
A NOTE ON SUMS OF INDEPENDENT RANDOM
MATRICES AFTER AHLSWEDE-WINTER

1. The method

Ashwelde and Winter [1] proposed a new approach to deviation in-
equalities for sums of independent random matrices. The purpose of
this note is to indicate how this method implies Rudelson’s sampling
theorems for random vectors in isotropic position.

Let X1, . . . , Xn be independent random d× d real matrices, and let
Sn = X1 + · · · + Xn. We will be interested in the magnitude of the
deviation ‖Sn − ESn‖ in the operator norm.

1.1. Real valued random variables. Ashlwede-Winter’s method [1]
is parallel to the classical approach to deviation inequalities for real
valued random variables. We briefly outline the real valued method.
Let X1, . . . , Xn be independent mean zero random variables. We are
interested in the magnitude of Sn =

∑
iXi. For simplicity, we shall

assume that |Xi| ≤ 1 a.s. This hypothesis can be relaxed to some
control of the moments, precisely to having sub-exponential tail.

Fix a t > 0 and let λ > 0 be a parameter to be chosen later. We
want to estimate

p := P(Sn > t) = P(eλSn > eλt).

By Markov inequality and using independence, we have

p ≤ e−λtEeλSn = e−λt
∏
i

EeλXi .

Next, Taylor’s expansion and the mean zero and boundedness hypothe-
ses can be used to show that, for every i,

EeλXi . eλ
2 VarXi , 0 ≤ λ ≤ 1.

This yields

p . e−λt+λ
2σ2

, where σ2 :=
∑
i

VarXi.

The optimal choice of the parameter λ ∼ min(τ/2σ2, 1) implies Cher-
noff’s inequality

p . max
(
e−t

2/σ2

, e−t/2
)
.
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1.2. Random matrices. Now we try to generalize this method when
Xi ∈ Md are independent mean zero random matrices, where Md

denotes the class of symmetric d× d matrices.
Some of the matrix calculus is straightforward. Thus, for A ∈ Md,

the matrix exponential eA is defined as usual by Taylor’s series. Re-
call that eA has the same eigenvectors as A, and eigenvalues eλi(A).
The partial order A ≤ B means A − B ≥ 0, i.e. A − B is positive
semidefinite.

The non-straightforward part is that, in general, eA+B 6= eAeB. How-
ever, Golden-Thompson’s inequality (see [3]) states that

tr eA+B ≤ tr(eAeB)

holds for arbitrary A,B ∈ Md (and in fact for arbitrary unitary-
invariant norm replacing the trace).

Therefore, for Sn = X1 + · · · + Xn and for Id being the identity on
Md, we have

p := P(Sn 6≤ tId) = P(eλSn 6≤ eλtId) ≤ P(tr eλSn > eλt) ≤ e−λtE tr(eλSn).

This estimate is not sharp: eλSn 6≤ eλtId means that the biggest eigen-
value of eλSn exceeds eλt, while tr eλSn > eλt means that the sum of
all d eigenvalues exceeds the same. This will be responsible for the
(sometimes inevitable) loss of the log d factor in Rudelson’s selection
theorem.

Since Sn = Xn + Sn−1, we can use Golden-Thomson’s inequality to
separate the last term from the sum:

E tr(eλSn) ≤ E tr(eλXneλSn−1).

Now, using independence and that E and trace commute, we continue
to write

= En−1 tr(Ene
λXn · eλSn−1) ≤ ‖Ene

λXn‖ · En−1 tr(eλSn−1).

Continuing by induction, we arrive (since tr(Id) = d) to

E tr(eλSn) ≤ d ·
n∏
i=1

‖EeλXi‖.

We have proved that

P(Sn 6≤ tId) ≤ de−λt ·
n∏
i=1

‖EeλXi‖.

Repeating for −Sn and using that tId ≤ Sn ≤ tId is equivalent to
‖Sn‖ ≤ t, we have shown that

(1) P(‖Sn‖ > t) ≤ 2de−λt ·
n∏
i=1

‖EeλXi‖.
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Remark. As in the real valued case, full independence is never needed
in the above argument. It works out well for martingales.

The main result:

Theorem 1 (Chernoff-type inequality). Let Xi ∈ Md be independent
mean zero random matrices, ‖Xi‖ ≤ 1 for all i a.s. Let Sn = X1 +
· · ·+Xn, σ

2 =
∑n

i=1 ‖VarXi‖. Then for every t > 0 we have

P(‖Sn‖ > t) ≤ d ·max(e−t
2/4σ2

, e−t/2).

To prove this theorem, we have to estimate ‖EeλXi‖ in (1), which is
easy.

For example, if X ∈Md and ‖X‖ ≤ 1, then Taylor series expansion
shows that

eZ ≤ Id + Z + Z2.

Therefore, we have

Lemma 2. Let Z ∈Md be a mean zero random matrix, ‖Z‖ ≤ 1 a.s.
Then

EeZ ≤ eVarZ .

Proof. Using the mean zero assumption, we have

EeZ ≤ E(Id + Z + Z2) = Id + Var(Z) ≤ eVarZ .

�

Let 0 < λ ≤ 1. Therefore, by the Theorem’s hypotheses,

‖EeλXi‖ ≤ ‖eλ2 VarXi‖ = eλ
2‖VarXi‖.

Hence by (1),

P(‖S‖ > t) ≤ d · e−λt+λ2σ2

.

With the optimal choice of λ := min(t/2σ2, 1), the conclusion of The-
orem follows.

Problem: does the Theorem hold for σ2 replaced by ‖
∑n

i=1 VarXi‖?
If so, this would generalize Pisier-Lust-Piquard’s non-commutative Khin-
chine inequality.

Corollary 3. Let Xi ∈ Md be independent random matrices, Xi ≥ 0,
‖Xi‖ ≤ 1 for all i a.s. Let Sn = X1 + · · · + Xn, E =

∑n
i=1 ‖EXi‖.

Then for every ε ∈ (0, 1) we have

P(‖Sn − ESn‖ > εE) ≤ d · e−ε2E/4.

Proof. Applying Theorem for Xi − EXi, we have

(2) P(‖Sn − ESn‖ > t) ≤ d ·max(e−t
2/4σ2

, e−t/2).

Note that ‖Xi‖ ≤ 1 implies that

VarXi ≤ EX2
i ≤ E(‖Xi‖Xi) ≤ EXi.
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Therefore, σ2 ≤ E. Now we use (2) for t = εE, and note that

t2/4σ2 = ε2E2/4σ2 ≥ ε2E/4.

�

Remark. The hypothesis ‖Xi‖ ≤ 1 can be relaxed throughout to ‖Xi‖ψ1 ≤
1. One just has to be more careful with Taylor series.

2. Applications

Let x be a random vector in isotropic position in Rd, i.e.

Ex⊗ x = Id.

Denote ‖x‖ψ1 = M . Then the random matrix

X := M−2x⊗ x
satisfies the hypotheses of Corollary (see remark below it). Clearly,

EX = M−2Id, E = n/M2, ESn = (n/M2)Id.

Then Corollary gives

P(‖Sn − ESn‖ > ε‖ES‖) ≤ d · e−ε2n/4M2

.

We have thus proved:

Corollary 4. Let x be a random vector in isotropic position in Rd,
such that M := ‖x‖ψ1 <∞. Let x1, . . . , xn be independent copies of x.
Then for every ε ∈ (0, 1), we have

P
(∥∥∥ 1

n

n∑
i=1

xi ⊗ xi − Id
∥∥∥ > ε

)
≤ d · e−ε2n/4M2

.

The probability in the Corollary is smaller than 1 provided that the
number of samples is

n & ε−2M2 log d.

This is a version of Rudelson’s sampling theorem, where M played the
role of (E‖x‖logn)1/ logn.

One can also deduce the main Lemma in [2] from the Corollary in
the previous section. Given vectors xi in Rd, we are interested in the
magnitude of ∥∥∥ N∑

i=1

gixi ⊗ xi
∥∥∥

where gi are independent Gaussians. For normalization, we can assume
that

N∑
i=1

xi ⊗ xi = A, ‖A‖ = 1.

Denote
M := max

i
‖xi‖.
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and consider the random operator

X := M−2xi ⊗ xi with probability 1/N.

As before, let X1, X2, . . . , Xn be independent copies of X, and S =
X1 + · · ·+Xn.

This time, we are going to let n→∞. By the Central Limit Theo-
rem, the properly scaled sum S − ES will converge to

∑N
i=1 gixi ⊗ xi.

One then chooses the parameters correctly to produce a version of the
main Lemma in [2]. We omit the details.
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