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Some ”design principles” of modern
combinatorics

The transition of combinatorics from ”recreational
mathematics” to a central field in modern
mathematics was based on the adoption of several
key principles and developments:

I The asymptotic perspective.

I Extremal combinatorics and its connections to
other parts of mathematics.

I The emergence of the probabilistic method.

I The computational perspective.
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So, what is the next frontier?
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The ubiquity of graphs

Why do we see graphs all around us in computer
science and in all other mathematical sciences,
theoretical or applied?

Because they are the tool of choice in modeling
pairwise interactions.
But what if we have relations involving more than
two objects at a time?
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A little about simplicial complexes

This is one of the major contact points between
combinatorics and geometry (more specifically -
with topology).
From the combinatorial point of view, this is a very
simple and natural object. Namely, a down-closed
family of sets.
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Definition
Let V be a finite set of vertices. A collection of
subsets X ⊆ 2V is called a simplicial complex if it
satisfies the following condition:

A ∈ X and B ⊆ A⇒ B ∈ X .

A member A ∈ X is called a simplex or a face of
dimension |A| − 1.
The dimension of X is the largest dimension of a
face in X .
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Simplicial complexes as geometric objects

We view A ∈ X and |A| = k + 1 as a k-dimensional
simplex.

k = 3

k = 0

k = 1

k = 2
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Putting simplices together properly

The intersection of every two simplices in X is a
common face.
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How NOT to do it

Not every collection of simplices in Rd is a simplicial
complex
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Geometric equivalence

Combinatorially different complexes may correspond
to the same geometric object (e.g. via subdivision)
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Geometric equivalence

So

Nati Linial Going up in dimensions: Combinatorial and probabilistic aspects of simplicial complexes



Geometric equivalence

and
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Geometric equivalence

are two different combinatorial descriptions of the
same geometric object
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To make a long story short

I Graphs need no advertising in this forum.

I A graph may be viewed as a one-dimensional
simplicial complex.

I Higher dimensional complexes have a very
geometric (mostly topological) aspect to them.

I Can we benefit from investigating higher
dimensional complexes?

I How should this be attacked?
1. Using extremal combinatorics
2. With the probabilistic method
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Track record - SC’s in theoretical
computer science

I Work on the evasiveness conjecture (See
below).

I Impossibility theorems in distributed
asynchronous computation (Starting with
[Herlihy, Shavit ’93] and [Saks, Zaharoglou
’93]).
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.... and in combinatorics

I Characterization of graph connectivity
(Lovász’s proof of A. Frank’s conjecture 1977).

I Lower bounds on chromatic numbers of
Kneser’s graphs and hypergraphs. (Starting
with [Lovász ’78]).

I In the study of matching in hypergraphs
(Starting with [Aharoni Haxell ’00]).
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The evasiveness game

Fix a down-monotone graph property P (e.g., being
disconnected, being planar, being k-colorable,
containing a large independent set...).

We want to determine if a (presently unknown)
n-vertex graph G = (V , E ) has property P .
This is done through a two-person game as follows:
At each round Alice points at two vertices x , y ∈ V
and Bob answers whether they are adjacent in G ,
i.e. whether or not xy ∈ E .
The game ends when Alice knows with certainty
whether G has property P .
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The evasiveness conjecture

Conjecture
For every monotone graph property P , Bob has a
strategy that forces Alice to query all

(
n
2

)
pairs of

vertices in V .

Nati Linial Going up in dimensions: Combinatorial and probabilistic aspects of simplicial complexes



The work of Kahn Saks and Sturtevant ’83

Q: How is this related to simplicial complexes,
topology etc.?

A: Fix n, the number of vertices in the graphs we
consider. Think of an n-vertex graph as a subset of
W =

(
[n]
2

)
. (Careful: W is the set of vertices of the

complex we consider).
If G is the collection of all n-vertex graphs that have
property P , then G is a simplicial complex (since P
is monotone).
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Kahn Saks and Sturtevant (contd.)

The (simple but useful) observation with which they
start is

Lemma
A non-evasive complex is collapsible.

Collapsibility is a simple combinatorial property of
simplicial complexes which can be thought of as a
higher-dimensional analogue of being a forest.

We will later return to this notion.
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Kahn Saks and Sturtevant

The additional ingredient is that P is a graph
property. Namely, it does not depend on vertex
labeling. This implies that the complex G is highly
symmetric. Using some facts from group theory
they conclude:

Theorem (KSS ’83)
The evasiveness conjecture holds for all graphs of
order n when n is prime.
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How can topology help?

I Fixed-point theorems (Borsuk-Ulam, Sperner’s
Lemma...).

I Collapsibility, contractibility

I The “size” of homology, Betti numbers...

I Topological connectivity.
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The major (two-way) challenge.

I To start a systematic attack on topology from
a combinatorial perspective.

I Using the extremal/asymptotic paradigm.
I Introduce the probabilistic method into topology

I Use ideas from topology to develop new
probabilistic models (random lifts of graphs
should be a small step in this direction...).

I Introduce ideas from topology into
computational complexity
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So now that we are highly motivated...

We want to develop a theory of random complexes,
similar to random graph theory. Specifically we seek
a higher-dimensional analogue to G (n, p). For the
purpose of illustration let us mostly consider:

I two-dimensional complexes.

I with a full one-dimensional skeleton. Namely,

I We start with a complete graph Kn and add
each triple (=simplex) independently with
probability p.

We denote by X (n, p) this probability space of
two-dimensional complexes.
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Back to the classics

What properties of these random complexes should
we investigate?

Let us return to the Erdős-Rényi papers. In
particular, to the fact that

Theorem (ER ’60)
The threshold for graph connectivity in G (n, p) is

p =
ln n

n
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When is a simplicial complex connected?

Unlike the situation in graphs, this question has
many (in fact infinitely many) meaningful answers
when it comes to d-dimensional simplicial
complexes.

I The vanishing of the (d − 1)-st homology (with
any ring of coefficients).

I Being simply connected (vanishing of the
fundamental group).
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A little linear algebra can be very helpful

I It is easy and useful to state that ”G = (V , E )
is connected” in the language of linear algebra.

I Consider M the incidence V × E matrix of G
as a matrix over F2. Clearly, 1M = 0, since
every column of M contains exactly two 1’s.

I Likewise, if S is the vertex set of a connected
component of G , then 1SM = 0.

I It is not hard to see that G is connected iff the
only vector x that satisfies xM = 0 is x = 1.
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In other words

A graph G = (V , E ) is disconnected iff the V × E
inclusion matrix has a nontrivial left kernel.

The Erdős-Rényi result can be restated as follows:

I Start from the n ×
(
n
2

)
inclusion matrix.

I Select a subset of column where each column
is included with probability p.

I The critical probability for the resulting matrix
having a nontrivial left kernel is p = ln n

n .
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The Erdős-Rényi result can be restated as follows:

I Start from the n ×
(
n
2

)
inclusion matrix.

I Select a subset of column where each column
is included with probability p.

I The critical probability for the resulting matrix
having a nontrivial left kernel is

p = ln n
n .

Nati Linial Going up in dimensions: Combinatorial and probabilistic aspects of simplicial complexes



In other words

A graph G = (V , E ) is disconnected iff the V × E
inclusion matrix has a nontrivial left kernel.
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and if you are like me...

I hope you do not find the following too offensive.
(You may even find it useful).
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The simplest case: (F2-)homology in two
dimensions

I Let A1 be the n ×
(
[n]
2

)
inclusion matrix of

singletons vs. pairs.
I Let A2 be the

(
[n]
2

)
×
(
[n]
3

)
inclusion matrix of

pairs vs. triples.
I The transformations associated with A1 resp.

A2 are called the boundary operator (of the
appropriate dimension) and are denoted ∂
(perhaps with an indication of the dimension).

It is an easy exercise to verify that A1A2 = 0 (in
general there holds ∂∂ = 0, a key fact in homology
theory).
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A natural question suggests itself

Let X and Y be two matrices over some field (or
even some ring) that satisfy

XY = 0.

Clearly, the right kernel of X contains the column
space of Y . The question to ask is:
Is this a proper inclusion or an equality?
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This is quantified by considering the quotient space

right kernel(X )/column space(Y ).

Likewise, we consider

left kernel(Y )/row space(X ).

In our situation where X and Y are inclusion
matrices of k vs. (k + 1)-dimensional faces of a
simplicial complex, these quotient spaces are the
relevant homology and cohomology groups.
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How do we move up in dimension?

Several things are clear: We now start from the(
n
2

)
×
(
n
3

)
inclusion matrix and select a random

subset of the columns where every column is
selected independently and with probability p.

We ask for the critical p for which the resulting
matrix has a non-trivial left kernel.

And what is the trivial kernel?

That should be clear now: The row space of the
n ×

(
n
2

)
matrix.
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A little terminlogy

The process of selecting the columns yields a
random two-dimensional complex with a full
one-dimensional skeleton. We call this model of
random complexes X2(n, p). (So, e.g. X1(n, p) is
nothing but good old G (n, p)).
We have asked for the critical p where there a
non-trivial left kernel exists.
In topological language: What is the critical p at
which the first homology with F2 coefficients of a
random X ∈ X2(n, p) vanishes?
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...and the answer is...

Theorem (L. + Meshulam ’06)
The threshold for the vanishing of the first
homology of X2(n, p) with F2 coefficients is

p =
2 ln n

n
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More generally

Likewise define Xd(n, p), the random d-dimensional
simplicial complexes with a full (d − 1)-st
dimensional skeleton.

We know the critical p for the
vanishing of the (d − 1)-st homology group over
various coefficient groups. (Work mostly due to
Meshulam and Wallach).

We still do not know, however:

Question
What is the threshold for the vanishing of the
Z-homology?
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The vanishing of the fundamental group

Theorem (Babson, Hoffman, Kahle ’09 ?)
The threshold for the vanishing of the fundamental
group in X (n, p) is near

p = n−1/2.
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Comment: When the field is not F2

We have to select an (arbitrary but fixed)
orientation to the triples and pairs. The entries of
the inclusion matrix are ±1 depending on whether
the orientation of the edge and the 2-face
containing it are consistent or not.

The d-dimensional case is similar (with an
appropriate adaptation).
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And what about the right kernel?

Again let’s start with the graphical case. The right
kernel of the V × E inclusion matrix of a graph
G = (V , E ) is G ’s cycle space. So the relevant
1-dimensional theorem is:

Theorem
The critical probability for almost sure existence of
a cycle in G (n, p) is

p =
1

n
.
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And the higher-dimensional analogue?

Theorem (Aroshtam, L., Meshulam; work in

progress)
The critical probability where a random complex in
X2(n, p) has almost surely a nontrivial second
homology satisfies

1.34...

n
≤ p ≤ 2.74...

n
.
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I.e., this is the critical p where a random
(
n
2

)
× p
(
n
3

)
matrix as above has almost surely a nontrivial right
kernel.

Apparently, the upper bound 2.74...
n is the truth (this

is what we get in computer experiments).

As mentioned, this is still work in progress and we
hope to soon know more.
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What is a regular complex?

Even very simple objects from graph theory may
become subtle when you move up in dimension:

Let X be a simplicial complex with vertex set V ,
and let x ∈ V be a vertex. The link of x , denoted
linkX (x), is a simplicial complex Y on vertex set
V \ {x}. A subset A ⊆ V \ {x} is a face in Y iff
A ∪ {x} is a face in X .
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Links

In the same way we define linkX (S) for any S ⊂ V .
Namely B ⊆ V \ S is a face of linkX (S) iff B ∪ S is
a face of X .

In simple words: Your link is everything that
together with you forms a face.

Nati Linial Going up in dimensions: Combinatorial and probabilistic aspects of simplicial complexes



Links

In the same way we define linkX (S) for any S ⊂ V .
Namely B ⊆ V \ S is a face of linkX (S) iff B ∪ S is
a face of X .

In simple words: Your link is everything that
together with you forms a face.

Nati Linial Going up in dimensions: Combinatorial and probabilistic aspects of simplicial complexes



Regular complexes?

So, in a graph G = (V , E ), link(x) is the neighbor
set of the vertex x . We say that G is regular if all
vertex links are ”the same”, i.e., all these sets have
the same cardinality.

But in a two-dimensional complex X the link of a
vertex linkX (x) is a graph H . (Recall: yz is an edge
of H iff xyz is a face in X ). This leads to the
following:
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Regular complexes?

Open Problem
For which graphs H does there exist a
two-dimensional complex X , such that linkX (x) is
isomorphic to H for every vertex x?
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Alternatively...

We could try and restore the simplicity of the notion
of regular graphs by considering links of pairs (since
link(x , y) is just a set and we only care about its
cardinality).

Namely, let X be a two-dimensional simplicial
complex with a full one-dimensional skeleton. Say
that X is (2, d)-regular if for any two vertices, the
cardinality of the set link(x , y) is d . This, however,
means that X is a Steiner Triple System = STS and
leads to another open question.
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Learning (a bit more) from history

The study of random regular graphs is, of course, a
major part of the field. To develop a
higher-dimensional analog to this, we would have to
resolve:

Open Problem
Give an efficient algorithm to uniformly generate
STS’s.
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A high-dimensional Cayley formula?

The n ×
(
n
2

)
inclusion matrix has rank n − 1 as we

saw. A column basis is a set of n − 1 columns that
is a basis for the column space.

But a set of columns in this matrix is just a graph.
Which graphs are bases?
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High-dimensional Cayley (contd.)

This is not hard to see: Spanning trees of Kn.

But doesn’t the answer depend on the underlying
field?

No.
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High-dimensional Cayley (contd.)

Definition
Let M be a matrix. In an elementary collapse we
erase row i and column j of M provided that Mij is
the only nonzero entry in the i -th row.

M is called collapsible if it is possible to eliminate
all its columns by a series of elementary collapses.

If M is the vertex-edge incidence matrix of a graph,
an elementary collapse is a step where we remove a
vertex of degree 1 and the edge incident with it.
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High-dimensional Cayley (contd.)

We just saw that a set of n − 1 columns in the
n ×

(
n
2

)
inclusion matrix is a tree iff the

corresponding set of columns forms a collapsible
matrix.

This is a combinatorial condition and so it holds
over any base field. (The most interesting cases for
us are F2 and Q).
As mentioned, over Q we work with a signed
matrix, that corresponds to an (arbitrary, but fixed)
orientation of the graph.
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This is a combinatorial condition and so it holds
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High-dimensional Cayley (contd.)

There is, of course, a lot that we know about trees -
How to generate them, what they look like etc. Can
this be moved up in dimension?

We turn to the
(
n
2

)
×
(
n
3

)
inclusion matrix and

consider column bases. The rank now is
(
n−1
2

)
. We

call a column basis over Q a hypertree and we now
know what to ask
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Some questions

1. Is it still the case that being a column basis
does not depend on the field?

2. In particular, is it still equivalent to
collapsibility? (It’s easy to see that
collapsibility is still a sufficient condition).

3. At any event: How many column bases does
the

(
n
2

)
×
(
n
3

)
inclusion matrix have over our

favorite fields?
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A little surprise
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Figure: A triangulation of the projective plane
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A little surprise

The example we just saw is a column basis for Q,
but not for F2 (in fact, it’s a 2-STS). A partial
remedy is given by

Theorem (Kalai ’83)∑
|Hd−1|2 = n(n−2

d )

where the sum is over all d-dimensional
Q-hypertrees T .
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But the questions remain

Open Problem

1. How many column basis does the
(
n
2

)
×
(
n
3

)
inclusion matrix have over F2?
Over Q?

2. How likely is such a basis to be collapsible?
(Perhaps it’s o(1)?).
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Extremal combinatorics of simplicial
complexes

Theorem (Brown, Erdős, Sós ’73)
Every n-vertex two-dimensional simplicial complex
with Ω(n5/2) simplices contains a two-sphere. The
bound is tight.
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A word on the upper bound

I Since X contains Ω(n5/2) two-dimensional
simplices, the average link size (number of
edges in the graph) is Ω(n3/2).

I Consequently, there are two vertices x , y whose
links have Ω(n) edges in common.

I In particular, there is a cycle C that is
contained in the link of x as well as in link(y).

I We just found a double pyramid with base C
and x and y as apexes. This is homeomorphic
to a two-sphere.
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But many extremal questions on simplicial
complexes remain widely open

Conjecture
Every n-vertex two-dimensional simplicial complex
with Ω(n5/2) simplices contains a torus.

I We can show that if true this bound is tight.

I This may be substantially harder than the BES
theorem, since a “local” torus need not exist.

I (With Friedgut:) Ω(n8/3) simplices suffice.
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... and when you have a hammer...

Even very elementary subjects in combinatorics take
on a new life when you think high-dimensionally.

What is a permutation? It’s an n × n array of zeros
and ones where every line (i.e., a row or a column)
contains exactly a single 1. We know of course:

I How many they are: n!

I How to sample a random permutation.
I Numerous typical properties of random

permutations e.g.,:
I Number of fixed points.
I Number of cycles.
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High-dimensional permutations?

The definition naturally suggests itself: It’s an
n× n× n array of zeros and ones A where every line
(now with three types of lines) contains exactly a
single 1.

An alternative description: An n × n array M where
mij gives the unique k for which aijk = 1. It is easy
to verify that M is defined by the condition that
every row and column in M is a permutation of [n].
Such a matrix is called a Latin square.
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Some challenges

So this raises

Question
Determine or estimate Ln, the number of n × n
Latin squares.

Currently the best known bound is:

Theorem (van Lint and Wilson)
(Ln)1/n2

= (1 + o(1)) n
e2 .

The (fairly easy) proof uses two substantial facts
about permanents: The proof of the van der
Waerden conjecture and Brégman’s Theorem. This
raises:
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A suggestive numerology

I In dimension 1,

(n!)1/n = (1 + o(1))
n

e
.

I In dimension 2,

(Ln)1/n2

= (1 + o(1))
n

e2
.

I In general dimension?
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...and a few words on tensors...

Let us quickly recall the notion of tensor rank. But
first a brief reminder of matrix rank. A matrix A has
rank one iff there exist vectors x and y such that
aij = xiyj .

Proposition
The rank of a matrix M is the least number of
rank-one matrices whose sum is M.
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More on tensors...

All of this extends to tensors almost verbatim:
A three-dimensional tensor A has rank one iff there
exist vectors x , y and z such that aijk = xiyjzk .

Definition
The rank of a three-dimensional tensor Z is the
least number of rank-one tensors whose sum is Z .
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Can you believe that this question is open?

Open Problem
What is the largest rank of an n× n× n real tensor.

It is only known (and easy) that the answer is

between n2

3 and n2

2 . With A. Shraibman we have
constructed a family of examples which suggests

Conjecture (L. and Shraibman)
The answer is (1 + o(1))n2

2
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THAT’S ALL, FOLKS....
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