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We prove for Hermitian matrices (or more generally for completely continuous self-adjoint linear 
operators in Hilbert space) A and B that Tr (eA+B) ~ Tr (eAeB). The inequality is shown to be 
sharper than the convexity property (0 ~ a ~ 1) Tr (eaA+(I-a)B) ~ [Tr (eA )]a[Tr (eB)]l-a, and its 
possible use for obtaining upper bounds for the partition function is discussed briefly. 

1. SUMMARY 

OUR results are summarized III the following 
theorems. 1 

Theorem I. For two n X n Hermitian matrices 
A andB 

(1) 

Theorem II. For two n X n positive-definite ma
trices A and B, and 0 ~ a ~ 1, 

Tr (A aBI
-

a) ~ [Tr (A)]a[Tr (B)y-a. (2) 

Proofs of these theorems (which carryover to com
pletely continuous self adjoint linear operators in 
Hilbert space) are given in the following two sections. 

A consequence of Theorems I and II is2
: 

Corollary: For two n X n Hermitian matrices A 
and B, and 0 ~ a ~ 1, 

Tr (eaA+U-a)B) ~ [Tr (eA)]a[Tr (eB)]'-a. (3) 

The convexity property (3) has been used3 to 
obtain an upper bound for the partition function 
(in the usual notation) Z = Tr (e-~H) of an antifer
romagnetic chain. Equation (1) can also be used to 
obtain upper bounds for the partition function if 
we separate the Hamiltonian in a way that enables 
us to compute the upper bound. In view of (2), the 
inequality (1) is sharper than (3), so that in general, 
(1) will probably give us better bounds than (3). 
Work along these lines is at present in progress. 

2. PROOF OF THEOREM I 

The proof rests on the following two Lemmas. 

Lemma 1. For an n X n matrix X, 

t Present address: The Rockefeller Institute, New York, 
N.Y. 10021. 

* Supported by the U. S. Air Force Office of Scientific 
Research, under AF Grant No. AF-AFOSR-61O-64, Theory 
of Solids. 

I Theorem I, and Lemma 2 in Sec. 2 (for positive-definite 
matrices only), have recently been proved independently by 
S. Golden, Phys. Rev. 137, B1127 (1965). 

2 D. Ruelle, Helv. Phys. Acta 36,789 (1963). 
a R. B. Griffiths, Phys. Rev. 136, A751 (1964). 

(4) 

where m is a positive integer and t denotes Hermitian 
conjugate. 

Lemma 2.' For two n X n Hermitian matrices 
A and B, 

(5) 

where k is a positive integer. 

Lemma 1 is a special case of a theorem due to 
Wey1.4 

To prove Lemma 2, we first note that with X = 
AB, xt = BA in Lemma 1, we have 

(6) 

where the last equality follows from the cyclic prop
erty of the trace. We now proceed by induction. 

The case k = 1 of (5) is just the case m = 1 of 
(6). And if we assume (5) to be true for k = l, we 
have from (6) 

ITr (ABf'+'1 = ITr (AB? (2') 1 ~ ITr (A 2 B2)21 I. 
The result follows if we then use our inductive as
sumption with A2 and B2 in place of A and B. 

The theorem is proved from Lemma 2 by taking 
I + 2-kA and I + 2-kB in place of A and B, re
spectively, and proceeding to the limit k ~ ex>. 

We remark that the obvious generalization of (5), 
namely, 

(7) 

is not true, so that Theorem I has no obvious gen
eralization. A counter example to (7) (for k = 1) is 

A=l~:~l'B=l ~: 
o 0 1J -2 0 

-2

j 0, 

1 
C = l~ : ~l' (8) 

102 

'H. Weyl, Proc. Nat!. Acad. Sci. U. S. 35, 408 (1949); 
see also G. Polya, ibid. 36, 49 (1950). 
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for which Tr (A2B2C2) = Tr (B2A 2C2) = ° and 
Tr (ABC)2 = 9. 

3. PROOF OF THEOREM II 

We order the eigenvalues ai of A, and bi of B 
in decreasing order, al 2: a2 2: ... 2: an 2: 0, 
bl 2: b2 2: ... 2: b" 2: 0, and use Fan's result5 

k k 

1: (<Pi' Bl-"<Pi) ~ 1: b!-", k = 1,2, ... ,n, 
i-I i=1 

which holds for an arbitrary orthonormal set of 
vectors {<Pi}' Choosing the <Pi to be eigenvectors of 
A and summing by parts gives us 

" Tr (A "B1-") = 1: a~(<pi' B1-"<Pi) 
,=1 

6 K. Fan, Proc. Natl. Acad. Sci. U. S. 35, 652 (1949). 
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= [Tr (A)]"[Tr (B)]l-", 

where the last inequality is just Holder's inequality 
for positive real numbers. 
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The problem of a characteristic electromagnetic wave incident obliquely on a plane boundary be
tween two different gyrotropic plasma media is solved. Two characteristic transmitted waves and two 
characteristic reflected waves will result. The corresponding reflection and transmission coefficients 
have been evaluated. The particular degenerate cases of free space-gyrotropic medium, gyrotropic 
medium-free space, and gyrotropic medium-perfect conductor are solved in the appendices. 

I. INTRODUCTION 

OVER the past half-century, many attacks have 
been made on selected portions of the prob

lem of oblique incidence of electromagnetic waves 
from free space on a sharply bounded ionosphere. 
The isotropic case has been discussed in detail by 
Strattonl and by Budden,2 and their results are in 

* The research reported in this paper was sponsored in 
part by the Air Force Cambridge Research Laboratories, 
Office of Aerospace Research, U. S. Air Force, Bedford, 
Massachusetts, under Contract No. AF 19(604)-7270, at the 
Antenna Laboratory, The Ohio State University, Columbus, 
Ohio. 

t Consultant to the Antenna Laboratory, Department of 
Electrical Engineering, The Ohio State University, Columbus, 
Ohio; Electrical Engineering Department, The University of 
Kansas, Lawrence, Kansas. 

1 J. A. Stratton, Electromagnetic Theory (McGraw-Hill 
Book Company, Inc., New York, 1941). 

I K. G. Budden, Radio Waves in the Ionosphere (Cambridge 
University Press, Cambridge, England, 1961). 

agreement with the ones found originally by Snell 
(1591-1626), Fresnel (1788-1827), and Brewster 
(1781-1868). Booker3

-
6 treated the obliquely in

cident wave in the anisotropic ionosphere and derived 
the well-known "Booker quartic equation" for the 
refractive index, and his results are given in detail 
by Budden.2 Bremmer6 gave an expression for the 
reflection coefficients, applicable to the lossless case. 
Yabroff gave curves showing reflection coefficients 
as a function of the angle of incidence for various 
directions of the earth's magnetic field. Additional 

3 H. G. Booker, Proc. Roy. Soc. (London) A155, 235 
(1936). 

4 H. G. Booker, Phil. Trans. Roy. Soc. London A237, 411 
(1939). 

6 H. G. Booker, J. Geophys. Res. 54, 243 (1949). 
6 H. Bremmer, Terrestrial Radio Waves (Elsevier Publish

ing Company, New York, 1949). 
71. W. Yabroff, Proc. IRE 45, 750 (1957). 
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