A NOTE ON SUMS OF INDEPENDENT RANDOM
MATRICES AFTER AHLSWEDE-WINTER

1. THE METHOD

Ashwelde and Winter [1] proposed a new approach to deviation in-
equalities for sums of independent random matrices. The purpose of
this note is to indicate how this method implies Rudelson’s sampling
theorems for random vectors in isotropic position.

Let X;,..., X, be independent random d X d real matrices, and let
S, = X1+ -+ X,,. We will be interested in the magnitude of the
deviation ||.S,, — ES,|| in the operator norm.

1.1. Real valued random variables. Ashlwede-Winter’s method [1]
is parallel to the classical approach to deviation inequalities for real
valued random variables. We briefly outline the real valued method.
Let Xi,..., X, be independent mean zero random variables. We are
interested in the magnitude of S, = >, X;. For simplicity, we shall
assume that |X;| < 1 a.s. This hypothesis can be relaxed to some
control of the moments, precisely to having sub-exponential tail.

Fix at > 0 and let A > 0 be a parameter to be chosen later. We
want to estimate

pi=P(S, >t) = P(eM" > M),
By Markov inequality and using independence, we have

p< o~ MEMn — e—)\tHEe)\Xi‘
i

Next, Taylor’s expansion and the mean zero and boundedness hypothe-
ses can be used to show that, for every 1,

~J

This yields

_ 2 2
p < e M where o2 := E Var X;.
i

The optimal choice of the parameter A\ ~ min(7/202, 1) implies Cher-
noft’s inequality

p < max <6_t2/”2, e_t/Q).
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1.2. Random matrices. Now we try to generalize this method when
X, € My are independent mean zero random matrices, where M,
denotes the class of symmetric d x d matrices.

Some of the matrix calculus is straightforward. Thus, for A € My,
the matrix exponential e” is defined as usual by Taylor’s series. Re-
call that e? has the same eigenvectors as A, and eigenvalues e (4,
The partial order A < B means A — B > 0, i.e. A — B is positive
semidefinite.

The non-straightforward part is that, in general, A5 +# e4e®. How-
ever, Golden-Thompson’s inequality (see [3]) states that

tre TP < tr(ede?)

holds for arbitrary A, B € M, (and in fact for arbitrary unitary-
invariant norm replacing the trace).

Therefore, for S,, = X; + --- 4+ X,, and for I; being the identity on
My, we have

pi=P(S, £ tly) = P(eMn £ M) < P(tre > M) < e ME tr(e).

This estimate is not sharp: e**» £ e*!¢ means that the biggest eigen-
value of e’ exceeds e, while tre*» > e* means that the sum of
all d eigenvalues exceeds the same. This will be responsible for the
(sometimes inevitable) loss of the logd factor in Rudelson’s selection
theorem.

Since S,, = X,, + 5,1, we can use Golden-Thomson’s inequality to
separate the last term from the sum:

Etr(e*n) < Etr(eMren-1).

Now, using independence and that E and trace commute, we continue
to write

— ]Enfl tr(]EneAXn . e)\SThl) S HEne)\XnH . Enfl tl"(eAS"’1>,
Continuing by induction, we arrive (since tr(ly) = d) to
n
Etr(c*) < d- T IE.

i=1
We have proved that

P(S, % tly) < de ™ - T IEe™
=1

Repeating for —S,, and using that tI; < S, < tl; is equivalent to
|Sy|| < t, we have shown that

(1) P(||Snll > t) < 2de™ - [ B

i=1
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Remark. As in the real valued case, full independence is never needed
in the above argument. It works out well for martingales.
The main result:

Theorem 1 (Chernoff-type inequality). Let X; € My be independent
mean zero random matrices, | X;|| < 1 for all i a.s. Let S, = X +
o+ Xy, 02 =31 || Var X;||. Then for every t > 0 we have

P(||S,]| > t) < d - max(e /4" e71/?).

To prove this theorem, we have to estimate |[Ee*¥i|| in (1), which is
easy.

For example, if X € M, and || X|| < 1, then Taylor series expansion
shows that

e <I,+ 7+ 7%

Therefore, we have

Lemma 2. Let Z € My be a mean zero random matriz, ||Z] <1 a.s.
Then
EeZ < GVarZ

Proof. Using the mean zero assumption, we have

Ee? <E(I;+ Z + Z%) = I; + Var(Z) < V™2,

Let 0 < A < 1. Therefore, by the Theorem’s hypotheses,

HEe/\Xi < He)\QVarXi :e)\2HVarXi||.

Hence by (1),
P(|S]| > t) < d-e X7
With the optimal choice of A := min(¢/20%,1), the conclusion of The-
orem follows.
Problem: does the Theorem hold for o? replaced by || Y7, Var X;||?
If so, this would generalize Pisier-Lust-Piquard’s non-commutative Khin-
chine inequality.

Corollary 3. Let X; € M, be independent random matrices, X; > 0,
|1 Xl <1 forallias. LetS, =X1+---+X,, E=>",[EX;].
Then for every € € (0,1) we have

P(||S, — ES,|| > eE) <d-e =P/,
Proof. Applying Theorem for X; — EX;, we have
(2) P(||S, — ES,|| > t) < d - max(e /47 ¢71/?).
Note that ||.X;|| <1 implies that

Var X; < EX? < E(|| X,]| X;) < EX;.
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Therefore, 02 < E. Now we use (2) for t = ¢F, and note that
t?/40® = *E? 40* > *E /4.
U

Remark. The hypothesis ||.X;|| < 1 can be relaxed throughout to || X;]|y, <
1. One just has to be more careful with Taylor series.

2. APPLICATIONS

Let = be a random vector in isotropic position in R?, i.e.
Exz®ax =1,
Denote ||z|[y, = M. Then the random matrix
X =M7?rxux
satisfies the hypotheses of Corollary (see remark below it). Clearly,
EX = M~l;, E=n/M? ES,=(n/M?)]I,.
Then Corollary gives
P(|S, — ES,|| > e|[ES|) < d- e/,

We have thus proved:

Corollary 4. Let x be a random vector in isotropic position in R?,
such that M := ||x||y, < oo. Let xy,...,x, be independent copies of x.
Then for every € € (0,1), we have

1 & 2, 14 s2
P(H—E i z-—IH> ><d~ —en/AME
ni:lx X x d el < e

The probability in the Corollary is smaller than 1 provided that the
number of samples is
n > e 2M?logd.
This is a version of Rudelson’s sampling theorem, where M played the
role of (E||z||°e™)!/logn,
One can also deduce the main Lemma in [2] from the Corollary in
the previous section. Given vectors z; in R?, we are interested in the

magnitude of
N
H Z 9iTi @ x;
i=1

where g; are independent Gaussians. For normalization, we can assume
that

N
Y mewn=A4A |A|=1
=1

Denote
M := max ||z,
(]



and consider the random operator
X := M 2z; ® x; with probability 1/N.

As before, let Xy, X,,..., X, be independent copies of X, and S =
Xl + .+ Xn_

This time, we are going to let n — co. By the Central Limit Theo-
rem, the properly scaled sum S — ES will converge to vazl giT; @ T;.
One then chooses the parameters correctly to produce a version of the
main Lemma in [2]. We omit the details.
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