz′0, āi = 2MUā′i, i = n + 1, . . . , n + d.
(3) Smooth: let ai be independent Gaussian random variables with mean āi and stan-

dard deviation 2Mσ1, for i = n + 1, . . . , n + d.
(4) Check if

(a) z0 ∈ cone(an+1, . . . , an+d) and
(b) Normal h to aff(an+1, . . . , an+d) satisfies ‖h‖ ≤ 1

M .
If not, return “Failure”.

The crucial property of Adding Constraints is

Theorem 5.4. Let (Unit LP) be a unit linear program with a numb half-space H, and M be as
in (2.1). Then:

1. Let U ∈ O(n) be arbitrary. If the algorithm Adding Constraints does not return
“Failure”, then a solution of (Unit LP+) with the objective function 〈z0, x〉 is {n+1, . . . , n+d}.

2. With probability at least 1/4 in the choice of a random U ∈ O(n), the algorithm Adding
Constraints does not return “Failure” and generates vectors an+1, . . . , an+d that lie in the
numb half-space H.

Proof. See Appendix A.

By Proposition 5.3, the conclusion of Theorem 5.4 is that:
(a) with constant probability the problems (Unit LP+) and (Unit LP) are equivalent;
(b) we can check whether they are equivalent or not (by part (ii) of Proposition 5.3);
(c) we always know a solution of (Unit LP+) for some objective function.

Thus we can solve (Unit LP) by repeatedly solving (Unit LP+) with independently added con-
straints until no “Failure” returned and until the solution is correct. This forms a two-phase
solver for unit linear programs.
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Solver for (Unit LP)

Do the following until no “Failure” returned and the solution I+ contains none of the indices
n + 1, . . . , n + d:

Phase-I: Apply Adding Constraints with M as in (2.1) and with the rotation U
chosen randomly and independently in the orthogonal group O(d) according to the
Haaar measure. If no “Failure” returned, then {n + 1, . . . , n + d} is a solution of
(Unit LP+) with the objective function 〈z0, x〉. Use this solution as the input for
the next step.

Phase-II: Use the polar shadow-vertex simplex method to find a solution I+ of
(Unit LP+) with the actual objective function 〈z, x〉.

Return I+.

6. Number of pivots and sections of random polytopes

Now we analyze the running time of Solver for (LP). In its first phase, it uses Solver
for (Unit LP). For any unit linear program, the expected number of iterations (i.e. calls to
phase-I and phase-II) in Solver for (Unit LP) is 4. This follows from part 2 of Theorem 5.4
and Proposition 5.3. Thus the running time of Solver for (LP) is bounded by the total
number of pivot steps made in the polar shadow-vertex simplex method, when we apply it once
for (Int LP) in Solver for (LP) and repeatedly for (Unit LP+) in Solver for (Unit LP).

As explained in Section 2.2, the number of pivot steps made by the polar shadow-vertex
simplex method on a unit linear program is bounded by the number of edges of the polygon
P ∩E, where P is the convex hull of the origin and the constraint vectors, and E is the span of
the initial and the actual objective vectors.

As in [2], we can work under the assumptions

‖(āi, b̄i)‖ ≤ 1 for all i = 1, . . . , n, σ ≤ 1

6
√

d log n
. (6.1)

When we apply the polar shadow-vertex simplex method for (Int LP) in phase-II of Solver for
(LP), the plane E = span((z, 0), (0, 1)) is fixed, and the constraint vectors are (0, 1), (0,−∞),
and (ai, 1− bi) for i = 1, . . . , n. The vectors (ai, 1− bi) are independent Gaussian with centers of

norm at most 2, and with standard deviation
√

2 σ. The other two vertices and the origin can
be removed from the definition of P using the elementary observation that if a ∈ E then the
number of edges of conv(P ∪a)∩E is at most the number of edges of P ∩E plus 2. Since (0, 1),
(0,−∞) and 0 do lie in E, they can be ignored at the cost of increasing the number of edges by
6, and we can assume that P is the convex hull of the points (ai, 1− bi) only. Let Ψ(a1, . . . , an)
denote the joint density of independent Gaussian vectors in R

n with some centers of norm at
most 2, and with standard deviation

√
2 σ, where σ satisfies (6.1).

When we repeatedly apply the polar shadow-vertex simplex method for (Unit LP+) in Solver
for (Unit LP), each time we do so with U chosen randomly and independently of everything
else. Let us condition on a choice of U . Then the plane E = span( z0

‖z0‖ , z) = span(Uz′0, z) is

fixed. The constraint vectors are a1, . . . , an+d, of which first n are independent Gaussian vectors
with centers of norm at most 1 and with standard deviation σ, which satisfies (6.1). The last d
of the constraint vectors are also Gaussian vectors chosen independently with centers 2Mãi and
variance 2Mσ1, where ãi(= Uā′i) are fixed vectors of norm

√
1 + `2 ≤ 1.01, and where M is as

in (2.1) and σ1 is as in (5.1). Thus the last d of the constraint vectors correlate with the first
n vectors, but only through the random variable M . Let Φ(a1, . . . , an+d) denote the density of
such constraint vectors. Then we need an estimate of what was called the shadow size bound in
[2].
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Theorem 6.1 (Sections of random polytopes). Let a1, . . . , an+d be random vectors in R
d, and

E be a plane in R
d. Then the following holds with C = 1011.

1. If (a1, . . . , an) have density Ψ(a1, . . . , an), then the random polytope P = conv(ai)
n
i=1

satisfies

E | edges(P ∩ E)| ≤ Cd3σ−4.

2. If (a1, . . . , an+d) have density Φ(a1, . . . , an+d), then the random polytope P = conv(ai)
n+d
i=1

satisfies

E | edges(P ∩ E)| ≤ Cd3 min(σ, σ1)
−4.

The shadow bound of Spielman-Teng ([2] Theorem 4.0.1) was O(nd3σ−6) for part 1, which was
not quite sufficient for us because of the polynomial, rather than polylogarithmic, dependence
on n.

Proof. See Appendix B.

The desired estimate in Theorem 1.2 on the total expected number of pivot steps can be
put in the form O(d3 min(σ, σ1)

−4). Hence Theorem 6.1 yields the desired expected number of
the pivot steps in phase-II of Solver for (LP), and also the expected number of pivot steps,
conditioned on a choice of U , in one call of phase-II of Solver for (Unit LP).

It remains to bound the expected total number of pivot steps in Solver for (Unit LP), over
all iterations it makes. This is a simple stopping time argument. Consider a variant of Solver
for (Unit LP), from which the stopping condition is removed, i. e. which repeatedly applies
phase-I and phase-II in an infinite loop. Let Zk denote the number of pivot steps in phase-II of
this algorithm in k-th iteration, and Fk denote the random variable which is 1 if k-th iteration
in this algorithm results in failure, and 0 otherwise. Then the expected total number of pivot
steps made in the actual Solver for (Unit LP), over all iterations, is distributed identically
with

Z :=
∞

∑

k=1

Zk

k−1
∏

j=1

Fj .

To bound the expectation of Z, we denote by E0 the expectation with respect to random
(smoothed) vectors (a1, . . . , an), and by Ej the expectation with respect to the random choice
made in j-th iteration of Solver for (Unit LP), i. e. the choice of U and of (an+1, . . . , an+d).

Let us first condition on the choice of (a1, . . . , an). This fixes the numb set, which makes each
Fj depend only on the random choice made in j-th iteration, while Zk will only depend on the
random choice made in k-th iteration. Therefore

EZ = E0

∞
∑

k=1

(EkZk)

k−1
∏

j=1

EjFj . (6.2)

As observed above, EjFj = P(Fj = 1) ≤ 3/4, which bounds the product in (6.2) by (3/4)k .
Moreover, E0EkZk ≤ maxU EΦZ1, where EΦ is the expectation with respect to the random
vectors (a1, . . . , an+d) conditioned on a choice of U in k-th iteration. As we mentioned, this
random vectors have joint density Φ. Hence Theorem 6.1 bounds maxU EΦZ1. Summarizing,
we have shown that EZ ≤ O(d3 min(σ, σ1)

−4). This proves Theorem 1.2 and completes the
smoothed analysis of the simplex method.
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A. Appendix A. Proof of Theorem 5.4

A.1. Part 1. We need to prove that (4a) and (4b) in Adding Constraints imply that in the
polytope P + = conv(0, a1, . . . , an+d), one has facet(z) = {n + 1, . . . , n + d}. By (4a), it will
be enough to show that all points a1, . . . , an lie below the affine span aff(an+1, . . . , an+d) =: H.
Since all these points have norm at most M , it will suffice to show that all vectors x of norm
at most M are below H. By (4b), the normal h to H has norm at most 1/M , thus 〈h, x〉 ≤ 1.
Thus x is indeed below H. This completes the proof.

A.2. Part 2. By homogeneity, we can assume throughout the proof that M = 1/2. Thus there
is no dilation in step 2 of Adding Constraints. Let H be a numb half-space. It suffices to
show that

P{z0 ∈ cone(an+1, . . . , an+d)} ≥ 0.99; (A.1)

P{normal h to aff(an+1, . . . , an+d) satisfies ‖h‖ ≤ 1

M
} ≥ 0.99; (A.2)

P{an+1, . . . , an+d are in H} ≥ 1/3. (A.3)

Events in (A.1) and (A.2) are invariant under the rotation U . So, in proving these two
estimates we can assume that U is the identity, which means that z0 = z′0 and āi = ā′i for
i = n + 1, . . . , n + d. We can also assume that d is bigger than some suitable absolute constant
(100 will be enough).

We will use throughout the proof the known estimate on the `2 → `2 norm of a random d× d
matrix with independent Gaussian random entries of mean 0 and variance σ1:

P{‖G‖ > 2σ1t
√

d} ≤ 2d(d − 1)td−2e−d(t2−1)/2 for t ≥ 1

see e.g. [7] In particular,

P{‖G‖ ≤ 3σ1

√
d} ≥ 0.99. (A.4)

We will view the vectors an+1, . . . , an+d as images of some fixed orthonormal vector basis

en+1, . . . , en+d of R
d. Denote 1 =

∑n+d
i=n+1 ei. We define the linear operator T in R

d so that

āi = Tei, ai = (T + G)ei, j = n + 1, . . . , n + d.

We first show that
‖T−1‖ ≤ 1/`. (A.5)

Indeed, 4(en+1, . . . , en+d) is a simplex with center d−11 of norm d−1/2 and radius ‖d−11 −
ei‖ =

√

1 − 1/d. Similarly, 4(ān+1, . . . , ān+d) is a simplex with center z0 of norm 1 and radius
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‖z0 − āi‖ = `. Therefore we can write T = V T1 with a suitable V ∈ O(n), and where T acts as

follows: if x = x1+x2 with x1 ∈ span(1) and x2 ∈ span(1)⊥, then T1x = d1/2x+`(1−1/d)−1/2x2.
Thus ‖T−1‖ = ‖T−1

1 ‖ = `−1(1 − 1/d)1/2 ≤ 1/`. Ths proves (A.5).

A.2.1. Proof of (A.1). An equivalent way to state (A.1) is that

z0 =
n+d
∑

i=n+1

ciai where all ci ≥ 0.

Recall that ai = (T + G)ei and invert T + G; we can then compute the coefficients ci as

ci = 〈(T + G)−1z0, ei〉. (A.6)

On the other hand, z0 is the center of the simplex 4(ān+1, . . . , ān+d), so z0 =
∑n+d

i=n+1(1/d)āi.
Since āi = Tei, a similar argument shows that

1

d
= 〈T−1z0, ei〉. (A.7)

Thus to bound ci below, it suffices to show that the right sides of (A.6) and (A.7) are close.
To this end, we use the identity (T + G)−1 − T−1 = (1 + T−1G)−1T−1GT−1 and the estimate
‖1 + S‖ ≤ (1 − ‖S‖)−1 valid for operators of norm ‖S‖ < 1. Thus the inequality

‖(T + G)−1 − T−1‖ ≤ ‖T−1‖2 ‖G‖
1 − ‖T−1‖‖G‖ ≤ 1

2d
(A.8)

holds with probability at least 0.99, where the last inequality follows from (A.4), (A.5) and from
our choice of ` and σ1 made in (5.1). Since z0 and ei are unit vectors, (A.8) implies that the
right sides of (A.6) and (A.7) are within 1

2d from each other. Thus ci ≥ 1
2d > 0 for all i. This

completes the proof of (A.1).

A.2.2. Proof of (A.2). The normal z ′0 to aff(ān+1, . . . , ān+d) and the normal h to aff(an+1, . . . , an+d)
can be computed as

z′0 = (T ∗)−11, h = ((T + G)∗)−11.

Since z′0 is a unit vector, to bound the norm of h it suffices to estimate

‖h − z′0‖ ≤ ‖((T + G)∗)−1 − (T ∗)−1‖‖1‖ = ‖(T + G)−1 − T−1‖‖1‖.
By (A.8) and using ‖1‖ = d−1/2, with probability at least 0.99 one has ‖h − z ′

0‖ ≤ 1
2d−3/2 ≤ 1.

Thus ‖h‖ ≤ 2, which completes the proof of (A.2).

A.2.3. Proof of (A.3). Let ν be a unit vector such that the half-space is H = {x : 〈ν, x〉 ≥ 0}.
Then (A.3) is equivalent to saying that

P{〈ν, ai〉 ≥ 0, i = n + 1, . . . , n + d} ≥ 1/3.

We will write

〈ν, ai〉 = 〈ν, z0〉 + 〈ν, āi − z0〉 + 〈ν, ai − āi〉 (A.9)

and estimate each of the three terms separately.
Since z0 is a random vector uniformly distributed on the sphere Sd−1, a known calculation of

the measure of a spherical cap (see e.g. [5] p.25) implies that

P

{

〈ν, z0〉 ≥
1

60
√

d

}

≥ 1

2
− 0.1. (A.10)

This takes care of the first term in (A.9).



13

To bound the second term, we claim that

P

{

max
i=n+1,...,n+d

|〈ν, āi − z0〉| ≤
1

120
√

d

}

≥ 0.99. (A.11)

To prove this, we shall use the rotation invariance of the random rotation U . Without changing
its distribution, we can compose U with a further rotation in the hyperplane orthogonal to Uz ′

0.
More precisely, U is distributed identically with V W . Here W ∈ O(d) is a random rotation;
denote z0 := Wz′0. Then V is a random rotation in L = span(z0)

⊥ and for which L is an
invariant subspace, that is V z0 = z0.

Then we can write āi − z0 = V `i, where `i := W (ā′i − z′0) = Wā′i − z0. The vectors `i are
in L because 〈`i, z0〉 = 〈W (ā′i − z′0),Wz′0〉 = 〈ā′i − z′0, z

′
0〉 = 0 since z′0 is a unit vector and,

moreover, the normal of aff(āi). Since L is an invariant subspace of V , it follows that V `i ∈ L.
Furthermore, ‖`i‖ = ‖ā′i − z′0‖ = `.

Let PL denote the orhtonormal projection onto L. Then PLν is a vector of norm at most one,
so denoting ν ′ = PLν/‖PLν‖ we have

|〈ν, āi − z0〉| = |〈ν, V `i〉| = |〈PLν, V `i〉| = |〈V ∗PLν, `i〉| ≤ |〈V ∗ν ′, `i〉|
V ∗ν ′ is a random vector uniformly distributed on the sphere of L, and `i are fixed vectors in L
of norm `.

Then to prove (A.11) it suffices to show that for x uniformly distributed on Sd−2 and for any
fixed vectors `1, . . . , `d in R

d−1 of norm `, one has

P

{

max
i=1,...,d

|〈x, `i〉| ≤
1

120
√

d

}

≥ 0.99. (A.12)

This is well known as the estimate of the mean width of the simplex. Indeed, for any choice of
unit vectors h1, . . . , hd in R

d−1 and any s > 0,

P

{

max
i=1,...,d

|〈x, hi〉| >
s√
d

}

≤
d

∑

i=1

P

{

|〈x, hi〉| >
s√
d

}

and each probability in the right hand side is bounded by p := exp(−(d − 3)2s2/4d) by the
concentration of measure on the sphere (see [5] (1.1)). We apply this for hi = 1

` `i and with

s = 1
120` , which makes p ≤ 1

100d . This implies (A.12) and, ultimately, (A.11).
To estimate the third term in (A.9), we can condition on any choice of U , so that āi become

fixed. Then gi = −〈ν, ai − āi〉 are independent Gaussian random variables with mean 0 and
variance σ1 ≤ 1

120
√

d
=: s. Then

P{g1 > s} ≤ 1√
2π

exp(−s2/2σ2
1) ≤ 1

100d

by a standard estimate on the Gaussian tail and by our choice of σ1 and s. Hence

P

{

min
i=n+1,...,n+d

〈ν, ai − āi〉 ≥ − 1

120
√

d

}

= 1 −
n+d
∑

i=n+1

P{gi > s} ≥ 0.99. (A.13)

Combining (A.10), (A.11) and (A.13), we can now estimate (A.9):

P{〈ν, ai〉 ≥ 0, i = n + 1, . . . , n + d} ≥ 1

2
− 0.1 − 0.01 − 0.01 >

1

3
.

This completes the proof of Theorem 5.4.
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B. Appendix B. Proof of Theorem 6.1

We will outline two approaches to Theorem 6.1. To be specific, we shall focus on Part 1. The
other part is similar, except that one has to be careful when dealing with the density Ψ, which
is not the product of the independent densities due to the factor M .

B.1. First argument. Our first approach is to improve upon the part of the argument of [2]
where it looses a factor of n. Recall that we need a polylogarithmic dependence on n.

As in [2], we parametrize the one-dimensional torus T = E ∩ Sd−1 by q = q(θ) = z sin(θ) +
t cos(θ) where z, t are orthonormal vectors in E. We quantize θ uniformly in [0, 2π) with step
2π/m, which yields a quantized torus Tm that consists of m equispaced points in T.

The argument in the beginning of the proof of Theorem 4.0.1 in [2] reduces an upper estimate
on E | edges(P ∩ E)| to the statement that a fixed vector q ∈ Tm is not likely to be too close
to the boundary of its facet (of the polytope P0 = conv(0, P )). The closeness here is measured
with respect to the angular distance ang(x, y), which is the angle formed by the vectors x and
y. Then one needs to replace the angular distance with the usual, Euclidean, distance. This
is easy whenever the angle at which q meets its facet, called the angle of incidence, is not too
small (Lemma 4.0.2 in [2]). So [2] goes on to bound below the angle of incidence (Section 4.2 in
[2]). This is where the loss of a factor of n occurs.

Instead of estimating the angle of incidence from one viewpoint determined by the origin 0,
we will view the polytope P0 from three different points 01, 02, 03 on E. Vectors q will be emitted
from each of these points, and from at least one of them the angle of incidence will be good
(more precisely, the angle of q to the intersection of its facet with E will be good). The following
elementary observation on the plane is crucial.

Lemma B.1 (Three viewpoints). Let K = conv(b1, . . . , bN ) be a planar polygon, where points bi

are in general position and have norms at most 1. Let 01, 02, 03 be the vertices of an equilateral
triangle of side 10 centered at the origin. Denote Ki = conv(0,−0i + K). Then for every edge
(bk, bm) of K there exists a vector q such that facetKi

(q) = {k,m} and

dist(0i, aff(bk, bm)) > 1.

In other words, every edge (facet) of K can be viewed from one of the three viewpoints 01,
02, 03 at a nontrivial angle, and yet remain an edge of the corresponding polygon conv(0i,K).

Here and in the sequel, we identify facet(q) with the index set it contains (since the polytopes
in question are in general position, it contains at most one index set). For I = facetP (q), we
denote by FacetP (q) or FacetP (I) the corresponding geometric facet of P , the convex hull of the
vertices of P with indices in I.

We consider the event

E = {all ‖ai‖ ≤ 10, i = 1, . . . , n}
which can be easily estimated using the concentration of Gaussian vectors: P(E c) ≤

(

n
d

)−1
. The

random variable edges(P ∩E) is bounded above by
(n

d

)

, which is the maximal number of facets
of P . It follows that

Exp := E | edges(P ∩ E)| ≤ E | edges(P ∩ E)| · 1E + 1.

We will apply the first part of Lemma B.1 for the random polygon P ∩ E, whenever it
satisfies E . All of its points are then bounded by 10 in norm. Let 01, 02, 03 be the vertices
of an equilateral triangle in the plane E, with side 100 and centered at the origin. Denote
Pi = conv(0,−0i + P ). Lemma B.1 states in particular that each edge of P ∩ E can be seen
as an edge from one of the three viewpoints. Precisely, there is a one-to-one correspondence
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between the edges of P ∩ E and the set {facetPi∩E(q) : q ∈ T, i = 1, 2, 3}. We can further
replace this set by {facetPi

(q) : q ∈ T, i = 1, 2, 3}, since each facetPi
(q) uniquely determines

the edge facetPi∩E(q); and vice versa, each edge can belong to a unique facet. Therefore

Exp ≤ E |{facetPi
(q) : q ∈ T, i = 1, 2, 3}| + 1 (B.1)

and, by a discretization in limit as in [2] Lemma 4.0.6,

= lim
m→∞

E |{facetPi
(q) : q ∈ Tm, i = 1, 2, 3}| + 1. (B.2)

Moreover, by the same discretization argument, we may ignore in (B.1) all facets whose intersec-
tion with E have angular length no bigger than, say, 2π/m. (The angular length of an interval
I is the angular distance between its endpoints.) After this, we replace Pi by Pi ∩ E as we
mentioned above, and intersect with the event E again, as before. This gives

Exp ≤ lim
m→∞

E |{facetPi∩E(q) of angular length > 2π/m; q ∈ Tm, i = 1, 2, 3}| · 1E + 2. (B.3)

We are going to apply the second part of Lemma B.1 for a realization of P for which the event
E holds. Consider any facet from the set in (B.3). So let I = facetPi∩E(q) for some i ∈ {1, 2, 3}
and some q ∈ Tm. Now by Lemma B.1 we can choose a viewpoint 0i, which realizes this facet
and from which its intersection with E is seen at a good angle. Formally, among the indices
i0 ∈ {1, 2, 3} such that I = facetPi0

∩E(q0) for some q0 ∈ Tm, we choose the one that maximizes

the distance from 0 to the affine span of the edge I = FacetPi0
∩E(I). By Lemma,

dist(0, aff(I)) ≥ 1. (B.4)

Since all viewpoints 0i have equal norm, this also maximizes the angular length of I. Because
only facets of angular length > 2π/m were included into the set in (B.3), we conclude that the
angular lengh of I must also be bigger than 2π/m. It follows that I contains a point q ′′ in Tm.

Summarizing, we have realized every facet I = facetPi∩E(q) from (B.3) as I = facetPi0
∩E(q′′)

for some i0 and some q′′ ∈ Tm. Moreover, this facet (i.e. I = facetPi0
∩E(I)) has a good angle of

incidence (B.4). With this bound on the distance, the angular distance and the usual distance
on I are equivalent. This is another simple observation on the plane.

Lemma B.2 (Angular and Euclidean distances). Let I be an interval on the plane, such that
(B.4) holds. Then for every two points x, y ∈ I of norm at most 200 one has

cdist(x, y) ≤ ang(x, y) ≤ dist(x, y)

where c = 10−5 (which can be easily improved).

Recall that because of the event E , all points of P have norm at most 10, thus all points of Pi

have norm at most ‖0i‖ + 10 ≤ 200. Hence the same bound holds for all points in our interval
I. Then Lemma (B.2) shows that for the angular and the usual distances are equivalent on I
up to a factor of c. Call such a facet nondegenerate. We have shown that

Exp ≤ lim
m→∞

E |{nondegenerate facetPi∩E(q) : q ∈ Tm, i = 1, 2, 3}| + 2.

Each facet may correspond to more than one q. We are going to leave only one q per facet,
namely the q = q(θ) with the maximal θ (according to the parametrization of the torus in
the beginning of the argument). Therefore, the angular distance of such q to one boundary of
FacetPi∩E(q) (one of the endpoints of this interval) is at most 2π/m. The nondegeneracy of this
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facet then implies that the usual distance of q to the boundary of FacetPi∩E(q), thus also to the
boundary of FacetPi

(q), is at most 1
c · 2π/m =: C/m. Therefore

Exp ≤ lim
m→∞

E |{facetPi
(q) such that dist(q, ∂ FacetPi

(q)) ≤ C/m, q ∈ Tm, i = 1, 2, 3}| + 2

≤ 3 max
i=1,2,3

lim
m→∞

E |{facetPi
(q) such that dist(q, ∂ FacetPi

(q)) ≤ C/m, q ∈ Tm}| + 2.

For a fixed k, the polytope Pk is the polytope P translated by a fixed vector 0k of norm at
most 100. This reduces the problem to estimating

lim
m→∞

E |{facetP (q) such that dist(q, ∂ FacetP (q)) ≤ C/m, q ∈ Tm}| (B.5)

for a random polytope P as in the statement of Theorem 6.1 (and where we allow the centers
of the distribution Φ to be of norm at most 100 rather than 1).

This step allowed us to replace the angular distance by the usual distance in the beginning
of Spielman-Teng’s proof of Theorem 4.0.1 in [2]. Now one can essentially continue with the
argument of [2]. Then (B.5) gets bounded by the quantity O(d2σ−4) in Distance Lemma 4.1.2
[2] multiplied by d (the number of (d − 2)-dimensional facets of FacetP (q) that make up its
boundary). This gives

Exp = O(d3σ−4),

which completes the proof.

B.2. Alternative argument. There is an alternative argument for Theorem 6.1. It also gives a
polylogarithmic dependence on n, but presently yields bigger exponent of d. Its main advantage
that it is more elegant and much more flexible. It completely avoids estimating the angle of
incidence. It also does not use Combination Lemma 2.3.5 of [2]. This liberates the argument

from a necessity of choosing the good event P j
I in a delicate way (Definition 4.0.8 in [2]). It does

not start with the discretization in the limit, so it only requires estimates on the likelihood of
being ε-close to the boundary of a random simplex for a fixed ε, rather than for all small ε (as
Lemma 4.1.2 [2] does.)

We count the edges via indicator functions as

| edges(P ∩ E)| =
∑

I

1{XI>0}

where the sum is over all d-element subsets of {1, . . . , n} and XI is the length of the intersection
of the facet determined by I with E:

XI =

{

|4(ai)i∈I ∩ E| if 4(ai)i∈I is a facet of P ,

0 otherwise.

Then by the linearity of the expectation,

Exp = E| edges(P ∩ E)| =
∑

I

P{XI > 0}.

Now we want to replace 0 here by some positive quantity ε. This is possible if there is a lower
bound of the form

P

{

|4(ai)i∈I ∩ E| > ε
∣

∣

∣
4(ai)i∈I is a facet of P and it intersects with E

}

≥ p, (B.6)

which in other words is

P{XI > ε | XI > 0} ≥ p.
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If we have such a bound, then

Exp ≤ 1

p

∑

I

P{XI > ε}

which by Markov’s inequality is bounded by

≤ 1

p

∑

I

EXI

ε
=

1

pε
E

(

∑

I

XI

)

.

The sum
∑

I XI is the perimeter of the random polygon P ∩ E. Since P is nicely bounded in
expectation (by the standard concentration inequalities), this perimeter is nicely bounded, too.
Thus

Exp = O(1/pε).

It only remains to prove (B.6). This is a one-dimensional version of the zero-dimensional results
on the distance to the boundary of a random simplex (Lemma 4.1.1 in [2]).

One can reduce the problem to the zero-dimensional case by proving that (a) the facet F =
4(ai)i∈I is non-degenerate with high probability (contains a nontrivial Euclidean ball); (b) the
endpoints of the line segment F ∩E are not too close to the boundaries of the (d−2)-dimensional
facets of F which it pierces. Statements (a) and (b) together clearly imply a lower bound on
the length of F ∩ E.

Both (a) and (b) are essentially proved in [2]. Indeed, (a) follows from the Height of the
Simplex Lemma 4.1.3 of [2], while (b) follows from Distance Bound Lemma 4.1.2 in [2]. Note
that our statements involve the usual, rather than the angular, distance.

In proving (b), one needs to take a union bound over d facets of F , which incurs an extra
multiplicative factor of d. The dependence on n remains polylogarithmic. It would be nice to
see if this argument can be modified to prevent the loss of the factor of d.
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