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Robust Hamiltonicity of Dirac graphs

Michael Krivelevich ∗ Choongbum Lee † Benny Sudakov ‡

Abstract

A graph is Hamiltonian if it contains a cycle which passes through every vertex of the graph

exactly once. A classical theorem of Dirac from 1952 asserts that every graph on n vertices with

minimum degree at least n/2 is Hamiltonian. We refer to such graphs as Dirac graphs. In this

paper we extend Dirac’s theorem in two directions and show that Dirac graphs are robustly Hamil-

tonian in a very strong sense. First, we consider a random subgraph of a Dirac graph obtained by

taking each edge independently with probability p, and prove that there exists a constant C such

that if p ≥ C logn/n, then a.a.s. the resulting random subgraph is still Hamiltonian. Second, we

prove that if a (1 : b) Maker-Breaker game is played on a Dirac graph, then Maker can construct

a Hamiltonian subgraph as long as the bias b is at most cn/ logn for some absolute constant

c > 0. Both of these results are tight up to a constant factor, and are proved under one general

framework.

1 Introduction

A Hamilton cycle of a graph is a cycle which passes through every vertex of the graph exactly once,

and a graph is Hamiltonian if it contains a Hamilton cycle. Hamiltonicity is one of the most central

notions in Graph Theory, and has been intensively studied by numerous researchers. The problem

of deciding Hamiltonicity of a graph is one of the NP-complete problems that Karp listed in his

seminal paper [19], and accordingly, one cannot hope for a simple classification of such graphs. Still,

there are many results deriving properties sufficient for Hamiltonicity. For example, a classical result

proved by Dirac in 1952 (see, e.g., [16, Theorem 10.1.1]), asserts that every graph on n vertices of

minimum degree at least n
2 is Hamiltonian. In this context, we say that a graph is a Dirac graph if

it has minimum degree at least n
2 . Dirac’s theorem is one of the most influential results in the study

of Hamiltonicity and by now there are many related known results (see, e.g., [12]).

Let G be a graph and P be a graph property. Many results in Graph Theory state that “under

certain conditions, G has property P”. Once such a result is established, it is natural to ask: “How
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strongly does G possess P?”. In other words, we want to determine the robustness of G with respect

to P. Recently, such questions were extensively studied by many researchers.

In order to answer the question about robustness, we would need some kind of a measure of this

phenomenon. There are several measures of robustness that were proposed so far. For example,

one can measure the robustness of Dirac graphs with respect to Hamiltonicity by computing the

number of Hamilton cycles that a Dirac graph must contain. Indeed, confirming a conjecture of

Sárközy, Selkow, and Szemerédi [30], Cuckler and Kahn [14] proved that every Dirac graph contains

at least n!/(2 + o(1))n Hamilton cycles. Another measure is the so called resilience, which has

been first formalized by Sudakov and Vu [31], and has been intensively studied afterwards, see, e.g.,

[2, 3, 8, 15, 24] and their references. Roughly speaking, for monotone increasing graph properties,

these measures compute the robustness in terms of the number of edges one must delete from G

locally or globally in order to destroy the property P. In this paper, we would like to revisit Dirac’s

theorem and study different settings which can be used to demonstrate its robustness. Our main

results show how to strengthen Dirac’s theorem in two ways.

1.1 Random subgraph

Let G(n, p) be the binomial model of random graphs, which denotes the probability space whose

points are graphs with vertex set [n] = {1, . . . , n} where each pair of vertices forms an edge ran-

domly and independently with probability p. We say that G(n, p) possesses a graph property P

asymptotically almost surely, or a.a.s. for brevity, if the probability that G(n, p) possesses P tends to

1 as n goes to infinity. The earlier results on Hamiltonicity of random graphs were proved by Pósa

[28], and Korshunov [22]. Improving on these results, Bollobás [9], and Komlós and Szemerédi [21]

independently proved that if p ≥ logn+log logn+ω(n)
n for some function ω(n) that goes to infinity as

n goes to infinity, then G(n, p) is a.a.s. Hamiltonian. The range of p cannot be improved, since if

p ≤ logn+log logn−ω(n)
n , then G(n, p) a.a.s. has a vertex of degree at most one.

An equivalent way of describing G(n, p) is as the probability space of graphs obtained by taking

every edge of the complete graph Kn independently with probability p. A variety of questions can be

asked when we consider a host graph G other than Kn, and consider the probability space of graphs

obtained by taking every edge of it independently with probability p (we denote this probability

space as Gp).

The following question can be placed in this context and can be also viewed as an attempt to

understand the robustness of Dirac’s theorem. Let G be a graph of minimum degree at least n
2 and

note that G is Hamiltonian by Dirac’s theorem. Since Hamiltonicity is a monotone graph property, we

know that there exists a threshold p0 (see [11]) such that if p ≫ p0, then Gp is a.a.s. Hamiltonian, and

if p ≪ p0, then Gp is a.a.s. not Hamiltonian. For random graphs, the threshold for Hamiltonicity

is p0 = logn
n (it is moreover a sharp threshold). What is the Hamiltonicity threshold for Gp, in

particular, does Gp stay Hamiltonian for p ≪ 1? Our main theorem provides an answer to this

question.

Theorem 1.1. There exists a positive constant C such that for p ≥ C logn
n and a graph G on n

vertices of minimum degree at least n
2 , the random subgraph Gp is a.a.s. Hamiltonian.
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This theorem establishes the correct order of magnitude of the threshold function since if p ≤

(1+o(1)) log n
n , then the graph a.a.s. has isolated vertices. Also, since there are graphs with minimum

degree n
2 − 1 which are not even connected, the minimum degree condition cannot be improved.

Moreover, our theorem can actually be viewed as an extension of Dirac’s theorem since the case

p = 1 is equivalent to Dirac’s theorem.

1.2 Hamiltonicity game

Let V be a set of elements and F ⊆ 2V be a family of subsets of V . A Maker-Breaker game involves

two players, named Maker and Breaker respectively, who alternately occupy the elements of V , the

board of the game. The game ends when there are no unoccupied elements of V . Maker wins the

game if in the end, the vertices occupied by Maker contain as a subset at least one of the sets in F ,

the family of winning sets of the game. Breaker wins otherwise.

Chvátal and Erdős [13] were the first to consider biased Maker-Breaker games on the edge set

of the complete graph. They realized that natural graph games are often “easily” won by Maker

when played fairly (that is when Maker and Breaker each claim one element at a time). Thus for

many graph games, it is natural to give Breaker some advantage. In a (1 : b) Maker-Breaker game

we follow the same rule as above, but Maker claims one element each round while Breaker claims

b elements each round. It is not too difficult to see that Maker-Breaker games are bias monotone.

More specifically, if for some fixed game, Maker can win the (1 : b) game, then Maker can win the

(1 : b′) game for every b′ < b. Thus it is natural to consider the critical bias of a game, which is

defined as the maximum b0 such that Maker wins the (1 : b0) game.

One of the first biased games that Chvátal and Erdős considered in their paper was the Hamil-

tonicity game played on the edge set of the complete graph. They proved that the (1 : 1) game is

Maker’s win, and that for any fixed positive ε and b(n) ≥ (1 + ε) n
log n , the (1 : b) game is Breaker’s

win for large enough n. They then conjectured that the critical bias of this game should go to infinity

as n goes to infinity. Bollobás and Papaioannou [10] verified their conjecture and proved that the

critical bias is at least c logn
log logn for some constant c > 0. Beck [5] improved on this result by proving

that the critical bias is at least ( log 227 − o(1)) n
log n , thereby establishing the correct order of magnitude

of the critical bias. Krivelevich and Szabó [25] further improved this result, and recently Krivelevich

[23] established the fact that the critical bias of this game is asymptotically n
logn . We refer the reader

to [7] for more information on Maker-Breaker games, and general positional games.

In this context, and similarly to that of the question considered in the previous subsection, we

would like to strengthen Dirac’s theorem from the Maker-Breaker game point of view. Let G be a

graph of minimum degree at least n
2 and consider the Hamiltonicity Maker-Breaker game played on

G (note that G is Hamiltonian by Dirac’s theorem). We can then ask the following questions: “will

Maker win the (1 : 1) game on any Dirac graph?”, and if so, then “what is the largest bias b such

that Maker wins the (1 : b) game?”. In this paper we establish the threshold b0 such that if b ≪ b0,

then Maker wins, and if b ≫ b0, then Breaker wins.

Theorem 1.2. There exists a constant c > 0 such that for b ≤ cn
logn and a graph G on n vertices of

minimum degree at least n
2 , Maker has a winning strategy for the (1 : b) Maker-Breaker Hamiltonicity

game on G.
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Our theorem implies that the critical bias of this game has order of magnitude n
logn (note that

the critical bias is at most (1+o(1)) n
log n by the result of Chvátal and Erdős mentioned above). Note

that in this theorem, once all the elements of the board are claimed, the edge density of Maker’s

graph is of order of magnitude logn
n and this is the same as in Theorem 1.1. This suggests that as in

many other Maker-Breaker games, the “probabilistic intuition”, a relation between the critical bias

and the threshold probability of random graphs, holds here as well (see, [4, 6]). In fact, this is not a

coincidence, and we will prove both theorems under one unified framework.

Notation. A graph G = (V,E) is given by a pair of its vertex set V = V (G) and edge set E = E(G).

We use |G| or |V | to denote the size of its vertex set. For a subset X of vertices, we use e(X) to

denote the number of edges within X, and for two sets X,Y , we use e(X,Y ) to denote the number

of edges {x, y} such that x ∈ X, y ∈ Y (note that e(X,X) = 2e(X)). G[X] denotes the subgraph of

G induced by a subset of vertices X. We use X to denote the complement V \X of X, and N(X)

to denote the collection of vertices which are adjacent to some vertex of X. For two graphs G1 and

G2 over the same vertex set V , we define their intersection as G1 ∩ G2 = (V,E(G1) ∩ E(G2)), their

union as G1 ∪G2 = (V,E(G1) ∪ E(G2)), and their difference as G1 \G2 = (V,E(G1) \ E(G2)).

When there are several graphs under consideration, to avoid ambiguity, we use subscripts such

as NG(X) to indicate the graph that we are currently interested in. We also use subscripts with

asymptotic notations to indicate dependency. For example, Ωε will be used to indicate that the

hidden constant depends on ε. Throughout the paper, whenever we refer, for example, to a function

with subscript as f3.1, we mean the function f defined in Lemma/Theorem 3.1. To simplify the

presentation, we often omit floor and ceiling signs whenever these are not crucial and make no

attempts to optimize absolute constants involved. We also assume that the order n of all graphs

tends to infinity and therefore is sufficiently large whenever necessary. All logarithms will be in base

e ≈ 2.718.

2 Dirac graphs

The following lemma used by Sárközy and Selkow [29], and by Cuckler and Kahn [14], classifies Dirac

graphs into three categories (a similar lemma has also been used by Komlós, Sarközy, and Szemerédi

[20]). This classification is an important tool in controlling Dirac graphs. A half set of a graph is a

subset of the vertex set which has size either ⌊n2 ⌋ or ⌈n2 ⌉.

Lemma 2.1. Let α ≤ 1
320 and γ ≤ 1

10 be fixed positive reals such that γ ≥ 32α. If n is large enough,

then for every graph G on n vertices with minimum degree at least n
2 , one of the following holds:

(i) e(A,B) ≥ αn2 for all half-sets A and B (not necessarily disjoint),

(ii) There exists a set A of size n
2 ≤ |A| ≤ (12 + 16α)n such that e(A,A) ≤ 6αn2, and the induced

subgraphs on both A and A have minimum degree at least n
5 , or

(iii) There exists a set A of size n
2 ≤ |A| ≤ (12 + 16α)n such that the bipartite graph induced by

the edges between A and A has at least (14 − 14α)n2 edges, and minimum degree at least γ
2n.

Moreover, either |A| = ⌈n2 ⌉, or the induced subgraph G[A] has maximum degree at most γn.
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Proof. Assume that property (i) does not hold, i.e., that e(A,B) < αn2 for some two half-sets A and

B. For simplicity, we assume that n is even and |A| = |B| = n
2 (for odd n, some small order terms

will be added to the computation). Note that in this case we have |A ∪B| = |A∩B|, it follows that

for all v ∈ A ∩B,

|N(v) ∩ (A ∪B)| ≥ |N(v)| − |A ∪B| ≥
n

2
− |A ∩B|.

Therefore,

αn2 > e(A,B) ≥
∑

v∈A∩B

|N(v) ∩ (A ∪B)| ≥ |A ∩B| ·
(n

2
− |A ∩B|

)

.

If 5αn ≤ |A∩B| ≤ (12−5α)n, then the right hand side of the above estimate is at least 5αn·(12−5α)n,

which by α ≤ 1
320 is larger than αn2. Thus the above inequality implies that either |A ∩ B| ≤ 5αn

or |A ∩B| ≥ (12 − 5α)n. We consider these two cases separately.

Case 1 : |A ∩B| ≤ 5αn.

In this case, we have |A\B| ≤ 5αn and thus e(A,A) ≤ e(A,B)+|A\B|·|A| ≤ αn2+ 5
2αn

2 ≤ 4αn2.

Let A0 = A and B0 = A. Let A1 be the set of vertices of A0 which have at most n
4 neighbors in

A0, and note that by the minimum degree condition of the graph G, every vertex in A1 has at least
n
4 neighbors in B0. Since e(A,A) ≤ 4αn2, we have |A1| ≤ 16αn. Similarly, we can define B1 so

that |B1| ≤ 16αn. Let A′ = (A0 \ A1) ∪ B1 and B′ = (B0 \ B1) ∪ A1. We obtain a new partition

V = A′ ∪B′ such that
(

1

2
− 16α

)

n ≤ |A′|, |B′| ≤

(

1

2
+ 16α

)

n

and the minimum degree inside each part is at least n
4 − 16αn ≥ n

5 . Moreover, we have

e(A′, B′) = e(A0, B0) − e(A1, B0 \B1) + e(A1, A0 \A1) − e(B1, A0 \A1) + e(B1, B0 \B1)

≤ e(A0, B0) − e(A1, B0) + e(A1, A0) − e(B1, A0) + e(B1, B0) + 2e(A1, B1),

which by e(A1, B0) ≥ e(A1, A0) and e(B1, A0) ≥ e(B1, B0) gives

e(A′, B′) ≤ e(A0, B0) + 2e(A1, B1) ≤ 4αn2 + 2|A1||B1| ≤ 4αn2 + 29α2n2 ≤ 6αn2.

Since |A′ ∪B′| = n, the larger set among A′ and B′ has size at least n
2 , and it satisfies property (ii).

Case 2 : |A ∩B| ≥ (12 − 5α)n.

In this case, we have |A\B| ≤ 5αn, and therefore e(A,A) ≤ e(A,B)+ |A\B| · |A| ≤ αn2+ 5
2αn

2 ≤

4αn2. By the minimum degree condition, we have e(A,A) ≥ |A| · n
2 − e(A,A) ≥ (14 − 4α)n2. Let

A0 = A and B0 = A. Let A1 be the set of vertices of A0 which have at most n
4 neighbors in B0. Note

that by the minimum degree condition of the graph G, every vertex in A1 has at least n
4 neighbors

in A0. Also, by the estimate
(

1

4
− 4α

)

n2 ≤ e(A0, B0) ≤
n

4
· |A1| +

n

2
·
(n

2
− |A1|

)

=
n2

4
−

n

4
· |A1|,

we have |A1| ≤ 16αn. Similarly define B1 so that |B1| ≤ 16αn. Let A′ = (A0 \ A1) ∪ B1 and

B′ = (B0 \B1) ∪A1. We have

e(A′, B′) = e(A0, B0) − e(A1, B0 \B1) + e(A1, A0 \A1) − e(B1, A0 \A1) + e(B1, B0 \B1)

≥ e(A0, B0) − e(A1, B0) + e(A1, A0) − e(B1, A0) + e(B1, B0) − 2e(A1, B1),
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which by e(A1, B0) ≤ e(A1, A0) and e(B1, A0) ≤ e(B1, B0) gives

e(A′, B′) ≥ e(A0, B0) − 2e(A1, B1) ≥

(

1

4
− 4α

)

n2 − 2|A1||B1|

≥

(

1

4
− 4α

)

n2 − 29α2n2 ≥

(

1

4
− 6α

)

n2,

and all vertices in A′ have at least n
4 − 16αn ≥ n

5 neighbors in B′ (and vice versa).

Since |A′ ∪ B′| = n, we may assume without loss of generality that |A′| ≥ ⌈n2 ⌉. Note that

|A′| ≤ |A0| + |B1| ≤
(

1
2 + 16α

)

n. If |A′| = ⌈n2 ⌉ or G[A′] has maximum degree at most γn, then we

have already found our set A′. Otherwise, move a vertex in A′ which has at least γn neighbors in

A′ to the other side B′, and update A′, B′ accordingly. Repeat this until we reach the point where

|A′| = ⌈n2 ⌉ or G[A′] has maximum degree at most γn. Since we moved at most 16αn vertices from

A′ to B′, all the vertices in B′ have at least γn− 16αn ≥ γ
2n neighbors in A′. On the other hand, all

the remaining vertices in A′ still have at least n
5 ≥ γ

2n neighbors in B′. Finally, e(A′, B′) decreases

by at most 16αn · n
2 = 8αn2 and is still at least (14 − 14α)n2. Thus we found our claimed set as in

property (iii).

3 Rotation and extension

We will prove our two main theorems under one general framework provided in this section. Our

main tool is Pósa’s rotation-extension technique which first appeared in [28] (see also [27, Ch. 10,

Problem 20]). We start by briefly discussing this powerful tool, which exploits the expansion property

of the graph.

Let G be a connected graph and let P = (v0, · · · , vℓ) be a path on some subset of vertices of G

(P is not necessarily a subgraph of G). If {v0, vℓ} is an edge of the graph, then we can use it to close

P into a cycle. Since G is connected, either the graph G∪P is Hamiltonian, or there exists a longer

path in this graph. In the second case, we say that we extended the path P .

Assume that we cannot directly extend P as above, and assume that G contains an edge of the

form {vℓ, vi} for some i. Then P ′ = (v0, · · · , vi, vℓ, vℓ−1, · · · , vi+1) forms another path of length ℓ in

G ∪ P (see Figure 3.1). We say that P ′ is obtained from P by a rotation with fixed endpoint v0,

pivot point vi, and broken edge (vi, vi+1). Note that after performing this rotation, we can now close

a cycle of length ℓ also using the edge {v0, vi+1} if it exists in G∪P . As we perform more and more

rotations, we will get more such candidate edges (call them closing edges). The rotation-extension

technique is employed by repeatedly rotating the path until one can find a closing edge in the graph,

thereby extending the path.

vi+1viv0 vℓ

Figure 3.1: Rotating a path.
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Let P ′′ be a path obtained from P by several rounds of rotations. An important observation that

we will use later is that for every interval I = (vj , · · · , vk) of vertices of P (1 ≤ j < k ≤ ℓ), if no

edges of I were broken during these rotations, then I appears in P ′′ either exactly as it does in P ,

or in the reversed order. We define the orientation, or direction, of a path P ′′ with respect to an

interval I to be positive in the former situation, and negative in the latter situation.

We will use rotations and extensions as described above to prove our main theorem. The main

technical twist is to split the given graph into two graphs, where the first graph will be used to

perform rotations, and the second graph to perform extensions. Similar ideas, such as sprinkling,

have been used in proving many results on Hamiltonicity of random graphs. The one closest to our

implementation appears in the recent paper of Ben-Shimon, Krivelevich, and Sudakov [8].

3.1 Rotation-Extension for general graphs

In this subsection, we develop a framework useful in tackling the first and the second cases of Lemma

2.1. We assume that all the graphs appearing in this subsection are defined over a fixed vertex set V

of size n (therefore if there are several graphs under consideration, then they share the same vertex

set). We first specify the roles of the graphs performing rotations and extensions.

Definition 3.1. Let ξ be a positive constant. We say that a graph G has property RE(ξ) if it is

connected, and for every path P with a fixed edge e, (i) there exists a path containing e longer than

P in the graph G ∪ P , or (ii) there exists a set of vertices SP of size |SP | ≥ ξn such that for every

vertex v ∈ SP , there exists a set Tv of size |Tv | ≥ ξn such that for every w ∈ Tv, there exists a path

containing e of the same length as P that starts at v, and ends at w.

Definition 3.2. Let ξ be a positive constant and let G1 be a graph with property RE(ξ). We say

that a graph G2 complements G1, if for every path P with a fixed edge e, (i) there exists a path

containing e longer than P in the graph G1 ∪ P , or (ii) there exist v ∈ SP and w ∈ Tv, such that

{v,w} is an edge of G1 ∪G2 ∪ P (the sets SP and Tv are as defined in Definition 3.1).

The next proposition asserts that two graphs as in the above two definitions together give Hamil-

tonicity. In fact, we will obtain a slightly stronger property which is called Hamilton connectivity.

A graph is said to be Hamilton connected if for every pair of vertices x and y, there exists a path of

length n− 1 that has x and y as its two endpoints. Since a Hamilton connected graph is necessarily

non-empty, by taking x and y as two endpoints of an edge in the graph, we can see that Hamilton

connectivity implies Hamiltonicity.

Proposition 3.3. Let ξ be a positive constant. If G1 ∈ RE(ξ) and G2 complements G1, then G1∪G2

is Hamilton connected.

Proof. Let v1 and v2 be two arbitrary vertices. If {v1, v2} is not an edge of G1 ∪G2, then let G′
2 be

the graph obtained by adding the edge e = {v1, v2} to the graph G2, otherwise let G′
2 = G2. Note

that G′
2 complements G1. Let P be a longest path in G1 ∪G′

2 which contains e (say it has length ℓ).

By Definition 3.2, there exist vertices v′ ∈ SP and w′ ∈ Tv′ such that {v′, w′} is an edge of G1 ∪G′
2

(where the sets SP and Tv are as in Definition 3.1). Thus we can find a cycle containing e, of length

ℓ.
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If this cycle is not a Hamilton cycle, then by the connectivity of G1, there exists a vertex x not

in the cycle, which is incident to some vertex of the cycle. There are two ways to construct a path

of length ℓ + 1 using this edge and the cycle, and one of them necessarily contains the edge e. Since

this contradicts the maximality of P , the cycle must have been a Hamilton cycle. By removing the

edge e, we get a Hamilton path connecting v1 and v2 in G1 ∪G2.

Thus our strategy for proving Hamiltonicity is to find a subgraph with property RE(ξ) and a one

that complements it. In the remainder of the subsection, we provide a list of deterministic properties,

which when satisfied, imply property RE(ξ). After establishing this lemma, later it will suffice to

verify that these deterministic properties hold for the graphs we are interested in.

Definition 3.4. Let ε and r be positive reals. A graph G is a half-expander with parameters ε and

r, if the following properties hold.

(i) For every set X of vertices of size |X| ≤ εn
r , |N(X)| ≥ r|X|,

(ii) for every set X of vertices of size |X| ≥ n
εr , |N(X)| ≥ (12 − ε)n, and

(iii) for every pair of disjoint sets X,Y such that |X|, |Y | ≥ (12 − ε1/5)n, e(X,Y ) > 2n.

Lemma 3.5. There exists a positive ε0 such that for every positive ε ≤ ε0, the following holds for

every r ≥ 16ε−3 log n: every half-expander with parameters ε and r has property RE(12 + ε).

Proof. For simplicity of notation, we assume that we are given a half-expander with parameters ε4

and r, and will prove that it has property RE(12 + ε4). Let ε0 = 25−5, and suppose that we are given

positive reals ε ≤ ε0 and r ≥ 16ε−12 log n. Let G be a half-expander with parameters ε4 and r. To

prove that G is connected, take two vertices v and w. By Properties (i) and (ii) of Definition 3.4,

there exist sets Av and Aw each of size at least (12 − ε4)n ≥ (12 − ε4/5)n such that the connected

component containing v contains Av, and the connected component containing w contains Aw. There

exists an edge between Av and Aw by Property (iii) of Definition 3.4. Consequently, there exists a

path between v and w in G for all pairs of vertices v and w.

Let P = (v0, · · · , vℓ) be a path with some fixed edge ef = {vf , vf+1}, and let F be the set

{vf−1, vf , vf+1, vf+2}. If there is a path longer than P that contains ef in the graph G ∪ P , then

there is nothing to prove since it satisfies the first condition of Definition 3.1. Thus we may assume

that P is a longest path in G ∪ P that contains ef . We start by rotating v0 to construct the set SP

as in Definition 3.1. Afterwards, we will construct the sets Tv the same way.

For a subset X = {va1 , va2 · · · , vai} of vertices of P , let X− = {va1−1, va2−1, · · · , vai−1} and X+ =

{va1+1, va2+1, · · · , vai+1} (if the index becomes either −1 or ℓ + 1, then remove the corresponding

vertex from the set X− or X+). Throughout the proof we will repeatedly consider the operation

X+ and X− for various sets X. While performing this operation, one must take special care of

the vertices which lie in the boundary of the intervals Pi. However, we will ignore the effect of the

boundary vertices, since it will simplify the computation, and will only affect it by some small order

terms. Let k = 4ε−4 log n, and partition the path P into k consecutive intervals of lengths as equal

as possible. Denote these intervals as P1, · · · , Pk.

Step 1: Initial rotations.
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v vℓP2 P6 P5 P4 P11 P12 P8 P15 P14

Figure 3.2: A path obtained by several rounds of rotations. The order of the intervals have

been changed as a consequence of these rotations. Intervals that do not appear in the figure

(P1, P3, P7, P9, P10, P13, P16, · · · ) contain broken edges, and the vertices in those intervals will be

spread out among the dotted area. Note that non-broken intervals appear either in the original

order, or in the reversed order. By universality, even if we change the vertex v into another vertex,

the order of the non-broken intervals P2, P6, P5, · · · as above will not change.

Our argument is based on that of Sudakov and Vu [31] where one performs rotations and exten-

sions in a very controlled manner. Let S0 = {v0}. We will iteratively construct sets Si for i ≥ 0

so that |Si| = ε−8i, and for all v ∈ Si, there exists a path of length ℓ which starts at v, ends at vℓ,

contains ef , and has been obtained from P by i rounds of rotations. We will continue to construct

sets as long as |Si| ≤
ε4n
r . Note that this implies i ≤ log n. For a vertex v ∈ Si, let ev,1, · · · , ev,i be

the broken edges created in constructing the path from v to vℓ, in the order they were broken (we

call them the broken edges of v). Note that the order in which the broken edges were created is not

necessarily the same as the order in which they appear along the path. We impose the following

conditions on Si:

(Universality) for all 1 ≤ a ≤ i, there exists an index ja such that for all v ∈ Si, the edge ev,a
belongs to Pja . Moreover, if several broken edges belong to the same interval, then the order in

which they appear within the interval also does not depend on v.

An important byproduct of this property is that for every interval Pj which does not contain a

broken edge, there is a fixed orientation so that for all v ∈ Si, the path from v to vℓ traverses Pj in

this orientation. Moreover, the order in which each non-broken interval appears along these paths

does not depend on v (thus is universal, see Figure 3.2).

Assume we have completed constructing the set Si which has the properties listed above. Let

S0
i+1 be the set N(Si) \ (F ∪

⋃i
a=1(Sa ∪ S−

a ∪ S+
a )). If there is a vertex in S0

i+1 which is not in the

path P , then we can use it to find a path longer than P that contains the edge ef . Therefore we may

assume that S0
i+1 ⊂ V (P ). Since we removed all the vertices belonging to Sa, S

−
a , S

+
a for a ≤ i when

defining S0
i+1, all the vertices in S0

i+1 can be used as pivot points to create new endpoints (note that

the broken edges obtained by this procedure are necessarily distinct from all the previous broken

edges). Since |N(Si)| ≥ r|Si|, we have the following estimate on the size of S0
i+1:

|S0
i+1| ≥ r|Si| − 3

i
∑

a=1

|Sa| − 4 ≥ rε−8i − 3ε−8(i+1) − 4 ≥
(r

2

)

ε−8i. (3.1)

It now suffices to choose a suitable subset of S0
i+1 which also satisfies universality.

Pick an arbitrary v ∈ Si, and for each Pj , let w(j) be the number of broken edges of v that Pj

9



contains (note that by the universality, the choice of v does not matter). Note that

k
∑

j=1

(w(j) + 1) = i + k ≤

(

4

ε4
+ 1

)

log n ≤
ε8r

2
.

Consequently, there is an index j∗ ∈ [k] such that Pj∗ contains at least 2(w(j∗)+1)
ε8r

proportion of the

vertices of the set S0
i+1. In other words we have

|Pj∗ ∩ S0
i+1| ≥

(r

2

)

ε−8i ·
2(w(j∗) + 1)

ε8r
= ε−8(i+1) · (w(j∗) + 1)).

By using the vertices in Pj∗ ∩ S0
i+1 as pivot points, we can obtain a set of new endpoints S′

i+1 with

|S′
i+1| ≥ ε−8(i+1) · (w(j∗) + 1). By construction, all the newly added pivot points and corresponding

broken edges belong to the same interval Pj∗ . Therefore, it suffices to find a large subset Si+1 of

S′
i+1 such that the broken edges of these vertices that belong to Pj∗ appear in some universal order

(note that this automatically is true for indices other than j∗ by the same property for Si).

By definition, for h = w(j∗), there exist indices i1, i2, · · · , ih of value at most i such that for every

v ∈ S′
i+1, the broken edges ev,i1 , · · · , ev,ih , ev,i+1 are in Pj∗ (ev,i+1 is the newly created broken edge

in the (i + 1)-th round). By the hypothesis, we know that ev,i1 , · · · , ev,ih appear in some fixed order

which does not depend on v. There are h+1 relative positions that ev,i+1 can lie within that ordering.

We let Si+1 be a subset of S′
i+1 of size at least

|S′
i+1

|

h+1 =
|S′

i+1
|

w(j∗)+1 such that for all the vertices in this

set, the new broken edge has the same relative order in Pj∗ with respect to the edges ev,i1 , · · · , ev,ih .

This choice of Si+1 satisfies all our assumptions, and we have |Si+1| ≥ ε−8(i+1). Redefine Si+1 as an

arbitrary subset of size exactly ε−8(i+1). Repeat the above until we have a set St−1 of size at least
ε4n
r and redefine St−1 as an arbitrary subset of size exactly ε4n

r . Repeat the above process one more

time to obtain a set St of size exactly n
ε4r (note that t ≤ log n).

Step 2: Terminal rotations.

Let k′ = k − t − 2. There are at most t + 2 intervals which contain at least one broken edge

for some vertex of St, or intersects F , and thus at least k′ intervals do not have this property. For

notational convenience, relabel the intervals so that the intervals P1, · · · , Pk′ contain no broken edges

and do not intersect F , and let P ′ = P1 ∪ · · · ∪ Pk′ . Note that

|V (P ) \ P ′| ≤ (t + 2)
(n

k
+ 1
)

≤ (log n + 2)
(n

k
+ 1
)

≤
4n log n

k
≤ ε4n.

Further assume that for 1 ≤ i ≤ k′, each path from v ∈ St to vℓ traverses the interval Pi positively

(we lose some generality here, but we use no properties of this special case, and the assumption is

made just for the sake of clarity of presentation). Define SP as the collection of vertices v ∈ P which

have the property that in G ∪ P there exists a path of length ℓ containing ef that starts at v and

ends at vℓ. Note that SP contains St.

We want to show that |SP | ≥ (12 + ε4)n. Assume to the contrary that |SP | < (12 + ε4)n.

We claim that under this assumption, the inequality |S+
P ∆S−

P | ≤ 22εn holds. The proof of this

claim will be given later (see Claim 3.6). Given this claim, consider the set Z = P ′ \ (S+
P ∪ S−

P ).

We have |S+
P ∪ S−

P | ≤ |SP | + 22εn ≤ (12 + 23ε)n. Since |V (P ) \ P ′| ≤ ε4n, this implies |Z| ≥

10



|V (P )| − (12 + 23ε)n − ε4n ≥ |V (P )| − (12 + 24ε)n, and for the set Z ′ := Z ∩ (P ′)− ∩ (P ′)+, we have

|Z ′| ≥ |Z| − 2k′ ≥ |V (P )| − (12 + 25ε)n. Note that if some vertex v ∈ SP is adjacent to some vertex

w ∈ Z ′ and both {w−, w}, {w,w+} have not been broken while obtaining v as an endpoint, then

we obtain a contradiction since this necessarily gives w− or w+ as a new endpoint, which by the

definition of Z ′ is not in SP .

Let Y = N(St) ∩ P ′. Since the path from v ∈ St to vℓ traverses the intervals Pi (1 ≤ i ≤ k′)

positively, we can use the vertices of Y as pivot points to construct endpoints Y −. We have |Y −| ≥

|N(St)|−(ε4n+k) ≥ (12−3ε)n. For each vertex y ∈ Y −, fix one path of length ℓ which starts at y, ends

at vℓ, and has the property that all the broken edges but the last one lie outside of P ′. Thus at most

one broken edge will lie inside P ′. Consequently, if some vertex y ∈ Y − has at least three neighbors in

Z ′, then we necessarily have a vertex w ∈ Z ′ for which both {w,w−} and {w,w+} are not broken edges

of y. Then by the observation made in the previous paragraph we reach a contradiction. Furthermore,

by the maximality of P , we know that there are no edges between Y − and V \ V (P ). Therefore, for

the set Z ′′ = Z ′∪(V \V (P )) which is of size |Z ′′| ≥ (|V (P )|−(12 +25ε)n)+(|V |−|V (P )|) ≥ (12−25ε)n,

there are no edges between Y − and Z ′′. However, since |Y −| and |Z ′′| are both at least (12 − 25ε)n,

by property (iii) of Definition 3.4, there exist more than 2n edges between Y − and Z ′′ and therefore

some vertex in Y − must have at least three neighbors in Z ′′. Consequently, we must have had

|SP | ≥ (12 + ε4)n.

Step 3: Rotating the other endpoint.

For every v ∈ SP , there exists a path containing ef of length ℓ which starts at v and ends at vℓ.

Now by repeating the above for the other endpoint vℓ, we can see that for every v ∈ SP , there exists

a set Tv of size at least (12 + ε4)n such that for every w ∈ Tv, there exists a path of length ℓ which

starts at v, ends at w, and contains the edge ef .

It remains to prove the claim. The intuition behind this perhaps strangely looking claim comes

from the following two non-Hamiltonian graphs whose minimum degrees are slightly less than n
2 .

First, consider the graph consisting of two disjoint cliques of size n
2 connected by a single edge, and

consider a Hamiltonian path in it. It is not too difficult to see that by rotating the starting point we

only get the first half of the path as new starting points. More precisely, using the same notation as

in the proof above, we will get |SP | = n
2 −1 and |S+

P ∆S−
P | = 3. Second, consider a complete bipartite

graph in which one part A has one more vertex than the other part B, and consider a Hamiltonian

path in it (it must be an A-A path). In this case, by rotating the starting point we only get the

vertices in A as new starting points, and therefore |SP | = n
2 and |S+

P ∆S−
P | = 0. Note that the two

graphs above both have |SP | close to n
2 and |S+

P ∆S−
P | small, but for very different reasons. Our claim

asserts that, in general, if the given graph has |SP | close to n
2 , then it indeed is true that the graph

has small |S+
P ∆S−

P |.

Claim 3.6. If |SP | < (12 + ε4)n, then |S+
P ∆S−

P | ≤ 22εn.

Proof. Recall that we will ignore the effect of the boundary vertices while performing the operations

X− and X+ for sets X, since it will simplify the computation, and will only affect it by some small

order terms. The main strategy is as following. We first rotate the path P in two ways to obtain

some set Q of endpoints in two different ways while keeping a big chunk P ′′ of P not broken. For
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each endpoint w in Q, the two paths will traverse P ′′ in opposite direction (see Figure 3.3). If this

is the case, then both sets (N(Q) ∩ P ′′)− and (N(Q) ∩ P ′′)+ become subsets of SP . From this we

will conclude that the two sets S+
P and S−

P do not differ too much.

We follow the same notation as in the proof above. Recall that the set SP was defined as the

collection of vertices v in P for which there exists a path of length ℓ starting at v and ending at

vℓ that contains some fixed edge ef . Recall that P ′ = P1 ∪ · · · ∪ Pk′ , |V (P ) \ P ′| ≤ ε4n, and that

by property (ii) of Definition 3.4, for every set X of size |X| ≥ n
ε4r , we have |N(X)| ≥ (12 − ε4)n.

Note that by using the vertices in N(St) ∩ P ′ as pivot points, we get |SP ∩ P ′| ≥ |N(St) ∩ P ′| ≥

|N(St)| − |V (P ) \ P ′| ≥ (12 − 2ε4)n. For a subset I of [k′], we define PI = ∪i∈IPi.

We first make a simple observation. Let X be some set of endpoints obtained by rotating the

given path P , where |X| ≥ n
ε4r

. Our rotations have been carefully performed, hence in the next

round of rotation, many vertices in N(X) will give rise to vertices in SP . Thus if |N(X)| is close

to n
2 , then since |SP | <

(

1
2 + ε4

)

n, we will recover most of the vertices in SP in the next round of

rotation. The following simple proposition formalizes this intuition and will be used several times in

proving the claim.

Proposition 3.7. Let X be a subset of SP of size |X| ≥ n
ε4r

, and for every v ∈ X, fix one path of

length ℓ containing ef from v to vℓ. Let I and J be disjoint subsets of [k′], and assume that for every

η /∈ I there exists an orientation oη such that for every v ∈ X, there exists a path from v to vℓ that

has no broken edge in Pη, and traverses Pη in direction oη. Then

|N(X) ∩ PJ | ≥ |SP ∩ PJ | − |PI | − 3ε4n.

Proof. For every η /∈ I, since all the paths traverse Pη in direction oη, we know that when a vertex

in N(X) ∩ Pη is used as a pivot point, it will create a broken edge in a fixed direction (to the left of

the pivot point if oη is positive, and to the right of the pivot point otherwise). Therefore we have

|N(X) ∩ P[k′]\(I∪J)| + |SP ∩ PI | + |SP ∩ PJ | ≤ |SP |.

Consequently,

|N(X)| = |N(X) ∩ P ′| + |N(X) ∩ PI | + |N(X) ∩ PJ | + |N(X) ∩ P[k′]\(I∪J)|

≤ |V (P ) \ P ′| + |PI | + |N(X) ∩ PJ | + (|SP | − |SP ∩ PI | − |SP ∩ PJ |),

and by our assumption that |SP | ≤
(

1
2 + ε4

)

n, we have

|N(X)| ≤

(

1

2
+ 2ε4

)

n + |PI | + |N(X) ∩ PJ | − |SP ∩ PJ |.

On the other hand, since |X| ≥ n
ε4r

, we have |N(X)| ≥ (12 − ε4)n. By combining the two bounds we

get |SP ∩ PJ | − |PI | − 3ε4n ≤ |N(X) ∩ PJ |.

Let a1 be the smallest positive integer such that for k1 = k′ − εk · a1, there exist at least 2ε2n

elements of SP in Q1 = P[k1+1,k1+εk] (note that |Q1| ≤ εn). By construction, there exist at most 2εn

elements of SP in P[k1+εk+1,k′], and at least |SP ∩P ′| − 2εn− |Q1| ≥ (12 − 5ε)n vertices in P[1,k1]. Let
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Q3 Q2 Q1w vℓ

Q3 Q2 Q1w vℓ

Figure 3.3: Rotating in two different ways to get the same endpoint.

a2 be the smallest positive integer such that for k2 = k1 − ε2k · a2, there exist at least ε3n points of

SP in Q2 = P[k2+1,k2+ε2k] (note that |Q2| ≤ ε2n). Note that there exist at most εn vertices of SP in

P[k2+ε2k+1,k1]. Let Q3 = P[1,k2].

We defined the sets Q1 and Q2 so that the numbers of vertices of SP in both of these sets are

quite large. Our goal now is to find a large number of vertices in Q1 ∩ SP that can be obtained by

two different rotations, one rotation giving a path that traverses Q3 positively and the other giving

a path that traverses Q3 negatively. To do this, first, we will perform two rotations, where we begin

by finding endpoints in Q2 using St, and then use these endpoints to find endpoints in Q1. Second,

we will directly rotate from St to obtain endpoints in Q1. Since both ways will give a big proportion

of vertices in Q1 ∩ SP , we eventually will find the set of vertices that we wanted.

We will use Proposition 3.7 to formalize this idea. Recall that for 1 ≤ i ≤ k, each path from

v ∈ St to vℓ traverses the interval Pi positively. Let Y2 = N(St)
− ∩Q2. By our construction we have

that for J = [k2 + 1, k2 + ε2k], |SP ∩ PJ | ≥ ε3n. Thus, by Proposition 3.7 with X = St, I = ∅, and

J = [k2 + 1, k2 + ε2k], we see that |Y2| = |N(St) ∩ Q2| ≥ (ε3 − 3ε4)n. Since we can use the points

in N(St) ∩Q2 as pivot points to get new endpoints Y2, we have that for every v ∈ Y2, there exists a

path of length ℓ containing ef which starts at v and ends at vℓ. Moreover, these paths have exactly

one broken edge inside P ′, and it is in Q2. Thus we can apply Proposition 3.7 again with X = Y2,

I = [k2 + 1, k2 + ε2k], and J = [k1 + 1, k1 + εk] to get |N(Y2)− ∩ Q1| ≥ |SP ∩ Q1| − ε2n − 3ε4n.

For every vertex v ∈ N(Y2)
− ∩ Q1, there exists a path of length ℓ containing ef which starts at v

and ends at vℓ. These paths have exactly two broken edges inside P ′, both in Q1 ∪ Q2. Moreover,

for every interval in Q3, all these paths traverse the interval in the positive direction. Now apply

Proposition 3.7 with X = St, I = ∅, and J = [k1 +1, k1+εk] to get |N(St)
−∩Q1| ≥ |SP ∩Q1|−3ε4n.

The vertices in N(St)
− ∩Q1 have similar properties to those in N(Y2)

− ∩Q1, but the paths for the

vertices N(St)
− ∩Q1 traverse the intervals in Q3 in the negative direction (see Figure 3.3).

Since both N(Y2)
− ∩Q1 and N(St)

− ∩Q1 are subsets of SP and since we constructed Q1 such

that |SP ∩Q1| ≥ 2ε2n, we have for Y1 = N(St)
− ∩N(Y2)

− ∩Q1,

|Y1| ≥ |SP ∩Q1| − ε2n− 6ε4n ≥ (ε2 − 6ε4)n.

Note that by using Proposition 3.7 with X = Y1, I = [k1 + 1, k1 + εk]∪ [k2 + 1, k2 + ε2k], J = [1, k2],

we get

|N(Y1) ∩Q3| ≥ |SP ∩Q3| − |Q1| − |Q2| − 3ε4n ≥ |SP ∩Q3| − 5εn.
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By the observations made in the previous paragraph, we see that for every v ∈ Y1, there exist two

paths of length ℓ starting at v and ending at vℓ such that both paths have at most two broken edges

in P ′, all belonging to Q1∪Q2. Furthermore, one of the paths traverses the intervals in Q3 positively,

and the other negatively. Therefore both N(Y1)− ∩Q3 and N(Y1)
+ ∩Q3 are subsets of SP .

The above implies that |(N(Y1)−∩Q3)∆(SP ∩Q3)| ≤ 5εn. Thus |(N(Y1)∩Q3)∆(S+
P ∩Q3)| ≤ 5εn.

Similarly we have |(N(Y1) ∩Q3)∆(S−
P ∩Q3)| ≤ 5εn. By the triangle inequality we get

|(S−
P ∩Q3)∆(S+

P ∩Q3)| ≤ 10εn.

Since, by our construction, there are at most 2εn vertices of SP in P[k1+εk+1,k′] and at most εn vertices

of SP in P[k2+ε2k+1,k1], we can conclude that |SP ∩Q3| ≤ |V (P ) \P ′|+ |Q1|+ |Q2|+ 3εn ≤ 6εn. This

implies that

|S−
P ∆S+

P | ≤ |(S−
P ∩Q3)∆(S+

P ∩Q3)| + 2|SP ∩Q3| ≤ 22εn,

and completes the proof.

3.2 Rotation-extension for bipartite graphs

In this subsection, we develop a framework useful in tackling the third case of Lemma 2.1. Note that

the given graph in this case has a partition of its vertex set so that there are only few non-adjacent

pairs between the two parts. The following definition gives a nice structure that can be used in this

kind of graphs.

Definition 3.8. Let G be a graph over a vertex set V , and let V1 ∪V2 be a partition of V satisfying

|V1| = |V2| + k for some non-negative integer k.

(i) A tuple (V1, V2, SV , SE) is a special frame of G if SV is a subset of V1 of size k, and SE is a set

of k vertex-disjoint edges of G in V1 such that each vertex in SV is incident to exactly one edge

in SE . We refer to SV as the set of special vertices, and SE is the set of special edges. Let the

framed subgraph of G be the subgraph induced by the edges between (V1, V2). Let V ′
1 = V1 \SV ,

and V ′′
1 = V1 \ V (SE).

(ii) A tuple (V1, V2, SV , SE , f) is a matched special frame of G if (V1, V2, SV , SE) is a special frame

of G, and f is a perfect matching between the vertices of V ′
1 and V2. For v ∈ V ′

1 ∪ V2, we let

f(v) be the vertex matched to v in this matching.

Throughout this subsection, we fix a vertex set V on n vertices and a partition V1∪V2 of it satis-

fying |V1| = |V2|+ k for some non-negative integer k. We then assume that all the graphs appearing

in this subsection are defined over V (therefore if there are several graphs under consideration, then

they share the same vertex set and its partition). Suppose that we are given a graph with some

special frame (V1, V2, SV , SE). If k = 0, then it suffices to use the edges between the two parts to

find a Hamilton cycle. However, if k > 0, then we must use some edges within V1, and the special

edges will be these edges.

To construct a Hamilton cycle in graphs with a matched special frame, it is easier to consider

only a certain class of paths and cycles.
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Definition 3.9. Let (V1, V2, SV , SE , f) be a matched special frame of some graph. We say that a

path P is a proper path with respect to the frame if it satisfies the following properties: (i) V ′
1∩V (P ) =

f(V2 ∩ V (P )), (ii) if P contains a special vertex, then it also contains the special edge incident to it,

and (iii) P consists only of edges that intersect both V1 and V2 and of special edges. We also say

that a cycle C is a proper cycle with respect to the frame if it satisfies properties (i),(ii), and (iii)

above (with C replacing P ). We simply say that a path or cycle is proper if the frame is clear from

the context.

Note that a proper path always has one of its endpoints in V1, and the other in V2. Indeed,

suppose that P is a proper path with s special edges. Then by properties (i) and (iii), P has length

2|V2 ∩V (P )|+ s− 1, and thus switches between V1 and V2 in total 2|V2 ∩V (P )|− 1 times. Since this

is an odd number, we can see that the above holds.

We now specify the roles of the graphs performing rotations and extensions.

Definition 3.10. Let ξ be a positive constant. A graph G has property REb(ξ) if it contains a

matched special frame whose framed subgraph is connected, and for every proper path P , at least

one of the following holds: (i) there exists a proper path longer than P in G ∪ P , or (ii) there exists

a set of vertices SP ⊂ V2 of size at least |SP | ≥ ξn such that for every vertex v ∈ SP , there exists

a set Tv ⊂ V1 of size |Tv | ≥ ξn such that for every w ∈ Tv, there exists a proper path of the same

length as P in G ∪ P that starts at v and ends at w.

Definition 3.11. Let ξ be a positive constant, and let G1 be a graph with property REb(ξ). We say

that a graph G2 complements G1, if for every proper path P , (i) there exists a proper path longer

than P in G1 ∪ P , or (ii) there exist vertices v ∈ SP and w ∈ Tv such that {v,w} is an edge of

G1 ∪G2 ∪ P (the sets SP and Tv are as defined in Definition 3.10).

Two graphs as in the above two definitions together give Hamiltonicity.

Proposition 3.12. Let ξ be a positive constant. If G1 ∈ REb(ξ), and G2 complements G1, then

G1 ∪G2 is Hamiltonian.

Proof. Let f be the matching in the matched special frame of G1 as in Definition 3.8, and P be a

longest proper path in G1 ∪ G2. Note that we can use the frame of G1 also as a frame of G1 ∪ G2.

Since G2 complements G1, by Definition 3.11, we can find a proper cycle (v0, · · · , vℓ, v0) in G1 ∪G2

over the vertex set of P . Assume that this cycle is not Hamiltonian. Then by the connectivity of the

framed subgraph of G1, there exists an edge of the form {x, vi} for some vertex x not in the cycle,

where x and vi belong to different parts of the frame. We claim that this violates the maximality

assumption on P . This will imply that the graph G1 ∪G2 is Hamiltonian.

Indeed, either the vertex x is a special vertex or not. If x is a special vertex, then since {x, vi}

cannot be a special edge, we must have a special edge {x, x′} for some x′ 6= vi. If x′ is on the path P ,

then we immediately obtain a proper path longer than P . Thus we may assume that x′ is not on the

path. In this case we can use the path (vi, x, x
′, f(x′)) to find a longer proper path (note that f(x′)

is also not in the path P by the definition of a proper path). Finally, if x is not a special vertex,

then we can use the path (vi, x, f(x)) to find a longer proper path (again, f(x) is not in the path P

by the definition of a proper path). Thus in any case, we deduce a contradiction.
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As in the previous subsection, we provide a list of deterministic properties which when satisfied,

imply property REb(ξ).

Definition 3.13. Let ε, r be positive constants, and let k be a non-negative integer. We say

that a graph G is a k-bipartite-expander with parameters ε and r, if it contains a special frame

(V1, V2, SV , SE) with |V1| = |V2| + k such that the following properties hold:

(i) For all X ⊂ V1, if |X| ≤ n
r3/2

, then |N(X) ∩ V2| ≥ r|X|, and if |X| ≥ n
r3/4

, then |N(X) ∩ V2| ≥

(1 − ε)|V2|, and

(ii) for all Y ⊂ V2, if |Y | ≤ n
r3/2

, then |N(Y ) ∩ V ′′
1 | ≥ r|Y |, and if |Y | ≥ n

r3/4
, then |N(Y ) ∩ V ′′

1 | ≥

(1 − ε)|V ′′
1 |.

We often refer to k-bipartite-expanders as bipartite-expanders when k is clear from the context.

Lemma 3.14. For every positive reals r ≥ 16, ε ≤ 1
4 , and non-negative integer k ≤ n

30 , every

k-bipartite-expander with parameters ε and r has property REb(
1
6 ).

Proof. Let G be the given bipartite-expander with parameters ε and r, and let (V1, V2, SV , SE) be its

special frame. Throughout the proof, we consider only the edges that belong to the framed subgraph

and the special edges. Given properties (i) and (ii) of Definition 3.13, it follows that every connected

component of the framed subgraph of G contains at least 3
4 |V2| vertices of V2. Consequently, every

two connected components intersect, and the framed subgraph of G is connected. We then verify

Hall’s condition to find a matching f between the vertices of V ′
1 and V2. By property (i) of bipartite-

expanders, we have |N(X) ∩ V2| ≥ |X| for every subset X of V1 of size at most 3
4 |V2|. Then by

property (ii), we have |N(Y ) ∩ V ′
1 | ≥ |N(Y ) ∩ V ′′

1 | ≥ |Y | for every subset Y of V2 of size at most
3
4 |V

′′
1 |. Now suppose that Hall’s condition is not satisfied, and that there is some subset X of V ′

1 of

size larger than 3
4 |V2| that satisfies |X| > |N(X)| ≥ 3

4 |V2| (the second inequality follows from the

fact we established above for subsets of size at most 3
4 |V2|). Then it implies that all the neighbors of

V2 \N(X) in V ′
1 belong to V ′

1 \X. However, since

|V2 \N(X)| = |V2| − |N(X)| ≤
1

4
|V2| <

3

4
|V ′′

1 |,

(we used the fact k ≤ n
30 in the last inequality) we thus must have |V2 \N(X)| ≤ |N(V2 \N(X))| ≤

|V ′
1\X| which is a contradiction since |V ′

1\X| = |V ′
1 |−|X| and |V2\N(X)| = |V2|−|N(X)| > |V2|−|X|.

Thus Hall’s condition holds, and we may let f be one fixed perfect matching between the vertices of

V ′
1 and V2. Consider the matched special frame (V1, V2, SV , SE , f).

Let us now focus on verifying the remaining condition given in Definition 3.10. Let P =

(v0, · · · , vℓ) be a proper path of length ℓ where v0 ∈ V2 (recall that one endpoint of every proper path

is in V2). For a subset X of vertices of P , we use notations X− and X+ as in the proof of Lemma

3.5. We will first construct the set SP . This will be done by iteratively constructing sets Si ⊂ V2 for

i ≥ 0 where Si has the property that for every v ∈ Si, there exists a proper path of length ℓ which

starts at v and ends at vℓ. Moreover, Si ⊂ Si+1 will hold for every i ≥ 0.

Let S0 = {v0}. Assume that we have completed constructing Si for some i ≥ 0. We first claim that

N(Si)∩V1 ⊂ V (P ). If the claim does not hold, then we have an edge {x, y} for x ∈ Si, y ∈ V1 \V (P ).

If y is not a special vertex, then we can find a proper path longer than P by attaching the path

16



(f(y), y, x) to the proper path of length ℓ starting at x and ending at vℓ (note that f(y) is not in

P by the definition of a proper path). On the other hand, if y is a special vertex, then let {y, y′}

be the special edge incident to y. If y′ ∈ V (P ), then the edges {x, y} and {y, y′}, together with

P immediately give a proper path longer than P . Finally, if y′ /∈ V (P ), then we can use the path

(x, y, y′, f(y′)) to find a longer proper path than P (f(y′) is not in P by the definition of a proper

path). Thus we indeed must have N(Si) ∩ V1 ⊂ V (P ).

Now, if a vertex w ∈ N(Si) ∩ V ′′
1 is not in S−

i or S+
i , then w can be used as a pivot point to give

either w− or w+ as a new endpoint of some proper path that has vℓ as its other endpoint (recall

that Si contains the sets Sj for j ≤ i). Note that it is crucial to consider the set V ′′
1 as otherwise

we might end up breaking some special edges of the path P and the resulting path will no longer be

proper. Let Si+1 be the union of the set of endpoints obtained in this way and the set Si. Since an

endpoint can be obtained in at most two ways, we have

|Si+1| ≥
1

2

(

|N(Si) ∩ V ′′
1 | − |S+

i | − |S−
i |
)

+ |Si| ≥
1

2
|N(Si) ∩ V ′′

1 |.

If |Si| ≤
n

r3/2
, then we have |N(Si) ∩ V ′′

1 | ≥ r|Si| and therefore, |Si+1| ≥
r
2 · |Si|. Since r ≥ 16, at

some point t, St will have size |St| ≥
n

r3/2
. Redefine St as an arbitrary subset of it of size n

r3/2
and

repeat the above once more to get |St+1| ≥
r
2 |St| ≥

n
r3/4

(recall that r ≥ 16). Again redefine St+1 as

an arbitrary subset of it of size n
r3/4

, and repeat the above for the final time, to get a set SP = St+2

of size

|SP | ≥
1

2
· (1 − ε)|V ′′

1 | ≥
3

8

(

n

2
−

3k

2

)

≥
n

6
,

where we used the fact that ε ≤ 1
4 and k ≤ n

30 . For each vertex v ∈ SP , we can perform the same

process as above to the other endpoint vℓ to find a set Tv of size at least n
6 satisfying the property

of Definition 3.10.

In fact, similar arguments also apply to non-bipartite graphs.

Definition 3.15. For positive constants ε and r, we say that a graph G on n vertices is an expander

with parameters ε and r, if the following properties hold:

(i) For every subset of vertices X of size |X| ≤ n
r3/2

, we have |N(X)| ≥ r|X|, and

(ii) for every subset of vertices X of size |X| ≥ n
r3/4

, we have |N(X)| ≥ (1 − ε)n.

The proof of Theorem 3.14 given above can be easily modified to give the following result.

Lemma 3.16. For every positive reals r ≥ 16 and ε ≤ 1
4 , every expander with parameters ε and r

has property RE(16 ).

4 Random subgraphs of Dirac graphs

In this section we prove Theorem 1.1. The following well-known concentration result (see, for example

[1], Appendix A) will be used several times throughout the proof. We denote by Bi(n, p) a binomial

random variable with parameters n and p.
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Theorem 4.1 (Chernoff’s Inequality). If X ∼ Bi(n, p) and λ ≤ np, then

P
(

|X − np| ≥ λ
)

≤ e−Ω(λ2/(np)).

We begin by applying Lemma 2.1 with α = 1
223

and γ = 1
32 to classify Dirac graphs into three

types. We will show case by case that a random subgraph of a Dirac graph of each type is a.a.s. Hamil-

tonian.

4.1 First case

Let G be a Dirac graph satisfying e(A,B) ≥ αn2 for all half-sets A and B.

Lemma 4.2. There exist positive reals ε and β such that for every p ≥ β logn
n the graph Gp a.a.s.

contains a subgraph with property RE(12 + ε) that has at most βn log n edges.

Proof. Let ε = min{ε3.5, (
α
4 )5, 1

24e2
}, and β ≥ 512ε−3 be a large constant. Let p′ = β logn

n and

suppose that we are given p ≥ p′. Let H be a random subgraph of Gp obtained by taking each

edge independently with probability p′

p , and note that the distribution of H is identical to that of

Gp′ . Since Gp′ a.a.s. has at most (1 + o(1))e(G)p′ ≤ βn log n edges, it suffices to show that Gp′

a.a.s. has property RE(12 +ε). By Lemma 3.5, we can prove our claim by verifying that Gp′ is a.a.s. a

half-expander with parameters ε and r = β
32 log n = np′

32 .

We will establish the following four properties of Gp′ which together will imply that Gp′ is a.a.s. a

half-expander with parameters ε and r (note that np′ = β log n).

1. Gp′ a.a.s. has minimum degree at least 1
3np

′.

2. For every pair of sets X and Y satisfying |X| ≤ εn
r and |Y | ≤ r|X|, we a.a.s. have eGp′

(X,Y ) ≤
1
4 |X|np′.

3. For every pair of sets X and Y of size |X| ≥ n
εr and |Y | ≥ (12 + ε)n, Gp′ a.a.s. contains at least

one edge between X and Y .

4. For every pair of sets X and Y of size |X|, |Y | ≥ (12 − ε1/5)n, Gp′ a.a.s. contains at least 2n+ 1

edges between X and Y .

Indeed, suppose that all four properties hold. Let X be a set of size at most εn
r and assume that

|N(X)| ≤ r|X|. For the set Y = N(X), by Properties 1 and 2, we must have

1

4
|X|np′ ≥ eGp′

(X,Y ) = eGp′
(X,V (G)) ≥ |X| ·

1

3
np′

which is a contradiction. Thus Condition (i) of Definition 3.4 holds. Now let Z be a set of size at

least n
εr and assume that |N(Z)| ≤ (12 − ε)n. If this is the case, then there are no edges between Z

and V \N(Z) in Gp′ , and this contradicts Property 3 since |V \N(Z)| ≥ (12 + ε)n. This establishes

Condition (ii) of Definition 3.4. Finally, it is easy to see that Property 4 implies Condition (iii) of

Definition 3.4.

Now we establish the four properties listed above. Since G has minimum degree at least n
2 , by

Chernoff’s inequality, the probability of a fixed vertex having degree less 1
3np

′ is at most e−Ω(np′) =

o(n−1) for large enough β. By taking the union bound, we obtain Property 1. For Property 2, let
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X and Y be two sets of size |X| = k and |Y | = rk (it suffices to prove for Y exactly of size rk).

To estimate the probability of eGp′
(X,Y ) ≥ knp′

4 , we may estimate the probability that at least knp′

8

non-ordered pairs of the form {v,w} for v ∈ X,w ∈ Y , become edges of Gp′ . Consequently, the

probability of having eGp′
(X,Y ) ≥ knp′

4 is at most

(

rk2

knp′/8

)

(p′)knp
′/8.

Therefore by the union bound, the probability of having two sets violating Property 2 is at most

εn/r
∑

k=1

(

n

k

)(

n

rk

)(

rk2

knp′/8

)

(p′)knp
′/8 ≤

εn/r
∑

k=1

(

n

k

)

(en

rk

)rk
(

8erk

n

)knp′/8

=

εn/r
∑

k=1

(

n

k

)(

en

rk

(8erk

n

)4
)rk

=

εn/r
∑

k=1

(

n

k

)(

212e5r3k3

n3

)rk

≤

εn/r
∑

k=1

(

n

k

)

(

ε3212e5
)rk

≤

εn/r
∑

k=1

(en

k

(

ε3212e5
)r)k

,

which is o(1) for large enough β since r = β
32 log n = np′

32 , and ε ≤ 2−4e−2.

To establish Property 3, let X and Y be two sets as in Property 3. Since the graph G has

minimum degree at least n/2, the number of edges in G between X and Y is at least

1

2
|X| · εn ≥

n2

2r
.

Consequently the probability of Property 3 not holding is at most

22n · (1 − p′)n
2/(2r) ≤ 22ne−n2p′/(2r) = 22ne−16n = o(1)

(we used the fact that p′ = β logn
n and r = β

32 log n).

It now remains to verify Property 4. It suffices to consider a pair of sets X and Y which both

have size exactly (12 − ε1/5)n. Let X ′ be an arbitrary set of vertices of size n
2 that contains X, and

similarly define Y ′. Then the graph G satisfies eG(X ′, Y ′) ≥ αn2. Therefore we have

eG(X,Y ) ≥ eG(X ′, Y ′) − |X ′ \X| · n− |Y ′ \ Y | · n ≥ αn2 − 2ε1/5n2 ≥
αn2

2
,

and thus by Chernoff’s inequality, the probability that Gp′ has less than αn2p′

4 edges between X and

Y is at most e−Ω(αn2p′) = e−Ω(αβn logn). Thus by taking the union bound over all possible choices of

X and Y , we have Property 4.

Lemma 4.3. For every fixed positive reals ε and β, there exists a constant C = C(ε, β) such that

the following holds for every p ≥ C logn
n : Gp a.a.s. complements every its subgraph with property

RE(12 + ε) that has at most βn log n edges.
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Proof. Let C ≥ β be a sufficiently large constant. The probability that the assertion of the lemma

fails is

P = P
(

⋃

R∈RE( 1
2
+ε),|E(R)|≤βn logn

(

{R ⊂ Gp} ∧ {Gp does not complement R}
))

≤
∑

R∈RE( 1
2
+ε),|E(R)|≤βn logn

P
(

Gp does not complement R |R ⊂ Gp

)

·P(R ⊂ Gp), (4.1)

where the union (and sum) is taken over all graphs R on n vertices which have property RE(12 + ε)

and at most βn log n edges.

Let us first examine the term P
(

Gp does not complement R |R ⊂ Gp

)

. Let R be a fixed graph

with property RE(12 + ε) and P be a fixed path on the same vertex set containing some fixed edge e.

The number of such paths is at most n2 ·n!, since there are at most n2 choices for the length of path

P and the fixed edge e, and there are at most n(n− 1) · · · (n− i + 1) paths of length i, 1 ≤ i ≤ n. If

in R ∪ P there is a path longer than P containing e, then the condition of Definition 3.2 is already

satisfied. Therefore we can assume that there is no such path in R ∪ P . Then, by the definition of

property RE(12 + ε), we can find a set SP and for every v ∈ SP a corresponding set Tv, both of size
(

1
2 + ε

)

n, such that for every w ∈ Tv, there exists a path containing e of the same length as P in

R∪P which starts at v and ends at w. If there exist vertices v ∈ SP and w ∈ Tv such that {v,w} is

an edge of R, then this edge is also in R∪Gp and again Definition 3.2 is satisfied. If there are no such

edges of R, then conditioned on R ⊂ Gp, each such pair of vertices is an edge in Gp independently

with probability p. By the minimum degree condition on G, we have

eG(SP , Tv) ≥ εn ·

(

1

2
+ ε

)

n ≥
εn2

2
.

Therefore there are at least 1
2eG(SP , Tv) ≥ εn2

4 edges of G that we would like to be present in the

graph (the factor 1
2 comes from the fact that a same edge can be counted twice). If Gp does not

complement the graph R, then a.a.s. there exists some path P such that no such edge appears in Gp.

For a fixed path P , the probability of this event is at most (1− p)εn
2/4. Consequently, by taking the

union bound over all choice of paths P , we see that for large enough C = C(ε) and p ≥ C logn
n

P

(

Gp does not complement R |R ⊂ Gp

)

≤ n2 · n! · (1 − p)−εn2/4 ≤ e−εn2p/8.

Therefore in (4.1), the right hand side can be bounded by

P ≤ e−εn2p/8 ·
∑

R∈RE( 1
2
+ε),|E(R)|≤βn logn

P(R ⊂ Gp).

Also note that for a fixed graph R with t edges P(R ⊂ Gp) ≤ P(R ⊂ G(n, p)) = pt. Therefore, by

taking the sum over all possible graphs R with at most βn log n edges, we can bound the probability

that the assertion of the lemma fails by

P ≤ e−εn2p/8
βn logn
∑

t=1

(
(

n
2

)

t

)

pt ≤ e−εn2p/8
βn logn
∑

t=1

(en2p

t

)t
.
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Since p ≥ C logn
n , for C ≥ β, the summands are monotone increasing in the range 1 ≤ t ≤ βn log n,

and thus we can take the case t = βn log n for an upper bound on every term. This gives

P ≤ (1 + o(1))βn log n ·

(

e−εnp/(8β logn) ·
( enp

β log n

)

)βn logn

,

which is o(1) for sufficiently large C depending on ε and β, since p ≥ C logn
n . This completes the

proof.

Theorem 4.4. There exists a constant C such that the following holds for every p ≥ C logn
n . If G is

a Dirac graph satisfying (i) of Lemma 2.1, then Gp is a.a.s. Hamiltonian.

Proof. Let ε = ε4.2, β = β4.2, and C = max{β,C4.3(ε, β)}. By Lemma 4.2, we know that Gp

a.a.s. contains a subgraph that has property RE(12 + ε) and at most βn log n edges. Then by Lemma

4.3, we know that Gp a.a.s. complements this subgraph. Therefore when both events hold, we see

by Proposition 3.3 that Gp is a.a.s. Hamiltonian.

4.2 Second case

Let G be a Dirac graph satisfying the following as in (ii) of Lemma 2.1: there exists a set A of size
n
2 ≤ |A| ≤ (12 + 16α)n such that e(A,A) ≤ 6αn2, and the induced subgraphs on both A and A have

minimum degree at least n
5 . Let k = |A| − |A| so that |A| = n+k

2 , |A| = n−k
2 , and k ≤ 32αn.

Note that

|A|
n

2
≤ e(A,V (G)) = e(A,A) + e(A,A) ≤ 2e(A) + 6αn2.

Therefore,

e(A) ≥
1

2

(

|A|n

2
− 6αn2

)

=
1

2

(

|A|2 −
(

|A| −
n

2

)

|A| − 6αn2
)

≥

(

|A|

2

)

−
k|A|

4
− 3αn2 ≥

(

|A|

2

)

− 11αn2. (4.2)

Similarly, we can show that e(A) ≥
(|A|

2

)

− 6αn2.

Lemma 4.5. There exists a positive real β such that the following holds for every p ≥ β logn
n : each of

the graphs G[A]p and G[A]p a.a.s. contains a subgraph with property RE(16) that has at most βn log n

edges.

Proof. We will only verify the property for G[A]p since the property for G[A]p can be verified similarly.

Let β be a large enough constant. Given p ≥ β logn
n , let p′ = β logn

n and let H be a random subgraph

of G[A]p obtained by taking every edge of G[A]p independently with probability p′

p (which is less than

1). Then H has the same distribution as G[A]p′ . Since G[A]p′ a.a.s. has at most βn log n edges, it

suffices to show that H a.a.s. has property RE(16 ). By Lemma 3.16, it suffices to verify that H is an

expander with parameters 1
4 and 216. Equivalently, we need to verify the following two properties:

(i) For every subset of vertices X of size |X| ≤ |A|
224 , we have |N(X)| ≥ 216|X|, and
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(ii) for every subset of vertices X of size |X| ≥ |A|
212 , we have |N(X)| ≥ 3

4 |A|.

We claim that H a.a.s. has the following properties: (a) minimum degree is at least np′

6 , (b) for every

pair of sets X and Y of sizes |X| ≤ |A|
224

and |Y | < 216|X|, we have eH(X,Y ) < |X|np′

10 , and (c) for

every pair of sets X and Y of sizes |X| = |A|
212

and |Y | = 1
4 |A|, eH(X,Y ) > 0. Suppose that H indeed

satisfies these properties. For every set X of size |X| ≤ |A|
224

, if |N(X)| < 216|X|, then by (a) and (b)

we will have
|X|np′

10
> eH(X,N(X)) = eH(X,V (H)) ≥ |X|

np′

6
,

which is a contradiction. Thus (i) holds. One can also easily see that (c) implies (ii).

We omit the proof of Property (a) (we need β to be large enough for (a)) and verify Property

(b). Let t be a positive integer satisfying t ≤ |A|
224 . For a fixed pair of sets X and Y of sizes

|X| = t and |Y | = 216t, in order to have eH(X,Y ) ≥ |X|np′

10 , at least |X|np′

20 non-ordered pairs that

have one endpoint in X and the other in Y must be present. Thus the probability of the event

eH(X,Y ) ≥ |X|np′

10 is at most

(

|X||Y |
|X|np′

20

)

·
(

p′
)

|X|np′

20 ≤

(

20e|Y |

n

)|X|np′/20

.

Therefore, by taking the union bound over all choices of t and sets X,Y , we see that the probability

of (b) being false is

|A|/224
∑

t=1

(

n

t

)(

n

216t

)(

20 · 216et

n

)tnp′/20

≤

|A|/224
∑

t=1

( en

216t

)217t
(

20 · 216et

n

)tnp′/20

=

|A|/224
∑

t=1

(

( en

216t

)217
(

20 · 216et

n

)np′/20
)t

=

|A|/224
∑

t=1

(

( e

216

)217

· (20 · 216)2
17

(

20 · 216et

n

)(np′/20)−217
)t

.

Since t ≤ n
224 , the summand is maximized at t = 1, and thus by p′ = β logn

n , the probability above

can be bounded by

n · (1 + o(1))n−Ω(log n) = o(1).

To verify Property (c), let X and Y be fixed sets of size |X| = |A|
212

and |Y | = 1
4 |A|. Then since

eG(A) ≥
(|A|

2

)

− 11αn2 (see (4.2)), we have eG(X,Y ) ≥ |X||Y | − 22αn2 ≥ 2−15|A|2 ≥ 2−17n2. Thus

by Chernoff’s inequality, the probability that eH(X,Y ) = 0 is at most e−Ω(n2p′) = e−Ω(βn logn). By

taking the union bound over all pairs of sets X and Y , we obtain (c).

Lemma 4.6. For every fixed positive real β, there exists a constant C = C(β) such that the following

holds for every p ≥ C logn
n : each of the graphs G[A]p and G[A]p a.a.s. complements its every subgraph

with property RE(16 ) that has at most βn log n edges.
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Proof. It suffices to make a slight modification to the proof of Lemma 4.3 to prove this lemma. As in

Lemma 4.5, we only consider the graph G[A]. Fix a graph R with property RE(16 ) that has at most

βn log n edges, and let P be a maximum path in R∪P . Let SP and Tv be given as in Definition 3.1.

Then since eG(A) ≥
(

|A|
2

)

− 11αn2 (see (4.2)), we have

eG(SP , Tv) ≥ |SP | · |Tv| − 22αn2 ≥
|A|2

36
− 22αn2 ≥

n2

200
.

We can proceed exactly as in Lemma 4.3 to conclude our lemma.

Theorem 4.7. There exists a constant C such that the following holds for every p ≥ C logn
n . If G is

a Dirac graph satisfying (ii) of Lemma 2.1, then Gp is a.a.s. Hamiltonian.

Proof. Let β = β4.5 and C = max{β,C4.6(β), 4}. By Lemma 4.5, we know that a.a.s. each Gp[A]

and Gp[A] contains a subgraph that has property RE(16) and at most βn log n edges. Then by

Lemma 4.6, we know that Gp[A] and Gp[A] complement each of their subgraphs with the above

property. Therefore when both events hold, we see by Proposition 3.3 that Gp[A] and Gp[A] are

Hamiltonian connected. It then suffices to show that in Gp a.a.s. there exist two vertex disjoint

edges that connect A and A, since together with the Hamilton connectivity of Gp[A] and Gp[A] this

will imply Hamiltonicity of Gp. In order to prove this, consider the bipartite graph B induced by the

edges of G between A and A, and let Bp = B ∩ Gp. By Hall’s theorem, it suffices to show that Bp

a.a.s. does not have a vertex that dominates all the edges of Bp.

Let v be a fixed vertex and first assume that |A| = |A| = n
2 . Since the minimum degree of G

is at least n
2 , the graph B has minimum degree at least 1. Thus there exist at least n

2 − 1 edges

which are not incident to v, and the probability that all the edges of Bp are incident to v is at most

(1−p)n/2−1 ≤ e−C logn/4. If |A| = n
2 + t for some t > 0, then all the vertices of A have degree at least

⌈t + 1⌉ ≥ 2 in B. Since t ≤ 16αn, the total number of edges in B is at least 2 · (n2 − t) ≥ (1 − 32α)n,

and since the maximum degree of B is at most |A| ≤ (12 +16α)n, the number of edges not incident to

v is at least (1 − 32α)n − (12 + 16α)n ≥ n
3 . Therefore in this case, the probability that all the edges

of Bp are incident to v is at most (1 − p)n/3 ≤ e−C logn/3.

Thus in either of the cases, for a fixed vertex v, the probability that v dominates all the edges

of Bp is at most e−C logn/3. Since C ≥ 4, this probability is o(n−1), and by taking the union bound

over all the vertices, we can conclude that a.a.s. there is no vertex which is incident to all the edges

of Bp. This concludes the proof.

4.3 Third case

Let G be a Dirac graph satisfying the following as in (iii) of Lemma 2.1. There exists a set A of size
n
2 ≤ |A| ≤ (12 + 16α)n such that the bipartite graph induced by the edges between A and A has at

least (14 − 14α)n2 edges and minimum degree at least n
64 . Moreover, either |A| = ⌈n2 ⌉, or the induced

subgraph G[A] has maximum degree at most n
32 . Let V1 = A and V2 = A. Let k = |V1|− |V2| so that

|V1| = n+k
2 , |V2| = n−k

2 , and k ≤ 32αn.

Lemma 4.8. There exists a constant β such that the following holds for every p ≥ β logn
n : Gp a.a.s.

contains a subgraph with property REb(
1
6 ) that has at most βn log n edges.
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Proof. Let β ≥ 128 be a large enough constant. Let p′ = β logn
n and note that p ≥ p′. Let H be a

subgraph of Gp obtained by taking each edge independently with probability p′

p , and note that the

distribution of H is identical to that of Gp′ . Since Gp′ a.a.s. has at most (1+o(1))p′ ·e(G) ≤ βn log n

edges, it suffices to show that Gp′ a.a.s. has property REb(
1
6).

We first show that Gp′ contains at least k vertex disjoint edges in V1. To show this, it suffices to

show that Gp′ [V1] a.a.s. has covering number at least 2k − 1. Since this is trivial for k = 0, we may

assume that k ≥ 1. By the union bound, we can bound the probability that the covering number is

at most 2k − 2 as follows:

∑

X⊂V1,|X|=2k−2

P(V1 \X is an independent set in Gp′). (4.3)

Note that since |V2| = n−k
2 , the induced subgraph G[V1] must have minimum degree at least k

2 .

Moreover, since the graph G[V1] has maximum degree at most n
32 , we can see that for a set X of size

|X| = 2k − 2, the number of edges of G in V1 \X is at least

1

2
·
k

2
· |V1| − (2k − 2)

n

32
≥

kn

8
−

kn

16
=

kn

16
,

and therefore

P(V1 \X is an independent set) ≤ (1 − p)kn/16 ≤ e−knp/16 ≤ n−βk/16.

By using this inequality (note that β ≥ 128), we can bound (4.3) from above by

(

n

2k

)

· n−βk/16 = o(1).

Consequently we a.a.s. have k vertex disjoint edges in Gp′ [V1]. Condition on this event being

true. Arbitrarily pick k vertex disjoint edges in V1 as our special edges SE, and for each such edge,

declare one of its vertices as a special vertex (let SV be the set of special vertices). Note that Gp′

contains a special frame (V1, V2, SV , SE). Let V ′
1 , V ′′

1 be as in the Definition 3.8. We will prove that

for large enough β, conditioned on the special frame, Gp′ a.a.s. has the following two properties:

1. For every X ⊂ V1, if |X| ≤ n
230

, then |N(X)∩V2| ≥ 220|X|, and if |X| ≥ n
215

, then |N(X)∩V2| ≥
3
4 |V2|, and

2. for every Y ⊂ V2, if |Y | ≤ n
230

, then |N(Y )∩V ′′
1 | ≥ 220|Y |, and if |Y | ≥ n

215
, then |N(Y )∩V ′′

1 | ≥
3
4 |V

′′
1 |.

This will be done by establishing the following properties that the bipartite subgraph H of Gp′

containing all the edges of Gp′ between V1, V2 a.a.s. has: (a) minimum degree is at least np′

70 , (b) for

every pair of sets X and Y of sizes |X| ≤ n
230 and |Y | < 220|X|, we have eH(X,Y ) < |X|np′

80 , and

(c) for every pair of sets X and Y of sizes |X| = n
215

and |Y | = n
10 , eH(X,Y ) > 0. To verify (a),

we can use the fact that the bipartite graph induced by the edges between A and A has minimum

degree at least n
64 . The proof of (b) follows from direct application of Chernoff’s inequality and

the union bound. To verify (c), we can use that e(A,A) ≥ (14 − 14α)n2 ≥ |A| · |A| − 14αn2 and
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therefore e(X,Y ) ≥ |X||Y | − 14αn2 ≥ 2αn2. Detailed computation and the derivation of (i), (ii)

from (a), (b), and (c) are similar to that of Lemma 4.2. Once we verify these properties we have

a bipartite-expander with parameters 1
4 and 230 (see Definition 3.13), and by Lemma 3.14, we can

derive that our graph has property RE b(
1
6).

Lemma 4.9. For every fixed positive real β, there exists a constant C = C(β) such that the following

holds for every p ≥ C logn
n : Gp a.a.s. complements every its subgraph with property REb(

1
6 ) that has

at most βn log n edges.

Proof. As in the proof of Lemma 4.6, it suffices to make a slight modification to the proof of Lemma

4.3 to prove this lemma. Fix a graph R with property RE(16) that has at most βn log n edges, and

let P be a maximum path in R ∪ P . Let SP and Tv be given as in Definition 3.1. Then since

eG(A,A) ≥ n2

4 − 14αn2 ≥ |A| · |A| − 14αn2, we have

eG(SP , Tv) ≥ |SP | · |Tv| − 14αn2 ≥
n2

36
− 14αn2 ≥

n2

40
.

We can proceed exactly as in Lemma 4.3 to conclude our lemma.

Theorem 4.10. There exists a constant C such that the following holds for every p ≥ C logn
n . If G

is a Dirac graph satisfying (iii) of Lemma 2.1, then Gp is a.a.s. Hamiltonian.

Proof. Let β = β4.8, and let C = max{β,C4.9(β)}. By Lemma 4.8, we know that Gp a.a.s. contains

a subgraph that has property REb(
1
6) and at most βn log n edges. Then by Lemma 4.9, we know

that Gp a.a.s. complements this subgraph. Therefore when both events hold, we see by Proposition

3.12 that Gp is Hamiltonian.

5 Hamiltonicity game on Dirac graphs

In this section we prove Theorem 1.2. We begin by presenting some standard results and techniques

in positional game theory which we will need later. In 1973, Erdős and Selfridge [17] gave a sufficient

condition for Breaker’s win in a (1 : 1) Maker-Breaker game. Later, Beck [4] generalized this result

and proved the following theorem.

Theorem 5.1. Consider a (p : q) Maker-Breaker game played over some board where F is the

collection of winning sets. If
∑

B∈F

(1 + q)−|B|/p <
1

1 + q
,

then Breaker has a winning strategy.

Suppose that we are playing a (1 : b) Maker-Breaker game over a board V with winning set F ,

and let a be some fixed integer. It is sometimes convenient to partition the board into a boards

V1 ∪ · · · ∪ Va and to play a (1 : ab) game on each board Vi separately. That is, Maker will start

by playing the board V1, and after playing board Vi, in the next round will play board Vi+1 (index

addition is modulo a). Note that after Maker plays the board V1 for the first time, and until playing
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it for the second time, Breaker can claim at most ab elements of V1. Therefore Maker may assume

to his/her disadvantage that he/she is playing a (1 : ab) game on each board as the second player.

If one shows that Maker can claim elements so that certain properties are satisfied for each board,

then by combining these properties, we may show in the end that the Maker’s elements altogether

contain some winning set. When we say that we split the board, we suppose that we partitioned the

board into some fixed number of boards as above.

We will use later the following concentration result (see, e.g., [18, Theorem 2.10]). Let A and A′

be sets such that A′ ⊂ A, and |A| = N , |A′| = m. Let B be a subset of A of size n chosen uniformly

at random. Then the distribution of the random variable |B ∩ A′| is called the hypergeometric

distribution with parameters N,n, and m.

Theorem 5.2. Let ε be a fixed positive constant and let X be a random variable with hypergeometric

distribution with parameters N,n, and m. Then for all t ≥ 0,

P
(

|X − E[X]| ≥ t
)

≤ 2e−2t2/n.

Let G be a Dirac graph, and as in the previous section, we begin by applying Lemma 2.1 with

α = 1
240

and γ = 1
96 to classify Dirac graphs into three types. We will show case by case that Maker

can win a (1 : b) Hamiltonicity Maker-Breaker game played on G if b ≤ cn
logn for some small positive

constant c.

5.1 First case

We first assume that e(A,B) ≥ αn2 for all half-sets A and B as in (i) of Lemma 2.1.

Lemma 5.3. There exist positive reals ε, c, and β the following holds for every b ≤ cn
logn . In a (1 : b)

Maker-Breaker game played on G, Maker can construct a graph M1 with property RE(12 + ε) in the

first βn log n rounds.

Proof. Let ε = min{ε3.5,
(

α
8

)5
} and C = 16ε−3. Let c = min{ 1

42C , α
30}, β = 1

2c , and b0 = cn
logn . We

will show that in a (1 : b0) Maker-Breaker game played on G, Maker can construct a graph with

property RE(12 + ε). If this indeed is true, then since at most βn log n rounds can be played, we can

see that for all b ≤ b0, in a (1 : b) Maker-Breaker game played on G, Maker can construct a graph

M1 with property RE(12 + ε) in the first βn log n rounds. This is because Maker can always trick

himself/herself that he/she is playing a (1 : b0) game, by arbitrarily adding b0−b ‘fake’ Breaker edges.

If Breaker later happens to claim some fake Breaker edge, then Maker will replace that fake edge with

another fake edge which has not yet been claimed. In this way, Maker is essentially playing a (1 : b0)

game, and thus can construct a graph M1 with property RE(12 + ε) in the first
(n
2

)

/b0 ≤ βn log n

rounds.

Let r = C log n and note that by Lemma 3.5, it suffices to show that Maker can construct a

half-expander with parameters ε and r. A naive approach directly using Beck’s criteria (Theorem

5.1) fails for our range of bias, and thus we use the strategy of Krivelevich and Szabó [25]. In this

strategy, we construct an auxiliary hypergraph whose vertex set is the edge set of G, and play a

Maker-Breaker game on this hypergraph. The board is the vertex set of the hypergraph, and the

winning sets are the edges of the hypergraph (to avoid confusion, we name the players of this game
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as NewMaker and NewBreaker). Maker (resp. Breaker) of the original game will play NewBreaker

(resp. NewMaker) in the auxiliary game. By doing so, we wish to establish the fact that Maker can

strategically claim edges so that Maker’s graph satisfies the conditions of a half-expander.

For each ℓ = 1, · · · , n, let Vℓ,1, · · · , Vℓ,ℓ be fixed disjoint vertex subsets of V (G) of size ⌊nℓ ⌋, and

for each index subset J ⊂ [ℓ], let Vℓ,J = ∪j∈JVℓ,j. Let H1,H2 and H3 be hypergraphs that have the

edge set of G as their vertex set. The edge set of H1 is constructed as follows: for each set of vertices

X ⊂ V (G) of size |X| = i ≤ εn
r and each index set J ⊂ [3ri] of size |J | = 2ri, place a hyperedge

consisting of the edges of G that have one endpoint in X, and the other endpoint in V3ri,J \X. Since

G has minimum degree at least n
2 , the size of a hyperedge constructed this way is at least

|X| ·
(

|J | · |V3ri,1| −
n

2
− |X|

)

≥ i ·
(

2ri
( n

3ri
− 1
)

−
n

2
− i
)

≥

(

1

6
− o(1)

)

ni ≥
ni

7
,

and the number of hyperedges of H1 constructed from subsets of vertices of size i is
(

n
i

)(

3ri
2ri

)

. Assume

that Maker claims at least one edge (vertex of the hypergraph) in each of the hyperedges as above.

Then it follows that for each set of vertices X of size at most εn
r , Maker’s graph has |N(X)| > ri =

r|X|, as otherwise, we can find an index set J ⊂ [3ri] of size |J | = 2ri such that there are no edges

which have one endpoint in X and the other endpoint in V3ri,J . Thus in such a situation, Maker’s

graph will satisfy Condition (i) of Definition 3.4.

The edge set of H2 is constructed as follows: for each pair of sets of vertices X,Y ⊂ V (G) of

sizes |X| = n
εr and |Y | = (12 + ε)n, place a hyperedge consisting of the edges of G that have one

endpoint in X, and the other endpoint in Y \X. Since G has minimum degree at least n
2 , the size

of a hyperedge constructed this way is at least

|X| ·
(

|Y | −
n

2
− |X|

)

≥
n

εr
·
(

εn −
n

εr

)

≥
n2

2r
,

and the number of such hyperedges is at most 22n. Moreover, if Maker can claim at least one edge

in each of the hyperedges of H2, then Maker’s graph will satisfy Condition (ii) of Definition 3.4.

For every pair of disjoint sets of vertices X and Y such that |X|, |Y | ≥ (12 − ε1/5)n, let EX,Y be

the set of edges that have one endpoint in X and the other endpoint in Y (edges within X ∩ Y are

counted once). The edge set of H3 is as follows: for every X and Y as above, place a hyperedge over

every subset of EX,Y of size exactly |EX,Y |−2n. Since 3
4αn

2 ≤ αn2−2ε1/5n2 ≤ eG(X,Y ) ≤ n2, each

such hyperedge has size at least |EX,Y | ≥
1
2eG(X,Y )−2n ≥ αn2

3 , and the total number of hyperedges

of H3 is at most

22n ·

(

n2

2n

)

≤ 22n · n4n ≤ e5n logn.

Moreover, if Maker can claim at least one edge in each of the hyperedges of H3, then Maker’s graph

will satisfy Condition (iii) of Definition 3.4.

Let H = H1 ∪H2 ∪H3 and consider a (b0 : 1) Maker-Breaker game played on the hypergraph H

(where we name the players as NewMaker and NewBreaker in order to distinguish the players from

our game). By the arguments above, it suffices to show that the auxiliary game is NewBreaker’s win

in order to establish our lemma. This will be done by using Theorem 5.1 with p = b0 and q = 1. We
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thus would like to show that

3
∑

i=1

∑

e∈E(Hi)

2−|e|/b0 =

3
∑

i=1

∑

e∈E(Hi)

2−|e| logn/(cn) (5.1)

is at most 1
2 . For the hypergraph H1, using the fact c ≤ 1

42C , we have

∑

e∈E(H1)

2−|e|/b0 ≤

εn/r
∑

i=1

(

n

i

)(

3ri

2ri

)

2−ni logn/(7cn) ≤

εn/r
∑

i=1

ni · 23ri · 2−i logn/(7c)

≤

εn/r
∑

i=1

e(3C+1− 1

7c
)i logn ≤

1

4
.

For hypergraphs H2 and H3, using the fact c ≤ min{ 1
42C , α

30}, we have

∑

e∈E(H2)

2−|e|/b0 +
∑

e∈E(H3)

2−|e|/b0 ≤ 22n · 2−n2 logn/(2rcn) + e5n logn · 2−αn2 logn/(3cn)

≤ 22n · 2−n/(2cC) + e5n logn · 2−αn logn/(3c)

≤
1

4
.

Therefore, by combining the two inequalities, we get (5.1) ≤ 1
2 .

Lemma 5.4. For every fixed positive reals ε and β, there exists a positive constant c = c(ε, β)

satisfying the following for every b ≤ cn
logn . In a (1 : b) Maker-Breaker game played on G, if Maker

constructs a graph M1 with property RE(12 + ε) in the first βn log n rounds, then he in the remaining

rounds can construct a graph M2 which complements M1.

Proof. Let c ≤ min{c5.3(ε), ε2

2β ,
ε
8}. Note that since we played βn log n rounds to construct M1, the

number of edges claimed so far is at most cβn2 + βn log n ≤ 2cβn2 ≤ ε2n2. Let P be a path with a

fixed edge e such that there is no path longer than P containing e in the graph P ∪M1. Then there

exists a set SP ⊂ V (P ) of size |SP | ≥ (12 + ε)n such that for every v ∈ SP there exists a set Tv of

size |Tv | ≥ (12 + ε)n such that for all w ∈ Tv, there exists a path of the same length as P containing

e, starting at v and ending at w.

Since G has minimum degree at least n
2 , we know that for each vertex v ∈ SP , at least εn vertices

in Tv form an edge with v in the graph G. Since at most ε2n2 edges have been claimed so far, in

total we have at least
1

2
·

((

1

2
+ ε

)

n · εn− ε2n2

)

≥
ε

4
n2

edges such that if Maker can claim at least one of these edges, then he can extend P . Consequently, if

Maker can do this for all paths P , then we prove our lemma (the factor 1
2 comes from the fact that the

same pair (v,w) can be counted at most twice, once as v ∈ SP , w ∈ Tw and once as w ∈ SP , v ∈ Tw).

There are at most n2 · n! paths that we need to consider, and for each path we have ε
4n

2 edges

where Maker has to claim at least one of these edges. Consider the following Maker-Breaker game
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(where we name the players as NewMaker and NewBreaker in order to distinguish the players from

our game). The board is defined as the edges which have not been claimed in the first βn log n

rounds. The winning sets are defined as sets of at least ε
4n

2 edges for each non-extendable path

P with a fixed edge which we described above. Note that there are at most n2 · n! winning sets.

It suffices to show that NewBreaker wins this new game, since our Maker will play NewBreaker’s

role here (thus he/she wants to claim at least one edge from each of the winning sets). We can use

Beck’s criterion, Theorem 5.1, with p = cn
logn and q = 1 to see that the newly defined game is indeed

NewBreaker’s win since c ≤ ε
8 :

∑

B∈F

2−|B|/p ≤ n2 · n! · 2−(ε/4)n2/(cn/ logn) < en logn2−(ε/(4c))n logn <
1

2
.

Theorem 5.5. There exists a constant c such that the following holds for every b ≤ cn
logn . If G is a

Dirac graph satisfying (i) of Lemma 2.1, then Maker has a winning strategy for the (1 : b)-Maker-

Breaker Hamiltonicity game.

Proof. Let ε = ε5.3, β = β5.3 and let c = min{c5.3, c5.4(ε, β)}. By Lemma 5.3, Maker can construct

a graph M1 with property RE(12 + ε) in the first βn log n rounds. Then by Lemma 5.4, Maker can

construct a graph M2 which complements G1 in the remaining rounds. Therefore by Proposition

3.3, Maker can construct a Hamilton cycle and win the game.

5.2 Second case

We assume that there exists a set A of size n
2 ≤ |A| ≤ (12 + 16α)n such that e(A,A) ≤ 6αn2, and the

induced subgraphs on both A and A have minimum degree at least n
5 , as in (ii) of Lemma 2.1. The

same computation as in (4.2) shows that

e(A) ≥

(

|A|

2

)

− 11αn2 and e(A) ≥

(

|A|

2

)

− 6αn2. (5.2)

Lemma 5.6. There exist positive reals c and β satisfying the following for every positive b ≤ cn
logn .

In a (1 : b) Maker-Breaker game played on the board G[A], Maker can construct a graph with property

RE(16 ) in the first βn log n rounds (similar for G[A]).

Proof. Let c be a small enough constant depending on α. Let β = 1
2c and b0 = cn

logn . We will show

that in a (1 : b0) Maker-Breaker game played on G[A], Maker can construct a graph with property

RE(12 + ε) (similar proof can be used to establish the statement for G[A]). As in Lemma 5.3, this

will imply that for all b ≤ b0, in a (1 : b) Maker-Breaker game played on G, Maker can construct a

graph M1 with property RE(16 ) in the first βn log n rounds. Note that by Lemma 3.16, it suffices to

show that Maker can construct a half-expander with parameters 1
4 and r = 220. We will construct

an auxiliary hypergraph whose vertex set is the edge set of G, and play a Maker-Breaker game on

this hypergraph (we name the players of this game as NewMaker and NewBreaker). Maker (resp.

Breaker) of the original game will play NewBreaker (resp. NewMaker) in the auxiliary game.
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For each ℓ = 1, · · · , n, let Vℓ,1, · · · , Vℓ,ℓ be fixed disjoint vertex subsets of V (G) of size ⌊ |A|
ℓ ⌋, and

for each index subset J ⊂ [ℓ], let Vℓ,J = ∪j∈JVℓ,j. Let H1 and H2 be hypergraphs that have the edge

set of G as their vertex set. The edge set of H1 is constructed as follows: for each set of vertices

X ⊂ V (G) of size |X| = i ≤ n
r3/2

and each index set J ⊂ [10ri] of size |J | = 9ri, place a hyperedge

consisting of the edges of G that have one endpoint in X, and the other endpoint in V10ri,J \ X.

Since G has minimum degree at least n
5 , the size of a hyperedge constructed this way is at least

|X| ·
(

|J | · |V10ri,1| − (|A| −
n

5
) − |X|

)

≥ i ·

(

9ri
( |A|

10ri
− 1
)

−
4|A|

5
− i

)

≥
|A|i

11
,

and the number of hyperedges of H1 constructed from subsets of vertices of size i is
(|A|

i

)(10ri
9ri

)

.

Assume that Maker claims at least one edge (vertex of the hypergraph) in each of the hyperedges

as above. Then it follows that for each set of vertices X of size at most |A|

r3/2
, Maker’s graph has

|N(X)| > ri = r|X|, as otherwise, we can find an index set J ⊂ [10ri] of size |J | = 9ri such that

there are no edges which have one endpoint in X and the other endpoint in V10ri,J . Thus in such a

situation, Maker’s graph will satisfy Condition (i) of Definition 3.15.

The edge set of H2 is constructed as follows: for each pair of sets of vertices X,Y ⊂ V (G) of sizes

|X| = |A|

r3/4
and |Y | = |A|

4 , place a hyperedge consisting of the edges of G that have one endpoint in

X, and the other endpoint in Y \ X. By (5.2), the size of a hyperedge constructed this way is at

least

|X| · (|Y | − |X|) − 11αn2 ≥
|A|

215
·

(

|A|

4
−

|A|

215

)

− 11αn2 ≥
|A|2

220
,

and the number of such hyperedges is at most 22n. Moreover, if Maker can claim at least one edge

in each of the hyperedges of H2, then Maker’s graph will satisfy Condition (ii) of Definition 3.15.

Let H = H1 ∪ H2 and consider a (b0 : 1) Maker-Breaker game played on the hypergraph H

(where we name the players as NewMaker and NewBreaker in order to distinguish the players from

our game). By the observations above, it suffices to show that the auxiliary game is NewBreaker’s

win in order to establish our lemma. This can be done by using Theorem 5.1 with p = b0 and q = 1,

given that c is small enough. We omit the detailed computation.

Lemma 5.7. For every fixed positive real β, there exists a constant c = c(β) such that the following

holds for every positive b ≤ cn
logn . In a (1 : b) Maker-Breaker game played on the board G[A],

suppose that Maker constructed a graph with property RE(16 ) in the first βn log n rounds. Then he

can construct a graph that complements it in the remaining rounds (similar for G[A]).

Proof. We will only prove the statement for G[A], since the statement for G[A] can be proved

similarly. Let c ≤ αβ−1 be a small enough constant. Let M1 be the Maker’s graph constructed in

the first βn log n rounds. Note that the number of edges that have been claimed in the first βn log n

rounds is at most cβn2 + βn log n ≤ 2cβn2. Let G′ be the graph of the edges that have not been

claimed by Breaker so far. Let P be a path over a subset of vertices of A, with a fixed edge e such

that there is no path longer than P containing e in the graph P ∪M1. Then there exists a set SP ⊂ P

of size |SP | ≥
|A|
6 such that for every v ∈ SP there exists a set Tv of size |Tv| ≥

|A|
6 such that for all

w ∈ Tv, there exists a path of the same length as P containing e, starting at v and ending at w. By
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(5.2), we have

eG′(SP , Tv) ≥ |SP | · |Tv| − 11αn2 − 2cβn2 ≥
|A|2

36
− 13αn2 ≥

n2

200
.

Using this estimate, we can proceed as in Lemma 5.4 to finish the proof. We omit the details.

By using the two lemmas above, we can show that Maker can win the Hamiltonicity game in this

case as well.

Theorem 5.8. There exists a constant c such that the following holds for every positive b ≤ cn
logn . If

G is a Dirac graph satisfying (ii) of Lemma 2.1, then Maker has a winning strategy for the (1 : b)-

Maker-Breaker Hamiltonicity game.

Proof. Let β = β5.6, and c = 1
3 min{c5.6, c5.7(β)}. We split the board into three boards, G[A], G[A],

and the subgraph induced by the edges between A and A (call the last one the bipartite board B).

To Maker’s disadvantage, we will separately play a (1 : 3b) game on each board, and show that

Maker can play the three games so that in the end, the union of Maker’s graphs in the three

boards is Hamiltonian. By Lemma 5.6, we know that Maker can construct subgraphs of G[A] and

G[A] which have property RE(16 ) in the first βn log n rounds of each board. Then by Lemma 5.7,

Maker can construct graphs that complement these subgraphs in the remaining rounds of each

board. Therefore, by Proposition 3.3, Maker can construct subgraphs of G[A] and G[A] which are

Hamiltonian connected. Thus it suffices to show that Maker can claim two vertex disjoint edges in

the bipartite board, since together with the Hamilton connectivity of Maker’s graph in G[A] and

G[A], this will imply Hamiltonicity of Maker’s graph.

Consider the bipartite board B. We will consider two cases depending on the sizes of A and A.

First assume that |A| = |A| = n
2 . Then since the minimum degree of G is at least n

2 , the graph B

has minimum degree at least 1. If there is no vertex in A of degree at least n
3 in B, then Maker

starts by claiming an arbitrary edge {v,w} of B such that v ∈ A,w ∈ A. Breaker can then claim

at most 2cn
logn other edges before Maker’s next move since Breaker might have been the first player.

Afterwards, since B has minimum degree at least 1, we can see that there exists at least n
2 − 1− 2cn

logn

vertices other than w in A which have at least 1 non-claimed edge incident to it. Among them,

at most n
3 can be incident to v. Therefore Maker can claim an edge {v′, w′} such that v 6= v′ and

w 6= w′. Similarly, we can take care of the case when A has no vertex of degree at least n
3 . Thus we

may assume that there exist vertices v0 ∈ A and w0 ∈ A such that v0 and w0 have degree at least
n
3 . In this case, Maker in the first round claims an edge incident to v0 which is not {v0, w0}, and in

the second round claims an edge incident to w0 which is not {v0, w0} (this can be done since Maker

cannot claim all the edges incident to w0 in two rounds). Thus Maker can claim two vertex-disjoint

edges in this case.

Second, assume that |A| = n
2 + t for t > 0. Then all the vertices of A have degree at least

⌈t + 1⌉ ≥ 2 in B. Maker starts by claiming an arbitrary edge {v,w}. Note that since all the vertices

in A have degree at least 2, there are at least

|A| − 1 ≥
(1

2
− 16α

)

n− 1 ≥
n

3
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edges remaining which are not incident to {v,w}. Breaker cannot claim all of these edges in two

rounds, and thus Maker can claim one such edge in the next round to achieve his/her goal. This

concludes the proof.

5.3 Third case

We assume that there exists a set A of size n
2 ≤ |A| ≤ (12 + 16α)n such that the bipartite graph

induced by the edges between A and A has at least (14 − 14α)n2 edges and minimum degree at least
n
192 . Moreover, either |A| = ⌈n2 ⌉, or the induced subgraph G[A] has maximum degree at most n

96 .

Let V1 = A and V2 = A. Let k = |V1| − |V2| so that |V1| = n+k
2 , |V2| = n−k

2 , and k ≤ 32αn.

Lemma 5.9. There exist positive reals c and β such that the following holds for every b ≤ cn
logn . In

a (1 : b) Maker-Breaker game played on G, Maker can construct a graph with property REb(
1
6) in the

first βn log n rounds.

Proof. Let β be a large enough positive constant. Let ε = min{ 1
150β ,

1
240} and c ≤ ε

2β be small

enough. We start by splitting the board into two boards G[V1], and the bipartite graph induced by

the edges between V1 and V2 (which we refer to as the bipartite board B). We first show that on the

board G[V1], Maker can claim at least 2k vertex disjoint edges. We only need to consider the cases

when k ≥ 1 since otherwise the claim is trivial. Suppose that Maker has claimed t vertex disjoint

edges after t rounds for some t < 2k. Note that since |V2| = n−k
2 , the induced subgraph G[V1] has

minimum degree at least k
2 . Since the graph G[V1] has maximum degree at most n

96 , the number of

non-claimed edges not incident to any of the t edges that Maker has claimed so far is at least

1

2
·
k

2
·
n

2
− 2t ·

n

96
− (t + 1) ·

cn

log n
≥

nk

24
. (5.3)

Maker chooses an arbitrary edge out of these edges. In the end, Maker can claim at least 2k vertex-

disjoint edges in the board G[V1].

On the board B, one can show that there exists a constant C which goes to infinity as c goes to

zero, such that for s = C log n, Maker can construct a graph satisfying the following:

1. For all X ⊂ V1,

(a) if |X| ≤ n
s3/2

, then |N(X) ∩ V2| ≥ s|X|,

(b) if n
s3/4

≤ |X| ≤ n
230

, then |N(X) ∩ V2| ≥
n
200 ,

(c) if n
230 ≤ |X|, then |N(X) ∩ V2| ≥

7
8 |V2|.

2. For all Y ⊂ V2,

(a) if |Y | ≤ n
s3/2

, then |N(Y ) ∩ V1| ≥ s|Y |,

(b) if n
s3/4

≤ |Y | ≤ n
230

, then |N(Y ) ∩ V1| ≥
n
200 ,

(c) if n
230

≤ |Y |, then |N(Y ) ∩ V1| ≥
7
8 |V1|.

To prove 1(a), 1(b), 2(a), 2(b), we can use the fact that the bipartite board has minimum degree at

least n
192 , and to prove 1(c), 2(c), we can use the fact that e(A,A) ≥ (14 −14α)n2. We omit the details

which are similar to those of Lemmas 5.3 and 5.6.
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It then suffices to show that one can carefully choose k of the edges within G[V1] as the special

edges so that we can find a special frame, with respect to which Maker’s graph is a bipartite-expander

with certain parameters. Recall that Maker claimed at least 2k vertex-disjoint edges on the board

G[V1]. Call these candidate edges. Uniformly at random choose k edges among the candidate edges,

and declare them as our special edges SE. For each such edge, declare one of its vertices as a special

vertex (let SV be the set of special vertices). This forms a special frame (V1, V2, SV , SE) of Maker’s

graph. We now verify that Maker’s graph is a bipartite-expander with parameters ǫ = 1
4 and r = 220

with respect to this frame.

Condition (i) of Definition 3.13 easily follows from 1(a), 1(b), and 1(c) given above. Let V ′′
1 be

as in Definition 3.8. Fix a set Y ⊂ V2 of size at most n
s3/2

, and note that |N(Y ) ∩ V1| ≥ s|Y |. We

can find a subset NY of N(Y )∩ V1 of size at least s
2 |Y | such that each candidate edge intersects NY

in at most one vertex. Note that if |NY ∩ V (SE)| < s
3 |Y |, then |N(Y )∩ V ′′

1 | ≥ |NY \ V (SE)| ≥ s
6 |Y |.

Since we randomly chose the special edges and the probability that each edge is chosen is at most 1
2 ,

the probability that |NY ∩V (SE)| ≥ s
3 |Y | is, by the concentration of hypergeometric distribution, at

most e−Ω(s|Y |). By taking the union bound over all possible choices of Y , we see that the probability

that there exists a set Y for which |NY ∩V (SE)| ≥ s
3 |Y | is (for small enough c, and thus large enough

C) at most

n/s3/2
∑

i=1

(

n

i

)

e−Ω(is) ≤

n/s3/2
∑

i=1

nin−Ω(Ci) ≤

n/s3/2
∑

i=1

n−i = o(1).

Consequently, we can choose SV and SE so that |N(Y )∩V ′′
1 | ≥

s
6 |Y | for all Y . Consider a set Y ⊂ V2

of size between n
s3/2

and n
s3/4

. For an arbitrary subset Y ′ ⊂ Y of size n
s3/2

, as we explained above,

|N(Y ) ∩ V ′′
1 | ≥ |N(Y ′) ∩ V ′′

1 | ≥
s

6
|Y ′| =

n

6s1/2
≥

s1/4

6
|Y | > 220|Y |.

In the case Y ⊂ V2 is of size between n
s3/4

and n
230

, we use the fact |N(Y ) ∩ V1| ≥
n
200 . In this case,

using that α = 2−40, we have that

|N(Y ) ∩ V ′′
1 | ≥ |N(Y ) ∩ V1| − 2k ≥

n

200
− 64αn ≥

n

300
≥ 220|Y |.

Therefore the first part of Condition (ii) of Definition 3.13 holds. To establish the second part, let

Y ⊂ V2 be a set of size at least n
215

. For an arbitrary choice of SE, we have

|N(Y ) ∩ V ′′
1 | ≥ |N(Y ) ∩ V1| − 2k ≥

7

8
|V1| − 64αn ≥

3

4
|V1|,

and this gives the second part of Condition (ii) of Definition 3.13 as well. Thus Maker’s graph is a

bipartite-expander with parameters 1
4 and 220, and by Lemma 3.14, it follows that Maker’s graph

has property REb(
1
6 ).

Lemma 5.10. For every positive real β, there exists a positive constant c = c(β) such that the

following holds for every b ≤ cn
logn . In a (1 : b) Maker-Breaker game played on G, if Maker constructs

a graph with property REb(
1
6 ) in the first βn log n rounds, then he can construct in the remaining

rounds a graph that complements it.
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Proof. Let c ≤ αβ−1 be a small enough constant. Let M1 be the Maker’s graph constructed in the

first βn log n rounds. Note that the number of edges that have been claimed in the first βn log n

rounds is at most cβn2 + βn log n ≤ 2cβn2. Let G′ be the graph induced by the edges that have not

been claimed by Breaker so far. Let P be a proper path such that there is no path longer than P in

the graph P ∪M1. Then there exists a set SP ⊂ V2 of size |SP | ≥
n
6 such that for every v ∈ SP there

exists a set Tv ⊂ V1 of size |Tv| ≥
n
6 such that for all w ∈ Tv, there exists a path of the same length

as P starting at v and ending at w. By the fact e(A,A) ≥ (14 − 14α)n2 ≥ |A| · |A| − 14αn2, we have

eG′(SP , Tv) ≥ |SP | · |Tv| − 14αn2 − 2cβn2 ≥
n2

36
− 16αn2 ≥

n2

40
.

Using this estimate, we can proceed as in Lemma 5.4 to finish the proof. We omit the details.

Theorem 5.11. There exists a constant c such that the following holds for every b ≤ cn
logn . If G is a

Dirac graph satisfying (iii) of Lemma 2.1, then Maker has a winning strategy for the (1 : b)-Maker-

Breaker Hamiltonicity game.

Proof. Let β = β5.9, and c = min{c5.9, c5.10(β)}. By Lemma 5.9, Maker can construct a graph with

property RE b(
1
6) in the first βn log n rounds. Then by Lemma 5.10, Maker can construct a graph

which complements it in the remaining rounds. Therefore by Proposition 3.12, Maker can construct

a Hamilton cycle and win the game.

6 Concluding Remarks

As we mentioned in the introduction, several measures of robustness of graphs with respect to various

graph properties have already been considered before. In this paper, we propose two new measures,

and strengthen Dirac’s theorem according to these measures. Our first result asserts that there exists

a constant C such that for p ≥ C logn
n and an arbitrary Dirac graph G on n vertices, if one takes its

edges independently at random with probability p, then the resulting graph is a.a.s. Hamiltonian.

Our second theorem says that if one plays a (1 : b) Maker-Breaker game on a Dirac graph, then the

critical bias for Maker’s win is of order of magnitude n
logn . We proved both of these theorems under

one general framework.

It is worth comparing our results with two previous robustness results on Dirac graphs. Given

a graph G, let h(G) be the number of Hamilton cycles in G. Cuckler and Kahn [14], confirming a

conjecture of Sárközy, Selkow, and Szemerédi [30], proved that h(G) ≥ n!
(2+o(1))n holds for every Dirac

graph G. Since the expected number of Hamilton cycles in the graph Gp is h(G)pn, our first result

which implies h(G)pn ≥ 1 for p ≥ C logn
n , recovers a slightly weaker inequality h(G) ≥

(

n
C logn

)n
.

Another result of Lee and Sudakov [26] states that for p ≫ logn
n , every subgraph of G(n, p) of

minimum degree at least
(

1
2 + o(1)

)

np contains a Hamilton cycle. Even though there is no direct

implication between that result and our result, they are nevertheless very closely related. Indeed,

the result in [26] is similar in spirit to a slightly weaker version of our theorem, which says that for

every fixed positive real ε and every graph G of minimum degree at least
(

1
2 + ε

)

n, the graph Gp is

a.a.s. Hamiltonian, since the resulting graph can be considered as a subgraph of G(n, p) of minimum

degree at least
(

1
2 + ε

2

)

np.
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We believe that two new measures of robustness that we proposed in this paper, taking a random

subgraph, and playing a Maker-Breaker game, can be used to further study many other classical

Extremal Graph and Hypergraph Theory results as well.
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