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Constructive Algorithms for Discrepancy Minimization

Nikhil Bansal∗

Abstract

Given a set system(V,S), V = {1, . . . , n} andS = {S1, . . . , Sm}, the minimum discrepancy
problem is to find a 2-coloringX : V → {−1,+1}, such that each set is colored as evenly as

possible, i.e. findX to minimizemaxj∈[m]

∣

∣

∣

∑

i∈Sj
X (i)

∣

∣

∣
.

In this paper we give the first polynomial time algorithms fordiscrepancy minimization that
achieve bounds similar to those known existentially using the so-called Entropy Method. We also
give a first approximation-like result for discrepancy. Specifically we give efficient randomized
algorithms to:

1. Construct anO(n1/2) discrepancy coloring for general sets systems whenm = O(n), match-
ing the celebrated result of Spencer [17] up to constant factors. Previously, no algorithmic
guarantee better than the random coloring bound, i.e.O((n log n)1/2), was known. More
generally, form ≥ n, we obtain a discrepancy bound ofO(n1/2 log(2m/n)).

2. Construct a coloring with discrepancyO(t1/2 logn), if each element lies in at mostt sets. This
matches the (non-constructive) result of Srinivasan [19].

3. Construct a coloring with discrepancyO(λ log(nm)), whereλ is the hereditary discrepancy
of the set system.

The main idea in our algorithms is to produce a coloring over time by letting the color of the elements
perform a random walk (with tiny increments) starting from 0until they reach−1 or +1. At each
time step the random hops for various elements are correlated using the solution to a semidefinite
program, where this program is determined by the current state and the entropy method.

1 Introduction

Let (V,S) be a set-system, whereV = {1, . . . , n} are the elements andS = {S1, . . . , Sm} is a collec-
tion of subsets ofV . Given a{−1,+1} coloringX of elements inV , letX (Sj) =

∑

i∈Sj
X (i) denote

the discrepancy ofX for setS. The discrepancy of the collectionS is defined as

disc(S) = min
X

max
j∈[m]

|X (Sj)|.

Understanding the discrepancy of various set-systems has been a major area of research both in math-
ematics and computer science, and this study has revealed fascinating connections to various areas of
mathematics. Discrepancy also has a range of applications to several topics in computer science such as
probabilistic and approximation algorithms, computational geometry, numerical integration, derandom-
ization, communication complexity, machine learning, optimization and so on. We shall not attempt to
describe these connections and applications here, but refer the reader to [6, 9, 12].

∗IBM T. J. Watson Research Center, Yorktown Heights, NY 10598. E-mail:nikhil@us.ibm.com

1

http://arxiv.org/abs/1002.2259v4


1.1 Discrepancy of General Set Systems

What is the discrepancy of an arbitrary set system withn elements andm sets?
This is perhaps the most basic question in discrepancy theory. Clearly, if we color the elements randomly,
for any setS, we expect|X (S)| to be aboutO(|S|1/2) = O(n1/2), i.e. about the standard deviation.
Moreover, by standard tail bounds, the probability that|X (S)| ≥ cn1/2 is at moste−Ω(c2). So, by
union bound over them sets, the discrepancy of the set system will beO((n logm)1/2). This bound for
randomly colorings is also tight in general.

Surprisingly, it turns out that better colorings always exist! A celebrated result of Spencer [17] states
that: Any set system onn elements andm ≥ n sets hasO((n log(2m/n))1/2) discrepancy. This
guarantee is most interesting whenm = O(n). In particular whenm = n, Spencer showed a bound of
6n1/2 (commonly referred to as the “six standard deviations suffice” result). This is the best possible
bound up to constant factors. Spencer’s result is one of the highlights of discrepancy theory and is based
on a clever use of the Pigeonhole Principle, a technique firstdeveloped by Beck [4]. The technique has
since been used widely and is referred to as the Entropy Method or the Partial Coloring Lemma (we
discuss this method and its application to obtain Spencer’sresult in section 2).

However, prior to our work, it was not known how to make this result algorithmic. In fact, no better
efficient algorithm than simply random coloring was known and reducing this gap has been a long-
standing question [12, 17, 1, 19]. Due to its fundamental useof the Pigeon Hole Principle, Spencer’s
result is widely believed to be more non-constructive than other existential results such as those based
on the probabilistic method or the Lovasz Local Lemma. We quote

“Is there a polynomial time algorithm that gives discrepancy Kn1/2 . . .. The difficulties in convert-
ing these theorems to algorithms go back to the basic theoremof this Lecture and lie, I feel, in the use of
the Pigeonhole Principle . . . ”. – Joel Spencer [18] (Page 69).

It is also known that any non-adaptive or online algorithm (for details see [2], page 239) must
have a discrepancy ofΩ(

√
n log n), and it has been conjectured [2], page 240, that no polynomial time

algorithm may exist for finding a coloring with discrepancyc
√
n.

In this paper we resolve this question and show that.

Theorem 1.1. Given any set system withn elements andn setsS1, . . . , Sn, there is a randomized poly-
nomial time algorithm that with probability at least1/ log n, constructs a{−1,+1} coloringX with dis-
crepancyO(n1/2). More generally form ≥ n, our algorithm achieves a bound ofO(n1/2 log(2m/n))
and succeeds with probability at least1/ logm.

We note that for generalm ≥ n, our algorithm has a somewhat worse dependence on(m/n) than
the tightO(n1/2 log(2m/n)1/2) bound achievable non-constructively. Also, it suffices to consider the
case ofm ≥ n: if m ≤ n, one can essentially reducen tom using standard techniques [17], implying a
(tight) discrepancy ofO(

√
m).

1.2 Bounded Degree Sets: The Beck-Fiala Setting

Another significant result in discrepancy theory is a theorem due to Beck and Fiala [5]: The discrepancy
of any set system(V,S) is at most2t− 1, wheret is the maximum degree of(V,S), i.e. the maximum
number of times an element appears in sets inS.

The proof of this result is algorithmic. This bound was improved slightly to2t−3 by Bednarchak and
Helm [7], and this is currently best known bound independentof n. Beck and Fiala [5] conjectured that
the minimum discrepancy is alwaysO(t1/2), and this remains a major open question. If the guarantee
is allowed to depend onn, Beck and Spencer [4, 18] showed that the discrepancy isO(t1/2 log t log n).
Refining their analysis, the bound was improved toO(t1/2 log n) by Srinivasan [19]. Both these proofs
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are based on the entropy method and are non-constructive. The best known result along these lines is due
to Banaszczyk [3] that achieves a bound ofO(t1/2 log1/2 n). This result is based on certain inequalities
for Gaussian measures onn-dimensional convex bodies due to [10] and also seems to be inherently
existential to the best of our knowledge.

In this paper we give a constructive version of Srinivasan’sresult.

Theorem 1.2. Given any set system(V,S) with n elements and degree at mostt, there is a randomized
polynomial time algorithm that with probability at least1/n, constructs a{−1,+1} coloring X with
discrepancyO(t1/2 log n).

1.3 Pseudo-Approximation and Hereditary Discrepancy

A natural question thus is whether the discrepancy of a particular instance can be approximated effi-
ciently. Very recently Charikar et al.[8] have shown very strong lower bounds for this problem. In
particular, they show that there exists set systems withm = O(n) sets, such that no polynomial time
algorithm can distinguish whether the discrepancy is0 or Ω(

√
n), unlessP = NP .

Here we prove the following pseudo-approximation result with respect to hereditary discrepancy.
Recall that the hereditary discrepancy of a set system(V, S) is defined as the maximum value of
discrepancy over all subsetsW of V . Specifically, givenW ⊆ V , let S|W denote the collection
{S ∩W : S ∈ S}. Then, the hereditary discrepancy of(V,S) is defined as

herdisc(S) = max
W⊆V

disc(S|W ).

We show the following result:

Theorem 1.3. Given any set system(V,S) with hereditary discrepancy at mostλ, there is a randomized
polynomial time algorithm that with probability at least1/n, constructs a{−1,+1} coloring X with
discrepancyO(λ log(mn)).

This answers a question of Matousek [14].

A consequence of our proof of theorem 1.3 is the following: Let us define the hereditary vector
discrepancy of a set systemS, denoted hervecdisc(S), as the smallest value ofλ such that for each
subsetW ⊆ V , the following semi-definite program is feasible.

||
∑

i∈Sj∩W
vi||22 ≤ λ2 for each setSj (1)

||vi||22 = 1 ∀i ∈ W (2)

Being a relaxation, clearly hervecdisc(S) ≤ herdisc(S). Our proof of theorem 1.3 actually produces
a coloring with discrepancyO(hervecdic(S) · log(mn)). Applying theorem 1.3 to each restrictionS|W
for W ⊆ V also implies that herdisc(S) = O(hervecdisc(S) · log(mn)). While do not know how to
compute or even approximate hervecdisc(S) in polynomial time, it might be an interesting quantity to
investigate, as anyβ approximation for it would imply anO(β log(mn)) approximation for hereditary
discrepancy.

1.4 Organization

Our algorithms are based on an iterative application of semi-definite programming. In particular, we
construct the coloring over time by solving a sequence of semi-definite programs, and use the solution
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of the SDP to define correlated random walks with tiny increments for each color. The walk for each
element continues until it reach−1 or+1. Interestingly, the non-constructive entropy method is a major
component in our algorithm: The semi-definite programs thatwe construct at each stage are guided by
the parameters given by the entropy method.

We give a high-level overview of our method in section 3. We begin in section 2 by describing some
preliminary concepts that we need. At the end of section 2, wealso describe the entropy method, and
show how it is applied to obtain the results of [17] and [19]. In section 4 we prove theorem 1.3 which
is technically the simplest result. The ideas developed there also imply theorem 1.2 which is proved in
section 4.3. Section 4 lays the basic groundwork for section5 where we eventually prove theorem 1.1.

2 Preliminaries

2.1 Gaussian Random Variables

We recall the following standard facts about Gaussian distributions. The Gaussian distributionN(µ, σ2)
with meanµ and varianceσ2 has probability distribution function

f(x) =
1

(2π)1/2σ
e−(x−µ)2/2σ2

.

Additivity: If g1 ∼ N(µ1, σ
2) andg2 ∼ N(µ2, σ

2
2) are independent Gaussian random variables,

then for anyt1, t2 ∈ R, the random variable

t1g1 + t2g2 ∼ N(t1µ1 + t2µ2, t
2
1σ

2
1 + t22σ

2
2).

The additivity property of Gaussians implies that

Lemma 2.1. Letg ∈ R
n be a random Gaussian, i.e. each coordinate is chosen independently according

to distributionN(0, 1). Then for any vectorv ∈ R
n, the random variable〈g, v〉 ∼ N(0, ||v||22). Here as

usual,||v||2 = (
∑

i v(i)
2)1/2 denotes theℓ2 norm ofv.

2.2 Probabilistic Tail Bounds for Martingales

We will use the following probabilistic tail bound repeatedly.

Lemma 2.2. Let 0 = X0 = X1, . . . ,Xn be a martingale with incrementsYi = Xi − Xi−1. Suppose
for 1 ≤ i ≤ n, we have thatYi|(Xi−1, . . . ,X0) is distributed asηiG, whereG is a standard Gaussian
N(0, 1) andηi is a constant such that|ηi| ≤ 1 (note thatηi may depend onX0, . . . ,Xi−1). Then,

Pr[|Xn| ≥ λ
√
n] ≤ 2e−λ2/2.

Proof. Let α be a parameter to be optimized later. We have,

E[eαYi |Xi−1, . . . ,X0] ≤
∫ ∞

−∞
eαy ·

(

1

(2π)1/2ηi
e−y2/2η2i

)

dy

= eα
2η2

i
/2 ·
∫ ∞

−∞

(

1

(2π)1/2ηi
e−(y−αη2

i
)2/2η2

i

)

dy

= eα
2η2i /2 ≤ eα

2/2.

Now,

E[eαXn ] = E[eαXn−1eαYn ] = E[eαXn−1E[eαYn |Xn−1, . . . ,X0]] ≤ eα
2/2

E[eαXn−1 ].
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Thus it follows by induction thatE[eαXn ] ≤ eα
2n/2. Finally,

Pr[Xn ≥ λ
√
n] = Pr[eαXn ≥ eαλ

√
n] ≤ e−αλ

√
n
E[eαXn ] ≤ e−αλ

√
n+α2n/2.

Settingα = λ/
√
n and noting thatPr[Xn ≥ λ

√
n] = Pr[Xn ≤ −λ

√
n] implies the claim.

2.3 Semidefinite Programming

Let Mn denote the class of all symmetricn × n matrices with real entries. For two matricesA,B ∈
R
n×n, the Frobenius inner product ofA andB is defined asA • B = tr(ATB) =

∑n
i=1

∑n
j=1 aijbij.

ForY ∈ R
n×n, let Y � 0 denote that it is semidefinite, i.e. all its eigenvalues are non-negative. Then a

general semidefinite program has the following form

max C • Y
s.t. Di • Y ≤ di, 1 ≤ i ≤ k

Y � 0

Y ∈ Mn

whereC,D1, . . . ,Dk ∈ Mn andd1, . . . , dk are real numbers.

Semidefinite programs form an important class of convex programs and can be solved efficiently
to any desired level of accuracy. SinceY is a symmetric semidefinite matrix, it can be written as
Y = W TW for someW ∈ R

n. Let yij denote the(i, j)-entry ofY and letwi be thei-th column of
W , thenyij = 〈wi, wj〉 for eachi, j. Thus, one can equivalently view an SDP as an arbitrary linear
program on variables of the form〈wi, wj〉 wherewi ∈ Rm for somem (however, in the SDP solution,
one cannot control the dimensionm of the vectorswi. In generalm could be as high as the number of
vectorswi). We refer the reader to [20] for further details about semidefinite programming.

2.4 The Entropy Method

We recall here the partial coloring lemma of Beck [4], based on the Entropy Method. We also describe
how it is used to obtain the results of [17] and [19]. The form we present below is from [13].

Lemma 2.3(Entropy Method). LetS be a set system on ann-point setV , and let a number∆S > 0 be
given for each setS ∈ S. Suppose∆S satisfy the condition

∑

S∈S
g

(

∆S
√

|S|

)

≤ n

5
(3)

where

g(λ) =

{

Ke−λ2/9 if λ > 0.1
K ln(λ−1) if λ ≤ 0.1

andK is some absolute constant (wlog we will assume thatK > 3). Then there is a partial coloring
X that assigns−1 or +1 to at leastn/2 variables (and0 to the rest of the variables), and satisfies
|X (S)| ≤ ∆S for eachS ∈ S.

This result is proved by arguing (via an entropy/counting argument) that there are exponentially
many coloringsX1, . . . ,Xℓ such that for everyi, j, 1 ≤ i < j ≤ ℓ, the difference in discrepancy
|Xi(S) − Xj(S)| ≤ ∆S for all S. Sinceℓ is exponential, there must exist two colorings among theseℓ,
sayX1 andX2, that differ onΩ(n) coordinates. Then,(X1 − X2)/2 gives the desired partial coloring.
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Spencer’s Result [17]: The coloring is constructed in phases. In phasei, for i = 0, . . . , log n, the
number of uncolored elements is at mostni ≤ n/2i. In phasei, apply lemma 2.3 to theseni elements
with ∆i

S = c(ni log(2m/ni))
1/2. It is easily verified that (3) holds for a large enough constant c. This

gives a partial coloring on at leastni/2 elements, with discrepancy for any setS at most∆i
S . Summing

up over the phases, the overall discrepancy for any set is at most

∆i
S =

∑

i

c

(

n2−i log

(

2m

n2−i

))1/2

= O((n log(2m/n))1/2).

Srinivasan’s result [19]: Again the coloring is constructed in phasesi = 0, . . . , log n, where at most
ni ≤ n/2i elements are uncolored in phasei. In phasei, let si,j denote the number of sets with
number of uncolored elements in[2j , 2j+1). As the degree of the set system is at mostt, we have
si,j ≤ min(m,nit/2

j). Using this fact, a (careful) calculation shows that (3) canbe satisfied if we
set∆S = ct1/2 for some large enough constantc. The log n phases imply a total discrepancy of
O(t1/2 log n).

3 Our Approach

We consider a linear variant of colorings, where a coloring is a vectorx ∈ [−1, 1]n instead of{−1,+1}n.
Our algorithm constructs the final coloring iteratively in several steps. Letxt ∈ R

n denote the coloring
at timet. We start with the coloringx0 = (0, 0, . . . , 0) initially. We update the coloring over time as
xt = xt−1+γt by applying suitably chosen (tiny) updatesγt ∈ R

n. Thus the colorxt(i) of each element
i ∈ [n] evolves over time, until it reaches−1 or+1. At that time the color ofi is consideredfixedand is
never updated again. The procedure continues until all the elements are colored either−1 or+1.

The updatesγt are chosen carefully (by rounding a certain SDP) and are related to the parameters
in the partial coloring lemma as follows: Consider the floating elements at timet, i.e. whose color has
not been fixed thus far until timet− 1. For ease of discussion here, let us assume that all then elements
are floating. Suppose we know the existence (using entropy method or otherwise) of a partial coloring
X on these floating elements, such that|X (S)| ≤ ∆S for eachS ∈ S. Then we find a collection of real
numbersηt(i), for i ∈ [n] that satisfy the following properties.

1. Unbiased Gaussian:Conditioned upon the evolution of the algorithm until timet− 1, each entry
ηt(i) is distributed as an unbiased Gaussian with standard deviation at most1.

2. Large Progress:The sum of standard deviations ofηt(i) overi ∈ [n] is at leastn/2.

3. Low Discrepancy:The entriesηt(i) are correlated such that for every setSj , conditional on the
evolution of the algorithm untilt− 1, the sum

∑

i∈Sj
ηt(i) is distributed as an unbiased Gaussian

with standard deviation at most∆S .

Then we setγt(i) = γ ·ηt(i), whereγ is a small scaling parameter, say for exampleγ = 1/n, and update
xt(i) = xt−1(i) + γt(i) for all i ∈ [n]. By property 1, note the colorxt(i) of each elementi forms a
martingale, that stops upon reaching−1 or +1. By properties 1 and 2, at each time step, at leastΩ(n)
elements have an increment of magnitudeΩ(γ). So after aboutO(1/γ2) steps, in expectation, about
Ω(n) elements will reach−1 or +1 and get fixed. Moreover, by property 3, the discrepancy of each
setS also forms a martingale with increments of magnitude roughly O(γ∆S). Thus inO(1/γ2) steps,
the expected discrepancy of setS will be aboutO(∆S). Note that this gives a procedure that roughly
corresponds to the partial coloring lemma: In particular, given any coloringx ∈ [−1, 1]n with a floating
variables, it produces another coloring (inO(1/γ2) steps) with at mosta/2 floating variables, such that
each setS incurs an additional discrepancy of∆S in expectation.
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This already suffices to show theorems 1.3 and 1.2. Let us consider theorem 1.3. We apply the above
procedure forO((log n)/γ2) time steps, until all the variables are fixed to{−1,+1}. As the hereditary
discrepancy isλ, we can always set∆S = λ, irrespective of the elements fixed to{−1,+1} thus far.
This implies an expected discrepancy ofO(λ

√
log n) for each setS. By standard tail bounds and taking

union over them sets, this implies anO(λ log(mn)) discrepancy coloring.

However the above idea by itself does not suffice for theorem 1.1. The problem is that here we
want to guarantee that the discrepancy foreveryset isO(n1/2), whereas the above idea only gives us
discrepancyO(n1/2) in expectation. So would end up losing aO(log1/2 n) factor due to the union bound
over the sets (obtaining nothing better than a random coloring). So, our second idea is to observe that
we can control the parameters∆S for each set. We refine the probabilistic procedure above by finely
adjusting the parameter∆S for each setS over time, depending on how “dangerous”S has become,
while ensuring that∆S ’s still satisfy the entropy condition (3). To illustrate the idea, we sketch below a
simplerO((n log log log n)1/2) constructive bound.

Consider the following: Initially, we set all∆S = cn1/2 for large enoughc so that (3) is satisfied
easily and has some slack. As previously, we obtain a corresponding vectorγt and add it to the coloring
thus far. We repeat this forO(1/γ2) steps, at which point we expect half the colors to reach either −1
or +1. During these steps, if the discrepancy|xt(S)| reaches2c(n log log log n)1/2 for some setS, we
label S dangerous and set its∆S = n1/2/ log n. This ensures that the discrepancy incrementγt(S)
will have standard deviation at mostγ(n1/2/ log n) henceforth, makingS extremely unlikely to incur an
additionalcn1/2 discrepancy over the nextO(1/γ2) steps. However, reducing the∆S comes at the price
of increasing the entropy contribution of setS in the left hand side of (3). Indeed, for the algorithm to
be able to proceed, we need to ensure that (3) still holds withthese reduced∆S (otherwise, we cannot
guarantee the existence of the update vectorsγt with required properties).

To show that (3) still holds, we use two facts. First, that only a small fraction of sets will get
dangerous. Second, the entropy contribution of each dangerous set is not too high. In particular, by
Lemma 2.2, at most2 exp (−2 log log log n) = 2(log log n)−2 fraction of sets ever get dangerous dur-
ing the 1/γ2 steps. So, with probability at least1/2, the number of dangerous sets never exceeds
4n(log log n)−2. We condition on this event. On the other hand, each dangerous setS contributes
g(∆S/|S|1/2) ≤ g(1/ log n) ≤ K log log n to (3), and hence the total entropy contribution of danger-
ous sets (conditioned on the event above) isO(n/(log log n)2) · K log log n = o(n). Thus (3) will
continue to hold, if there was some (reasonably small) slackto begin with.

A refinement of this idea, by considering multiple dangerouslevels, allows us to reduce the discrep-
ancy down toO(n1/2) implying theorem 1.1.

4 An pseudo-approximation for Discrepancy

We prove theorem 1.3. Let(V,S) be a set system,V = [n], S = {S1, . . . , Sm} with hereditary
discrepancyλ. For anyx ∈ R

n, let x(Sj) denote the
∑

i∈Sj
x(i). Our algorithm will construct the

final coloring iteratively in several steps. Letxt ∈ R
n denote the coloring at timet. We start with

x0 = (0, 0, . . . , 0) initially. At each time stept, we updatext = xt−1 + γt for some suitably chosen
vectorγt ∈ R

n. At the end, the final solutionxf ∈ {−1,+1}n will satisfy thatxf (Sj) = O(λ log(mn))
for eachj ∈ [m].

During the algorithm, if elementi reaches+1 or −1 at timet, i.e. xt(i) becomes+1 or −1, we say
that i is fixedand it will never be updated again. A variable isalive at beginning of timet, if it has not
been fixed by timet− 1. LetA(t) denote the set of alive variables at end of timet. So,A(0) = [n], and
A = ∅ at the end, and moreover|A(t)| is non-increasing witht. Let us assume that the algorithm knows
λ (it can try out all possible values forλ). We now describe the algorithm.
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4.1 Algorithm

Initialize, x0(i) = 0 for all i ∈ [n]. Let s = 1/(4n(log(mn))1/2). Let ℓ = 8 log n/s2.

For each time stept = 1, 2, . . . , ℓ repeat the following:

1. Find a feasible solution to the following semidefinite program:

||
∑

i∈Sj

vi||22 ≤ λ2 for each setSj (4)

||vi||22 = 1 ∀i ∈ A(t− 1) (5)

||vi||22 = 0 ∀i /∈ A(t− 1) (6)

This SDP is feasible as settingvi ·vj = X (i)X (j), whereX is the minimum discrepancy coloring
of the set system restricted toA(t − 1) is a valid solution. Letvi ∈ R

n, i ∈ [n] denote some
arbitrary feasible solution to the SDP above.

2. Constructγt ∈ R
n as follows: Letg ∈ R

n be obtained by choosing each coordinateg(i) indepen-
dently from the distributionN (0, 1). For eachi ∈ [n], let γt(i) = s〈g, vi〉.
Updatext = xt−1 + γt.
If |xt(i)| > 1, for anyi, abort the algorithm.

3. For eachi, setxt(i) = 1 if xt(i) ≥ 1− 1/n or setxt(i) = −1 if xt(i) < −1 + 1/n.
UpdateA(t) accordingly.

Return the final coloringxℓ.

4.2 Analysis

We begin with some simple observations.

1. At each time stept, we have||vi||22 = 1 for eachi ∈ A(t − 1) and||vi||20 = 0 for i /∈ A(t − 1).
Thus, by lemma 2.1, conditioned oni ∈ A(t − 1), we haveγt(i) ∼ N(0, s2) for i ∈ A(t − 1)
andγt(i) = 0 otherwise. Similarly, conditioned on the evolution of the algorithm until t − 1,
the incrementγt(Sj) for Sj at time t is an unbiased Gaussian with variance at mosts2λ2 (the
precise value of the variance will depend onv(Sj) =

∑

i∈Sj :i∈A(t−1) vi, which depends on the
SDP solution at timet, which in turn depends on the evolution of the algorithm until time t − 1,
in particular on the set of alive variablesA(t− 1)).

2. The rounding in step 3 of the algorithm can effect the overall discrepancy by at mostn·(1/n) = 1,
as each variable is rounded up or down at most once and is nevermodified thereafter. Noteλ ≥ 1,
unless the set system is empty, so we will ignore the effect ofthis rounding step henceforth.

3. For the algorithm to abort in step 2 at timet, it is necessary thatγt(i) > 1/n = 4s(log n)1/2, as
step 3 ensures that|xt−1(i)| < 1−1/n. Sinceγt(i) is distributed asN(0, s2), this probability is at
mostexp (−8 lnmn) = (mn)−8. Since there at mostn variables and onlyℓ = O(n2 log2(mn))
time steps, by union bound the probability that the algorithm ever aborts due to this step is at most
1/(mn)4.

The following key lemma shows that the number of alive variables halves inO(1/s2) steps with
reasonable probability. The proof below follows a simpler presentation due to Joel Spencer.
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Lemma 4.1. Supposey ∈ [−1,+1]n be an arbitrary coloring with at mostk alive variables. Letz
be the coloring obtained after applying steps (1)-(3) of ouralgorithm for 8/s2 time units. Then the
probability thatz hask/2 or more alive variables is at most1/4.

Proof. For1 ≤ t ≤ u = 8/s2, letyt denote the coloring at timet starting fromy, i.e. aftert applications
of steps (1)-(3). LetK be the set of alive variables att = 0. Let kt denote the number of variables alive
the end of timet. For each timet, let us definert =

∑

i yt(i)
2 if kt−1 ≥ k/2. Otherwise, define

rt = rt−1 + s2k/2. Now, we claim that conditioned on any coloringyt−1, the incrementrt − rt−1 is
at leasts2k/2 in expectation (over the gaussiang ∈ Rn at time t). This is clearly true ifkt < k/2.
Otherwise ifkt ≥ k/2, then

E[rt − rt−1|yt−1] = E[rt|yt−1]− r(t− 1)

= Eg

[

∑

i

(yt−1(i) + γt(i))
2

]

−
∑

i

yt−1(i)
2

=
∑

i

(

2yt−1E[γt(i)] + E[γt(i)
2]
)

≥ s2kt−1 ≥ s2k/2.

The last step follows asEg[γt(i)] = 0 andEg[γt(i)
2] = s2 for each alive variable inyt−1 and is 0

otherwise.

If there are still at leastk/2 alive variables att = u, thenru =
∑

i∈K yt(i)
2 ≤ k. Moreover, for

any run of the algorithm, it holds thatru ≤ k + us2k/2. This is because as long askt ≥ k/2 it must be
thatrt ≤ k, but if kt becomes less thank/2, rt increases by exactlys2k/2 at each subsequent time step.
Combining these facts we have,

us2k/2 ≤ E[ru] ≤ Pr[ku ≥ k/2] · k + (1− Pr[ku ≥ k/2]) · (k + us2k/2)

and hence

Pr[ku ≥ k/2] ≤ k

us2k/2
= 1/4.

LetE denote the event that the final coloringxℓ is a proper{−1,+1} coloring.

Lemma 4.2. Pr[E] ≥ 1/n. That is, a proper coloring is produced with probability at least1/n.

Proof. We apply lemma 4.1 withy = xt at epochst = 0, 8/s2, 16/s2, . . . , (8 log n)/s2 = ℓ. As the
number of alive variables initially isn, with probability at least(1 − 1/4)log n ≥ 1/n, the number of
alive variables reduces more than half at each epoch, and hence the number of alive variables is zero at
t = ℓ.

We now prove theorem 1.3. LetBj denote the (bad) event that setSj has discrepancy more than
2 log1/2(mn) · λsℓ1/2 at the end of time stepℓ. Let B = B1 ∨ B2 ∨ . . . ∨ Bm, and letBc denote
the complement ofB. To prove theorem 1.3, it suffices to show thatPr[Bc ∩ E] ≥ 1/(2n). Since
Pr[Bc ∩ E] ≥ Pr[E]− Pr[B] andPr[E] ≥ 1/n by Lemma 4.2, it suffices to show thatPr[B] ≤ 1/2n.

As xt(Sj) =
∑t

t′=1 γt′(Sj) forms a martingale, with each incrementγt distributed (conditional
upon the history untilt − 1) as unbiased Gaussian with variance at mostλ2s2, by lemma 2.2 we have
Pr[Bj ] = Pr[|xℓ(Sj)| ≥ 2 log1/2(mn) · λsℓ1/2] ≤ 2 exp(−2 log(mn)) = 2/(m2n2). By union bound
over them sets,Pr[B] ≤ 2/(mn2) ≤ 1/(2n) which implies the result.
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4.3 Constructive version of Srinivasan’s result

We prove theorem 1.2. Letn denote the number of elements, and letm denote the number of sets.
Since, each element lies in at mostt sets, we can assume thatm ≤ nt. The algorithm is essentially
identical to that in section 4. The only difference is that, at any stept in the algorithm, the entropy
method, as applied in [19], only guarantees us a partial coloring (instead of a complete coloring) of the
alive variablesA(t − 1) with discrepancyct1/2. So we modify the first step of the algorithm above as
follows:

Find a feasible solution to the following semidefinite program:

||
∑

i∈Sj

vi||22 ≤ c2t for each setSj (7)

∑

i∈A(t−1)

||vi||22 ≥ |A(t− 1)|/2 (8)

||vi||22 ≤ 1 ∀i ∈ A(t− 1) (9)

||vi||22 = 0 ∀i /∈ A(t− 1) (10)

The constantc is not stated explicitly in [19], but it can be calculated (infact our algorithm can do
a binary search onc do determine the smallest valuec for which the SDP has a feasible solution). This
program is feasible, asvi(1) = X (i), whereX is the partial coloring ofA(t−1) with discrepancyct1/2,
is a feasible solution.

The analysis is essentially identical to that in section 5. As in lemma 4.1, during16/s2 steps, the
number of alive variables reduces by a factor of 2, with probability at least1/2 (note that we have16/s2

steps above instead of8/s2 steps in Lemma 4.1, because of the partial coloring instead of complete
coloring ofA(t− 1)). Thus, there is a proper coloring with probability at least1/n at end of(16/s2) ·
log n steps. The expected discrepancy of each setS in this coloring is at mostt1/2(log n)1/2. As there
at mostnt sets, arguing as at the end of section 4.2, conditioned on obtaining a proper coloring at the
end, each set has discrepancy at mostO((t log n)1/2(log(nt))1/2) = O(t1/2 log n).

5 Constructive version of Spencer’s result

In this section we prove theorem 1.1. In fact, we will prove the more general guarantee forO(n1/2 log(2m/n))
for set systems withn elements andm sets, wherem ≥ n.

To show this, we will design an algorithmic subroutine with the following property.

Theorem 5.1. Let x ∈ [−1, 1]n be some fractional coloring with at mosta alive variables (i.e.i with
x(i) /∈ {−1,+1}). Then, there is an algorithm that with probability at least1/2, produces a fractional
coloring y ∈ [−1, 1]n with at mosta/2 alive variables, and the discrepancy of any set increases byat
mostO(a1/2 log(2m/a)).

Given theorem 5.1, the main result follows easily.

Lemma 5.2. The procedure in theorem 5.1 implies an algorithm to find a proper {−1,+1} color-
ing with discrepancyO(n1/2 log(2m/n)). Moreover, the algorithm succeeds with probability at least
1/(2 logm).

Proof. We start with the coloringx = (0, 0, . . . , 0), and apply theorem 5.1 forℓ = log logm steps. With
probability at least2−ℓ = 1/ logm, this gives a fractional coloringy with at mostn/2ℓ = n/ logm alive

10



variables, with the property that the discrepancyy(S) of any set is at most

ℓ
∑

k=1

O

(

( n

2k

)1/2
log

(

m2k+1

n

))

= O

(

n1/2 log

(

2m

n

))

.

Finally, to obtain a proper coloringz from y, we randomly round each alive variablei, i.e. set
z(i) = −1 with probability(1− y(i))/2 or to+1 with probability (1 + y(i))/2.

In expectation,E[z(i)] = y(i). Since there at mostn/ logm variables, by Chernoff bounds, the
probability that a setS incurs an additional discrepancy ofc(n/ logm)1/2 is at most2e−c2/2. Thus,
choosingc = 2 log1/2 m, with high probability every set incurs an additional discrepancy ofO(n1/2) ≤
O(n1/2 log(2m/n)).

We will focus on proving theorem 5.1 henceforth. We first describe the subroutine, and then analyze
it.

5.1 Algorithmic Subroutine

Consider the following subroutine. The input is a coloringx0 ∈ [−1,+1]n with at mosta alive variables.
Let s = 1/(4 log3/2(mn)), and letq = log(2m/a). Letd = 9 log(20K) and letc = 64(d(1+lnK))1/2

be constants whereK is defined as in (3). For each timet = 1, 2, . . . repeat the following steps until
t = 16/s2 or fewer thana/2 variables are alive, whichever occurs earlier.

1. For each setSj, letηj denote the total discrepancy incurred bySj thus far, i.e.ηj =
∣

∣

∣

∑t−1
s=1 γs(Sj)

∣

∣

∣
.

Defineβ(0) = 0 and fork = 1, 2, . . . , define

β(k) = ca1/2(q + 1)

(

2− 1

k

)

.

Fork = 0, 1, 2, . . . , we say thatSj is k-dangerous at timet if ηj ∈ [β(k), β(k + 1)).

If ηj > 2β(1) ( note that2β(1) ≥ β(k) for anyk) for anyj, abort the algorithm and return fail.

2. Fork = 0, 1, 2 . . . , let S(k) ⊆ S denote the sub-collection of sets that are currentlyk-dangerous.
LetA(t− 1) denote the set of variables that are currently alive. Fork = 0, 1, . . . , define

α(k) =
da(q + 1)

(k + 1)5
.

Find a feasible solution to the following semidefinite program:

∑

i∈[n]
||vi||22 ≥ A(t− 1)/2 (11)

||
∑

i∈Sj

vi||22 ≤ α(k) ∀k = 0, 1, 2, . . . , ∀Sj ∈ S(k) (12)

||vi||22 ≤ 1 ∀i ∈ A(t− 1) (13)

||vi||22 = 0 ∀i /∈ A(t− 1) (14)

If the SDP does not have feasible solution, abort the algorithm and return fail.
Otherwise, letvi ∈ R

n, i = 1, . . . , n be the solution returned by the SDP.
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3. We constructγt from thesevi as follows: Letg ∈ R
n be obtained by choosing each coordinate

g(i) independentlyN (0, 1). For eachi ∈ [i], let γt(i) = s〈g, vi〉. Updatext = xt−1 + γt. Abort
the algorithm if|xt(i)| > 1 for anyi.

4. For eachi, if xt(i) ≥ 1 − 1/ log(mn), setxt(i) = 1 with probability (1 + xt(i))/2 or to −1
otherwise. Similarly, ifxt(i) < −1 + 1/ log(mn), setxt(i) = −1 with probability (1− xt(i))/2
or to+1 otherwise. UpdateA(t) accordingly.

5.2 Analysis

We first note some simple observations.

1. For the algorithm to abort in step 3, it must be the case thatγt(i) > 1/ log(mn) for somet, i (this
is ensured by step 4 of the algorithm). However, sinces = 1/(4 log3/2(mn)), this happens with
probability at most1/(m4n4) and hence we ignore its effect henceforth.

2. The rounding in step 4 adds an overall discrepancy ofO(a1/2) to every set, during the course
of the subroutine. This is because, the variance incurred when a variable is rounded in step 4 is
O(1/ log(mn)). Since at mosta variables will ever be rounded, the variance for any constraint is
O(a/ logmn). The result now follows by standard tail bounds and taking union over them sets.

The following lemma gives a sufficient condition for the SDP to be feasible.

Lemma 5.3. Consider any timet. If for everyk = 1, 2, . . . no more thanmk = a2−10(k+1)/K sets are
k-dangerous att, then the SDP defined by (11)-(14) has a feasible solution.

Proof. We will show that if the conditions of the lemma hold, then by the entropy method, there exists
a feasible partial coloringX on at least|A(t − 1)|/2 elements such that|X (Sj)| ≤ ∆Sj

= (α(k))1/2

is satisfied for eachk-dangerous setSj, for k = 0, 1, 2, . . . . As X gives a feasible solution to the SDP
constraints (11)-(14), this will imply the result.

Thus, it suffices to show that condition (3) holds for the given choice ofmk and∆Sj
. That is,

∑

j∈[m]

g(λj) ≤
1

5
(a/2) ≤ 1

5
|A(t− 1)| (15)

whereλj = ∆Sj
· (|Sj ∩A(t− 1)|)−1/2. Sinceg(λ) is a decreasing function ofλ, to prove (15), we can

use any lower bound onλj. For anyk-dangerous setSj, for k = 0, 1, . . .,

λj = ∆Sj
· (|Sj ∩A(t− 1)|)−1/2 ≥ (α(k))1/2(|A(t− 1)|)−1/2 ≥ (d(q + 1)(k + 1)−5)1/2.

Let us defineζ(k) = (d(q + 1)(k + 1)−5)1/2.

We now upper bound the left hand side of (15). Asζ(0) = (d(q + 1))1/2 ≥ 0.1, the contribution of
0-dangerous sets to the left hand side of (15) is at most

m ·K · exp (−ζ(0)2/9) = m ·K · exp(−d(q + 1)/9) ≤ 1

20
m exp(−q − 1) ≤ a

20
. (16)

We now bound
∑

k≥1mk · g(ζ(k)). For anyk ≥ 1, we have

g(ζ(k)) ≤ K ·max(ln(10), ln(1/ζ(k))) ≤ K ·max(ln(10), ln((k + 1)5/2)) ≤ 5K ln(k + 1).

Thus,
∑

k≥1

mk · g(ζ(k)) ≤
∑

k≥1

1

K
a2−10(k+1) · 5K ln(k + 1) ≤ a/20. (17)

By (16) and (17) it follows that (15) holds, which proves the lemma.
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Lemma 5.4. For k = 1, 2, . . ., let Dk denote the event that more thanmk = a2−10(k+1)/K sets ever
becomek-dangerous duringt = 1, . . . , 16/s2. It holds thatPr[Dk] ≤ 2−5(k+1).

Proof. We first prove the claim fork = 1. Suppose some setSj becomes1-dangerous at some time.
Then, there must be a timêt when|ηj| first exceedsβ(1). However, until̂t, ηj was evolving as martin-
gale, with each conditional increment distributed as an unbiased Gaussian with variance at mostα(0)s2.
By lemma 2.2, this has probability at most

2 exp

(

− β(1)2

2α(0)s2(16/s2)

)

≤ exp

(

−c2(q + 1)

64d

)

= exp(−64(q + 1)(1 + ln(K))) ≤ 1

K
2−602−q−1 =

1

K
2−60 a

m
. (18)

Thus the expected number of such sets is at mosta(1/K)2−60 and hence the claim fork = 1 holds by
Markov’s inequality.

For k ≥ 2, the argument is similar. ForSj to becomek-dangerous during phaseq, it must have
becomek− 1-dangerous at some timêt during phaseq and then traversed the distanceβ(k)− β(k− 1)
during at most16/s2 time steps1. Sinceγt(Sj) (the conditional increment ofηj) has variance most
α(k− 1)s2 wheneverηj ∈ [β(k− 1), β(k)], due to the SDP constraint (12), Lemma 2.2 implies that the
probability thatSj becomesk-dangerous at any time is at most

exp
(

−(β(k) − β(k − 1))2/(4α(k − 1)s2 · (16/s2))
)

≤ exp
(

−(c2(q + 1)k)/(64d)
)

= exp(−64(q + 1)(1 + lnK)k) ≤ 1

K
· 2−q−1 · 2−32(k+1)

By Markov’s inequality,Pr[Dk] ≤ 2−5(k+1), which proves the lemma.

We can now finish off the proof of theorem 5.1. LetD = ∨∞
k=1Dk, and letE denote the event that

the number of alive variables is more thana/2 at t = u = 16/s2. LetDc andEc denote the complement
of D andE. Note that ifDc holds, then by Lemma 5.3, the SDP is always feasible, and the algorithm
never aborts in step 2 of the algorithm. Moreover, asmk ≪ 1 for k = c(logm) for large enoughc, it
follows that ifDc

k holds then no set ever incurs a discrepancy of more thanβ(k) ≤ 2β(1).

Now to prove theorem 5.1 it suffices to show thatPr[Dc|Ec] ≥ 1/2.

By Lemma 5.4,Pr[D] ≤ ∑

k≥1 Pr[Dk] ≤ 1/16. Also, Pr[E] ≤ 1/4 follows by an argument
identical to that in the proof of lemma 4.1. In particular, ifthe number of alive variables att is at least
a/2, we setrt =

∑

i xt(i)
2, otherwise, we setrt = rt−1 + s2a/4. Thus, irrespective ofxt−1, the

incrementrt − rt−1 increases in expectation by

∑

i

γt(i)
2 =

∑

i∈A(t−1)

s2||vi||22 ≥ s2a/4.

Moreover, asrt can never exceeda+ ts2a/4, it follows that afteru steps,

us2a/4 ≤ E[rt] ≤ Pr(E) · a+ (1− Pr(E)) · (a+ us2a/4)

implying thatPr[E] ≤ 4/(us2) = 1/4.

Thus,Pr[Dc|Ec] ≥ Pr[Dc ∩ Ec] ≥ 1− Pr[D]− Pr[E] ≥ 1/2, and the result follows.

1Strictly speaking, there is a non-zero probability that ak − 2 or less dangerous set may becomek-dangerous at next
step, however this probability is super-polynomially small as(β(k + 1) − β(k))/s2α(k) ≥ log2 n (andα(k) ≈ α(k − 1)).
Moreover, it can be made arbitrarily small by settings arbitrarily small, say1/n. So, we can ignore this event in the analysis.
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