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Abstract

For a given finite graph G of minimum degree at least k, let Gp be a random subgraph of G

obtained by taking each edge independently with probability p. We prove that (i) if p ≥ ω/k

for a function ω = ω(k) that tends to infinity as k does, then Gp asymptotically almost surely

contains a cycle (and thus a path) of length at least (1− o(1))k, and (ii) if p ≥ (1 + o(1)) ln k/k,

then Gp asymptotically almost surely contains a path of length at least k. Our theorems extend

classical results on paths and cycles in the binomial random graph, obtained by taking G to be

the complete graph on k + 1 vertices.

1 Introduction

Paths and cycles are two of the most simple yet important structures in graph theory, and being

such, the problem of finding conditions that imply the existence of paths and cycles of various lengths

has attracted a lot of attention in the field for the past 60 years. For example, Dirac [8] proved that

for k ≥ 2, every graph of minimum degree at least k contains a path of length k and a cycle of length

at least k+ 1, and that every graph on n vertices of minimum degree at least n
2 is Hamiltonian, i.e.,

contains a cycle of length n. By considering a complete graph on n = k + 1 vertices, and two edge-

disjoint complete graphs of the same size sharing a single vertex, one can see that these results are

tight. One reason that finding such conditions is of considerable interest is because it is often the case

that conditions implying the existence of paths and cycles can be generalized to other substructures

such as trees, and general subgraphs. For example, Pósa [21] proved that expansion implies the

existence of long paths, and later Friedman and Pippenger [10] generalized Pósa’s approach to trees.

Given a graph G and a real p ∈ [0, 1], let Gp be the probability space of subgraphs of G obtained

by taking each edge independently with probability p. For a given graph property P, and sequences

of graphs {Gi}∞i=1 and of probabilities {pi}∞i=1, we say that (Gi)pi ∈ P asymptotically almost surely,

or a.a.s. for brevity, if the probability that (Gi)pi ∈ P tends to 1 as n goes to infinity. In this

paper, when G and p are parameterized by some parameter, we abuse notation and consider G and

p as sequences obtained by taking the parameter to tend to infinity, and will say that Gp has P
asymptotically almost surely if the sequence does.
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The most studied case of the above model of random graphs is when G is a complete graph Kn

on n vertices, where (Kn)p is known as the binomial random graph G(n, p). This model has been

first introduced in 1959 [12] and has been intensively studied thereafter. In a seminal paper, Ajtai,

Komlós, and Szemerédi [1], confirming a conjecture of Erdős, proved in particular that for p = c
n and

c > 1, G(n, p) a.a.s. contains a path of length at least (1−f(c))n, where f(c) is a function tending to

zero as c goes to infinity; this was also proved independently by Fernandez de la Vega [9]. Analogous

problem for cycles was studied by Bollobás, Fenner, and Frieze [5]. Frieze [11] later determined the

asymptotics of the number of vertices not covered by a longest path and cycle in G(n, p). Also, for

Hamiltonian paths and cycles, i.e., paths and cycles which pass through every vertex of the graph,

improving on results of Pósa [21] and Korshunov [14], Bollobás [3] and Komlós and Szemerédi [13]

independently proved that for every fixed positive ε and p ≥ (1+ε) logn
n , the random graph G(n, p) is

a.a.s. Hamiltonian. See the book of Bollobás [4] for a comprehensive overview of results on paths

and cycles in random graphs.

In this paper we study generalizations of the above mentioned results. Our goal is to extend

classical results on random graphs to a more general class of graphs. More precisely, we would like

to replace the host graph, taken to be the complete graph in the classical setting, by a graph of large

minimum degree, and to find a.a.s. long paths and cycles in random subgraphs of large minimum

degree graphs. Throughout the paper, we will only consider finite graphs.

Our first two theorems study paths. Note that we parameterize our graph in terms of its minimum

degree (not in terms of the number of vertices which is perhaps more conventional).

Theorem 1.1. Let G be a finite graph with minimum degree at least k, and let p = c
k for some

positive real c (c is not necessarily fixed). Then a.a.s. Gp contains a path of length (1− 2c−1/2)k.

We can also a.a.s. find a path of length exactly k, given that p is sufficiently large.

Theorem 1.2. For a finite graph G of minimum degree at least k and a real p ≥ (1+o(1)) log k
k , Gp

a.a.s. contains a path of length k.

Since we can take G to be the complete graph Kk+1 on k + 1 vertices, our theorems can be

viewed as generalizations of classical results on the existence of long paths in G(n, p). In particular,

Theorem 1.1 generalizes the result of Ajtai, Komlós, and Szemerédi and of Fernandez de la Vega,

and Theorem 1.2 generalizes the result of Bollobás, and of Komlós and Szemerédi.

Our theorem can also be placed in a slightly different context. Recently there has been a number

of papers revisiting classical extremal graph theoretical results of the type ‘if a graph G satisfies

certain condition, then it has some property P’, by asking the following question: “How strongly

does G possess P?”. In other words, one attempts to measure the robustness of G with respect to

the property P. For example, call a graph on n vertices a Dirac graph, if it has minimum degree at

least n
2 . Consider the above mentioned theorem which asserts that all Dirac graphs are Hamiltonian.

There are several possible ways one can measure the robustness of this theorem. Cuckler and Kahn

[6], confirming a conjecture of Sárközy, Selkow, and Szemerédi [22], measured the robustness by

counting the minimum number of Hamilton cycles in Dirac graphs and proved that all Dirac graphs

contain at least n!
(2+o(1))n Hamilton cycles. In a recent paper [15], we measured the robustness by

taking random subgraphs of Dirac graphs and proved that for every Dirac graph G on n vertices

and p � logn
n , a random subgraph Gp is a.a.s. Hamiltonian. In the same paper, we also discussed
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an alternative measure of robustness where one analyzes the biased Maker-Breaker Hamiltonicity

game on the Dirac graph. The concept of resilience of graphs is another framework which allows

one to measure robustness of graphs. See, e.g., the paper of Sudakov and Vu [23] for more details.

Note that Theorem 1.2 in fact measures the robustness of graphs of minimum degree at least k with

respect to containing paths of length k, by taking random subgraphs.

We can also a.a.s. find long cycles in random subgraphs of graphs with large minimum degree.

Theorem 1.3. For every fixed positive real ε, there exists a constant c = c(ε) such that the following

tholds for p ≥ c
k . For a finite graph G of minimum degree at least k, Gp a.a.s. contains a cycle of

length at least (1− ε)k.

Similarly to above, Theorem 1.3 can be considered as a generalization of Bollobás, Fenner, and

Frieze’s result. Also note that this theorem implies a weak form of Theorem 1.1. The proof of this

theorem is much more involved compared to the two previous theorems.

The main technique we use in proving our theorems is a technique recently developed in [2, 16],

based on the depth first search algorithm. In Section 2, we discuss this technique in detail and also

provide some probabilistic tools that we will need later. Using these tools, in Section 3 we prove

Theorems 1.1 and 1.2. Then in Section 4 we prove Theorem 1.3.

Notation. A graph G = (V,E) is given by a pair of its vertex set V = V (G) and edge set E = E(G).

We use |G| or |V | to denote the order of the graph. For a subset X of vertices, we use e(X) to denote

the number of edges spanned by X, and for two sets X,Y , we use e(X,Y ) to denote the number of

edges {x, y} such that x ∈ X, y ∈ Y (note that e(X,X) = 2e(X)). G[X] denotes the subgraph of

G induced by a subset of vertices X. We use N(X) to denote the collection of vertices which are

adjacent to some vertex of X. For two graphs G1 and G2 over the same vertex set V , we define their

intersection as G1 ∩ G2 = (V,E(G1) ∩ E(G2)), their union as G1 ∪ G2 = (V,E(G1) ∪ E(G2)), and

their difference as G1 \G2 = (V,E(G1) \ E(G2)). Moreover, we let G \X be the induced subgraph

G[V \X].

When there are several graphs under consideration, to avoid ambiguity, we use subscripts such

as NG(X) to indicate the graph that we are currently interested in. We also use subscripts with

asymptotic notations to indicate dependency. For example, Oε will be used to indicate that the

hidden constant depends on ε. To simplify the presentation, we often omit floor and ceiling signs

whenever these are not crucial and make no attempts to optimize absolute constants involved. We

also assume that the parameter k (which will denote the minimum degree of the graph under consid-

eration) tends to infinity and therefore is sufficiently large whenever necessary. All logarithms will

be in base e ≈ 2.718.

2 Preliminaries

2.1 Depth first search algorithm

Our argument will utilize repeatedly the notion of the depth first search algorithm. This is a well

known graph exploration algorithm, and we briefly describe it in this section.

The DFS (standing for Depth First Search) algorithm is a graph search algorithm that visits all

vertices of a graph G = (V,E) as follows. It maintains three sets of vertices, where S is the set
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of vertices whose exploration is complete, T is the set of unvisited vertices, and U = V \ (S ∪ T ).

The vertices of U are kept in a stack (the last in, first out data structure). These three sets will be

updated as the algorithm proceeds. We assume that some order σ on the vertices of G is fixed, and

the algorithm prioritizes vertices according to σ. The algorithm starts with S = U = ∅ and T = V ,

and runs until U ∪ T = ∅. At each round of the algorithm, if the set U is non-empty, the algorithm

queries T for neighbors of the last vertex v that has been added to U , scanning T according to σ. If

v has a neighbor u in T , the algorithm deletes u from T and inserts it into U . If v does not have a

neighbor in T , then v is popped out of U and is moved to S. If U is empty, the algorithm chooses

the first vertex of T according to σ, deletes it from T and pushes it into U .

Observe that at the time we reach U∪T = ∅, we obtain a rooted spanning forest of our graph (the

root of each tree is the first vertex added to it). At this stage, in order to complete the exploration

of the graph, we make the algorithm to query all remaining pairs of vertices in S = V , not queried

before.

The following properties of the DFS algorithm will be relevant to us:

• if T 6= ∅, then every positively answered query increases the size of S ∪ U by one (however,

note that having h positive queries will only guarantee that |S ∪U | ≥ h, not |S ∪U | = h, since

|S ∪ U | can also increase at a step where the stack U is empty);

• the set U always spans a path (indeed, when a vertex u is added to U , it happens so because

u is a neighbor of the last vertex v in U ; thus, u augments the path spanned by U , of which v

is the last vertex);

• at any stage, G has no edges between the current set S and the current set T ;

• for every edge {v, w} of the graph, there exists a tree component in the forest produced by the

DFS algorithm, in which v is a successor of w, or vice versa.

In this paper, we utilize the DFS algorithm on random graphs, and will expose an edge only at the

moment at which the existence of it is queried by the algorithm. More precisely, given a graph G

and a real p ∈ [0, 1], fix an order σ to be an arbitrary permutation, and assume that there is an

underlying sequence X = (Xi)
e(G)
i=1 of i.i.d. Bernoulli random variables with parameter p, which we

call as the query sequence. The DFS algorithm gets an answer to its i-th query, asking whether an

edge of G exists in Gp or not, according to the value of Xi; thus the query is answered positively if

Xi = 1, and is answered negatively otherwise. Note that the obtained graph is distributed according

to Gp. Recently, the first author and the third author [16] successfully used this idea to give a simple

proof that p = 1
n is a sharp threshold for the appearance of a giant component in a random graph.

2.2 Probabilistic tools

We will repeatedly use the technique known as sprinkling. Suppose that for some probability p,

we wish to establish the fact Gp ∈ P. It is often more convenient to establish this fact indirectly

by choosing p1 and p2 so that Gp and Gp1 ∪ Gp2 have the same distribution (Gp1 and Gp2 are

independent). We then prove that Gp1 ∈ P1 and Gp2 ∈ P2 for some properties P1 and P2 which

together will imply the fact that Gp1 ∪Gp2 ∈ P. Of course, a similar argument can be applied when

we split the graph into several independent copies of random subgraphs formed with probabilities

p1, p2, · · · , pk. Suppose that we have reals 0 ≤ p, p1, · · · , pk ≤ 1 and p1, · · · , pk = o(1) satisfying

p =
∑k

i=1 pi. Then the probability of a fixed pair of vertices forming an edge in Gp1 ∪ · · · ∪ Gpk is
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1− (1−p1) · · · (1−pk) = (1−o(1))p. Therefore, in this case Gp1 ∪· · ·∪Gpk has the same distribution

as G(1−o(1))p, and thus for convenience, we consider Gp1 ∪ · · · ∪ Gpk instead of the graph Gp, even

though the distribution is not exactly the same. Since we are only interested in monotone properties

P, if we have G(1−o(1))p ∈ P a.a.s., then we also have Gp ∈ P a.a.s. Moreover, when we are given the

values of p1, p2, . . . beforehand, it is useful to expose the graphs Gpi one at a time. By saying that

we sprinkle the next round of edges, we suppose that we consider the outcome of the graph Gpi for

the first index i for which Gpi has not been exposed.

The following two concentration results are the main probabilistic tools of this paper (see, e.g.,

[20]). The first theorem is Chernoff’s inequality.

Theorem 2.1. Let λ ≤ np be a positive real. If X is a binomial random variable with parameters n

and p, then

P
(
|X − np| ≥ λ

)
≤ 2e−λ

2/(3np).

We will also use the following concentration result proved by Hoeffding [20, Theorem 2.3].

Theorem 2.2. Let X1, · · · , Xn be independent random variables, with 0 ≤ Xk ≤ 1 for each k. Let

Sn =
∑n

k=1Xk and µ = E[Sn]. Then for every positive ε,

P(Sn ≥ (1 + ε)µ) ≤ e−
ε2µ

2(1+ε/3) .

3 Long Paths

In this section we prove Theorems 1.1 and 1.2. Our first theorem is a slightly stronger version of

Theorem 1.1.

Theorem 3.1. Let p = c
k for some c ≤ k, and let G be a graph of minimum degree at least k.

(i) Gp a.a.s. contains a path of length (1− 2c−1/2)k.

(ii) For a fixed vertex v, the probability that there exists a path of length (1− 2c−1/2)k in Gp which

starts at vertex v, is at least 1− 3

ec
1/2/12−1

, and thus tends to 1 if c goes to infinity.

(iii) If G is a bipartite graph, then Gp a.a.s. contains a path of length (2− 6c−1/2)k.

Proof. If c < 4, then the conclusions are vacuously true. Thus we may assume c ≥ 4, and then for

ε := c−1/2, we have ε ≤ 1
2 .

We will apply the DFS algorithm to the random graph Gp, as described in Section 2. Given a

vertex v, let σ be an arbitrary ordering of the vertices which has v as its first vertex. Also assume

that we have an underlying query sequence X.

(i) By Chernoff’s inequality, after examining the query sequence for k
p = k2

c rounds, we a.a.s.

receive at least (1 − ε)k positive answers, and this implies that |S ∪ U | ≥ (1 − ε)k. Condition on

this event, and consider the time at which we reach |S ∪ U | = (1 − ε)k (since S = V in the end

and |S| changes by at most one at each step, there necessarily exists such a moment). Note that we

asked less than k2

c queries until this stage. Suppose that at this time our set U is of size at most

(1− 2ε)k. Then we have |S| > εk. Moreover, since the given graph has minimum degree at least k,

each vertex in S has at least k− |S ∪U | ≥ εk neighbors in T in the graph G. All the edges between
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S and T must have been queried by the algorithm and given a negative answer. Therefore, in order

to be in a situation as above, we must have at least |S| · εk > ε2k2 negative answers in our query

sequence. However, since we asked at most k2

c = ε2k2 queries in total, this cannot happen. Thus we

conclude that |U | ≥ (1 − 2ε)k = (1 − 2c−1/2)k, which implies that there exists a path of length at

least (1− 2c−1/2)k, since the vertices in U form a path.

(ii) Let B be the event that there are less than (1−ε)k positive answers among the first k
p rounds

of the query sequence. By Chernoff’s inequality, we have P(B) ≤ 2e−ε
2k/3 = 2e−k/(3c). As we have

seen in the proof of (i), if B does not hold, then there exists a path of length at least (1− 2ε)k. In

order to compute the probability that there is a path of length (1−2ε)k starting at v, we will bound

the probability of the event that U 6= ∅ during all the steps involved in reaching |S ∪ U | = (1− ε)k,

since if this is the case, then the path of length (1 − 2ε)k that we found above necessarily starts

at v (recall that v is the first vertex in σ). Let Ai be the event that U = ∅ at the time we reach

|S ∪ U | = i, thus we necessarily have |S| = i if this event occurs. Since i ≤ (1− ε)k, each vertex in

S has at least εk neighbors in T in G at that moment. Therefore, when Ai occurred, we received

at most i positive answers and at least i · εk negative answers to our queries. Thus we can bound

the probability that Ai occurs from above by the probability of the event that there are at most i

positive answers among the first i · εk queries. Hence by Chernoff’s inequality with λ = iεc/2 ≥ i,

we have P(Ai) ≤ 2e−(iεc)2/(12iεc) = 2e−ic
1/2/12.

By the union bound, we get

P
(
B ∪

(1−ε)k⋃
i=1

Ai

)
≤ P(B) +

(1−ε)k∑
i=1

P(Ai) ≤ 2e−k/(3c) +

(1−ε)k∑
i=1

2(e−c
1/2/12)i

≤ 2

ec
1/2/12 − 1

+ o(1) ≤ 3

ec
1/2/12 − 1

.

(iii) By Chernoff’s inequality, after examining the query sequence for 2k
p = 2k2

c rounds, we a.a.s.

have |S ∪U | ≥ (2−5ε)k. Condition on this event, and consider the time at which we reach |S| = εk.

If |U | > (2 − 6ε)k at that point, then the vertices in U form a path of length at least (2 − 6ε)k.

Thus assume that |U | ≤ (2− 6ε)k. Since |S ∪ U | ≤ (2− 5ε)k, we examined at most 2k2

c first bits of

the sequence X. Moreover, since the given graph is bipartite, has minimum degree at least k, and

U is a path, each vertex in S has at least k − |S| − 1
2 |U | > 2εk neighbors in T in G. Therefore, we

must have at least |S| · 2εk > 2ε2k2 negative answers in our query sequence so far. However, since

we asked at most 2k2

c = 2ε2k2 queries, this cannot happen. Therefore, Gp a.a.s. contains a path of

length (2− 6c−1/2)k.

The second and the third parts of our previous theorem turn out to be useful in proving Theorem

1.2.

Given a graph G, consider a path P = (v0, v1, · · · , v`) of length ` in G. Suppose we wish to find

a path longer than P in G. This could immediately be done if there exists an edge {v`, x} for some

x /∈ V (P ). Pósa noticed that an edge of the form {v`, vi} can also be useful, since if such an edge

is present in the graph, then we have a path P ′ = (v0, · · · , vi, v`, v`−1, · · · , vi+1) of length ` in our

graph. Therefore, now we also can find a path of length greater than ` if there exists an edge of the

form {vi+1, x} for some x /∈ V (P ). Pósa’s rotation-extension technique is employed by repeatedly

‘rotating’ the path until we can ’extend’ it.
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We first state a special case of Theorem 1.2, which can be handled by using Pósa’s rotation-

extension technique. Since the proof is quite standard, we defer it to later.

Theorem 3.2. There exists a positive real ε0 such that following holds for every fixed positive real

ε ≤ ε0. Let G be a graph on n vertices of minimum degree at least (1 − ε)k, and assume that

n ≤ (1 + ε)k. For p ≥ (1+4ε) log k
k , a random subgraph Gp is Hamiltonian a.a.s.

Let G be a graph of minimum degree at least k. We now prove a slightly weaker version of

Theorem 1.2 which states that for every positive real δ and p ≥ (1+δ) log k
k , Gp a.a.s. contains a path

of length k. The stronger version as stated in Theorem 1.2 can be proved by a more careful analysis

of the same proof, which we omit.

Proof of Theorem 1.2. We may assume that ε is given so that ε ≤ min{ ε048 ,
1

67600} where ε0 is given

in Theorem 3.2, since the conclusion for larger values of ε follows immediately by monotonicity. Set

p1 = p2 = p3 = ε log k
k , p4 = (1+52ε) log k

k , and p = (1+55ε) log k
k . We will show that Gp1 ∪Gp2 ∪Gp3 ∪Gp4

a.a.s. contains a path of length k. This will in turn imply that Gp a.a.s. contains a path of length k

as discussed in Section 2.

Given a graph G of minimum degree at least k, by Theorem 1.1, we know that Gp1 a.a.s. contains

a path P of length ` = (1− ε)k. Let X ⊂ V (G) \ V (P ) be the set of vertices outside P which have

at least (1− 10ε)|P | neighbors in V (P ). We consider two cases depending on the size of X.

Case 1. |X| ≥ 2εk.

Redefine X as an arbitrary subset of itself of size exactly 2ε|P | ≤ 2εk. Partition the path P

into 1
2ε intervals P1, · · · , P1/2ε, each of length 2ε|P |. By the averaging argument, one can see that

there exists an interval Pi for which e(X,Pi) ≥ (1 − 10ε)|X||Pi|. Consider the bipartite graph Γ

induced by the two parts X and Pi, and note that the number of non-adjacent pairs is at most

10ε|X||Pi| (also note that |X| = |Pi|). Repeatedly remove vertices from Γ which have degree at

most (1− 8ε1/2)|X|. As long as the total number of removed vertices is at most 4ε1/2|X|, each such

deletion accounts for at least 4ε1/2|X| non-adjacent pairs of Γ. Thus if we continued the removal for

at least 4ε1/2|X| steps, then by counting the number of non-adjacent pairs in Γ in two ways, we have

4ε1/2|X| · 4ε1/2|X| ≤ 10ε|X||Pi|, which is a contradiction. Hence, the deletion process stops at some

step, and we obtain a subgraph of Γ of minimum degree at least (1− 8ε1/2)|X|.
Let Pi,0 (and Pi,1) be the leftmost (and rightmost) 9ε1/2|Pi| vertices of the interval Pi. Even after

removing the vertices Pi,0, Pi,1 from Γ1, we are left with a graph Γ2 of minimum degree at least

(1− 8ε1/2)|X| − 18ε1/2|Pi| = (1− 26ε1/2)|X| ≥ 9

10
|X|.

By Theorem 3.1 (iii), since Γ2 is a bipartite graph, in (Γ2)p2 ⊂ Gp2 , we can find a path of length

at least 2( 9
10 − o(1))|X| ≥ 5

3 |X|. By removing at most two vertices, we may assume that the two

endpoints x and y of this path are both in X. Since Γ1 has minimum degree at least (1− 8ε1/2)|Pi|,
both of these endpoints have at least ε1/2|Pi| ≥ ε3/2k neighbors in the sets Pi,0 and Pi,1. By Chernoff’s

inequality, in the graph (Γ1)p3 ⊂ Gp3 , we a.a.s. can find edges of the form {x, x0} and {y, y1} for

x0 ∈ Pi,0 and y1 ∈ Pi,1. Thus in the graph Gp2 ∪ Gp3 , we found a path of length at least 5
3 |X|

which starts at x0, ends at y1, and uses only vertices from X ∪ (P \ (Pi,0 ∪Pi,1)) as internal vertices.

Together with the path P , this gives a path of length at least

|P | − |Pi|+
5

3
|X| ≥ |P |+ 2

3
|X| = (1 +

1

3
ε)k,
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in Gp1 ∪Gp2 ∪Gp3 .

Case 2. |X| < 2εk.

Let P = (v0, v1, · · · , v`). Let A0 = X ∪ V (P ) and B0 = V \ A0. Note that |A0| < (1 + ε)k, and

G[B0] has minimum degree at least 10ε|P | − |X| ≥ 7εk.

If v` has at least εk
2 neighbors in B0 in G, then by Chernoff’s inequality, in Gp2 , we a.a.s. can

find an edge {v`, w} for some w ∈ B0. Afterwards, by Theorem 3.1 (ii), we a.a.s. can find a path

of length at least 5εk in Gp3 [B0] starting at w. Together with P , these will form a path of length

`+ 1 + 5εk ≥ (1 + 4ε)k. Thus we may assume that v` has at least (1− ε
2)k neighbors in A0.

Let Y ⊂ A0 be the set of vertices which have at most (1−10ε)|P | neighbors in A0 in G. Note that

the vertices in Y have at least k − (1− 10ε)|P | ≥ 10εk neighbors in B0. Moreover, by the definition

of the set X, all vertices of Y belong to V (P ). Suppose that |Y | ≥ 2εk. Then since |A0| ≤ (1 + ε)k,

there are at least (
1− ε

2

)
k − (|A0| − |Y |) ≥

ε

2
k

edges of the form {v`, vi−1} where vi ∈ Y , and a.a.s. in Gp2 we can find one such edge {v`, vi−1}.
Afterwards, since vi has at least 10εk neighbors in B0 in G, we a.a.s. can find an edge {vi, w} in Gp2
for some w ∈ B0. By Theorem 3.1 (ii), there a.a.s. exists a path P ′ of length at least 5εk starting

at w in Gp3 . The paths P and P ′ together with the edges {v`, vi−1} and {vi, w} will give a path of

length at least (1 + 4ε)k.

If |Y | < 2εk, then let A1 = A0 \ Y and let B1 = V \ A1. Note that |A1| ≥ (1− 3ε)k, and G[A1]

has minimum degree at least (1 − 10ε)|P | − 2εk ≥ (1 − 13ε)k. If k + 1 ≤ |A1| < (1 + ε)k, then we

use Theorem 3.2 to find a.a.s. a path of length k inside A1 in Gp4 . Finally, if |A1| ≤ k, then since

G has minimum degree at least k, we have e(A1, B1) ≥ |A1|(k + 1− |A1|) ≥ k. Thus in Gp2 , we can

find a.a.s. an edge {v, w} such that v ∈ A1 and w ∈ B1. If w ∈ B0, then Theorem 3.2 a.a.s. gives a

path of length at least |A1|−1 ≥ (1−3ε)k−1 ≥ (1−4ε)k in G[A1]p4 starting at v, and Theorem 3.1

a.a.s. gives a path of length at least 6εk in G[B0]p3 starting at w. These two paths together with the

edge {v, w} will give a path of length at least (1 + 2ε)k. Finally, if w ∈ B1 \B0, then w contains at

least 10εk − |Y | ≥ 8εk neighbors in the set B0. Therefore in Gp2 , we a.a.s. can find an edge {w,w′}
such that w′ ∈ B0. Afterwards, we can proceed as in the previous case to finish the proof.

We conclude the section with the proof of Theorem 3.2.

Proof of Theorem 3.2. Let ε0 ≤ 1
20 be a small enough constant, and let s = k

(log k)3/4
. Let p =

(1+3ε) log k
k and p1 = · · · = ps = (log k)5/4

k2
. We will prove that Gp∪Gp1∪· · ·∪Gps is a.a.s. Hamiltonian.

Since

p1 + · · ·+ ps = s · (log k)5/4

k2
=

(log k)1/2

k
,

this will imply that G(1+4ε) log k/k a.a.s. contains a Hamilton cycle.

We first claim that Gp a.a.s. satisfies the following properties.

1. for every subset A of vertices of size |A| ≤ n
(log k)3/2

, we have |NGp(A)| ≥ ε2|A| · log k,

2. for every subset A of vertices of size |A| ≥ n
(log k)3/4

, we have |NGp(A)| ≥ (1− 4ε)k, and

3. Gp is connected.

We prove these claims through proving that Gp a.a.s. has the following properties:
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(a) minimum degree is at least ε log k,

(b) for all pairs of sets A and B of sizes |A| ≤ n
(log k)3/2

and |B| ≤ ε2|A| · log k, have eGp(A,B) <
ε
2 |A| · log k, and

(c) for all pairs of sets A and B of sizes |A| ≥ n
(log k)3/4

and |B| ≥ 3εk, have eGp(A,B) > 0.

For a fixed vertex v, the probability v has degree less than ε log k in the graph Gp is

ε log k∑
i=0

(
degG(v)

i

)
pi(1− p)degG(v)−i ≤

ε log k∑
i=0

(
(1− ε)k

i

)
pi(1− p)(1−ε)k−i

≤
ε log k∑
i=0

(e(1− ε)k
i

· p

1− p

)i
· (1− p)(1−ε)k

≤
ε log k∑
i=0

(e(1 + 3ε) log k

i

)i
· e−(1+ε) log k

≤ (ε log k + 1) ·
(e(1 + 3ε)

ε

)ε log k
e−(1+ε) log k,

which is o(k−1) given that ε is small enough. By taking the union bound over all n ≤ (1 + ε)k

vertices, we can deduce (a). For (b), let A be a set of size t ≤ n
(log k)3/2

and let B be a set of size

ε2t log k. If eGp(A,B) ≥ ε
2 t log k and A and B are not disjoint, then let A′ = A \B, B′ = B \A, and

add the vertices in A ∩B, independently and uniformly at random to A′ or B′. In this way, we can

find disjoint sets A′ ⊂ A and B′ ⊂ N(A) such that eGp(A
′, B′) ≥ 1

2eGp(A,B) ≥ ε
4 t log k. Therefore

it suffices to show that for every pair of disjoint sets A and B satisfying the bound on the sizes given

in (b), we have eGp(A,B) < ε
4 t log k. The probability that eGp(A,B) ≥ ε

4 t log k is at most(
ε2t2 log k

εt log k/4

)
· pεt log k/4 ≤

(
4eεtp

)εt log k/4
.

By taking the union bound over all possible sets, we see that the probability of having a pair of sets

violating (b) is at most

n/(log k)3/2∑
t=1

(
n

ε2t log k

)2

·
(

4eεtp
)εt log k/4

≤
n/(log k)3/2∑

t=1

(( en

ε2t log k

)8ε
· 4eεtp

)εt log k/4
.

By considering all the variables other than t as constant, the logarithm of the summand on the right

hand side can be expressed as at log t+ bt for some reals a > 0 and b (given that 8ε < 1). Since the

second derivative of this function is positive, the maximum of the summand occurs either at t = 1

or t = n/(log k)3/2. From this, one can deduce that the sum is o(1). For (c), first consider a fixed

pair of sets A and B of sizes |A| ≥ n
(log k)3/4

and |B| ≥ 3εk. Since the number of vertices of the graph

is n ≤ (1 + ε)k and minimum degree is at least (1 − ε)k, we have eG(A,B) ≥ 1
2 |A| · εk. Therefore,

E[eGp(A,B)] ≥ ε
2n log k, and by Chernoff’s inequality, the probability that eGp(A,B) = 0 is at most

e−Ω(εn log k). Since the number of pairs of sets (A,B) is at most 22n, we can take the union bound

over all choices of A and B to see that (c) hold.

Condition on the event that (a), (b), and (c) holds. Then for a set A of size at most |A| ≤ n
(log k)3/2

,

note that by (a) we have eGp(A,NGp(A)) ≥ 1
2 |A|ε log k. Then by (b), we have |NGp(A)| > ε2|A| log k.

9



Therefore we have Property 1. For Property 2, let A be a set of size at least n
(log k)3/4

. If |NGp(A)| <
(1−4ε)k, then there are no edges between A and B = V \NGp(A), where |B| ≥ n− (1−4ε)k ≥ 3εk.

This contradicts (c) and cannot happen. Thus we have Property 2 as well. Property 3 follows from

Properties 1 and 2.

Condition on the event that Gp satisfies Properties 1, 2, and 3 given above. We claim that Gp
contains a path of length at least n− k

(log k)3/4
, and for all i ≤ k

(log k)3/4
, conditioned on the event that

a longest path in Gp ∪Gp1 ∪ · · · ∪Gpi−1 is of length `i, Gp ∪Gp1 ∪ · · · ∪Gpi contains a cycle of length

`i + 1 with probability at least 1− o(k−1). Since Gp is connected, this will imply that as long as the

graph does not contain a Hamilton path, the length of a longest path increases by at least one in

every round of sprinkling. Since we start with a cycle of length at least n− k
(log k)3/4

, this will prove

that the final graph is a.a.s. Hamiltonian.

Let P = (v0, · · · , v`i) be a longest path in the graph Gi = Gp ∪Gp1 ∪ · · · ∪Gpi−1 for some i ≥ 1.

For a set X = {xa1 , · · · , xak}, we let X− = {xa1−1, · · · , xak−1} and X+ = {xa1+1, · · · , xak+1} (if

the index becomes either 0 or `i + 1, then we remove the corresponding vertex from the set). Let

X0 = {v0}. We will iteratively construct sets Xt of size |Xt| ≥ ( ε
2 log k

4 )t, as long as |Xt| ≤ n
(logn)3/2

,

such that Xt ⊃ Xt−1, and for every vertex v ∈ Xt, there exists a path of length `i over the vertex

set V (P ) which starts at v and ends in v`i . Given a set Xt−1, if NGi(Xt−1) 6⊂ V (P ), then we can

find a path of length at least `i + 1 in Gi, which contradicts the assumption on maximality of P .

Therefore, NGi(Xt−1) ⊂ V (P ), and each vertex in NGi(Xt−1) \ (Xt−1 ∪X−t−1 ∪X
+
t−1) gives rise to an

‘endpoint’ from which there exists a path of length `i, and at most two such vertices can give rise to

the same endpoint (see the discussion before the statement of Theorem 3.2). Let Xt be the union of

Xt−1 with the set of endpoints obtained as above. We have,

|Xt| ≥ |Xt−1|+
1

2
|NGi(Xt−1) \ (Xt−1 ∪X−t−1 ∪X

+
t−1)|

≥ 1

2
|NGi(Xt−1)| − 1

2
|Xt−1| ≥

1

2
|Xt−1| · (ε2 log k − 1) ≥

(ε2 log k

4

)t
(where we used Property 1 in the second to last inequality). Repeat the argument until the first

time we reach a set of size |Xt| > n
(log k)3/2

, and redefine Xt as a subset of size exactly n
(log k)3/2

which contains Xt−1. By repeating the argument above, we can find a set Xt+1 of size at least
ε2 log k

4 · n
(log k)3/2

> n
(log k)3/4

. By repeating the argument once more (now using Property 2 instead of

Property 1), we can find a set Xt+2 of size at least 1
2(1− 5ε)k.

For each vertex v ∈ Xt+2, there exists a path of length `i which starts at v and uses only vertices

from V (P ). Thus if there exists an edge between Xt+2 and V \ V (P ) in Gi, then we can find a path

of length at least `i + 1 and contradict maximality of P . If |V \ V (P )| ≥ n
(log k)3/4

, then Property

2 implies the existence of such edge (since 1
2(1 − 5ε)k + (1 − 4ε)k > n). This shows that we have

`i ≥ n− n
(log k)3/4

for all i ≥ 1. In particular, Gp contains a path of length at least n− n
(log k)3/4

. For

each vertex v ∈ Xr+2, by applying the argument of the previous paragraph to the other endpoint of

the path starting at v, we can find a set Yv of size at least 1
2(1 − 5ε)k such that for every w ∈ Yv,

there exists a path of length `i which starts at v and ends at w. Since n ≤ (1+ε)k and the minimum

degree of G is at least (1−ε)k, there are at least 1
2 ·
(

1
2(1−5ε)k−2εk

)2
≥ 1

16k
2 pairs such that if some

pair appears in Gpi , then Gpi contains a cycle of length `i + 1. Since pi = (log k)5/4

k2
, by Chernoff’s

inequality, the probability that such edge appears in Gpi is at least 1 − e−Ω((log k)5/4) = 1 − o(k−1).
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This proves our claim.

4 Cycles of length (1− o(1))k

In this section we prove Theorem 1.3. For simplicity, we will prove that for every fixed positive real

ε and p = ω
k for ω = ω(k) that tends to infinity with k, there exists a.a.s. a cycle of length at least

(1 − ε)k in Gp, even though Theorem 1.3 is stated in a stronger form which says the following: for

every fixed positive real ε, there exists a constant c = c(ε) such that for p = c
k , Gp a.a.s. contains a

cycle of length at least (1− ε)k. The original form follows from a more careful analysis.

4.1 High connectivity and long cycles

We start with a simple lemma based on the DFS algorithm which allows us to claim the a.a.s.

existence of a cycle of length linear in the average degree of the graph.

Lemma 4.1. Let α be a fixed positive real. Let G be a graph of average degree αk, and let p = ω
k

for some function ω = ω(k)� k that tends to infinity as k does. Then Gp a.a.s. contains a cycle of

length at least (1
2 −

5√
ω

)αk. Moreover, if G is a bipartite graph, then Gp a.a.s. contains a cycle of

length at least (1− 10√
ω

)αk.

Proof. Let n be the number of vertices of G and set p1 = p2 = ω
2k � 1. We will show that Gp1 ∪Gp2

a.a.s. contains a cycle of length at least (1
2 −

5√
ω

)αk.

Consider the DFS algorithm applied to the graph Gp1 starting from an arbitrary vertex. By

Chernoff’s inequality, after examining the query sequence for 2n
p1

steps, we a.a.s. receive at least n

positive answers. Condition on this event. At the time at which T becomes an empty set (therefore

when we complete exploring the component structure), we know that since |S ∪ U | = n, the length

of the query sequence is at most 2n
p1

. The rooted spanning forest we found induces a partial order on

the vertices of the graph, where for two vertices x, y, we have x < y if and only if x is a predecessor

of y in one of the rooted trees in the spanning forest.

In the DFS algorithm, every edge {x, y} of G for which x and y are incomparable in the partial

order, must have been queried and answered negatively. Therefore, there can only be at most
2n
p1

such edges. Since the average degree of the graph is αk, this means that there are at least
αnk

2 −
2n
p1
≥ (1

2 −
4
αω )n ·αk edges {x, y} of G for which x < y or y < x. Hence, there exists a vertex v

incident to at least (1
2 −

4
αω )αk edges {w, v} of G for which w < v. By definition, the other endpoint

of all these edges lie on the path from v to the root of the tree that v belongs to. By Chernoff’s

inequality, there a.a.s. exists at least one such edge that appears in Gp2 among the farthest reaching
αk√
ω

edges. This edge gives a cycle of length at least (1
2 −

5√
ω

)αk.

Moreover, if G is a bipartite graph, then this edge gives a cycle of length (1− 10√
ω

)αk, since the

vertex v can only be adjacent to every other vertex in the path from v to the root of the tree that

contains v.

Let t be a positive integer. A graph G is t-vertex-connected (or t-connected in short) if for every

set S of at most t− 1 vertices, the graph G \S is connected. Here we state some facts about highly-

connected graphs without proof. The fourth part is a result of Mader [18], and the fifth part is a

11



result of Menger [19]. We refer readers to Diestel’s graph theory book [7] for more information on

highly-connected graphs.

Lemma 4.2. Let t be a positive integer, and let G, G′ be t-connected graphs.

(i) G remains to be connected even after removing a combination of t− 1 edges and vertices.

(ii) If v /∈ V (G) has at least t neighbors in G, then G ∪ {v} is also t-connected.

(iii) If |V (G) ∩ V (G′)| ≥ t, then G ∪G′ is also t-connected.

(iv) Every graph of average degree at least 4t contains a t-connected subgraph.

(v) For every pair of subsets A and B of V (G), there are t internally vertex-disjoint paths in G

that connect A and B.

The main strategy we use in proving Theorem 1.3 is to find in the random subgraph a highly

connected subgraph that contains many vertex disjoint cycles. Lemma 4.1 will be used to find vertex

disjoint cycles. Afterwards the connectivity condition will allow us to ‘patch’ the cycles into a long

cycle of desired length. This is similar in spirit to a theorem of Locke [17] which asserts that a

3-connected graph with a path of length ` contains a cycle of length at least 2
5`.

Lemma 4.3. Let α be a fixed positive real, t be a fixed positive integer, and let p = ω
k for some

function ω = ω(k) � k that tends to infinity as k does. Let G1 and G2 be graphs defined over the

same set of n vertices. Suppose that at least (1− 1
t )n vertices of G1 have degree at least αk, and that

G2 is t-connected. Then the graph (G1)p ∪G2 a.a.s. contains a cycle of length at least (1− 10
t )αk.

Proof. Let p1 = p2 = · · · = pt = ω
tk . Suppose that we have found a cycle of length ` ≤ (1 − 10

t )αk

after i − 1 rounds of sprinkling. We claim that we can then find a.a.s. a cycle of length at least

(1− 1
t )`+ 2αk

t , by sprinkling one more round with probability pi. If this is the case, then since(
(1− 1

t
)`+

2αk

t

)
− ` =

2αk

t
− `

t
≥
(2

t
− 1

t

)
αk =

1

t
αk,

after sprinkling at most t rounds, we will a.a.s. find a cycle of length at least (1− 10
t )αk.

To prove the claim, suppose that we are given a cycle C of length ` ≤ (1 − 10
t )αk. Let V ′ =

V \V (C). Since G1 has (1− 1
t )n vertices of degree at least αk, the graph G[V ′] has at least (1− 1

t )n−`
vertices which have degree at least αk − ` ≥ 10

t αk. Therefore the average degree of G[V ′] is at least(
(1− 1

t )n− `
)
· 10
t αk

n− `
=
(

1− 1

t
− `

t(n− `)

)
· 10

t
αk =

(
1− 1

t
− 1

t(n/`− 1)

)
· 10

t
αk,

which is minimized when ` is maximized. Since ` ≤ (1 − 10
t )αk ≤ (1 − 10

t )n, the average degree of

G[V ′] is at least (
1− 1

t
−

(1− 10
t )n

t · 10
t n

)
· 10

t
αk =

9

t
αk.

Thus by Lemma 4.1, after sprinkling one more round, we a.a.s. can find a cycle C ′ in G[V ′] of

length at least (1
2−o(1))9αk

t ≥
4αk
t . Since G2 is a t-connected graph, there exist t vertex disjoint paths

that connect C to C ′ (see Lemma 4.2 (v)). Among these paths, consider the two whose intersection

12



point with C are closest to each other (along the distance induced by C). Using these two paths to

merge C and C ′, we a.a.s. can find a cycle of length at least(
1− 1

t

)
|V (C)|+ 1

2
|V (C ′)| ≥

(
1− 1

t

)
`+

2αk

t
,

as claimed.

Our next lemma is similar to the lemma above, but will be applied under slightly different

circumstances.

Lemma 4.4. Let G be a t-vertex-connected graph that contains s vertex-disjoint cycles of lengths at

least ` each. Then G contains a cycle of length at least

(
1− s

t

)s−1
`+

s−2∑
i=0

(
1− s

t

)i
· `

2
.

Thus if t is large enough depending on s, then G contains a cycle of length at least s
2`.

Proof. We will prove the statement by induction on s. After the h-th step, we will find a cycle of

length at least `h = (1 − s
t )
h−1` +

∑h−2
i=0

(
1− s

t

)i · `2 , and s − h other cycles of length at least `

each which are all vertex-disjoint. Note that the statement is vacuously true for h = 1 by the given

condition.

Given a cycle Ch of length at least `h and s − h other vertex disjoint cycles of length at least `

each, let X = V (Ch) and Y be the union of the set of vertices of the cycles of length at least `. By

the t-connectivity of our graph, we see that there are t vertex-disjoint paths that connect X to Y .

By the pigeonhole principle, at least t
s−h of these paths connect the cycle of length at least `h to one

fixed cycle of length at least `. Among these paths, consider the two whose intersection points with

Ch are closest to each other. Using these two paths, we can find a cycle of length at least(
1− s− h

t

)
`h +

`

2
≥
(

1− s

t

)
`h +

`

2
= `h+1.

Moreover, note that we still have at least s − h − 1 vertex-disjoint cycles which are also disjoint to

the new cycle we found. Therefore in the end, after the s-th step, we will find our desired cycle. For

the second part, note that

`s =
(

1− s

t

)s−1
`+

s−2∑
i=0

(
1− s

t

)i
· `

2
=
(

1− s

t

)s−1 `

2
+

s−1∑
i=0

(
1− s

t

)i
· `

2

=
(

1− s

t

)s−1 `

2
+
t

s

(
1−

(
1− s

t

)s)
· `

2
.

If t is large enough depending on s, we have (1− s
t )
s−1 = 1− ot(1) and 1− (1− s

t )
s = s2

t −Ot(
s4

t2
).

Therefore in this case,

`s ≥
(

1− ot(1)
) `

2
+
t

s

(
s2

t
−Ot

(s4

t2

)) `

2
≥ s

2
`.
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4.2 Finding long cycles

In this subsection we prove Theorem 1.3.

We first state a structural lemma, which a.a.s. finds almost vertex-disjoint highly connected

subgraphs in the random subgraph of our given graph. Afterwards, we will use the lemmas developed

in the previous subsection in order to find a long cycle in various situations.

Lemma 4.5. Let ε ≤ 1
2 be a fixed positive real. Let G be a graph on n vertices with minimum degree

at least k, and let p = ω
k for some function ω = ω(k) � k that tends to infinity as k does. Suppose

that G does not contain a bipartite subgraph of average degree at least 5
4k. Then Gp a.a.s. admits a

partition V = X ∪ Y of its vertex set, and contains a collection C of subgraphs of Gp satisfying:

(a) for every C ∈ C, C is (logω)1/5-connected;

(b) the sets X ∩ V (C) for C ∈ C form a partition of X, and |Y | = o(n);

(c) for every C ∈ C, one of the following holds:

(i) the graph G[V (C)] contains at least (1− ε)|V (C)| vertices of degree at least (1− ε)k, or

(ii) |Y ∩ V (C)| = o(|V (C)|), the graph G[X ∩ V (C)] contains at least (1 − ε)|V (C)| vertices

of degree at least k
8 , and there exists a bipartite graph ΓC ⊆ G with parts X ∩ V (C) and

Y \ V (C) which contains at least |V (C)|ε2k
4 edges and has maximum degree at most 8

εk.

We defer the proof of the structural lemma to later and first prove Theorem 1.3 using the

structural lemma. Let G be a given graph of minimum degree at least k on n vertices, and let ε be

a given positive real. For p = ω
k , it suffices to prove the statement for ω � k since the conclusion for

larger ω follows from monotonicity. Set p1 = p2 = p3 = ω
3k . Suppose that ε ≤ 1

50 is given (for larger

values of ε, we may assume that ε = 1
50).

Case 1. There exists a bipartite subgraph of G of average degree at least 5
4k.

We can apply Lemma 4.1 to the bipartite subgraph to a.a.s. find a cycle in Gp1 of length at least

(1− o(1))5
4k ≥ k + 1.

If G does not contain such a bipartite subgraph, then we apply Lemma 4.5 to a.a.s. find a

collection C of subgraphs which induce highly-connected subgraphs of Gp1 .

Case 2. There exists C ∈ C such that Property (c)-(i) holds.

We can apply Lemma 4.3 with t = 1
ε , α = 1 − ε, G1 = G[V (C)] and G2 = C to a.a.s. obtain a

cycle of length at least (1− 10ε) · (1− ε)k ≥ (1− 11ε)k in Gp2 [V (C)] ∪ C ⊂ Gp1 ∪Gp2 .

Case 3. Property (c)-(ii) holds for all C ∈ C.
For each C ∈ C, there exists a bipartite graph ΓC with parts X ∩ V (C) and Y \ V (C) which has

at least |V (C)|ε2k
4 edges and maximum degree at most 8k

ε . Expose the graph Gp2 , and for each C ∈ C,
let MC be a maximum matching in (ΓC)p2 . Let C′ = {C ∈ C : |MC | ≥ ε3|V (C)|

128 }.

Lemma 4.6. We a.a.s. have
∑

C∈C′ |V (C)| ≥ n
2 .

Proof. For a graph C ∈ C, we first estimate the probability that C /∈ C′. Let XC = X ∩ V (C),

YC = Y \ V (C), and mC be the number of edges of ΓC (thus |V (C)|ε2k
4 ≤ mC ≤ |V (C)| · 8k

ε ). Since

the maximum degree is at most 8k
ε , we know that for every collection of t ≤ ε3|V (C)|

128 vertex-disjoint
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edges, there are at least |V (C)|ε2k
4 − 2t · 8k

ε ≥
ε2|V (C)|k

8 edges in ΓC not intersecting any of the edges

in the collection. Therefore the probability that |MC | = t is at most(
mC

t

)
· pt2 · (1− p2)ε

2|V (C)|k/8 ≤
(emCp2

t

)t
(1− p2)ε

2|V (C)|k/8

≤
(
e

t
· 8|V (C)|k

ε
· ω

3k

)t
e−ε

2|V (C)|kp2/8

=

(
8ω|V (C)|

3tε

)t
e−ε

2|V (C)|ω/24.

By parameterizing t as t = α|V (C)| (α ≤ ε3

128), the right hand side becomes(
8ω

3αε

)α|V (C)|
e−ε

2|V (C)|ω/24 ≤ eα log(8ω/(3αε))|V (C)|e−ε
2|V (C)|ω/24 ≤ e−ε2|V (C)|ω/48.

By taking the union bound over all values of t from 1 to ε3|V (C)|
128 , we see that the probability of

|MC | < ε3|V (C)|
128 , or equivalently C /∈ C, is at most

ε3|V (C)|
128

· e−ε2|V (C)|ω/48 = o(1).

By Markov’s inequality, it follows that
∑

C/∈C′ |X ∩ V (C)| < n
4 a.a.s. If this event holds, then since

|X ∩ V (C)| = (1− o(1))|V (C)| for all C ∈ C, we have

∑
C∈C′
|V (C)| = (1 + o(1))

∑
C∈C′
|X ∩ V (C)| = (1 + o(1))

(∑
C∈C
|X ∩ V (C)| −

∑
C/∈C′
|X ∩ V (C)|

)
= (1 + o(1))

(
(1− o(1))n− n

4

)
≥ n

2
.

Condition on the conclusion of Lemma 4.6. Consider an auxiliary bipartite graph Γ over a vertex

set consisting of two parts C and Y (where Y is the set given by Lemma 4.5). A pair {C, y} forms

an edge if y is an endpoint of some edge in MC . Since |X ∩ V (C)| ≥ k
8 and |X| = (1 − o(1))n, the

number of vertices of Γ is |C| + |Y | ≤ n
k/8 + o(n) = o(n) and the number of edges is

∑
C∈C |MC | ≥∑

C∈C′
ε3

128 |V (C)| ≥ ε3

256n. Let t ≥ 100 be a large enough constant. By Lemma 4.2 (iv), there exists

a t-connected subgraph Γ′ of Γ over the vertex set C1, · · · , Cs, y1, · · · , ys′ of Γ. We claim that the

induced subgraph H of Gp1 ∪Gp2 on the vertex set V (C1)∪ · · ·∪V (Cs)∪{y1, · · · , ys′} is t-connected

(note that s, s′ ≥ t). Suppose that this is the case. Then since the sets V (C1) ∩X, · · · , V (Cs) ∩X
are vertex disjoint and each graph G[V (Ci) ∩X] contains at least (1 − ε)|V (Ci)| vertices of degree

at least k
8 , by Lemma 4.3 for each fixed i, Gp3 [V (Ci) ∩X] a.a.s. contains a cycle of length at least

(1− 10ε)k8 ≥
k
10 . Thus in H ∪Gp3 we a.a.s. have at least (1− o(1))s vertex disjoint cycles of length

at least k
10 in the graph. Since H is t-connected, for large enough t, by Lemma 4.4 we can use 30

of the vertex disjoint cycles to a.a.s. find in H ∪ Gp3 ⊆ Gp1 ∪ Gp2 ∪ Gp3 a cycle of length at least
1
2 · 30 · k10 > k.
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Therefore to conclude the proof of Theorem 1.3, it suffices to prove that H is t-connected. Let S

be a subset of at most t− 1 vertices of V (H). It suffices to prove that H \ S is a connected graph.

We do this by exploiting the t-connectivity of Γ′. Let v and w be two arbitrary vertices of H \S. For

a vertex x ∈ S, if x ∈ Y , then remove x from Γ′. Otherwise, if x ∈ X and there is a matching edge

belonging to some MC incident to x, then remove the corresponding edge from Γ′(note that there is

a one-to-one correspondence between such edges and edges of Γ′). Now first suppose that v, w ∈ X.

Since we removed at most t − 1 vertices/edges from the graph Γ′, without loss of generality, there

still exists a path C1z1C2 · · · zh−1Ch in Γ′ for v ∈ V (C1) and w ∈ V (Ch). For each zi, there exist

vertices z′i ∈ V (Ci) \ S and z′′i ∈ V (Ci+1) \ S such that {zi, z′i} ∈ MCi and {zi, z′′i } ∈ MCi+1 . Since

each Ci is t-connected, we can find a path from z′′i to z′i+1 in Ci+1 \ S for all i = 1, 2 · · · , h− 2. This

gives a path from z′1 to z′′h−1. Since there is a path from v to z′1 in C1 \ S, and from z′′h−1 to w in

Ch \ S, by combining all the paths, we can find a path from v to w. The other cases where one or

both of v and w belong to Y can be handled similarly.

4.3 Proof of the structural lemma

In this subsection, we prove the structural lemma, Lemma 4.5. We split the proof of it into a sequence

of two lemmas. The following lemma forms the first part of the proof.

Lemma 4.7. Let G be a graph on n vertices with minimum degree at least k, and let p = ω
k for some

function ω = ω(k)� k that tends to infinity as k does. Suppose that G does not contain a bipartite

subgraph of average degree at least 5
4k. Then Gp a.a.s. admits a partition V = X ∪ Y of its vertex

set, and contains a collection C of subgraphs satisfying the following:

(a) every graph C ∈ C is (logω)1/5-connected;

(b) the sets X ∩ V (C) for C ∈ C form a partition of X, and |Y | = o(n);

(c) for every C ∈ C, |Y ∩ V (C)| = o(|V (C)|) and the induced subgraph G[X ∩ V (C)] contains at

least (1− o(1))|V (C)| vertices of degree at least k/8;

(d) for every C ∈ C and every vertex v ∈ X ∩ V (C), there are at most o(k) edges of G incident to

v whose other endpoint lies in X \ V (C).

Proof. Let t = (logω)1/5 and V = V (G). A straightforward application of Chernoff’s inequality and

of the union bound shows that Gp a.a.s. satisfies the following property: “for every pair of sets A

and B that have eG(A,B) ≥ nk
ω1/2 , we have eGp(A,B) ≥ 1

2nω
1/2”. Expose Gp and condition on this

event.

Let C be a graph defined over a subset of vertices of V . For an edge e of G, we say that e is

covered by C if both of the endpoints of e belong to V (C) (note that this does not necessarily imply

that e is an edge of C). Let C0 be a collection of t-connected edge-disjoint subgraphs of Gp of order

at least t4 each, which maximizes the total number of edges covered and whose sum of orders is

minimized. Note that for every pair of graphs C,C ′ ∈ C0, we have |V (C) ∩ V (C ′)| < t as otherwise

by Lemma 4.2 (iii) we can replace the two graphs C and C ′ in C0 by a single graph C ∪ C ′ in order

to find a collection of t-connected edge-disjoint subgraphs that contradicts the minimality of sum of

orders of the collection C0. We will repeatedly apply this idea throughout this proof; the graphs in

C0 cannot be combined to give another t-connected subgraph.

Step 1 : Initial partition
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Let X0 be the set of vertices which are contained in at most t4 graphs in C0, and let Y0 = V \X0.

Claim 4.8. |Y0| ≤ 4n
t3

.

Proof. Consider an auxiliary bipartite graph Γ0 whose vertex set consists of two parts, where one

part is V and the other part is C0. A pair (v, C) forms an edge in Γ0 if v ∈ V (C). Suppose that Γ0

contains a t-connected subgraph Γ′0, and let C1, C2, · · · , Cs be the graphs in V (Γ′0) ∩ C0. We claim

that the union Cσ = C1 ∪ C2 ∪ · · · ∪ Cs forms a t-connected graph; thus deducing a contradiction

to the minimality assumption of C0. Indeed, suppose that we removed a set S of t − 1 vertices

from Cσ, and let v, w be two vertices which have not been removed. Since Γ′0 is t-connected, after

removing S from the V part of the graph Γ′0, we still have a connected graph, and thus without

loss of generality we can find a path of the form (C1, y1, C2, y2, · · · , yh−1, Ch) in the graph Γ′0 where

v ∈ C1 and w ∈ Ch. Let y0 = v and yh = w. For each i, we have yi, yi+1 ∈ V (Ci), and since Ci is

t-connected, there exists a path from yi to yi+1 in the graph Ci \ S. By combining these paths, we

can find a path from y0 = v to yh = w in Cσ \ S.

As mentioned above, this implies that we cannot have a t-connected subgraph of Γ0. Since each

vertex in Y0 is contained in more than t4 graphs in C0, and each graph in C0 is of order at least t4,

the number of edges of Γ0 is at least 1
2

(
t4|Y0|+ t4|C0|

)
, by Lemma 4.2 (iv) we have

1

2

(
t4|Y0|+ t4|C0|

)
≤ 2t(n+ |C0|),

from which it follows that |Y0| ≤ 4n
t3

.

Let X ′0 be the subset of vertices v ∈ X0 for which there are at least k
ω1/4 edges in G[X0] incident

to v that are not covered by any of the graphs C ∈ C0.

Claim 4.9. |X ′0| < n
t3

.

Proof. Suppose that |X ′0| ≥ n
t3

. In this case, we claim that we can find a t4-connected subgraph

of Gp which is edge-disjoint from all the graphs in C0. Since a t4-connected graph is necessarily a

t-connected graph with at least t4 vertices, this will contradict the maximality of the family C0.

Color each graph in C0 by either red or blue, uniformly and independently at random. Let A be

the collection of vertices v ∈ X ′0 for which all the graphs in C0 that contain v are of color red, and

similarly define B for blue graphs. Let {v, w} be an edge in G[X0] which is not covered by any graph

in C0. Then since there are no graphs in C0 containing both v and w, the probability that {v, w}
contributes towards eG(A,B) is exactly 2−dv−dw+1, where dv and dw are the numbers of graphs in

C0 that contain v and w, respectively. By the definition of X ′0, there are at least 1
2 |X

′
0| · k

ω1/4 edges

which are not covered by any graph in C0. Since the vertices in X0 are covered at most t4 times, we

have

E[eG(A,B)] ≥ 1

2
|X ′0| ·

k

ω1/4
· 2−2t4+1 ≥ n

t3
· k

ω1/422t4
≥ kn

ω1/2
,

where we used the fact that t = (logω)1/5. Therefore, there exists a choice of coloring of graphs in

C0 such that eG(A,B) ≥ kn
ω1/2 , and this implies that eGp(A,B) ≥ 1

2ω
1/2n (recall that we conditioned

on this fact). By Lemma 4.2 (iv), there exists a t4-connected subgraph of the bipartite subgraph of

Gp induced by A∪B. Furthermore, none of the edges of this t4-connected subgraph could have been

covered by a graph in C0. Indeed, such a graph should be colored by both red and blue, which is

impossible. Therefore, we found a t4-connected subgraph of Gp as claimed.
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Let C1 = {C ∈ C0 : |C ∩ X0| ≥ k
t5
}. Our next claim establishes a useful property regarding

vertices not in X ′0.

Claim 4.10. For every vertex v ∈ X0 \X ′0, there are at most o(k) edges of G[X0] incident to v not

covered by any graph in C1.

Proof. Note that there are two possible circumstances in which an edge in G[X0] is not covered by

some graph in C1. First is if it is not covered by any graph in C0, and second is if it is covered by

some graph in C0 \ C1. For a fixed vertex x ∈ X0 \X ′0, by the definition of the set X ′0, there are at

most k
ω1/4 = o(k) edges incident to x of the first type. Also, since x is contained in at most t4 graphs

in C0 and each graph C ∈ C0 \ C1 satisfies |X0 ∩ V (C)| ≤ k
t5

, there are at most t4 · k
t5

= o(k) edges

incident to x of the second type. Thus we establish our claim.

Let X ′′0 be the set of vertices v ∈ X0 which are covered by at least two graphs in C1, or are not

covered by any graph in C1. We defer the proof of the following claim, which is somewhat similar to

that of Claim 4.8, to later.

Claim 4.11. |X ′′0 \X ′0| < 21n
t3

.

Step 2 : Intermediate partition

Let X1 = X0 \ (X ′0 ∪X ′′0 ) and Y1 = V \X1 = Y0 ∪ (X ′0 ∪X ′′0 ). We first verify that the partition

V = X1∪Y1 and the collection of graphs C1 satisfy the following list of properties from the statement

of Lemma 4.7:

(a) every graph C ∈ C1 is (logω)1/5-connected;

(b) the sets X1 ∩ V (C) for C ∈ C1 form a partition of X1, and |Y1| < 26n
t3

= o(n);

(d) for every C ∈ C1 and every vertex v ∈ X1 ∩ V (C), there are at most o(k) edges of G incident

to v whose other endpoint lies in X1 \ V (C).

Property (a) follows from the definition of C0. Property (b) follows from the definition of X ′′0 and

Claims 4.8, 4.9 and 4.11 which imply that |Y1| < 26n
t3

. Property (d) follows from Claim 4.10 and

the fact that X1 ⊂ X0 \X ′0. In order to find a partition of the vertex set and a collection of graphs

satisfying Property (c) as well, we will identify the graphs C ∈ C1 that do not satisfy Property (c),

and will move the vertices of X1 ∩ V (C) to Y1. Note that this adjustment does not affect Properties

(a) and (d). Our goal is to maintain Property (b) as well by keeping the total number of vertices

that we move small enough.

LetX ′1 be the subset of vertices ofX1 which have at least 3k
4 neighbors in the set Y1. If |X ′1| ≥ 130n

t3
,

then the bipartite subgraph induced by X ′1∪Y1 has at most 6
5 |X

′
1| vertices and at least 3k

4 |X
′
1| edges.

Thus the average degree of this graph is at least 2 · 3k
4 ·

5
6 = 5k

4 , which contradicts our assumption

saying that G does not contain such a subgraph. Therefore we have |X ′1| < 130n
t3

.

Claim 4.12. For a vertex x ∈ X1 \X ′1 contained in Cx ∈ C1, x has degree at least k
8 in the subgraph

of G induced by the vertex set X1 ∩ V (Cx).

Proof. For a vertex x ∈ X1 \ X ′1, let Cx ∈ C1 be the graph containing x. Since x /∈ X ′1, there are

at least k
4 edges of G incident to x in G[X1]. By Property (d), at most o(k) edges among them are

incident to a vertex not in Cx. Therefore, x has degree at least k
4 − o(k) ≥ k

8 in the subgraph of G

induced by X1 ∩ V (Cx).
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Let C′1 = {C ∈ C1 : |V (C) ∩X ′1| ≥
|V (C)|
t } and C′′1 = {C ∈ C1 : |V (C) ∩ Y1| ≥ |V (C)|

t }.
Claim 4.13.

∑
C∈C′1

|V (C)| = o(n).

Proof. Since |X ′1| ≤ 130n
t3

, we have
∑

C∈C′1
|V (C)|
t ≤

∑
C∈C′1

|V (C) ∩X ′1| ≤ |X ′1| ≤ 130n
t3

, from which it

follows that
∑

C∈C′1
|V (C)| ≤ 130n

t2
.

Claim 4.14.
∑

C∈C′′1
|V (C)| = o(n).

The proof of Claim 4.14 will be given later.

Step 3 : Final partition and the collection of t-connected subgraphs

Let C2 = C1 \ (C′1 ∪ C′′1 ). Let X2 be the subset of vertices of X1 which are covered by some graph

in C2, and let Y2 = V \X2. We claim that the partition V = X2 ∪ Y2 and the collection C2 satisfy

the claims of the lemma. We recall the properties that we wish to establish.

(a) every graph C ∈ C2 is (logω)1/5-connected;

(b) the sets X2 ∩ V (C) for C ∈ C2 form a partition of X2, and |Y2| = o(n);

(c) for every C ∈ C2, |Y2 ∩ V (C)| = o(|V (C)|) and the induced subgraph G[X2 ∩ V (C)] contains

at least (1− o(1))|V (C)| vertices of degree at least k/8;

(d) for every vertex v ∈ X2 ∩ V (C), there are at most o(k) edges of G incident to v whose other

endpoint lies in X2 \ V (C).

As mentioned above, Properties (a) and (d) follow from the same properties for X1, Y1, and C1.

Since |X2| ≥ |X1| −
∑

C∈C′1∪C′′1
|V (C)| = (1 − o(1))n, and |Y2| = o(n), Property (b) follows as well.

Note that X1 ⊇ X2, and that the vertices in X1 \X2 are covered exactly once by some graph in C1.

Therefore, for all C ∈ C2, we have V (C) ∩X1 = V (C) ∩X2 and V (C) ∩ Y1 = V (C) ∩ Y2. Thus for

C ∈ C2, since C /∈ C′′1 , we have |V (C)∩ Y2| = |V (C)∩ Y1| < |V (C)|
t , and the first part of Property (c)

holds. Also, by Claim 4.12, for C ∈ C2 the vertices in V (C) ∩ (X2 \X ′1) = V (C) ∩ (X1 \X ′1) have

degree at least k
8 in the subgraph of G induced by V (C) ∩X1 = V (C) ∩X2. By the fact C /∈ C′1, we

have

|V (C) ∩ (X1 \X ′1)| = (1− o(1))|V (C) ∩X1| = (1− o(1))|V (C)|,

and this establishes the second part of Property (c).

It remains to prove Claims 4.11 and 4.14.

Proof of Claim 4.11. Recall that C1 = {C ∈ C0 : |C ∩X0| ≥ k
t5
} and X ′′0 is the set of vertices v ∈ X0

which are covered by at least two graphs in C1, or are not covered by any graph in C1. Let X ′′0,≥2 be

the vertices which are covered by at least two graphs in C1 and X ′′′0 be the vertices not covered by

any graph in C1.

We first estimate the size of the set X ′′0,≥2. Since the graphs in C1 intersect X0 in at least k
t5

vertices and each vertex in X0 is covered at most t4 times, we have k
t5
|C1| ≤ t4|X0|, from which it

follows that |C1| ≤ t9n
k . Consider the following auxiliary graph Γ1 over the vertex set C1, where two

vertices C,C ′ ∈ C1 are connected by an edge if they share a vertex from X ′′0,≥2 (we place only one

edge for each vertex even it is contained in more than two graphs in C1). The number of vertices of
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Γ1 is at most t9n
k . Since every two graphs in C1 intersect in less than t vertices, each edge of Γ1 can

account for less than t vertices of X ′′0,≥2, and thus the number of edges of Γ1 is at least
|X′′0,≥2|

t .

Suppose that Γ1 contains a t-connected subgraph over the vertices C1, C2, · · · , Cs of Γ1. We

claim that Cσ = C1 ∪ · · · ∪ Cs is a t-connected subgraph and this will contradict the minimality of

the family C0. It suffices to prove that Cσ is connected even after removing a set S of at most t− 1

vertices. Let v and w be two vertices in V (Cσ) \ S. Each vertex in S corresponds to at most one

edge in the auxiliary graph Γ1, and thus even after removing the edges corresponding to vertices in

S, without loss of generality there exists a path (C1, C2, · · · , Ch) of Γ1 for which v ∈ C1 and w ∈ Ch.

By the definition of the graph Γ1, for each i, there exists a vertex vi ∈ Ci ∩ Ci+1 such that vi /∈ S.

Let v0 = v and vh = w. Then for all 0 ≤ i < h, we can find a path from vi to vi+1 in the graph

Ci \ S (recall that Ci is t-connected). This implies that there exists a path from v to w in Cσ \ S.

Thus Γ1 cannot contain a t-connected subgraph. By Lemma 4.2 (iv), we then have

|X ′′0,≥2|
t

≤ 2t · t
9n

k
,

which implies |X ′′0,≥2| ≤ 2t11n
k < n

t3
(note that t = (logω)1/5 ≤ (log k)1/5).

Now consider the set X ′′′0 . By Claim 4.10 and the definition of X ′′′0 , each vertex in Z = X ′′′0 \X ′0
has at least k − o(k) neighbors in the set Y0. Therefore, if |Z| ≥ 5|Y0|, then we obtain a bipartite

subgraph of G with at least |Z| ·(k−o(k)) edges and at most 6
5 |Z| vertices. Thus this bipartite graph

has average degree at least 2 · (k− o(k))5
6 ≥

5
4k. However, this contradicts our assumption, and thus

we have |Z| < 5|Y0| ≤ 20n
t3

. Therefore, |X ′′0 \X ′0| ≤ |X ′′0,≥2|+ |X ′′′0 \X ′0| ≤ 21n
t3

.

Proof of Claim 4.14. Recall that C′′1 = {C ∈ C1 : |V (C) ∩ Y1| ≥ |V (C)|
t }. Consider an auxiliary

bipartite graph Γ2 whose vertex set consists of two parts, where one part is the set Y1 and the other

part is C′′1 . A pair (v, C) forms an edge in Γ2 if v ∈ V (C). As we have seen in the proof of Claim

4.8, this graph cannot contain a t-connected subgraph (in fact, Γ2 is a subgraph of Γ0 defined in the

proof of Claim 4.8). As established above and in the proof of Claim 4.11, we have |Y1| ≤ 26n
t3

and

|C′′1 | ≤ |C1| ≤ t9n
k , and thus the number of vertices of Γ2 is |Y1|+ |C′′1 | ≤

(
26
t3

+ t9

k

)
n. The number of

edges is at least
∑

C∈C′′1
|V (C) ∩ Y1| ≥

∑
C∈C′′1

|V (C)|
t . Therefore by Lemma 4.2 (iv), we have

∑
C∈C′′1

|V (C)|
t

≤ 2t ·
(26

t3
+
t9

k

)
n,

which implies that
∑

C∈C′′1
|V (C)| < 53n

t (recall that t = (logw)1/5 ≤ (log k)1/5).

One more round of sprinkling will give us our desired structural lemma, Lemma 4.5, which says

the following. Let 0 < ε ≤ 1
2 be fixed, G be a graph on n vertices with minimum degree at least

k that does not contain a bipartite subgraph of average degree at least 5
4k and let p = ω

k for some

function ω = ω(k)� k that tends to infinity as k does. Then Gp a.a.s. admits a partition V = X∪Y
of its vertex set, and contains a collection C of subgraphs of Gp satisfying:

(a) for every C ∈ C, C is (logω)1/5-connected;

(b) the sets X ∩ V (C) for C ∈ C form a partition of X, and |Y | = o(n);
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(c) for every C ∈ C, one of the following holds:

(i) the graph G[V (C)] contains at least (1− ε)|V (C)| vertices of degree at least (1− ε)k, or

(ii) |Y ∩ V (C)| = o(|V (C)|), the graph G[X ∩ V (C)] contains at least (1 − ε)|V (C)| vertices

of degree at least k
8 , and there exists a bipartite graph ΓC ⊆ G with parts X ∩ V (C) and

Y \ V (C) which contains at least |V (C)|ε2k
4 edges and has maximum degree at most 8

εk.

Proof of Lemma 4.5. Set p1 = p2 = ω
2k and t = (logω)1/5. Apply Lemma 4.7 to Gp1 to find a

partition V = X ∪ Y and a collection C of subgraphs of Gp1 satisfying the following properties:

(a’) every graph C ∈ C is (logω)1/5-connected;

(b’) the sets X ∩ V (C) for C ∈ C form a partition of X, and |Y | = o(n);

(c’) for every C ∈ C, |Y ∩ V (C)| = o(|V (C)|) and the induced subgraph G[X ∩ V (C)] contains at

least (1− o(1))|V (C)| vertices of degree at least k/8;

(d’) for every C ∈ C and every vertex v ∈ X ∩ V (C), there are at most o(k) edges of G incident to

v whose other endpoint lies in X \ V (C).

(we denote the properties by (a’), (b’), (c’), and (d’) in order to distinguish it from the properties

(a), (b), and (c)).

For C ∈ C, let XC = X ∩ V (C), ZC = Y \ V (C), and consider a bipartite subgraph ΓC of G over

the vertex set XC ∪ZC obtained as following: take the bipartite subgraph of G induced by XC ∪ZC ,

and for each vertex of XC of degree at least k, only take at most k arbitrary edges incident to it.

Let Z ′C ⊂ ZC be the vertices which have degree greater than 8k
ε in this bipartite subgraph, and let

Z ′′C ⊂ ZC be the vertices which have degree at most 8k
ε .

Now expose the edges of Gp2 . If a vertex z ∈ Z ′C has at least t neighbors in Gp2 in the set XC ,

then we can add z to the graph C to obtain another t-connected subgraph (see Lemma 4.2 (ii)). In

such a situation, we say that z is absorbed to C, and let the enlarged graph Ĉ be the union of C

with the set of vertices which is absorbed by C. Note that even though the same holds for vertices in

Z ′′C , for technical reasons, we only absorb vertices from Z ′C to C. Further note that we allow a fixed

vertex being absorbed to several graphs, and that this does not affect the property that X ∩ V (C)

forms a partition of X, since each vertex being absorbed is a vertex in Y .

Let C′ be the collection of graphs C ∈ C for which the number of edges of ΓC incident to Z ′C
which are not covered by the enlarged graph Ĉ is at least ε2k

8 |VC |.
Claim 4.15. We a.a.s. have

∑
C∈C′ |X ∩ V (C)| = o(n).

Proof. Suppose that the vertices in Z ′C have degree d1, · · · , ds in ΓC . Since we only consider at most

k edges incident to each vertex of XC , we have
∑

i di ≤ k|V (C)| (also note that di ≤ |V (C)| for all i).

For a vertex z ∈ Z ′C , since z has degree dz ≥ 8k
ε in ΓC , by Chernoff’s inequality, the probability that

z cannot be absorbed is at most e−Ω(ω). Let N be the random variable which counts the number of

edges of ΓC incident to non-absorbed vertices from Z ′C after exposing Gp2 . We have,

E[N ] =
∑
i

di · e−Ω(ω) ≤
(∑

i

di

)
· e−Ω(ω) = o(|V (C)| · k).

Let 1i be the indicator random variable of the event that the i-th vertex of Z ′C is absorbed to C.

Note that the events 1i are independent since they depend on disjoint sets of edges, and that we have
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N =
∑s

i=1 di · 1i. Since 0 ≤ di
|V (C)| ≤ 1, by applying Hoeffding’s inequality to the random variables

di
|V (C)| ·1i, we see that the probability of N

|V (C)| ≥
ε2k
8 , which is equivalent to C ∈ C′, is at most e−Ω(k).

Then,

E
[ ∑
C∈C′
|X ∩ V (C)|

]
≤
∑
C∈C
|X ∩ V (C)| · e−Ω(k) = o(n).

Thus by Markov’s inequality, it follows that
∑

C∈C′ |X ∩ V (C)| = o(n) a.a.s.

Condition on the conclusion of Claim 4.15. Let C1 = {Ĉ : C ∈ C \ C′} (recall that Ĉ is the

enlarged graph obtained from C). Let X1 be the subset of vertices of X covered by some graph in

C1, and let Y1 = V \X1. We claim that the partition V = X1 ∪ Y1 and the collection of graphs C1

satisfy properties (a), (b), (c) of Lemma 4.5 (which we listed before this proof).

Property (a) immediately follows from how we constructed the enlarged graphs. Note that the

difference between the sets X and X1 consist of the vertices of X ∩ V (C) for C ∈ C′, and that∑
C∈C′ |X ∩ V (C)| = o(n). Since the difference between a graph C ∈ C and its enlarged graph Ĉ lie

in Y ⊂ Y1, Property (b) follows from Property (b’). We now focus on proving that (c) holds as well.

Take a graph C ∈ C\C′. If eΓC (XC , Z
′′
C) ≥ ε2k

4 |V (C)|, then (ii) holds and there is nothing to prove

(recall that the vertices in Z ′′C are not added to the enlarged graph). Suppose that eΓC (XC , Z
′′
C) <

ε2k
4 |V (C)|. Since C /∈ C′, there are less than ε2k

8 |V (C)| edges of ΓC incident to Z ′C that are not

covered by Ĉ. Therefore, the total number of edges in ΓC not covered by Ĉ is at most eΓC (XC , Z
′′
C)+

ε2k
8 |V (C)| ≤ 3ε2k

8 |V (C)|.
We can count the number of such edges in another way. Let X ′C be the subset of vertices of XC ,

whose degree in G[V (Ĉ)] is less than (1− ε)k. Since X1 ⊂ X, by Property (d’), a vertex in X ′C can

have at most o(k) neighbors in X1. Therefore, the number of edges of ΓC not covered by Ĉ is at

least |X ′C | ·
ε
2k. By combining this with the bound established above, we have

|X ′C | ·
ε

2
k ≤ 3ε2k

8
|V (C)|,

from which it follows that |X ′C | ≤
3ε
4 |V (C)|. Recall that by Property (c’), we have |X∩V (C)| = (1−

o(1))|V (C)| for all C ∈ C. Thus G[V (Ĉ)] contains at least |X ∩ V (C)| − 3ε
4 |V (C)| ≥

(
1− 7ε

8

)
|V (C)|

vertices of degree at least (1− ε)k. It then suffices to prove that |V (C)| ≥
(
1− ε

8

)
|V (Ĉ)|. Since we

only added the vertices of Z ′C to C in order to obtain Ĉ, we have

|V (Ĉ) \ V (C)| ≤ |Z ′C | ≤
e(ΓC)

(8/ε)k
≤ k|V (C)|

(8/ε)k
=
ε

8
|V (C)|,

and it implies |V (Ĉ)| ≤
(
1 + ε

8

)
|V (C)| ≤ 1

1−(ε/8) |V (C)|.

5 Concluding remarks

In this paper, we studied random subgraphs of graphs with large minimum degree. Our goal was to

extend classical results on random graphs to a more general setting, where we replace the host graph

by a graph with large minimum degree. We proved that the results asserting the a.a.s. existence of

long paths and cycles in G(n, p) can in fact be extended to this setting. The problems we addressed

in this paper are also closely related to our previous paper [15], where we studied random subgraphs
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of graphs on n vertices with minimum degree at least n
2 , and proved that for every graph G of

minimum degree at least n
2 and p� logn

n , the random graph Gp a.a.s. is Hamiltonian.

Similarly to Theorem 1.2, it is natural to expect that for every graph G of minimum degree at

least k and p ≥ (1+ε) log k
k , the graph Gp a.a.s. contains a cycle of length at least k + 1. While we

are unable to settle this question at present, it seems that the techniques we developed in this paper

can be useful in attacking this problem.

It is also known that a directed graph of minimum outdegree at least k contains a cycle of length

at least k + 1. However, it is no longer true that there exists a function p0 = p0(k) < 1 for which

the following holds: if p ≥ p0, then for every directed graph D of minimum outdegree at least k,

Dp a.a.s. contains a cycle of length k. Indeed, suppose that we are given a function p0 depending

only on k. Let N be a large enough integer depending on p0, and consider a blow-up of a directed

cycle of length N , where each vertex is replaced by an independent set of size k, and each edge is

replaced by a complete bipartite graph, whose orientation of edges comes from that of the underlying

edge in the directed cycle (call this directed graph D). A necessary condition for Dp0 to contain

a cycle is that each complete bipartite graph contains at least one edge. The probability of this

happening is exactly (1− (1− p0)k
2
)N . However, this can be made arbitrarily small by choosing N

to be large enough depending on p0. Note that if the above event does not hold, then not only does

Dp0 not contain a cycle of length k, but it also does not contain a cycle of any length. This gives

a partial explanation to why the proof of Theorem 1.3 is unexpectedly challenging technically, as

many “natural” approaches at one point reduce the problem to a problem of finding a cycle in some

directed graph after taking a random subgraph of it.
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