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JÓZSEF BALOGH, ROBERT MORRIS, AND WOJCIECH SAMOTIJ

Abstract. Many important theorems and conjectures in combinatorics, such as the the-
orem of Szemerédi on arithmetic progressions and the Erdős-Stone Theorem in extremal
graph theory, can be phrased as statements about families of independent sets in certain
uniform hypergraphs. In recent years, an important trend in the area has been to extend
such classical results to the so-called ‘sparse random setting’. This line of research has
recently culminated in the breakthroughs of Conlon and Gowers and of Schacht, who de-
veloped general tools for solving problems of this type. Although these two papers solved
very similar sets of longstanding open problems, the methods used are very different from
one another and have different strengths and weaknesses.

In this paper, we provide a third, completely different approach to proving extremal
and structural results in sparse random sets that also yields their natural ‘counting’ coun-
terparts. We give a structural characterization of the independent sets in a large class of
uniform hypergraphs by showing that every independent set is almost contained in one of
a small number of relatively sparse sets. We then derive many interesting results as fairly
straightforward consequences of this abstract theorem. In particular, we prove the well-
known conjecture of Kohayakawa,  Luczak, and Rödl, a probabilistic embedding lemma for
sparse graphs, for all 2-balanced graphs. We also give alternative proofs of many of the
results of Conlon and Gowers and Schacht, such as sparse random versions of Szemerédi’s
theorem, the Erdős-Stone Theorem and the Erdős-Simonovits Stability Theorem, and ob-
tain their natural ‘counting’ versions, which in some cases are considerably stronger. We
also obtain new results, such as a sparse version of the Erdős-Frankl-Rödl Theorem on the
number of H-free graphs and, as a consequence of the K LR conjecture, we extend a re-
sult of Rödl and Ruciński on Ramsey properties in sparse random graphs to the general,
non-symmetric setting. Similar results have been discovered independently by Saxton and
Thomason.

1. Introduction

A great many of the central questions in combinatorics fall into the following general
framework: Given a finite set V and a collection H ⊆ P(V ) of forbidden structures, what
can be said about sets I ⊆ V that do not contain any member of H? For example, the
celebrated theorem of Szemerédi [62] states that if V = {1, . . . , n} and H is the collection of
k-term arithmetic progressions in {1, . . . , n}, then every set I that contains no member of H
satisfies |I| = o(n). The archetypal problem studied in extremal graph theory, dating back
to the work of Turán [64] and Erdős and Stone [18], is the problem of characterizing such
sets I when V is the edge set of the complete graph on n vertices and H is the collection of

Date: May 2, 2012.
Research supported in part by: (JB) NSF CAREER Grant DMS-0745185, UIUC Campus Research

Board Grant 11067, and OTKA Grant K76099; (RM) CNPq bolsa de Produtividade em Pesquisa; (WS)
ERC Advanced Grant DMMCA and a Trinity College JRF.

1
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copies of some fixed graph H in Kn. In this setting, a great deal is known, not only about
the maximum size of I that contains no member of H, but also what the largest such sets
look like, how many such sets there are, and what the structure of a typical such set is.

A collection H ⊆ P(V ) as above is usually referred to as a hypergraph on the vertex
set V and any set I ⊆ V that contains no element (edge) of H is called an independent
set. Therefore, one might say that a large part of extremal combinatorics is concerned with
studying independent sets in various specific hypergraphs. We might add here that in many
natural settings, such as the two mentioned above, the hypergraphs considered are uniform,
that is, all edges of H have the same size.

Although it might at first seem somewhat artificial to study concrete questions in such
abstract setting, the past few years have proved that taking such a general approach can be
highly beneficial. The recently-proved general transference theorems of Conlon and Gow-
ers [12] and Schacht [58], which imply, among other things, sparse random analogues of
the classical theorems of Szemerédi and of Erdős and Stone, were stated in the language
of hypergraphs. Roughly speaking, these transference theorems say that if the edges of a
hypergraph H are sufficiently uniformly distributed, then the independence number of H
is ‘well-behaved’ with respect to taking subhypergraphs induced by (sufficiently dense) ran-
dom subsets of the vertex set. More precisely, given p ∈ [0, 1] and a finite set V , we shall
write Vp to denote the p-random subset of V , that is, the random subset of V in which each
element of V is included with probability p, independently of all other elements. We write
α(H) and v(H) to denote the size of the largest independent set and the number of vertices
in a hypergraph H, respectively. The results of Conlon and Gowers [12] and Schacht [58]
imply, in particular, that if the distribution of the edges of some uniform hypergraph H is
sufficiently ‘balanced’, then with probability tending to 1 as v(H)→∞,

α
(
H[V (H)p]

)
6 pα(H) + o

(
pv(H)

)
,

provided that p is sufficiently large.
In this work, we give an approximate structural characterization of the family of all in-

dependent sets in uniform hypergraphs whose edge distribution satisfies a certain natural
boundedness condition. More precisely, we shall prove that the independent sets of each
such hypergraph H exhibit a certain clustering phenomenon. Our main result, Theorem 2.2
below, states that the family I(H) of independent sets in H admits a partition into relatively
few classes such that all members of each class are essentially contained in a single subset of
V (H) that is almost independent, that is, it contains only a tiny proportion of all the edges
of H. This somewhat abstract statement has surprisingly many deep and interesting conse-
quences, some of which we list in the remainder of this section. We remark that Theorem 2.2
was partly inspired by the work of Kleitman and Winston [37], who implicitly considered
a statement of this type in the setting of graphs (2-uniform hypergraphs) and subsequently
used it to bound the number of n-vertex graphs without a 4-cycle. We also note that a result
similar to Theorem 2.2 was independently proved by Saxton and Thomason [57], who also
use it to derive many of the statements that we present in Sections 1.1–1.3.

1.1. The number of sets with no k-term arithmetic progression. The celebrated
theorem of Szemerédi [62] says that for every k ∈ N, the largest subset of {1, . . . , n} that
contains no k-term arithmetic progression (AP) has o(n) elements. It immediately follows
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that there are only 2o(n) subsets of {1, . . . , n} with no k-term AP. Our first result can be
viewed as a sparse analogue of this statement.

Theorem 1.1. For every positive β and every k ∈ N, there exist constants C and n0 such
that the following holds. For every n ∈ N with n > n0, if m > Cn1−1/(k−1), then there are at
most (

βn

m

)
m-subsets of {1, . . . , n} that contain no k-term AP.

We shall deduce Theorem 1.1 from our main theorem, Theorem 2.2, and a robust version
of Szemerédi’s theorem, see Section 4. The sparse random analogue of Szemerédi’s theorem,
proved by Schacht [58] and independently by Conlon and Gowers [12], follows as an easy
corollary of Theorem 1.1. Following [12], we shall say that a set A ⊆ N is (δ, k)-Szemerédi
if every subset B ⊆ A with at least δ|A| elements contains a k-term AP. For the sake of
brevity, let [n] = {1, . . . , n} and recall that [n]p denotes the p-random subset of [n].

Corollary 1.2. For every δ ∈ (0, 1) and every k ∈ N, there exists a constant C such that
the following holds. If pn > Cn−1/(k−1) for all sufficiently large n, then

lim
n→∞

P
(
[n]pn is (δ, k)-Szemerédi

)
= 1.

We remark that Theorem 1.1 and Corollary 1.2 are both sharp up to the value of the
constant C, see the discussion in Section 4, where both of these statements are proved.

Our main result has a variety of other applications in additive combinatorics, see for
example [1, 2] where, jointly with Alon, we used a much simpler version of it to count sum-
free sets of fixed size in various Abelian groups and the set [n]. In Section 4, we shall mention
two other applications: a generalization of Theorem 1.1 to higher dimensions and a sparse
counting version of a theorem of Sárközy [56] and (independently) Furstenberg [24] on square
differences in the integers. In each case, the random version (which was proved in [12, 58])
follows as an easy corollary.

1.2. Turán’s problem in random graphs. A famous theorem of Erdős and Stone [18]
states that the maximum number of edges in an H-free graph on n vertices, the Turán
number for H, denoted ex(n,H), satisfies

ex(n,H) =

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
, (1)

where χ(H) is the chromatic number of H. The analogue of this theorem for the Erdős-
Rényi random graph G(n, p) was first studied by Babai, Simonovits, and Spencer [4], who
proved that asymptotically almost surely (a.a.s. for short), i.e., with probability tending
to 1 as n → ∞, the largest triangle-free subgraph of G(n, 1/2) is bipartite, and by Frankl
and Rödl [20], who proved that if p > n−1/2+ε then a.a.s. the largest triangle-free subgraph
of G(n, p) has n2/8 + o(n2) edges. The systematic study of the Turán problem in G(n, p)
was initiated by Haxell, Kohayakawa, and  Luczak [33, 34] and by Kohayakawa,  Luczak, and
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Rödl [41], who posed the following problem. For a fixed graph H, determine necessary and
sufficient conditions on a sequence p ∈ [0, 1]N of probabilities such that, a.a.s.,

ex
(
G(n, pn), H

)
=

(
1− 1

χ(H)− 1
+ o(1)

)(
n

2

)
pn, (2)

where ex(G,H) denotes the maximum number of edges in an H-free subgraph of G.
By considering a random (χ(H)−1)-partition of the vertex set of G(n, p), it is straightfor-

ward to show that the inequality ex
(
G(n, p), H

)
>
(

1− 1
χ(H)−1

+ o(1)
) (

n
2

)
p holds for every

p ∈ [0, 1]. On the other hand, if the number of copies of some subgraph H ′ ⊆ H in G(n, p)
is much smaller than the number of edges in G(n, p), then the converse inequality cannot
hold, since one can make any graph H-free by removing from it one edge from each copy of
H ′. This observation motivates the notion of 2-density of H, denoted by m2(H), which is
defined by

m2(H) = max

{
e(H ′)− 1

v(H ′)− 2
: H ′ ⊆ H with v(H ′) > 3

}
. (3)

It now follows easily that for every graph H with maximum degree at least 2 and every
δ ∈

(
0, 1/(χ(H) − 1)

)
, there exists a positive constant c such that if pn 6 cn−1/m2(H), then

a.a.s.

ex
(
G(n, pn), H

)
>

(
1− 1

χ(H)− 1
+ δ

)(
n

2

)
pn.

It was conjectured by Haxell, Kohayakawa, and  Luczak [33] and Kohayakawa,  Luczak, and
Rödl [41] that the above simple argument, removing an arbitrary edge from each copy of
H ′ in G(n, p), is the main obstacle that prevents (2) from holding asymptotically almost
surely. The conjecture, often referred to as Turán’s theorem for random graphs, has attracted
considerable attention in the past fifteen years. Numerous partial results and special cases
had been established by various researchers [21, 26, 29, 33, 34, 41, 43, 61] before the conjecture
was finally proved by Conlon and Gowers [12] (under the assumption that H is strictly 2-
balanced1) and by Schacht [58].

Theorem 1.3. For every graph H with ∆(H) > 2 and every positive δ, there exists a positive
constant C such that if pn > Cn−1/m2(H), then a.a.s.

ex
(
G(n, pn), H

)
6

(
1− 1

χ(H)− 1
+ δ

)(
n

2

)
pn.

Our methods give yet another proof of Theorem 1.3 in the case when H is 2-balanced.
Note that most natural graphs, such as cycles and cliques, are 2-balanced. In fact, we shall
deduce from our main result, Theorem 2.2, a version of the general transference theorem of
Schacht [58, Theorem 3.3], which easily implies Theorem 1.3 for such graphs H. Our version
of Schacht’s transference theorem, Theorem 5.2, is stated and proved in Section 5. We then,
in Section 7, use it to derive a natural generalization of Theorem 1.3 to t-balanced t-uniform
hypergraphs, Theorem 7.2, which was also first proved in [12] and [58].

1A graph H is 2-balanced if the maximum in (3) is achieved with H ′ = H, that is, if m2(H) = e(H)−1
v(H)−2 .

It is strictly 2-balanced if m2(H) > m2(H ′) for every proper subgraph H ′ ( H.
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Our methods also yield the following sparse random analogue of the famous stability
theorem of Erdős and Simonovits [14, 60], originally proved by Conlon and Gowers [12] in
the case when H is strictly 2-balanced and then extended to arbitrary H by Samotij [55],
who adapted the argument of Schacht [58] for this purpose.

Theorem 1.4. For every 2-balanced graph H with ∆(H) > 2 and every positive δ, there
exist positive constants C and ε such that if pn > Cn−1/m2(H), then a.a.s. the following holds.
Every H-free subgraph of G(n, pn) with at least(

1− 1

χ(H)− 1
− ε
)(

n

2

)
pn

edges may be made (χ(H)− 1)-partite by removing from it at most δn2pn edges.

Similarly as with Theorem 1.3, we shall in fact deduce Theorem 1.4 from a more general
statement, Theorem 6.2, which is a version of the general transference theorem for stability
results proved in [55]. Theorem 6.2 is stated and proved in Section 6; in Section 7, we use it
to derive Theorem 1.4.

1.3. The typical structure of H-free graphs. Let H be an arbitrary non-empty graph.
We say that a graph G is H-free if G does not contain H as a subgraph. For an integer
n, denote by fn(H) the number of labeled H-free graphs on the vertex set [n]. Since every
subgraph of an H-free graph is also H-free, it follows that fn(H) > 2ex(n,H). Erdős, Frankl,
and Rödl [15] proved that this crude lower bound is in a sense tight, namely that

fn(H) = 2ex(n,H)+o(n2). (4)

Our next result can be viewed as a ‘sparse version’ of (4). Such a statement was already
considered by  Luczak [45], who derived it from the so-called K LR conjecture, which we
discuss in the next subsection. For integers n and m with 0 6 m 6

(
n
2

)
, let fn,m(H) be

the number of labeled H-free graphs on the vertex set [n] that have exactly m edges. The
following theorem refines (4) to n-vertex graphs with m edges.

Theorem 1.5. Let H be a 2-balanced graph and let δ be a positive constant. There exists a
constant C such that for every n ∈ N, if m > Cn2−1/m2(H), then(

ex(n,H)

m

)
6 fn,m(H) 6

(
ex(n,H) + δn2

m

)
.

In fact, we shall deduce from our main result, Theorem 2.2, a ‘counting version’ of the
general transference theorem of Schacht [58, Theorem 3.3], which easily implies Theorem 1.5.
This ‘counting version’ of Schacht’s theorem is stated and proved in Section 5. We then use
it to derive Theorem 1.5 in Section 8. We remark that (4) was refined in a different sense

by Balogh, Bollobás, and Simonovits [5], who showed that fn(H) = 2ex(n,H)+O(n2−c(H)), where
c(H) is some positive constant, and also gave a very precise structural description of almost
all H-free graphs. We would also like to point out that our proof of Theorem 1.5 does not use
Szemerédi’s regularity lemma, unlike the proof given in [45] or the proofs of Erdős, Frankl,
and Rödl [15] and Balogh, Bollobás, and Simonovits [5].

The result of Erdős, Frankl, and Rödl has, in some cases, a structural counterpart that
significantly strengthens (4). For example, Erdős, Kleitman, and Rothschild [16] proved that
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almost all triangle-free graphs are bipartite, that is, that with probability tending to 1 as
n → ∞, a graph selected uniformly at random from the family of all triangle-free graphs
on the vertex set [n] is bipartite or, in other words (since clearly every bipartite graph is
triangle-free), fn(K3) is asymptotic to the number of bipartite graphs on the vertex set [n].
Extending this result, Osthus, Prömel, and Taraz [48] proved that if m > Cn3/2

√
log n for

some C >
√

3/4, then almost all n-vertex triangle-free graphs with m edges are bipartite.
Our next result, which is a strengthening of Theorem 1.5, is an approximate version of this
statement for an arbitrary 2-balanced graph H. Such a statement was also considered by
 Luczak [45], who derived it from the K LR conjecture. Following [45], given a positive real
δ and an integer k, let us say that a graph G is (δ, k)-partite if G can be made k-partite by
removing from it at most δe(G) edges.

Theorem 1.6. Let H be a 2-balanced graph with χ(H) > 3 and let δ be a positive constant.
There exists a constant C such that if m > Cn2−1/m2(H), then almost all H-free graphs with
n vertices and m edges are

(
δ, χ(H)− 1

)
-partite.

Similarly as with Theorem 1.5, we shall in fact deduce Theorem 1.6 from a ‘counting
version’ of the general transference theorem for stability results proved in [55]. Our version
of it, Theorem 6.3, is stated and proved in Section 6. In Section 8, we use it to derive
Theorem 1.6. Once again, our proof does not use the regularity lemma, unlike that in [45].
Finally, we would like to mention that, as observed by  Luczak [45], Theorem 1.6 has the
following elegant corollary.

Corollary 1.7. Let H be a 2-balanced graph with χ(H) > 3 and let ε be a positive con-
stant. There exist constants C and n0 such that for every n with n > n0 and every m with
Cn2−1/m2(H) 6 m 6 n2/C,(

χ(H)− 2

χ(H)− 1
− ε
)m
6 P

(
Gn,m + H

)
6

(
χ(H)− 2

χ(H)− 1
+ ε

)m
,

where Gn,m is a uniformly selected random n-vertex graph with m edges.

We remark that a great deal more is known about the structure of a typical H-free graph
(drawn uniformly at random from the set of all n-vertex H-free graphs), see [6] and the
references therein for more details.

1.4. The K LR conjecture. The celebrated Szemerédi’s regularity lemma [63], which is
considered to be one of the most important and powerful tools in extremal graph theory,
says that the vertex set of every graph may be divided into a bounded number of parts of
approximately the same size in such a way that most of the bipartite subgraphs induced
between pairs of parts of the partition satisfy a certain pseudo-randomness condition termed
ε-regularity. The strength of the regularity lemma lies in the fact that it may be combined
with the so-called embedding lemma to show that a graph contains particular subgraphs.
The combination of the regularity and embedding lemmas allows one to prove many well-
known theorems in extremal graph theory, such as the theorem of Erdős and Stone [18] and
the stability theorem of Erdős and Simonovits [14, 60], both mentioned in Section 1.2.

For sparse graphs, that is, n-vertex graphs with o(n2) edges, the original version of the
regularity lemma is vacuous since if the vertex set of a sparse graph is partitioned into a
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bounded number of parts, then all induced bipartite subgraphs thus obtained are trivially
ε-regular, provided that n is sufficiently large. However, it was independently observed by
Kohayakawa [38] and Rödl (unpublished) that the notion of ε-regularity may be extended
in a meaningful way to graphs with density tending to zero. Moreover, with this more
general notion of regularity, they were also able to prove an associated regularity lemma
which applies to a large class of sparse graphs, including (a.a.s.) the random graph G(n, p).

Given a p ∈ [0, 1] and a positive ε, we say that a bipartite graph between sets V1 and V2

is (ε, p)-regular if for every W1 ⊆ V1 and W2 ⊆ V2 with |W1| > ε|V1| and |W2| > ε|V2|, the
density d(W1,W2) of edges between W1 and W2 satisfies∣∣d(W1,W2)− d(V1, V2)

∣∣ 6 εp.

A partition of the vertex set of a graph into r parts V1, . . . , Vr is said to be (ε, p)-regular
if
∣∣|Vi| − |Vj|∣∣ 6 1 for all i and j and for all but at most εr2 pairs (Vi, Vj), the graph

induced between Vi and Vj is (ε, p)-regular. The class of graphs to which the Kohayakawa-
Rödl regularity lemma applies are the so-called upper-uniform graphs. Given positive η and
K, we say that an n-vertex graph G is (η, p,K)-upper-uniform if for all W ⊆ V (G) with
|W | > ηn, the density of edges within W satisfies d(W ) 6 Kp. This condition is satisfied by
many natural classes of graphs, including all subgraphs of random graphs of density p. The
sparse regularity lemma of Kohayakawa [38] and Rödl says the following.

The sparse Szemerédi regularity lemma. For all positive ε, K, and r0, there exist a
positive constant η and an integer R such that for every p ∈ [0, 1], the following holds. Every
(ε, p,K)-upper-uniform graph with at least r0 vertices admits an (ε, p)-regular partition of its
vertex set into r parts, for some r ∈ {r0, . . . , R}.

We remark that a version of this theorem avoiding the need for the upper-uniformity
assumption was recently proved by Scott [59].

The aforementioned embedding lemma roughly says that if we start with an arbitrary
graph H, replace its vertices by large independent sets and its edges by ε-regular bipartite
graphs with density bounded away from zero, then this blown-up graph will contain a copy
of H. To make it more precise, let H be a graph on the vertex set {1, . . . , v(H)}, let ε
and p be as above, and let n and m be integers satisfying 0 6 m 6 n2. Let us denote by
G(H,n,m, p, ε) the collection of all graphs G constructed in the following way. The vertex
set of G is a disjoint union V1 ∪ . . . ∪ Vv(H) of sets of size n, one for each vertex of H. For
each edge {i, j} of H, we add to G an (ε, p)-regular bipartite graph with m edges between
the sets Vi and Vj. These are the only edges of G. With this notation in hand, we can state
the embedding lemma. Given any graph G as above, we define canonical copies of H to be
all copies of H in G in which (the image of) each vertex i ∈ V (H) lies in the set Vi ⊆ V (G).

The embedding lemma. For every graph H and every positive d, there exist a positive
ε and an integer n0 such that for every n and m with n > n0 and m > dn2, every G ∈
G(H,n,m, 1, ε) contains a canonical copy of H.

One might hope that a similar statement holds when one replaces 1 by an arbitrary p and
the assumption m > dn2 by m > pdn2, even if p is a decreasing function of n. However, for
an arbitrary function p, this is too much to hope for. Indeed, consider the random ‘blow-up’
of H, that is, the random graph G obtained from H by replacing each vertex of H by an
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independent set of size n and each edge of H by a random bipartite graph with pn2 edges.
With high probability, the number of canonical copies of H in G will be about pe(H)nv(H)

and hence if pe(H)nv(H) � pn2, then one can remove all copies of H from G by deleting a tiny
proportion of all edges. Since in the above argument one may replace H with an arbitrary
subgraph H ′ ⊆ H, it follows easily that if p 6 cn−1/m2(H) for a sufficiently small positive
constant c, then there are graphs in G(H,n, pn2, p, ε) that do not contain any canonical
copies of H.

As in the case of Turán’s theorem for random graphs, see Section 1.2, one might still hope
that if p > Cn−1/m2(H) for some large constant C, then the natural sparse analogue of the
embedding lemma discussed above holds. However, it was observed by  Luczak (see [30, 42])
that, somewhat surprisingly, for any graph H which contains a cycle and any function p
satisfying p = o(1), there are graphs in G(H,n, pn2, p, ε) with no canonical copy of H.
Nevertheless, it still seemed likely that such atypical graphs comprise only a tiny proportion
of G(H,n,m, p, ε). This was formalized in the following conjecture of Kohayakawa,  Luczak,
and Rödl [41], usually referred to as the K LR conjecture. Given a graph H, integers m
and n, a p ∈ [0, 1], and a positive ε, let G∗(H,n,m, p, ε) denote the collection of graphs in
G(H,n,m, p, ε) that contain no canonical copy of H.

The K LR Conjecture. Let H be a fixed graph. Then, for any positive β, there exist positive
C, n0, and ε such that for all n and m with n > n0 and m > Cn2−1/m2(H),∣∣G∗(H,n,m,m/n2, ε)

∣∣ 6 βm
(
n2

m

)e(H)

.

The K LR conjecture has been one of the central open questions in extremal graph theory
and has attracted substantial attention of many researchers over the past fifteen years. It
has been verified in several special cases. It is easy to see that it holds for all graphs H which
do not contain a cycle. The cases H = K3, K4, and K5 were resolved in [40], [28], and [29],
respectively. The case H = C` has also been resolved, but here the history is somewhat more
complex. A proof under some extra technical assumptions was given in [39]. Those extra
assumptions were later removed in [27] and, independently, in [11]. We remark here that
in parallel to this work, Conlon, Gowers, Samotij, and Schacht [13] have proved a sparse
analogue of the counting lemma for subgraphs of the random graph G(n, p), which may be
viewed as a version of the K LR conjecture that is stronger in some aspects and weaker in
other aspects. Our next result is a proof of the K LR conjecture for all 2-balanced graphs.

Theorem 1.8. Let H be a 2-balanced graph. Then, for any positive β, there exist positive
C, n0, and ε such that for all n and m with n > n0 and m > Cn2−1/m2(H),∣∣G∗(H,n,m,m/n2, ε)

∣∣ 6 βm
(
n2

m

)e(H)

.

It is well-known that Theorem 1.8 easily implies Turán’s theorem for random graphs,
Theorem 1.3, and also its stability version, Theorem 1.4. In fact, this was the original
motivation behind the K LR conjecture, see [41]. Moreover, it was proved by  Luczak [45]
that Theorem 1.8 implies Theorems 1.5 and 1.6. The work of Conlon and Gowers [12] and
Schacht [58] (see also [55]), as well as this work, have shown that one does not need to
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appeal to the sparse regularity lemma and to the K LR conjecture in order to prove such
extremal statements in random graphs. Nevertheless, there is still a plentitude of beautiful
corollaries of the conjecture that cannot (yet) be proved by other means. For discussion and
derivation of some of them, we refer the reader to [13]. Here, we present only one corollary
of the K LR conjecture, the threshold for asymmetric Ramsey properties of random graphs,
which does not follow from the version of the conjecture proved in [13]. The deduction of
this result from the K LR conjecture is essentially due to Kohayakawa and Kreuter [39]. We
prove Theorem 1.8 in Section 9.

1.5. Ramsey properties of random graphs. Let H be a fixed graph and let r be a
positive integer. For an arbitrary graph G, we write G → (H)r if every r-coloring of the
edges of G contains a monochromatic copy of H. It follows from the classical result of
Ramsey [50] that Kn → (H)r, provided that n is sufficiently large. Ramsey properties of
random graphs were first investigated by Frankl and Rödl [20] and since then much effort
has been devoted to their study. Most notably, Rödl and Ruciński [51, 52] established the
following general threshold result.

Theorem 1.9. Let r be a positive integer and let H be an arbitrary fixed graph that is not
a forest. There exist positive constants c and C such that

lim
n→∞

P
(
G(n, pn)→ (H)r

)
=

{
1 if pn > Cn−1/m2(H),

0 if pn 6 cn−1/m2(H).

In the above discussion, a copy of the same graph H is forbidden in each of the r color
classes. A natural generalization of Theorem 1.9 would determine thresholds for so-called
asymmetric Ramsey properties. For any graphs G, H1, . . . , Hr, we write G → (H1, . . . , Hr)
if for every coloring of the edges of G with colors 1, . . . , r, there exists, for some i ∈ [r], a
copy of Hi all of whose edges have color i. In the context of asymmetric Ramsey properties
of random graphs, the following generalization of the 2-density m2(·) was introduced in [39].
For two graphs H1 and H2, define

m2(H2, H1) = max

{
e(H ′1)

v(H ′1)− 2 + 1/m2(H2)
: H ′1 ⊆ H1 with v(H ′1) > 3

}
. (5)

Kohayakawa and Kreuter [39] formulated the following conjecture and proved it in the case
when all Hi are cycles.

Conjecture 1.10. Let H1, . . . , Hr be graphs with 1 < m2(Hr) 6 . . . 6 m2(H1). Then there
exist constants c and C such that

lim
n→∞

P
(
G(n, pn)→ (H1, . . . , Hr)

)
=

{
1 if pn > Cn−1/m2(H1,H2),

0 if pn 6 cn−1/m2(H1,H2).

More accurately, the above conjecture was stated in [39] only in the case r = 2, but the
above generalization is quite natural, see [46]. There had been little progress on Conjec-
ture 1.10 until quite recently, when the 0-statement was proved by Marciniszyn, Skokan,
Spöhel, and Steger [46] in the case where all of the Hi are cliques, and the 1-statement in
the case r = 2 was established by Kohayakawa, Schacht, and Spöhel [44] under very mild
extra assumptions on H1 and H2. Using Theorem 1.8, the approach of Kohayakawa and
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Kreuter [39], which employs the sparse regularity lemma, can be adapted (see [46, Theo-
rem 31]) to yield a proof of the 1-statement in Conjecture 1.10 for the following class of
graphs.

Theorem 1.11. Let H1, . . . , Hr be graphs such that H1 is strictly 2-balanced, H2, . . . , Hr

are 2-balanced, and 1 < m2(Hr) 6 . . . 6 m2(H1). There exists a constant C such that if
pn > Cn−1/m2(H2,H1), then a.a.s.

G(n, pn)→ (H1, . . . , Hr).

For the deduction of Theorem 1.11 from Theorem 1.8, see [39] and [46, Section 4].

1.6. Outline of the paper. The remainder of this paper is organized as follows. In Sec-
tion 2, we state and discuss our main result, Theorem 2.2, which we then prove in Section 3.
In Section 4, we discuss the applications of Theorem 2.2 in the context of subsets of [n] with
no k-term arithmetic progressions. In particular, we prove Theorem 1.1 and use it to derive
Corollary 1.2. In Section 5, we prove two versions of the general transference theorem of
Schacht [58, Theorem 3.3] (obtained independently, in a slightly different form, by Conlon
and Gowers [12]) – a ‘random’ version suited for extremal problems in sparse random dis-
crete structures and its ‘counting’ counterpart that generalizes Theorem 1.1. In Section 6,
we prove ‘random’ and ‘counting’ versions of the general stability result of Conlon and Gow-
ers [12] in a form that is easily comparable with [55, Theorem 3.4]. In Section 7, we discuss
several applications of Theorem 2.2 in the context of the Turán problem in sparse random
graphs. In particular, using the results of Sections 5 and 6 we give new proofs of the sparse
random analogues (stated above) of the classical theorems of Erdős and Stone, and Erdős
and Simonovits, see Section 1.2. In Section 8, we discuss applications of Theorem 2.2 to the
problem of describing the typical structure of a sparse graph without a forbidden subgraph.
In particular, we prove sparse analogues of classical theorems of Erdős, Frankl, and Rödl and
Erdős, Kleitman, and Rothschild, see Section 1.3. Finally, in Section 9, we use Theorem 2.2
to prove the K LR conjecture for all 2-balanced graphs.

2. The Main Theorem

In this section, we present the main result of this paper, Theorem 2.2, which gives a
structural characterization of the collection of all independent sets in a large class of uniform
hypergraphs. We start with an important definition. Recall that a family of sets F ⊆ P(V )
is called increasing (or an upset) if it is closed under taking supersets, that is, if for every
A,B ⊆ V , A ∈ F and A ⊆ B imply that B ∈ F .

Definition 2.1. Let H be a uniform hypergraph with vertex set V , let F be an increasing
family of subsets of V and let ε ∈ (0, 1]. We say that H is (F , ε)-dense if

e(H[A]) > εe(H)

for every A ∈ F .

A moment of thought reveals that for an arbitrary hypergraph H and ε ∈ (0, 1], it is
extremely simple to construct families F ⊆ P(V (H)) for which H is (F , ε)-dense. To this
end, let

Fε =
{
A ⊆ V (H) : e(H[A]) > εe(H)

}
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and note that Fε is increasing and H is (Fε, ε)-dense. In fact, the families F for which H is
(F , ε)-dense are precisely all increasing subfamilies of Fε.

In this work, we will be interested in upsets that admit a much more ‘constructive’ and
simpler description than that of Fε. Many such families arise naturally in the study of
extremal and structural problems in combinatorics. For example, consider the k-uniform
hypergraph H1 on the vertex set [n] whose edges are all k-term arithmetic progressions in
[n] and let F1 be the collection of all subsets of [n] with at least δn elements. Clearly, F1 is an
upset and it follows from the famous theorem of Szemerédi [62] that H1 is (F1, ε)-dense for
some positive ε depending only on δ and k, see Section 4. Similarly, consider the 3-uniform
hypergraph H2 on the vertex set E(Kn) whose edges are edge sets of all copies of K3 in
the complete graph Kn and let F2 be the family of all n-vertex graphs (subgraphs of Kn)
with at least (1/2− ε)

(
n
2

)
edges such that every 2-coloring of its vertices yields at least δn2

monochromatic edges. Again, F2 is increasing and it follows from the stability theorem of
Erdős and Simonovits [14, 60] and the triangle removal lemma of Ruzsa and Szemerédi [54]
that H2 is (F2, ε)-dense, provided that ε is sufficiently small as a function of δ.

Our main result roughly says the following. If H is a uniform hypergraph that is (F , ε)-
dense for some family F and whose edge distribution satisfies certain natural boundedness
conditions, then the collection I(H) of all independent sets in H admits a partition into
relatively few classes such that all independent sets in one class are essentially contained
in a single set A 6∈ F . Before we state the result, we first need to quantify the above
boundedness condition for the edge distribution of a hypergraph. Given a hypergraph H,
for each T ⊆ V (H), we define

degH(T ) = |{e ∈ H : T ⊆ e}|,

and let

∆`(H) = max
{

degH(T ) : T ⊆ V (H) and |T | = `
}
.

Recall that I(H) denotes the family of all independent sets in H. The following theorem is
our main result.

Theorem 2.2. For every k ∈ N and all positive c, c′ and ε, there exists a positive constant
C such that the following holds. Let H be a k-uniform hypergraph and let F ⊆ P(V (H))
be an increasing family of sets such that |A| > εv(H) for all A ∈ F . Suppose that H is
(F , ε)-dense and p ∈ (0, 1) is such that pk−1e(H) > c′v(H) and for every ` ∈ [k − 1],

∆`(H) 6 c ·min

{
p`−k, p`−1 e(H)

v(H)

}
.

Then there exists a family S ⊆
(

V (H)
6Cp·v(H)

)
and functions f : S → F and g : I(H) → S such

that for every I ∈ I(H),

g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).

Roughly speaking, if H satisfies certain technical conditions, then each independent set
I in H can be labeled with a small subset g(I) in such a way that all sets labeled with
some S ∈ S are essentially contained in a single set f(S) that contains very few edges of
H. We remark that the constant C in the theorem has only a polynomial dependence on ε.
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Unfortunately, however, in most of our applications ε will have a tower-type dependence on
some other parameter.

Theorem 2.2 will be proved in Section 3. We end this section with a short informal
discussion of its consequences. As we have already mentioned, Theorem 2.2 combined with
some classical extremal results on discrete structures has strikingly strong implications. Let
us briefly explain why this is so. Many classical extremal problems ask for an estimate
on the number of independent sets (of certain size) in some auxiliary uniform hypergraph.
If applicable, Theorem 2.2 implies that all such independent sets are almost contained in
one of very few sets that are almost independent, that is, contain a small number of copies
of some forbidden substructure. If we know a good characterization of sets that are almost
independent in the above sense, which is often the case, we can easily obtain an upper bound
on the number of independent sets. For example, consider the problem of counting subsets
of [n] with no k-term AP and recall the definition of H1 and F1 from the beginning of this
section. Theorem 2.2, applied to this pair, implies that the every subset of [n] with no k-term
AP is essentially contained in one of at most

(
n

O(n1−1/(k−1))

)
sets of size at most δn each, where

δ is an arbitrarily small positive constant. This easily implies that if m � n1−1/(k−1), then
there are at most

(
2δn
m

)
sets of size m with no k-term AP. For details, we refer the reader to

Section 4.

3. Proof of the main theorem

In this section, we shall prove Theorem 2.2. The main ingredient in the proof is the
following proposition, which (roughly) says that Theorem 2.2 holds in the special case when
F is the family of all subsets of V (H) with at least (1 − δ)v(H) elements. Theorem 2.2
follows by applying Proposition 3.1 a constant number of times.

Proposition 3.1. For every integer k and positive c and c′, there exists a positive δ such
that the following holds. Let p ∈ (0, 1) and suppose that H is a k-uniform hypergraph such
that pk−1e(H) > c′v(H) and for every ` ∈ [k − 1],

∆`(H) 6 c ·min

{
p`−k, p`−1 e(H)

v(H)

}
.

Then there exist a family S ⊆
(

V (H)
6(k−1)p·v(H)

)
and functions f0 : S → P(V (H)) and g0 : I(H)→

S such that for every I ∈ I(H),

g0(I) ⊆ I ⊆ f0(g0(I)) ∪ g0(I) and
∣∣f0(g0(I))

∣∣ 6 (1− δ)v(H).

Moreover, if for some I, I ′ ∈ I(H), g0(I) ⊆ I ′ and g0(I ′) ⊆ I, then g0(I) = g0(I ′).

The final line of Proposition 3.1 states that the labeling function g0 exhibits a certain
consistency. This property of g0, which may look somewhat puzzling, will be crucial in the
proof of Theorem 2.2.

In order to prove Proposition 3.1, given an independent set I ∈ I(H), we shall construct
a sequence (Bk−1, . . . , Bq) of subsets of I with |Bk−1|, . . . , |Bq| 6 pv(H), for some q ∈ [k−1],
and use it to define a sequence (Hk−1, . . . ,Hr), where r ∈ {q, q + 1}, of hypergraphs such
that the following holds for each i ∈ {r, . . . , k − 1}:
(a) Hi is an i-uniform hypergraph on the vertex set V (H),
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(b) I is an independent set in Hi, and
(c) e(Hi) > Ω(pk−ie(H)).

We shall be able to do it in such a way that in the end, there will be a set A ⊆ V (H) of size
at most (1− δ)v(H) such that the remaining elements of I, the set I \ S, must all lie inside
A. If r = 1, then we will simply let A be the set of non-edges of the 1-uniform hypergraph
H1; in this case, the upper bound on |A| will follow from (c) and our assumption that
pk−1e(H) > c′v(H). If r > 1, then we will obtain an appropriate A while trying (and failing)
to construct the hypergraph Hr−1 using the hypergraph Hr and the set Br. Crucially, this
set A will depend solely on S, that is, if for some pair I, I ′ ∈ I(H) our procedure generates
(S,A) and (S ′, A′), respectively, and S = S ′, then also A = A′. This will allow us to set
g0(I) = S and f0(S) = A.

3.1. The Algorithm Method. For the remainder of this section, let us fix k, c, c′, p and
H as in the statement of Proposition 3.1. Without loss of generality, we may assume that
c > 1. Let I be an independent set in H. We shall describe a procedure of choosing the sets
Bi ⊆ I and constructing the hypergraphs Hi as above. This procedure, which we shall term
the Scythe Algorithm, lies at the heart of the proof of Proposition 3.1.

The general strategy used in the Scythe Algorithm, that of selecting a small set S of
high-degree vertices and using it to define a set A such that S ⊆ I ⊆ A ∪ S, dates back to
the work of Kleitman and Winston [37], who used it to bound the number of independent
sets in graphs satisfying the following local density condition: all sufficiently large vertex
sets induce subgraphs with many edges. Recently, Balogh and Samotij [9, 10] refined the
ideas of Kleitman and Winston and obtained a bound on the number of independent sets in
uniform hypergraphs satisfying a similar local density condition. Even more recently, Alon,
Balogh, Morris and Samotij [1] used similar ideas to bound the number of independent sets
in ‘almost linear’ 3-uniform hypergraphs satisfying a more general density condition termed
(α,B)-stability, see Definition 6.1. Here, we combine, generalize, and refine all of the above
approaches and make them work in the general setting of (F , ε)-dense uniform hypergraphs.

At each step of the Scythe Algorithm, we shall order the vertices of a certain subhypergraph
of H with respect to their degrees in that subhypergraph. For the sake of brevity and clarity
of the presentation, let us make the following definition.

Definition 3.2 (Max-degree order). Given a hypergraph G, we define the max-degree order
on V (G) as follows:

(1) Fix an arbitrary total ordering of V (G).
(2) For each j ∈ {1, . . . , v(G)}, let uj be the maximum-degree vertex in the hypergraph
G
[
V (G)\{u1, . . . , uj−1}

]
; ties are broken by giving preference to vertices which come

earlier in the order chosen in (1).
(3) The max-degree order on V (G) is (u1, . . . , uv(G)).

Finally, we write W (u) to denote the initial segment of the max-degree order on V (G) that
ends with u, i.e., for every j, we let W (uj) = {u1, . . . , uj}.

We remark here that the only property of the max-degree order that will be important
for us is that for every j ∈ {1, . . . , v(G)}, the degree of the vertex uj in the hypergraph
G[V (G) \W (uj−1)] is at least as large as the average degree of this hypergraph.
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We next define the numbers ∆i
`, where 1 6 ` < i 6 k, which will play a crucial role in the

description and the analysis of the algorithm.

Definition 3.3. For every ` ∈ [k− 1], let ∆k
` = ∆`(H) and for all i ∈ [k− 1] and ` ∈ [i− 1],

let
∆i
` = max

{
2 ·∆i+1

`+1, p ·∆
i+1
`

}
. (6)

We use the numbers ∆i
` to define the following families of sets with high degree.

Definition 3.4. Given an i ∈ [k], an i-uniform hypergraph G and an ` ∈ [i− 1], let

M i
`(G) =

{
T ∈

(
V (G)

`

)
: degG(T ) >

∆i
`

2

}
.

Moreover, let M i
i (G) = E(G).

Let b = pv(H) and for each i ∈ [k], let ci = (ck2k+1)i−k.

Properties. The key properties that we would like the constructed hypergraphHi to possess
are:

(P1) Hi is i-uniform and V (Hi) = V (H),
(P2) I is an independent set in Hi,
(P3) ∆`(Hi) 6 ∆i

` for each ` ∈ [i− 1],
(P4) e(Hi) > cip

k−ie(H).

Set Hk = H and note that (P1)–(P4) are vacuously satisfied for i = k. The main step
of the Scythe Algorithm will be a procedure that, given Hi+1 and I satisfying (P1)–(P4),
outputs a set Bi ⊆ I of cardinality b, a set Ai ⊆ V (H) with the property that I \ Bi ⊆ Ai,
and a hypergraph Hi satisfying (P1)–(P3). Moreover, if the constructed Hi does not satisfy
(P4), then we have |Ai| 6 (1− ci)v(H). Crucially, these Ai and Hi depend solely on Bi and
Hi+1, that is, if on two inputs (Hi+1, I) and (Hi+1, I

′), the procedure outputs the same set
Bi, it also outputs the same Ai and Hi.

The Scythe Algorithm. Given an (i + 1)-uniform hypergraph Hi+1 and an independent

set I ∈ I(Hi+1), set A(0)
i+1 = Hi+1 and let H(0)

i be the empty hypergraph on the vertex set
V (H). For j = 0, . . . , b− 1, do the following:

(1) If I ∩ V
(
A(j)
i+1

)
= ∅, then set Hi = H(0)

i , Ai = ∅, and Bi = {u0, . . . , uj−1} and STOP.

(2) Let uj be the first vertex of I in the max-degree order on V
(
A(j)
i+1

)
.

(3) Let H(j+1)
i be the hypergraph on the vertex set V (H) defined by:

H(j+1)
i = H(j)

i ∪
{
D ∈

(
V (H)

i

)
: D ∪ {uj} ∈ A(j)

i+1

}
.

(4) Let A(j+1)
i+1 be the hypergraph on the vertex set V

(
A(j)
i+1

)
\W (uj) defined by:

A(j+1)
i+1 =

{
D ∈ A(j)

i+1 : D ∩W (uj) = ∅ and T * D for every T ∈
i⋃

`=1

M i
`

(
H(j+1)
i

)}
.

Finally, set Hi = H(b)
i , Ai = V

(
A(b)
i+1

)
, and Bi = {u0, . . . , ub−1}.
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We shall now establish various properties of the Scythe Algorithm. We begin by making
some basic (but key) observations.

Lemma 3.5. The following hold for every i ∈ [k − 1]:

(a) Hi is i-uniform and V (Hi) = V (H).
(b) If I ∈ I(Hi+1), then I ∈ I(Hi).
(c) Bi ⊆ I ⊆ Ai ∪Bi.
(d) The hypergraph Hi and the set Ai depend only on Hi+1 and the set Bi.

Proof. Property (a) is trivial. To see (b), simply observe that each edge of Hi is of the form
D \ {u} for some D ∈ Hi+1 and u ∈ I. Thus, if I contains an edge of Hi, it must also
contain an edge of Hi+1. To see (c), observe that for each j, uj is the first vertex of I in

the max-degree order on V
(
A(j)
i+1

)
and hence W (uj) ∩ I = {uj}. It follows that Bi ⊆ I

and that I \ Ai = Bi. Note in particular that if Ai = ∅, then I ∩ V
(
A(j)
i+1

)
= ∅ for some

j ∈ {0, . . . , b}, which implies that Bi = I. Finally, to prove (d), observe that all steps of
the Scythe Algorithm are deterministic and that every element of I that we need to observe
in order to define Ai and Hi is placed in Bi. More precisely, note that while choosing the

vertex uj, we only need to know the first vertex of I in the max-degree order on V
(
A(j)
i+1

)
;

the remaining vertices remain unobserved. Since we have W (uj) ∩ Bi = W (uj) ∩ I = {uj},
this information can be recovered from Bi. Thus, at each step, the hypergraph H(j+1)

i can be

recovered from H(j)
i and Bi, and the hypergraph A(j+1)

i+1 can be recovered from A(j)
i+1, H(j+1)

i

and Bi. Hence, a trivial inductive argument proves that, if the algorithm does not stop in

step (1), for each j ∈ {0, . . . , b}, the hypergraphs H(j)
i and A(j)

i+1 are determined by Hi+1 and
the set Bi, as required. Finally, the algorithm stops in step (1) if and only if |Bi| < b. If this
happens, then Hi and Ai are empty. �

We next show that the Scythe Algorithm exhibits a certain ‘consistency’ while generating
its output. This property will be very important in the proof of Proposition 3.1.

Lemma 3.6. Suppose that on inputs (Hi+1, I) and (Hi+1, I
′), the Scythe Algorithm out-

puts (Ai, Bi,Hi) and (A′i, B
′
i,H′i), respectively. If Bi ⊆ I ′ and B′i ⊆ I, then (Ai, Bi,Hi) =

(A′i, B
′
i,H′i).

Proof. By Lemma 3.5, it suffices to show that Bi = B′i. Suppose that Bi 6= B′i. Let us first
consider the (degenerate) case when min{|Bi|, |B′i|} < b. Without loss of generality, we may
assume that |Bi| < b. This means that, while running on (Hi+1, I), the Scythe Algorithm
stopped in step (1). By Lemma 3.5, it follows that Bi = I and hence B′i ⊆ Bi, which means
that |B′i| < b and therefore B′i = I ′. Hence, Bi = B′i, as claimed. On the other hand, if
|Bi| = |B′i| = b, then there must exist some j such that uj 6= u′j. Let j be the smallest such

index. Note that by the minimality of j, we have A(j)
i+1 =

(
A(j)
i+1

)′
= A. Since uj 6= u′j, one of

these vertices comes earlier in the max-degree order on V (A); without loss of generality, we
may suppose that it is uj. Since Bi ⊆ I ′, it follows that uj ∈ I ′ and hence the Algorithm,
while running on the input (Hi+1, I

′), would not pick u′j in step j, a contradiction. This
shows that in fact Bi = B′i, as required. �

The next lemma motivates the definition of M i
i (G); it will be an important tool in the

proof of Lemma 3.10, below.
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Lemma 3.7. For every D ∈ Hi, there is a unique j ∈ {0, . . . , b − 1} such that D ∪ {uj} ∈
A(j)
i+1. In other words, no edge is added to Hi more than once.

Proof. If an edgeD is added toHi in step j, i.e., if D∪{uj} ∈ A(j)
i+1, then D ∈M i

i

(
H(j+1)
i

)
and

consequently all edges containing D are deleted from A(j+1)
i+1 . It follows that D∪{uj′} 6∈ A(j′)

i+1

for every j′ ∈ {j + 1, . . . , b− 1}. �

The next lemma shows that if Hi+1 satisfies (P3), then so does Hi. The lemma follows
easily from the definitions of ∆i

` and M i
`(G).

Lemma 3.8. If ∆`+1(Hi+1) 6 ∆i+1
`+1 for some ` ∈ [i− 1], then ∆`(Hi) 6 ∆i

`.

Proof. The crucial observation is that if

degH(j)
i

(T ) >
∆i
`

2

for some T ∈
(
V (H)
`

)
and j ∈ [b], then all edges containing T are removed fromA(j)

i+1 and hence
no more such edges are added to Hi. It follows that degHi

(T ) = degH(j)
i

(T ). Moreover, when

we extend H(j−1)
i to H(j)

i , then we only add to it sets D such that D ∪{uj} ∈ A(j−1)
i+1 ⊆ Hi+1

and hence

degH(j)
i

(T )− degH(j−1)
i

(T ) 6 degHi+1
(T ∪ {uj}) 6 ∆|T |+1(Hi+1).

It follows that

∆`(Hi) 6
∆i
`

2
+ ∆`+1(Hi+1) 6

∆i
`

2
+ ∆i+1

`+1 6 ∆i
`

where the last inequality follows from (6). �

Next, let us establish some simple properties of the numbers ∆i
`.

Lemma 3.9. The following inequalities hold:

(a) ∆i+1
i 6 c2kp−1 for every i ∈ [k − 1] and

(b) ∆i
1 6 c2kpk−i e(H)

v(H)
for every i ∈ {2, . . . , k}.

Proof. To prove the lemma, simply note that, by the definition of ∆i
`, for every i ∈ [k] and

every ` ∈ [i− 1],

∆i
` = 2dpk−i−d∆d+`(H) for some d ∈ {0, . . . , k − i}. (7)

One easily proves (7) by induction on k − i. Intuitively, d in (7) is the number of times
that the first term in the maximum in (6) is larger than the second term when following the
recursive definition of ∆i

` back to ∆k
d+`.

Since ∆`(H) 6 c ·min
{
p`−k, p`−1 e(H)

v(H)

}
, as in the statement of Proposition 3.1, it follows

from (7) that

∆i+1
i = max

06d6k−i

{
2dpk−(i+1)−d∆d+i(H)

}
6 max

06d6k−i

{
2dpk−i−1−d · cpd+i−k} 6 c · 2kp−1,

and

∆i
1 = max

06d6k−i

{
2dpk−i−d∆d+1(H)

}
6 max

06d6k−i

{
2dpk−i−d · cpd · e(H)

v(H)

}
6 c · 2kpk−i e(H)

v(H)
,
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as required. �

Finally, we show that if Hi+1 satisfies (P3) and (P4), then either Hi+1 also satisfies (P4)
or we have |Ai| 6 (1− ci)v(H). Recall that ci = (ck2k+1)i−k.

Lemma 3.10. Let i ∈ [k − 1] and suppose that e(Hi+1) > ci+1p
k−(i+1)e(H) and that

∆`(Hi+1) 6 ∆i+1
` for every ` ∈ [i]. Then either

e(Hi) >
p

c · 2k+1k
e(Hi+1) > cip

k−ie(H) (8)

or |Ai| 6 (1− ci)v(H).

Proof. If the Scythe Algorithm stops in step (1), then |Ai| = 0 and there is nothing to prove.
Hence, we may assume that steps (2)–(4) are executed b times. Since no edge is added to
Hi more than once, see Lemma 3.7, then for each j ∈ {0, . . . , b− 1},

e
(
H(j+1)
i

)
− e
(
H(j)
i

)
= degA(j)

i+1
(uj). (9)

By the definition of the max-deg order, the right-hand side of (9) is at least the average

degree of the hypergraph Ã(j)
i+1, the subhypergraph of A(j)

i+1 induced by the set
(
V
(
A(j)
i+1

)
\

W (uj)
)
∪ {uj}. Therefore, by the definition of A(j+1)

i+1 , we have

e
(
H(j+1)
i

)
− e
(
H(j)
i

)
>

(i+ 1)e
(
Ã(j)
i+1

)
v
(
Ã(j)
i+1

) >
(i+ 1)e

(
A(j+1)
i+1

)
v
(
H
) .

Hence, if (i+ 1)e
(
A(j+1)
i+1

)
> e
(
Hi+1

)
for every j ∈ {0, . . . , b− 1}, then

e(Hi) >
b−1∑
j=0

(i+ 1)e
(
A(j+1)
i+1

)
v
(
H
) > b · e(Hi+1)

v(H)
= pe(Hi+1),

as required. Thus, we may assume that for some j,

e
(
A(b)
i+1

)
6 e
(
A(j+1)
i+1

)
<
e
(
Hi+1

)
i+ 1

. (10)

Intuitively, (10) means that while running the Scythe Algorithm on Hi+1 and I, many edges
are removed from Ai+1 (that is, Hi+1) in step (4). This may happen for one of the following
two reasons: either many of the initial segments W (uj) are long or one of the families M i

`(Hi)
of sets with high degree in Hi is large.

Claim. Either
b−1∑
j=0

|W (uj)| >
1

4∆i+1
1

· e(Hi+1)

or for some ` ∈ [i], ∣∣M i
`

(
Hi

)∣∣ > 1

2(i+ 1)∆i+1
`

· e(Hi+1).
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Proof of claim. Recall that A(0)
i+1 = Hi+1 and observe that for every j ∈ {0, . . . , b− 1},

e
(
A(j)
i+1

)
− e
(
A(j+1)
i+1

)
6 |W (uj)| ·∆1(Hi+1) +

i∑
`=1

∣∣∣M i
`

(
H(j+1)
i

)
\M i

`

(
H(j)
i

)∣∣∣ ·∆`(Hi+1). (11)

Inequality (11) follows since in step (4) of the Scythe Algorithm, we remove from A(j)
i+1 only

the edges that contain either a vertex of W (uj) or a member of M i
`

(
H(j+1)
i

)
for some ` ∈ [i].

Thus, since ∆`(Hi+1) 6 ∆i+1
` for every ` ∈ [i], summing (11) over all j, we get

e
(
Hi+1

)
− e(A(b)

i+1) 6
b−1∑
j=0

|W (uj)| ·∆i+1
1 +

i∑
`=1

∣∣∣M i
`

(
H(b)
i

)∣∣∣ ·∆i+1
` .

Since we assumed that e(A(b)
i+1) < e

(
Hi+1

)
/(i+ 1), see (10), and Hi = H(b)

i , it follows that if

b−1∑
j=0

∣∣W (uj)
∣∣ ·∆i+1

1 <
e(Hi+1)

4
6

i

2(i+ 1)
· e(Hi+1),

then ∣∣M i
`

(
Hi

)∣∣ ·∆i+1
` >

1

2(i+ 1)
· e(Hi+1) for some ` ∈ [i],

as claimed. �

Finally, let us deal with the two cases implied by the claim. In the remainder of the proof,
we will show that if M i

`

(
Hi

)
is large for some ` ∈ [i], then e(Hi) is large and if

∑b−1
j=0 |W (uj)|

is large, then |Ai| is small.

Case 1:
∣∣M i

`

(
Hi

)∣∣ > 1

2(i+1)∆i+1
`

· e(Hi+1) for some ` ∈ [i].

If ` < i, then degHi
(T ) > ∆i

`/2 for every T ∈M i
`

(
Hi

)
, so by the handshaking lemma,

e(Hi) =

(
i

`

)−1 ∑
T∈(V (H)

` )

degHi
(T ) >

∣∣M i
`(Hi)

∣∣ ·∆i
`

2
(
i
`

) . (12)

Recalling that ∆i
` > p∆i+1

` , see (6), we have

e(Hi) >
e(Hi+1)

4(i+ 1)
(
i
`

) · ∆i
`

∆i+1
`

>
p

2i+2(i+ 1)
· e(Hi+1) >

p

2k+1k
· e(Hi+1),

as required. On the other hand, if ` = i, then recalling that ∆i+1
i 6 c2kp−1, see Lemma 3.9,

we have

e(Hi) =
∣∣M i

i (Hi)
∣∣ > e(Hi+1)

2(i+ 1)∆i+1
i

>
p

c2k+1(i+ 1)
· e(Hi+1) >

p

c2k+1k
· e(Hi+1),

as required.

Case 2:
∑b−1

j=0 |W (uj)| > 1

4∆i+1
1

· e(Hi+1).
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We claim that in this case, |Ai| 6 (1− ci)v(H). Indeed, we have

v(H)− |Ai| = v
(
A(0)
i+1

)
− v
(
A(b)
i+1

)
=

b−1∑
j=0

|W (uj)| >
e(Hi+1)

4∆i+1
1

.

Recall that ∆i+1
1 6 c2kpk−i−1 e(H)

v(H)
by Lemma 3.9. Thus,

v(H)− |Ai| >
pi+1−k

c2k+2
· v(H)

e(H)
· e(Hi+1) > civ(H),

since e(Hi+1) > ci+1p
k−(i+1)e(H) and ci+1/(c2

k+2) > ci. �

3.2. The proof of Proposition 3.1 and Theorem 2.2.

Proof of Proposition 3.1. Let k be an integer and let c and c′ be two positive constants.
Furthermore, let p ∈ (0, 1) and let H be a k-uniform hypergraph that satisfy the assumptions
of Proposition 3.1. Let δ = (ck2k+1)1−kc′ and let b = pv(H). We shall use the Scythe
Algorithm, described in Section 3.1, to construct a family S and functions f0 and g0 as in
the statement of Proposition 3.1. We shall obtain them by running the following algorithm
(with Hk = H) on every independent set I ∈ I(H). We shall define f0 somewhat implicitly
by defining a function f ∗0 : I(H) → P(V (H)) that is constant on the set g−1

0 (S) for every
S ∈ S.

Constructing g0 and f ∗0 . Given an I ∈ I(H), set i = k − 1 and repeat the following:

(1) Apply the Scythe Algorithm to Hi+1 and I. Suppose that it outputs Hi, Ai and Bi.
(2) If |Ai| 6 (1− δ)v(H), then set q = i, r = i+ 1 and STOP.
(3) If i > 1, then set i = i− 1. Otherwise, set q = r = 1 and STOP.

Let I be an independent set and let us execute the above procedure (with Hk = H) on
I. We claim that for every i ∈ {r, . . . , k}, the hypergraph Hi satisfies properties (P1)–(P4)
defined in Section 3.1. This follows by induction on k − i. The base of the induction, the
case i = k, follows vacuously from the definitions of ck and ∆k

` for ` ∈ [k− 1]. The inductive
step follows from Lemmas 3.5, 3.8 and 3.10. To see this, note that since |Ai| > (1−δ)v(H) >
(1− ci)v(H) for all i ∈ {r, . . . , k − 1}, then (8) in Lemma 3.10 always holds.

Now, let us define g0(I) and f ∗0 (I). Suppose first that r > 1 and note that in this case,
the algorithm stopped in step (2), which means that |Aq| 6 (1− δ)v(H); we set

g0(I) = Bk−1 ∪ . . . ∪Bq and f ∗0 (I) = Aq.

On the other hand, if r = 1, then we set

g0(I) = Bk−1 ∪ . . . ∪B1 and f ∗0 (I) =
{
v ∈ V (H1) : {v} 6∈ H1

}
.

Finally, we let

S = {g0(I) : I ∈ I(H)}.
We will define f0 by letting f0(S) = f ∗0 (I) for some I ∈ g−1

0 (S). We first show that this
definition will not depend on the choice of I. In fact, we shall prove a slightly stronger
statement, which also establishes the consistency property of g0 stated in the final line of
Proposition 3.1.
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Claim. Suppose that for some I, I ′ ∈ I(H), g0(I) ⊆ I ′ and g0(I ′) ⊆ I. Then g0(I) = g0(I ′)
and f ∗0 (I) = f ∗0 (I ′).

Proof of claim. Suppose that while running the algorithm on some I, we obtain a sequence
(Bk−1, . . . , Bq). Since g0(I) depends solely on (Bk−1, . . . , Bq) and, by Lemma 3.5, for each i,
the hypergraph Hi and the set Ai depend only on (Bk−1, . . . , Bi), then also f ∗0 (I) depends
solely on (Bk−1, . . . , Bq). Hence, it suffices to show that if, while running the algorithm on
some I ′ with Bk−1∪. . .∪Bq ⊆ I ′, we obtain a sequence (B′k−1, . . . , B

′
q′) with B′k−1∪. . .∪B′q′ ⊆

I, then (B′k−1, . . . , B
′
q′) = (Bk−1, . . . , Bq). To this end, let us first observe that, under the

above assumptions, for every i ∈ [k − 1], if Hi+1 = H′i+1, then Bi = B′i. Indeed, note that
Bi and B′i are the outputs of the Scythe Algorithm executed on the inputs (Hi+1, I) and
(H′i+1, I

′), respectively. Hence, if Hi+1 = H′i+1, then since

Bi ⊆ Bk−1 ∪ . . . ∪Bq ⊆ I ′ and B′i ⊆ B′k−1 ∪ . . . ∪B′q′ ⊆ I,

then Lemma 3.6 implies that Bi = B′i. Since clearly Hk = H′k = H and, as noted before,
for each i, Hi+1 depends only on (Bk−1, . . . , Bi+1), it follows that Bi = B′i for all i, as
required. �

By the above claim, we can define f0 by letting, for every S ∈ S, f(S) = f ∗0 (I) for any
I ∈ g−1

0 (S). Finally, let us show that the S, g0, and f0, which we have just defined, satisfy
the required conditions, that is, for all I, I ′ ∈ I(H),

(i) |S| 6 (k − 1)pv(H) for every S ∈ S,
(ii) g0(I) ⊆ I ⊆ f0(g0(I)) ∪ g0(I),

(iii) |f0(g0(I))| 6 (1− δ)v(H),
(iv) g0(I) ⊆ I ′ and g0(I ′) ⊆ I imply that g0(I) = g0(I ′).

To see (i), simply recall that |Bi| 6 pv(H) for every i ∈ [k − 1]. To see (ii), note that
Bi ⊆ I ⊆ Ai ∪ Bi for every i ∈ {q, . . . , k − 1}, by Lemma 3.5, that I is an independent
set in H1 (if r = 1) and, crucially, that f0(g0(I)) = f ∗0 (I). To see (iii), note that if r >
1, then |Aq| 6 (1 − δ)v(H), see step (2) of the algorithm; if r = 1, then observe that∣∣{v ∈ V (H1) : {v} 6∈ H1

}∣∣ 6 (1− δ)v(H) since H1 satisfies property (P4) and hence

e(H1) > c1p
k−1e(H) > c1c

′ · v(H) = δv(H),

where the second inequality follows from our assumption that pk−1e(H) > c′v(H). Finally,
(iv) follows directly from the claim. �

Proof of Theorem 2.2. The theorem follows by applying Proposition 3.1 a bounded number
of times. Given an integer k and positive reals c, c′ and ε, let δ = δ3.1(c/ε, εc′) and let

C = (k − 1) ·
(

1

δ
log

1

ε
+ 1

)
.

Let V be a finite set and let F be an increasing family of subsets of V such that |A| > ε|V |
for every A ∈ F . Let p ∈ (0, 1) and suppose that H is a k-uniform hypergraph on the
vertex set V that is (F , ε)-dense and satisfies the assumptions of the theorem, that is,
pk−1e(H) > c′v(H) and

∆`(H) 6 c ·min

{
p`−k, p`−1 e(H)

v(H)

}
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for every ` ∈ [k − 1]. We now show how to construct a family S ⊆
(

V (H)
6Cpv(H)

)
and functions

f : S → F and g : I(H)→ S such that

g(I) ⊆ I and I \ g(I) ⊆ f(g(I)) (13)

for every I ∈ I(H). Similarly as in the proof of Proposition 3.1, we shall define f via a
function f ∗ : I(H)→ P(V ) that is constant on each set g−1(S) with S ∈ S.

Fix some I ∈ I(H). Using Proposition 3.1, we shall construct a sequence (Aj, Sj)
J
j=1 of

pairs of subsets of V such that for each j,

S1 ∪ . . . ∪ Sj ⊆ I ⊆ Aj ∪ S1 ∪ . . . ∪ Sj.

Moreover, AJ ∈ F while |S1 ∪ . . . ∪ SJ | 6 Cpv(H). Crucially, the set AJ will depend solely
on S1 ∪ . . . ∪ SJ . We will let g(I) = S1 ∪ . . . ∪ SJ and f ∗(I) = AJ .

Construction. Let S0 = ∅ and let A0 = V . For j = 0, 1, . . ., do the following:

(1) If Aj ∈ F , then let Ij = I ∩Aj and apply Proposition 3.1 with c3.1 = c/ε, c′3.1 = εc′ and
p3.1 = p to the hypergraph H[Aj] and the set Ij to obtain sets g0(Ij) and f0(g0(Ij)) such
that g0(Ij) ⊆ Ij and Ij \ g0(Ij) ⊆ f0(g0(Ij)). Otherwise, if Aj ∈ F , then STOP.

(2) Let Sj+1 = g0(Ij) and let Aj+1 = f0(g0(Ij)).

Let us first show that the above procedure is well-defined, that is, that the assumptions
of Proposition 3.1 are satisfied each time we are in (1). To this end, fix some A ⊆ V and
note that if A ∈ F , then, since H is (F , ε)-dense,

pk−1e(H[A]) > εpk−1e(H) > εc′v(H) > εc′v(H[A])

and

∆`(H[A]) 6 ∆`(H) 6 c ·min

{
p`−k, p`−1 e(H)

v(H)

}
6
c

ε
·min

{
p`−k, p`−1 e(H[A])

v(H[A])

}
.

Next, let us show that the above procedure terminates, therefore producing a finite sequence
(Aj, Sj) with j ∈ [J ]. To this end, let us simply note that by Proposition 3.1, |Aj+1| 6
(1 − δ)|Aj| for all j, A0 = V and |A| > ε|V | for every A ∈ F . Moreover, since AJ−1 ∈ F ,
then

ε|V | 6 |AJ−1| 6 (1− δ)J−1|A0| = exp(−(J − 1)δ)|V |
and hence J 6 1

δ
log 1

ε
+ 1. It immediately follows that

|g(I)| 6
J∑
j=1

|Sj| 6
J∑
j=1

(k − 1)pv(H[Aj]) 6 J(k − 1)pv(H) 6 Cpv(H).

Finally, let S = {g(I) : I ∈ I(H)}. It remains to show that for every S ∈ S, f ∗ is constant
on g−1(S). Similarly as in the proof of Proposition 3.1, we shall prove a somewhat stronger
statement.

Claim. Suppose that for some I, I ′ ∈ I(H), g(I) ⊆ I ′ and g(I ′) ⊆ I. Then g(I) = g(I ′) and
f ∗(I) = f ∗(I ′).
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Proof of claim. Suppose that while running the above procedure on some I, we generate a
sequence (Aj, Sj)

J
j=1. Since for each j, Aj+1 depends solely on Aj and Sj+1, where A0 = V ,

then both g(I) and f ∗(I) depend solely on (S1, . . . , SJ). Hence, it suffices to show that if,
while running the above procedure on some I ′ with S1∪ . . .∪SJ ⊆ I ′, we generate a sequence
(A′j, S

′
j)
J ′
j=1 with S ′1 ∪ . . . ∪ S ′J ′ ⊆ I, then (S1, . . . , SJ) = (S ′1, . . . , S

′
J ′). To this end, it suffices

to note that if Aj = A′j, then, since

Sj+1 ⊆ S1 ∪ . . . ∪ SJ ⊆ I ′ and S ′j+1 ⊆ S ′1 ∪ . . . ∪ S ′J ′ ⊆ I,

by the consistency property of g0 stated in the final line of Proposition 3.1, Sj+1 = S ′j+1.
Since A0 = A′0 = V and for each j, Aj depends only on (S1, . . . , Sj), it follows that Sj = S ′j
for all j, as required. �

Finally, for every S ∈ S, we let f(S) = f ∗(I) for some I ∈ g−1(S). This completes the
proof of Theorem 2.2. �

4. Szemerédi’s theorem for sparse sets

In this section, we prove Theorem 1.1 and derive from it Corollary 1.2. Before we get to
the proofs, let us first remark that Theorem 1.1 and Corollary 1.2 are both sharp up to the
value of the constant C in the lower bounds for p and m. More precisely, let us make the
following two observations.

(1) For every β ∈ (0, 1), there is a positive c such that if m 6 cn1−1/(k−1), then the
number of m-subsets of [n] that contain no k-term AP is at least (1−β)m

(
n
m

)
. To see

this, let ε = β2 and observe that if c is sufficiently small and m 6 cn1−1/(k−1), then
the expected number of k-term APs in a random (1 + ε)m-subset of [n] is smaller
than εm/2 and hence by Markov’s inequality, at least half of all (1 + ε)m-subsets
of [n] contain a subset of size m with no k-term AP. Hence

#{m-subsets of [n] with no k-term AP} >

(
n

(1+ε)m

)
2
(
n
εm

) > (1−√ε)m(n
m

)
.

(2) There is a positive constant c such that if pn 6 cn−1/(k−1), then

P
(
[n]pn is (δ, k)-Szemerédi

)
→ 0 as n→∞.

For a (simple) proof of this statement, we refer the reader to [58].

We shall in fact prove the following somewhat stronger version of Corollary 1.2, originally
proved by Schacht [58] (the approach of Conlon and Gowers [12] yields a somewhat weaker
probability estimate).

Corollary 4.1. For every k ∈ N and every δ ∈ (0, 1), there exists a constant C such that
for all sufficiently large n, if p > Cn−1/(k−1), then

P
(
[n]p is (δ, k)-Szemerédi

)
> 1− 2 exp(−pn/8).

In the proofs of Theorem 1.1 and Corollary 4.1, and frequently in later sections, we shall
need various estimates on binomial coefficients, which we list here for future reference. Let
a, b, and c be integers satisfying a > b > c > 0. Then the following inequalities hold:
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(
a

b

)
6

(
ea

b

)b
, (14)(

a

b− c

)
6

(
b

a− b

)c(
a

b

)
, (16)

(
b

c

)
6

(
b

a

)c(
a

c

)
, (15)(

a

c

)
6

(
a− c
b− c

)c(
b

c

)
. (17)

We remark that each inequality above follows easily from the definition of
(
a
b

)
.

Proof of Corollary 4.1. Fix k ∈ N and δ ∈ (0, 1), let β = δ/(2e) · e−1/δ, and set C =
2C1.1(β, k)/δ. Assume that p > Cn−1/(k−1), let m = δpn/2, and let Xm denote the number
of k-term-AP-free m-subsets of [n]p. By Theorem 1.1 and (14), we have

P(Xm > 0) 6 E[Xm] 6

(
βn

m

)
pm 6

(
βepn

m

)m
=

(
2βe

δ

)m
= e−m/δ. (18)

Let A denote the event that [n]p is not (δ, k)-Szemerédi, i.e., that there exists a k-term-
AP-free subset of [n]p with δ|[n]p| elements. By (18) and Chernoff’s inequality (see, e.g., [3,
Appendix A]), it follows that

P(A) 6 P
(
A ∧ |[n]p| >

pn

2

)
+ P

(
|[n]p| <

pn

2

)
6 P(Xm > 0) + e−pn/8 6 2e−pn/8,

as required. �

Finally, let us show how to deduce Theorem 1.1 from Theorem 2.2. Our proof will use the
following robust version of Szemerédi’s theorem, which can be proved by a simple averaging
argument, originally observed by Varnavides [65].

Lemma 4.2. For every positive δ and k ∈ [n], there exists a positive ε such that the following
holds for all sufficiently large n. Every subset of [n] with at least δn elements contains at
least εn2 k-term APs.

Proof of Theorem 1.1. Given k ∈ N and positive β, let δ = min{β/2, 1/10} and let n ∈ N
be sufficiently large. Let H be the k-uniform hypergraph of k-term APs in [n], i.e., the
hypergraph on the vertex set [n] whose edges are all k-term APs in [n], let F denote the
family of subsets of [n] with at least δn elements, and let ε = ε4.2(δ, k). By Lemma 4.2, the
hypergraph H is (F , ε)-dense, provided that n is sufficiently large. Let p = n−1/(k−1), let
c′ = 1/k2, and let c = 2k2. Since e(H) > c′n2, it follows that pk−1e(H) > c′v(H). Moreover,

∆1(H) 6 k · n

k − 1
6 cc′n 6 c ·min

{
p1−k, p1−1 e(H)

v(H)

}
and for every ` ∈ {2, . . . , k − 1},

∆`(H) 6

(
k

2

)
6 cc′n1/(k−1) 6 c ·min

{
p`−k, p`−1 e(H)

v(H)

}
.

Let C ′ = C2.2(k, ε, c, c′) and let C = C ′/δ and assume that m > Cn1−1/(k−1). Note that if
m > δn/2, then I(H,m) = 0 by Szemerédi’s theorem, so we may assume that m 6 δn/2.

Since C ′pn 6 δm, then by Theorem 2.2, there exists a family S ⊆
(

[n]
6C′pn

)
⊆
(

[n]
6δm

)
and

functions f : S → F and g : I(H)→ S, such that for every I ∈ I(H),

g(I) ⊆ I and I \ g(I) ⊆ f(g(I)).
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Therefore, using (14) and (16), the number of independent sets of size m in H can be
estimated as follows:

|I(H,m)| =
∑
S∈S

|{I ∈ I(H,m) : g(I) = S}| 6
∑
S∈S

(
|f(S)|
m− |S|

)

6
∑
k6δm

(
n

k

)(
δn

m− k

)
6
∑
k6δm

(en
k

)k ( m

δn−m

)k (
δn

m

)
.

Since m 6 δn/2 and the function x 7→ (y/x)x is increasing on (0, y/e), it follows that

|I(H,m)| 6
∑
k6δm

(
2em

δk

)k (
δn

m

)
6 m

(
2e

δ2

)δm(
δn

m

)
6

(
βn

m

)
,

where the final inequality follows since
(
δn
m

)
6 2−m

(
2δn
m

)
, by (15), and since 21/δ > 2e/δ2 if

δ 6 1/10. This proves Theorem 1.1. �

Finally, from the same proof, combined with an analogue of Lemma 4.2 due to Furstenberg
and Katznelson [25], we obtain the following generalization of Theorem 1.1, which strength-
ens Theorem 2.3 of [58]. Given a set F ⊆ N`, we call a set of the form a+ bF = {a+ bx : x ∈
F}, with a ∈ N` and b ∈ Z \ {0}, a homothetic copy of F .

Theorem 4.3. For every positive β, every ` ∈ N, and every finite configuration F ⊆ N`,
there exist constants C and n0 such that the following holds. For every n ∈ N with n > n0,
if m > Cn`−1/(|F |−1), then there are at most(

βn`

m

)
m-subsets of [n]` that contain no homothetic copy of F .

Finally, we mention one more straightforward application of Theorem 2.2, which is a sparse
version of a result of Sárközy [56] and Furstenberg [24] on square differences. A robust version
of it was proved by Hamel and  Laba [32, Theorem 3.1] using a Varnavides-type averaging
argument. The following theorem improves Theorem 1.2 of [32].

Theorem 4.4. For every positive β, there exist constants C and n0 such that the following
holds. For every n ∈ N with n > n0, if m > C

√
n, then there are at most(

βn

m

)
m-subsets of [n] that contain no pair {x, y} such that x− y is a perfect square.

5. Extremal results for sparse sets

In this section, we shall deduce from Theorem 2.2 two versions of the general transference
theorem of Schacht [58, Theorem 3.3]. We remind the reader that a statement very similar
to Schacht’s theorem was proved independently by Conlon and Gowers [12]. For the benefit
of the readers who are familiar with [58], we shall state it using the terminology used there.
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Definition 5.1. LetH = (Hn)n∈N be a sequence of k-uniform hypergraphs and let α ∈ [0, 1).
We say that H is α-dense if the following is true: For every positive δ, there exist positive
ε and n0 such that for every n with n > n0 and every U ⊆ V (Hn) with |U | > (α+ δ)v(Hn),
we have

e(Hn[U ]) > εe(Hn).

Let us remark here that Definition 2.1 is a generalization of Definition 5.1. Indeed, if
Fδ denotes the collection of all subsets of V (Hn) with at least (α + δ)v(Hn) elements, then
a sequence H of hypergraphs is α-dense if and only if for every positive δ, there exists a
positive ε such that for all sufficiently large n, the hypergraph Hn is (Fδ, ε)-dense.

We start with the ‘random’ version of our extremal result, which is a slight weakening of
Theorem 3.3 of [58], see the discussion below.

Theorem 5.2. Let H be a sequence of k-uniform hypergraphs, let α ∈ [0, 1), and let c and
c′ be positive constants. Suppose that p ∈ [0, 1]N is a sequence of probabilities such that for
all sufficiently large n ∈ N, we have pk−1

n e(Hn) > c′v(Hn) and for every ` ∈ [k − 1],

∆`(Hn) 6 c ·min

{
p`−kn , p`−1

n

e(Hn)

v(Hn)

}
. (19)

If H is α-dense, then the following holds. For every positive δ, there exists a constant C
such that if qn > Cpn and qnv(Hn)→∞ as n→∞, then a.a.s.

α
(
Hn[V (Hn)qn ]

)
6 (α + δ)qnv(Hn).

We note that the probability bounds implicit in the ‘asymptotically almost surely’ state-
ment that we obtain are, as in [58], optimal, that is, they decay exponentially in pnv(Hn).

Remark 5.3. We remark that the only difference between Theorem 5.2 and Theorem 3.3
of [58] are the assumptions on the hypergraph sequence H, which are somewhat more re-
strictive here. In fact, it turns out that the conditions pk−1

n e(Hn) > c′v(Hn) and ∆`(Hn) 6
c · p`−1

n
e(Hn)
v(Hn)

for every ` ∈ [k− 1] are essentially equivalent to the condition that H is (K,p)-

bounded (see below), whereas the condition ∆`(Hn) 6 cp`−kn for every ` ∈ [k − 1], which is
essential in the theorem above, is not needed in [58].

To be more precise, let us first recall from [58] that a sequence of k-uniform hypergraphs
H is said to be (K,p)-bounded if

µi(Hn, q) = E

[∑
v∈V

degi(v, Vq)
2

]
6 Kq2i e(Hn)2

v(Hn)
,

for every i ∈ [k−1], every q with q > pn, and every sufficiently large n, where V abbreviates
V (Hn) and degi(v, Vq) denotes the number of edges of Hn which contain v and at least i

other vertices of Vq. We claim that if (a) pk−1
n e(Hn) > c′v(Hn) and (b) ∆`(Hn) 6 c ·p`−1

n
e(Hn)
v(Hn)

for every ` ∈ [k − 1], then H is (K,p)-bounded for some constant K that depends only on
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c, c′, and k. Indeed, we have

µi(Hn, q) 6 v(Hn) ·∆1(Hn) ·
i∑

`=0

∆`+1(Hn)

(
k − 1

i

)2

q2i−`

6 c2(i+ 1)

(
k − 1

i

)2

q2i e(Hn)2

v(Hn)
+
c

c′
q2(k−1) e(Hn)2

v(Hn)
6 Kq2i e(Hn)2

v(Hn)
,

for every i ∈ [k − 1] and q with q > pn, where we used (b) to bound both ∆1(Hn) and
∆`+1(Hn) except in the case ` = i = k−1, where we used (a) and the fact that ∆k(Hn) = 1.

Conversely, suppose thatH is (K,p)-bounded and observe that µk−1(Hn, pn) > pk−1
n e(Hn).

Thus, setting c′ = 1/K, it follows that pk−1
n e(Hn) > c′v(Hn). Moreover, we claim that for

every positive ε, there is a constant c that depends only on K, k, and ε, such that for
all sufficiently large n, the hypergraph Hn contains a subhypergraph H′n ⊆ Hn satisfying
e(H′n) > (1− ε)e(Hn) and

∆`(H′n) 6 c · p`−1
n

e(H′n)

v(H′n)
for every ` ∈ [k − 1]. (20)

Indeed, fix a large constant c and suppose that Hn does not contain a subhypergraph with
at least (1 − ε)e(Hn) edges that satisfies (20). In this case, let us greedily construct a
hypergraph H′′n as follows. Start with H′n = Hn and H′′n empty. Whenever there is an `-set
T ⊆ V (Hn), for some ` ∈ [k − 1], whose degree in H′n exceeds the right-hand side of (20),
then move an arbitrary edge containing T from H′n to H′′n. By our assumption, when the
process terminates, H′′n will contain more than εe(Hn) edges. Now, if c is sufficiently large
(as a function of ε, k, and K), then for some i ∈ [k − 1] we have

µi(Hn, pn) >
e(H′′n)

k − 1
· c · p`−1

n

e(H′n)

v(H′n)
· p2i−(`−1)

n > Kp2i
n

e(Hn)2

v(Hn)
,

which is a contradiction.
Finally, note that, trivially, if Hn is (F , 2ε)-dense for some family F ⊆ P(V (Hn)), then

every H′n with e(H′n) > (1 − ε)e(Hn) is (F , ε)-dense. It follows from the above discussion
that, up to the value of the involved constants, the only difference between Theorem 5.2 and
Theorem 3.3 of [58] is in the additional assumption that ∆`(Hn) 6 cp`−kn for every ` ∈ [k−1].

Our methods also yield the following ‘counting’ analogue of Theorem 5.2, a generalization
of Theorem 1.1 that does not follow from the methods of Schacht [58] or Conlon and Gow-
ers [12] and, in the case α = 0, can be thought of as a strengthening of Theorem 5.2, see
Corollary 1.2.

Theorem 5.4. Let H be a sequence of k-uniform hypergraphs, let α ∈ [0, 1), and let c and
c′ be positive constants. Suppose that p ∈ [0, 1]N is a sequence of probabilities such that for
all sufficiently large n ∈ N, we have pk−1

n e(Hn) > c′v(Hn) and for every ` ∈ [k − 1],

∆`(Hn) 6 c ·min

{
p`−kn , p`−1

n

e(Hn)

v(Hn)

}
.
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If H is α-dense, then the following holds. For every positive δ, there exists a constant C
such that for all sufficiently large n, if m > Cpnv(Hn), then

|I(Hn,m)| 6
(

(α + δ)v(Hn)

m

)
.

Proof of Theorem 5.2. Let α ∈ [0, 1), let k ∈ N, let p ∈ [0, 1]N, and let H be a sequence
of k-uniform hypergraphs as in the statement of Theorem 5.2. Furthermore, suppose that
H is α-dense and fix some positive δ; without loss of generality, we may assume that δ
is sufficiently small. Let n ∈ N be sufficiently large, let δ′ = δ/3, and let F denote the
family of all subsets of V (Hn) with at least (α + δ′)v(Hn) elements. Since Hn is α-dense,
it follows that Hn is (F , ε)-dense for some small positive ε that does not depend on n. Let

C ′ = C2.2(k, ε, c, c′). By Theorem 2.2, there exist a family S ⊆
(

V (Hn)
6C′pnv(Hn)

)
and functions

f : S → F and g : I(Hn)→ S such that

g(I) ⊆ I and I \ g(I) ⊆ f(g(I))

for every I ∈ I(Hn). Let C = C ′/δ3 and assume that qn > Cpn. Let m = (α + δ)qnv(Hn)
and, for the sake of brevity, let us write V = V (Hn) and q = qn. Observe that

P
(
α(Hn[Vq]) > m

)
= P

(
I ⊆ Vq for some I ∈ I(Hn,m)

)
(21)

6
∑
S∈S

P
(
I ⊆ Vq for some I ∈ I(Hn,m) such that g(I) = S

)
.

Fix an S ∈ S and let I ′S = {I ∈ I(Hn,m) : g(I) = S}. We estimate the summand in the
right-hand side of (21) as follows:

P
(
I ⊆ Vq for some I ∈ I ′S

)
6 P

(
S ⊆ Vq

)
· P
(∣∣Vq ∩ f(S)

∣∣ > m− |S|
)
. (22)

To see the above inequality, simply note that for every I ∈ I ′S, we have I \ S ⊆ f(S).
Now, since m = (α + 3δ′)qnv(Hn) and S ∈ S, then

|S| 6 C ′pnv(Hn) 6 δ3qv(Hn) 6 δ′qv(Hn)

and hence m− |S| > (α + 2δ′)qv(Hn). On the other hand, since |f(S)| 6 (α + δ′)v(Hn) by
the definition of F , then

E
[
|Vq ∩ f(S)|

]
6 (α + δ′)qv(Hn).

Hence, by Chernoff’s inequality, we have

P
(∣∣Vq ∩ f(S)

∣∣ > m− |S|
)
6 exp

(
−(δ′)2qv(Hn)

4

)
= exp

(
−δ

2qv(Hn)

36

)
. (23)

Finally, note that since |S| 6 δ3qv(Hn) for every S ∈ S, and using (14),

∑
S∈S

P
(
S ⊆ Vq

)
6

δ3qv(Hn)∑
s=0

(
v(Hn)

s

)
qs 6 v(Hn) ·

( e
δ3

)δ3qv(Hn)

. (24)
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Putting (21), (22), (23), and (24) together, we obtain

P
(
α(Hn[Vq]) > m

)
6
∑
S∈S

P
(
S ⊆ Vq

)
exp

(
−δ

2qv(Hn)

36

)
6 exp

(
− δ3qv(Hn)

)
,

as required. �

Proof of Theorem 5.4. Let α ∈ [0, 1), let k ∈ N, let p ∈ [0, 1]N, and let H be a sequence of
k-uniform hypergraphs as in the statement of Theorem 5.2. Furthermore, suppose that H is
α-dense and fix some positive δ. Let n be sufficiently large, let δ′ = δ/2, and let F denote
the family of all subsets of V (Hn) with at least (α+ δ′)v(Hn) elements. Since Hn is α-dense,
it follows that Hn is (F , ε)-dense for some small positive ε that does not depend on n. Let

C ′ = C2.2(k, ε, c, c′). By Theorem 2.2, there exist a family S ⊆
(

V (Hn)
6C′pnv(Hn)

)
and functions

f : S → F and g : I(Hn)→ S such that

g(I) ⊆ I and I \ g(I) ⊆ f(g(I))

for every I ∈ I(Hn). Let C = C ′/δ2 and assume that m > Cpnv(Hn). Fix an S ∈ S, let
IS = {I ∈ I(Hn,m) : g(I) = S}, and note for future reference that

|S| 6 C ′pnv(Hn) 6 δ2m. (25)

Since f(S) ∈ F , we have |f(S)| < (α + δ′)v(Hn). Therefore,

|IS| 6
(
|f(S)|
m− |S|

)
6

(
(α + δ′)v(Hn)

m− |S|

)
.

To see the above inequality, simply note that for every I ∈ IS, we have I \ S ⊆ f(S).
Now, observe that if m > (α+ δ′)v(Hn), then every m-subset of V (Hn) belongs to F and

hence there is no independent set of size m. Therefore, from now on we may assume that
m < (α + δ′)v(Hn) = (α + δ/2)v(Hn). It follows, using (15) and (16), that

|IS| 6
(

(α + δ′)v(Hn)

m− |S|

)
6

(
2m

δv(Hn)

)|S| (
1− δ′

)m−|S|((α + δ)v(Hn)

m

)
. (26)

Setting s = |S| and recalling that s 6 δ2m by (25), we obtain(
v(Hn)

s

)
· |IS| 6

(
2em

δs

)s (
1− δ′

)m/2((α + δ)v(Hn)

m

)
6 e−δ

2m

(
(α + δ)v(Hn)

m

)
,

provided that δ is sufficiently small. It follows that

|I(Hn,m)| =
∑
S∈S

|IS| 6
δ2m∑
s=0

(
v(Hn)

s

)
max{|IS| : |S| = s} 6

(
(α + δ)v(Hn)

m

)
,

as claimed. �
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6. Stability results for sparse sets

In this section, we shall deduce from Theorem 2.2 two versions of the general transference
theorem for stability results proved by Conlon and Gowers [12]. Similarly as in Section 5,
we shall state our results using the terminology used by Schacht [58]. We remark here that
in parallel to this work, Schacht’s method was adapted to yield sparse random analogues of
stability statements by Samotij [55]. The main result of this section is most easily compared
with Theorem 3.4 of [55]. We begin by recalling the following definition from [1].

Definition 6.1. Let H be a sequence of k-uniform hypergraphs, let α be a positive real
and let B be a sequence of sets with Bn ⊆ P(V (Hn)). We say that H is (α,B)-stable if for
every positive δ, there exist positive ε and n0 such that the following holds. For every n with
n > n0 and every U ⊆ V (Hn) with |U | > (α − ε)v(Hn), we have either e(Hn[U ]) > εe(Hn)
or |U \B| 6 δv(Hn) for some B ∈ Bn.

Roughly speaking, a sequence H of hypergraphs is (α,B)-stable if for every A ⊆ V (Hn)
that is almost as large as αv(Hn), the set A is either very ‘close’ to some extremal set B ∈ Bn
or it contains ‘many’ (a positive fraction of all) edges of Hn. Note that in many natural
settings, such a property does hold, for example, as a consequence of the Erdős-Simonovits
stability theorem [14, 60] and the removal lemma for graphs.

We again start with the ‘random’ version of our stability result, which is a slight weakening
of Theorem 3.4 of [55], see the discussion below Theorem 5.2.

Theorem 6.2. Let H be a sequence of k-uniform hypergraphs, let α ∈ (0, 1), and let c and
c′ be positive constants. Let p be a sequence of probabilities such that pk−1

n e(Hn) > c′v(Hn)
and, for every ` ∈ [k − 1],

∆`(Hn) 6 c ·min

{
p`−kn , p`−1

n

e(Hn)

v(Hn)

}
and let B be a sequence of sets with Bn ⊆ P(V (Hn)).

If H is (α,B)-stable, then the following holds. For every positive δ, there exist ε and C
such that if qn > Cpn and qnv(Hn) → ∞ as n → ∞, then a.a.s. every independent set
I ⊆ V (Hn)qn with |I| > (α− ε)qnv(Hn) satisfies |I \B| < δqnv(Hn) for some B ∈ Bn.

The following theorem, a ‘counting’ analogue of Theorem 6.2, is our main stability result.
A simple version of it, applicable to 3-uniform hypergraphs with ∆2(Hn) = O(1), was proved
in [1] and used in [1, 2] to count sum-free subsets in Abelian groups and in the set [n].

Theorem 6.3. Let H be a sequence of k-uniform hypergraphs, let α ∈ (0, 1), and let c and
c′ be positive constants. Let p be a sequence of probabilities such that pk−1

n e(Hn) > c′v(Hn)
and, for every ` ∈ [k − 1],

∆`(Hn) 6 c ·min

{
p`−kn , p`−1

n

e(Hn)

v(Hn)

}
and let B be a sequence of sets with Bn ⊆ P(V (Hn)).
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If H is (α,B)-stable, then the following holds. For every positive δ, there exist ε and C
such that if m > Cpnv(Hn), then there are at most

(1− ε)m
(
αv(Hn)

m

)
independent sets I ∈ I(Hn,m) such that |I \B| > δm for every B ∈ Bn.

Proof of Theorem 6.2. The proof is similar to the proof of Theorem 5.2. Let k ∈ N, α ∈
(0, 1), p ∈ [0, 1]N, and H and B be as in the statement of Theorem 6.2. Furthermore, suppose
that H is (α,B)-stable and fix some small positive δ. Let ε be a small positive constant, let
n be sufficiently large, let δ′ = δ/3 and ε′ = 3ε, and set

F =
{
A ⊆ V (Hn) : |A| > (α− ε′)v(Hn) and |A \B| > δ′v(Hn) for every B ∈ Bn

}
.

Since H is (α,B)-stable, it follows that Hn is (F , ε)-dense, provided that ε is sufficiently

small. Let C ′ = C2.2(k, ε, c, c′). By Theorem 2.2, there exist a family S ⊆
(

V (Hn)
6C′pnv(Hn)

)
and

functions f : S → F and g : I(Hn)→ S such that

g(I) ⊆ I and I \ g(I) ⊆ f(g(I))

for every I ∈ I(Hn). Let C = C ′/ε3 and assume that qn > Cpn. Let m = (α − ε)qnv(Hn)
and, for the sake of brevity, let us write V = V (Hn) and q = qn. Let

I ′ =
{
I ∈ I(Hn) : |I| > m and |I \B| > δqv(Hn) for every B ∈ Bn

}
and let A denote the event that Hn[Vq] contains an independent set I ∈ I ′. We are required
to prove that P(A) tends to 0 as n→∞.

Observe first that

P(A) 6
∑
S∈S

P
(
I ⊆ Vq for some I ∈ I ′ such that g(I) = S

)
. (27)

Fix an S ∈ S, let I ′S = {I ∈ I ′ : g(I) = S}, and note for future reference that

|S| 6 C ′pnv(Hn) 6 ε3qv(Hn). (28)

We claim that

P
(
I ⊆ Vq for some I ∈ I ′S

)
6 P

(
S ⊆ Vq

)
· exp

(
−ε

2qv(Hn)

4

)
. (29)

In order to prove (29), recall that since f(S) ∈ F , we either have |f(S)| < (α− ε′)v(Hn) or
|f(S) \B| < δ′v(Hn) for some B ∈ Bn. We therefore consider two cases.

Case 1: |f(S)| < (α− ε′)v(Hn).

We bound the left-hand side of (29) as follows:

P
(
I ⊆ Vq for some I ∈ I ′S

)
6 P

(
S ⊆ Vq

)
· P
(∣∣Vq ∩ f(S)

∣∣ > m− |S|
)
. (30)

In order to justify the above inequality, note that for every I ∈ I ′S, we have I \ S ⊆ f(S).
Recall that ε′ = 3ε. Since m− |S| > (α− 2ε)qv(Hn), by (28), and

E[|Vq ∩ f(S)|] 6 (α− ε′)qv(Hn) = (α− 3ε)qv(Hn),
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then by Chernoff’s inequality we have

P
(∣∣Vq ∩ f(S)

∣∣ > m− |S|
)
6 exp

(
−ε

2qv(Hn)

4

)
. (31)

Combining (30) and (31), we obtain (29), as required.

Case 2: |f(S) \B| < δ′v(Hn) for some B ∈ Bn.

We estimate the left-hand side of (29) as follows:

P
(
I ⊆ Vq for some I ∈ I ′S

)
6 P

(
S ⊆ Vq

)
· P
(∣∣Vq ∩ (f(S) \B)

∣∣ > δqv(Hn)− |S|
)
.

This follows from the definition of I ′ and the fact that I \ S ⊆ f(S) for every I ∈ I ′S. Since
|f(S) \B| < δ′v(Hn), we have

E
[
|Vq ∩ (f(S) \B)|

]
< δ′qv(Hn),

whereas δqv(Hn) − |S| > 2δ′qv(Hn) by (28) and since δ = 3δ′. By Chernoff’s inequality, it
follows that

P
(∣∣Vq ∩ (f(S) \B)

∣∣ > 3δ′qv(Hn)− |S|
)
6 exp

(
−(δ′)2qv(Hn)

4

)
6 exp

(
−ε

2qv(Hn)

4

)
since ε was chosen sufficiently small. Thus (29) follows in this case as well.

Finally, note that, since |S| 6 ε3qv(Hn) for every S ∈ S, as in (24), we have

∑
S∈S

P
(
S ⊆ Vq

)
6

ε3qv(Hn)∑
s=0

(
v(Hn)

s

)
qs 6 v(Hn) ·

( e
ε3

)ε3qv(Hn)

. (32)

Putting (27), (29), and (32) together, we obtain

P(A) 6
∑
S∈S

P
(
S ⊆ Vq

)
exp

(
−ε

2qv(Hn)

4

)
6 exp(−ε3qv(Hn)),

as required. �

Proof of Theorem 6.3. Let k ∈ N, α ∈ (0, 1), p ∈ [0, 1]N, and H and B be as in the statement
of Theorem 6.3. Furthermore, suppose that H is (α,B)-stable and fix some positive δ. Let
δ′ be a sufficiently small positive constant (depending only on α and δ), let ε be a small
positive constant, and let n be sufficiently large. Let ε′ = 2ε, and set

F =
{
A ⊆ V (Hn) : |A| > (α− ε′)v(Hn) and |A \B| > δ′v(Hn) for every B ∈ Bn

}
.

Since H is (α,B)-stable, it follows that Hn is (F , ε)-dense, provided that ε is sufficiently
small (as a function of δ′). Let C ′ = C2.2(k, ε, c, c′). By Theorem 2.2, there exist a family

S ⊆
(

V (Hn)
6C′pnv(Hn)

)
and functions f : S → F and g : I(Hn)→ S such that

g(I) ⊆ I and I \ g(I) ⊆ f(g(I))

for every I ∈ I(Hn). Let C = C ′/ε2, assume that m > Cpnv(Hn), and set

I ′ =
{
I ∈ I(Hn,m) : |I \B| > δm for every B ∈ Bn

}
.
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Our task is to bound the size of I ′ from above. To this end, fix an S ∈ S and let I ′S = {I ∈
I ′ : g(I) = S}. Note for future reference that

|S| 6 C ′pnv(Hn) 6 ε2m. (33)

Since f(S) ∈ F , we either have |f(S)| < (α − ε′)v(Hn) or |f(S) \ B| < δ′v(Hn) for some
B ∈ Bn. We therefore consider two cases.

Case 1: |f(S)| < (α− ε′)v(Hn).

We claim that in this case(
v(Hn)

|S|

)
· |I ′S| 6

(1− ε)m

2m

(
αv(Hn)

m

)
. (34)

To prove (34), we first estimate the size of I ′S as follows:

|I ′S| 6
(
|f(S)|
m− |S|

)
6

(
(α− ε′)v(Hn)

m− |S|

)
.

The above inequality follows since I \ S ⊆ f(S) for every I ∈ I ′S. Observe that if m >
(α− ε′)v(Hn), then I ′ ⊆ F and hence I ′ = ∅, since Hn is (F , ε)-dense. Therefore, from now
on let us assume that m < (α− ε′)v(Hn) = (α− 2ε)v(Hn). It follows from (15) and (16), as
in (26), that (

(α− ε′)v(Hn)

m− |S|

)
6

(
m

2εv(Hn)

)|S|(
α− ε′

α

)m−|S|(
αv(Hn)

m

)
and hence, since |S| 6 ε2m and ε′ = 2ε,(

v(Hn)

|S|

)
|I ′S| 6

(
e

|S|
· m

2ε

)|S|
(1− ε′)m−|S|

(
αv(Hn)

m

)
6

(1− ε)m

2m

(
αv(Hn)

m

)
,

as claimed.

Case 2: |f(S) \B| < δ′v(Hn) for some B ∈ Bn.

We claim that in this case (
v(Hn)

|S|

)
· |I ′S| 6 δm

(
αv(Hn)

m

)
. (35)

To prove (35), we first estimate the size of I ′S as follows:

|I ′S| 6
(
|f(S) \B|
δm− |S|

)(
|f(S)|
m− δm

)
6

(
δ′v(Hn)

δm− |S|

)(
v(Hn)

m− δm

)
. (36)

To see the first inequality, recall that every I ∈ I ′S contains at least δm − |S| elements of
f(S)\B for every B ∈ Bn. Recall that |S| 6 ε2m and note that therefore, if m > (α/2)v(Hn),
then δm − |S| > δ′v(Hn) and hence I ′S = ∅. Thus, we may assume that m < (α/2)v(Hn).
It follows, using (16) and (17), that(

v(Hn)

m− δm

)
6

(
m

v(Hn)−m

)δm(
v(Hn)

m

)
6

(
2m

v(Hn)

)δm(
2

α

)m(
αv(Hn)

m

)
. (37)
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Hence, by (33), (36), and (37), using (14), we have(
v(Hn)

|S|

)
|I ′S| 6

(
ev(Hn)

|S|

)|S|(
2eδ′v(Hn)

δm

)δm−|S|(
2m

v(Hn)

)δm(
2

α

)m(
αv(Hn)

m

)
6

(
1

|S|
· δm

2δ′

)|S|(
4eδ′

δ

)δm(
2

α

)m(
αv(Hn)

m

)
6 δm

(
αv(Hn)

m

)
,

as claimed, since |S| 6 ε2m and δ′ and ε were chosen to be sufficiently small. Indeed, note
that (for this calculation, and assuming that δ is sufficiently small) δ′ = δ3 · (δα/2e)1/δ and
ε < δ′ suffice.

Finally, by (34) and (35), we obtain

|I ′| =
∑
S∈S

|I ′S| 6
ε2m∑
s=0

(
v(Hn)

s

)
max{|I ′S| : |S| = s} 6 (1− ε)m

(
αv(Hn)

m

)
,

as claimed. �

7. Turán’s problem in random graphs

In this section, we shall deduce from Theorems 5.2 and 6.2 the sparse random analogues
of the classical theorems of Erdős and Stone [18] and Turán [64] and of Erdős and Si-
monovits [14, 60], Theorems 1.3 and 1.4. In fact, we will prove a natural generalization of
Theorem 1.3 to t-balanced t-uniform hypergraphs, Theorem 7.2 below, which was already
proved by Conlon and Gowers [12] and Schacht [58]. We first recall the following generaliza-
tion of the notion of 2-density of a graph to t-uniform hypergraphs.

Definition 7.1. Let H be a t-uniform hypergraph with at least t + 1 vertices. We define
the t-density of H, denoted by mt(H), by

mt(H) = max

{
e(H ′)− 1

v(H ′)− t
: H ′ ⊆ H with v(H ′) > t+ 1

}
.

Moreover, we say that H is t-balanced if mt(H
′) 6 mt(H) for all H ′ ⊆ H.

We also recall that the Turán density of a t-uniform hypergraph H, denoted π(H), is
defined by

π(H) = lim
n→∞

ex
(
Kt
n, H

)(
n
t

) , (38)

where, as usual, ex
(
Kt
n, H

)
is the Turán number for H, that is, the maximum number of

edges in an H-free t-uniform hypergraph with n vertices.

Theorem 7.2. For every t-balanced t-uniform hypergraph H with ∆(H) > 2 and every
positive δ, there exists a positive constant C such that if qn > Cn−1/mt(H), then

P
(

ex
(
Gt(n, qn), H

)
6 (π(H) + δ)qn

(
n

t

))
→ 1

as n→∞.
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Once again, we emphasize that we actually obtain essentially optimal bounds on the
probability in the above statement, i.e., bounds of the form 1−exp(−bqnnt) for some positive
constant b that depends only on H and δ.

Similarly as in [58] and [55], Theorems 7.2 and 1.4, and hence also Theorem 1.3, will
follow easily from our general transference results, Theorems 5.2 and 6.2, and the classical
supersaturation results of Erdős and Simonovits [17] (for Theorem 7.2) and the stability
theorem of Erdős and Simonovits [14, 60] together with the so-called graph removal lemma
(for Theorem 1.4). We only need to check that the hypergraph of copies of H in the complete
hypergraph Kt

n, to which we would like to apply our transference theorems, satisfies the
assumptions of Theorems 5.2 and 6.2. Since we are going to use this fact several times in
this and later sections, we state it as a separate proposition. Let H be an arbitrary t-uniform
hypergraph. The hypergraph of copies of H in Kt

n is the e(H)-uniform hypergraph on the
vertex set E(Kt

n) whose edges are the edges sets of all copies of H in Kt
n.

Proposition 7.3. Let n and t be integers with t > 2 and let H be a t-balanced t-uniform
hypergraph. Set k = e(H) and let H be the k-uniform hypergraph of copies of H in Kt

n.
There exist positive constants c and c′ such that, letting p = n−1/mt(H), the following holds:

(a) pk−1e(H) > c′v(H).

(b) ∆`(H) 6 c ·min
{
p`−k, p`−1 e(H)

v(H)

}
for every ` ∈ [k − 1].

Proof. To prove (a), note that v(H) =
(
n
t

)
= Θ(nt) and that e(H) = (v(H))!

|Aut(H)| ·
(

n
v(H)

)
=

Θ
(
nv(H)

)
. Since H is t-balanced, then

p = n−1/mt(H) = n−
v(H)−t
e(H)−1

and thus

pe(H)−1 · e(H)

v(H)
> c′ · n−(v(H)−t) · n

v(H)

nt
= c′ (39)

for some positive constant c′, as required.
To prove (b), observe first that, for each ` ∈ [k − 1],

∆`(H) 6 c′′ ·max
{
nv(H)−v(H′) : H ′ ⊆ H with e(H ′) = `

}
for some positive constant c′′. Note that for every H ′ ⊆ H, we have mt(H

′) 6 mt(H) by our
assumption that H is t-balanced and e(H ′) − 1 6 mt(H

′) · (v(H ′) − t) by the definition of
t-density. Moreover, pe(H)nv(H) = pnt, by the choice of p. Thus,

∆`(H) · pe(H)−` 6 c′′ · max
H′⊆H : e(H′)=`

(
pe(H)nv(H)

pe(H′)nv(H′)

)
= c′′ · max

H′⊆H : e(H′)=`

(
p1−e(H′)

nv(H′)−t

)
6 c′′ · max

H′⊆H : e(H′)=`

((
n1/mt(H)

)mt(H′)·(v(H′)−t)

nv(H′)−t

)
6 c′′, (40)
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since mt(H
′) 6 mt(H) and v(H ′) > t for every non-empty H ′ ⊆ H. Moreover, since

e(H)/v(H) > c′ · nv(H)−t, by (a), then

∆`(H) ·
(
p`−1 e(H)

v(H)

)−1

6 c′′ · v(H)

e(H)
· max
H′⊆H : e(H′)=`

(
nv(H)

pe(H′)−1nv(H′)

)
6
c′′

c′
· max
H′′⊆H : e(H′)=`

(
p1−e(H′)

nv(H′)−t

)
6
c′′

c′
,

where the last inequality follows as in (40). Finally, we let c = max{c′′/c′, c′′}. �

Proof of Theorem 7.2. Let H be a t-balanced t-uniform hypergraph, let k = e(H), and let
(Hn)n∈N be the sequence of k-uniform hypergraphs of copies of H in Kt

n. Let α = π(H), let
δ be a positive constant, and let pn = n−1/mt(H). It follows easily from the supersaturation
theorem of Erdős and Simonovits [17] that H is α-dense, see [58]. Let C = C5.2(H, δ) and
assume that qn > Cpn = Cn−1/mt(H). Note that the assumption that H contains a vertex of
degree at least 2 implies that mt(H) > 1/t and hence qnv(Hn) → ∞ as n → ∞. Together
with Proposition 7.3, this implies that H satisfies the assumptions of Theorem 5.2 and hence
with probability tending to 1 as n→∞,

ex
(
Gt(n, qn), H

)
= α

(
Hn

[
E(Gt(n, qn))

])
6 (π(H) + δ)qn

(
n

t

)
,

as required. �

In the proof of Theorems 1.4 and 1.6, we shall need the following proposition, which is a
fairly straightforward consequence of the Erdős-Simonovits stability theorem [14, 60] and the
graph removal lemma [15]. A proof of this statement can be found in [55]. We remark that
a new proof of the graph removal lemma, which avoids the use of the Szemerédi regularity
lemma, was given recently by Fox [19].

Proposition 7.4. Let H be an arbitrary graph. For every positive δ, there exists a positive
ε such that the following holds for every n ∈ N. If G is an n-vertex graph with

e(G) >

(
1− 1

χ(H)− 1
− ε
)(

n

2

)
,

then either G may be made (χ(H)− 1)-partite by removing from it at most δn2 edges or G
contains at least εnv(H) copies of H.

Proof of Theorem 1.4. Let H be a 2-balanced graph, let k = e(H), and let (Hn)n∈N be the

sequence of k-uniform hypergraphs of copies of H in Kn. Let α = π(H) =
(

1− 1
χ(H)−1

)
,

let δ be a positive constant, and let pn = n−1/m2(H). Moreover, let Bn be the family of all
complete (χ(H) − 1)-partite subgraphs of Kn. By Proposition 7.4, H is (α,B)-stable. Let
C = C6.2(H, δ), let ε = ε6.2(H, δ), and assume that qn > Cpn = Cn−1/m2(H). Note that the
assumption that H contains a vertex of degree at least 2 implies that m2(H) > 1/2 and
hence qnv(Hn)→∞ as n→∞. Together with Proposition 7.3, the discussion above implies
that H satisfies the assumptions of Theorem 6.2 and hence with probability tending to 1
as n → ∞, every H-free subgraph of G′ ⊆ G(n, qn) satisfies |G′ \ B| 6 δqnv(Hn) for some
B ∈ Bn. In other words, with probability tending to 1 as n → ∞, every H-free subgraph
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of G(n, qn) can be made (χ(H) − 1)-partite by removing from it at most δqn
(
n
2

)
edges, as

required. �

8. The typical structure of H-free graphs

In this section, we shall deduce from Theorems 5.4 and 6.3 the sparse analogue of the
theorem of Erdős, Frankl, and Rödl [15], Theorem 1.5, and an approximate sparse analogue
of the result of Erdős, Kleitman, and Rothschild [16], Theorem 1.6. We stress once again
that neither proof employs Szemerédi’s regularity lemma. In order to prove Theorem 1.5, we
are actually going to prove the following natural generalization of it to t-balanced t-uniform
hypergraphs. Generalizing the definition stated in Section 1.3, given integers n and m with
0 6 m 6

(
n
t

)
and a t-uniform hypergraph H, let us denote by fn,m(H) the number of H-free

t-uniform hypergraphs on the vertex set [n] that have exactly m edges.

Theorem 8.1. Let H be a t-balanced t-uniform hypergraph and let δ be a positive constant.
There exists a constant C such that for every n, if m > Cnt−1/mt(H), then(

ex(n,H)

m

)
6 fn,m(H) 6

(
ex(n,H) + δnt

m

)
.

We remark that Theorem 8.1 refines a result of Nagle, Rödl, and Schacht [47], who, using
the hypergraph regularity lemma, generalized (4) to t-uniform hypergraphs.

Proof of Theorem 8.1. Let H be a t-balanced t-uniform hypergraph, let k = e(H), and let
(Hn)n∈N be the sequence of k-uniform hypergraphs of copies of H in Kt

n. Let α = π(H),
see (38), let δ be a positive constant, and let pn = n−1/mt(H). It follows easily from the
supersaturation theorem of Erdős and Simonovits [17] that H is α-dense, see [58]. Let
C = C5.4(H, δ) and assume that m > Cnt−1/mt(H) > Cpnv(Hn). Note that Proposition 7.3
implies that H satisfies the assumptions of Theorem 5.4 and hence

fn,m(H) = |I(Hn,m)| 6
(

(π(H) + δ)
(
n
t

)
m

)
6

(
ex(n,H) + δnt

m

)
,

as required. The claimed lower bound on fn,m(H) is trivial. �

Proof of Theorem 1.6. Let H be a 2-balanced graph, let k = e(H), and let (Hn)n∈N be the

sequence of k-uniform hypergraphs of copies of H in Kn. Let α = π(H) =
(

1− 1
χ(H)−1

)
,

let δ be a positive constant, and let pn = n−1/m2(H). Moreover, let Bn be the family of all
complete (χ(H) − 1)-partite subgraphs of Kn. By Proposition 7.4, H is (α,B)-stable. Let
C = C6.3(H, δ), let ε = ε6.3(H, δ), and assume that m > Cn2−1/m2(H) > Cpnv(Hn). Together
with Proposition 7.3, this implies that H satisfies the assumptions of Theorem 6.3 and hence,
letting f δn,m(H) denote the number of H-free graphs on the vertex set [n] that have exactly
m edges and that are not (δ, χ(H)− 1)-partite,

f δn,m(H) 6 (1− ε)m
(
π(H)

(
n
2

)
m

)
.

Finally, note that (trivially),

fn,m(H) >

(
π(H)

(
n
2

)
m

)
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and hence f δn,m(H) = o
(
fn,m(H)

)
, as claimed. �

For t-uniform hypergraphs there is no general stability theorem known; however, such
results have been proved for a few specific hypergraphs (see [22, 23, 35, 36]), and in each
case we obtain a corresponding result for sparse hypergraphs. For example, following [7],
let F5 denote the ‘3-uniform triangle’, i.e., the hypergraph with edge set isomorphic to
{123, 124, 345}, and say that a 3-uniform hypergraph is triangle-free if it contains no copy
of F5. The following theorem follows easily, as above, from Theorem 6.3 combined with the
hypergraph removal lemma of Gowers [31] and Rödl and Skokan [53] and the stability theorem
for 3-uniform triangle-free hypergraphs, which was proved by Keevash and Mubayi [35].

Theorem 8.2. For every positive δ, there exists a constant C such that the following holds.
If m > Cn2, then almost every triangle-free 3-uniform hypergraph with n vertices and m
edges can be made tripartite by removing from it at most δm edges.

Proof. Let (Hn)n∈N be the sequence of 3-uniform hypergraphs of copies of F5 in K3
n, set

α = 2/9, and let Bn denote the collection of all complete tripartite subhypergraphs of K3
n.

By the hypergraph removal lemma [53, Theorem 1.3], combined with the stability theorem
for triangle-free 3-uniform hypergraphs [35, Theorem 1.6], it follows that H is (α,B)-dense.
Note that F5 is 3-balanced (though not strictly balanced); it follows by Proposition 7.3 that
H satisfies the conditions of Theorem 6.3 with pn = n−1. Hence the number of triangle-
free 3-uniform hypergraphs with n vertices and m edges that cannot be made tripartite by
removing at most δm edges is at most

(1− ε)m
(
π(F5)

(
n
3

)
m

)
,

which easily implies the theorem. �

Finally, we remark that Theorem 8.2 can be seen as an approximate sparse analogue of
a result of Balogh and Mubayi [7], who used the hypergraph regularity lemma and [35,
Theorem 1.6] to show that almost all triangle-free 3-uniform hypergraphs are tripartite. For
similar results for other forbidden hypergraphs, see [8] and [49].

9. The K LR Conjecture

In this section, we shall deduce from Theorem 2.2 the K LR conjecture for 2-balanced
graphs, Theorem 1.8. As in the preceding sections, the proof will be a fairly straight-
forward application of Theorem 2.2 to an appropriately defined hypergraph H and family
F ⊆ P(V (H)). Let H be an arbitrary 2-balanced graph and let H be the e(H)-uniform
hypergraph of canonical copies of H in the complete blow-up of H. Defining an appropriate
family F and showing that H is (F , ε)-dense will require some work.

Given a graph H and integers n1, . . . , nv(H), let us denote by G(H;n1, . . . , nv(H)) the col-
lection of all graphs G constructed in the following way. The vertex set of G is a dis-
joint union V1 ∪ . . . ∪ Vv(H) of sets of sizes n1, . . . , nv(H), respectively, one for each ver-
tex of H. The only edges of G lie between those pairs of sets (Vi, Vj) such that {i, j} is
an edge of H. Recall the definition of G(H,n,m, p, ε) from Section 1.4 and observe that
G(H,n,m, p, ε) ⊆ G(H;n, . . . , n) for all m, p, and ε.
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The following lemma, which is a robust version of the embedding lemma, stated in Sec-
tion 1.4, suggests the right choice of F . We remark that the lemma is well-known, but for
completeness we provide a short proof of it in the form we shall use.

Lemma 9.1. Let H be an arbitrary graph and let δ : (0, 1] → (0, 1) be an arbitrary func-
tion. There exist positive constants α0, ξ, and N such that for every collection of integers
n1, . . . , nv(H) satisfying n1, . . . , nv(H) > N and every graph G ∈ G(H;n1, . . . , nv(H)), one of
the following holds:

(a) G contains at least ξn1 . . . nv(H) canonical copies of H.
(b) There exist a positive constant α with α > α0, an edge {i, j} ∈ E(H), and sets Ai ⊆ Vi,

Aj ⊆ Vj such that |Ai| > αni, |Aj| > αnj, and dG(Ai, Aj) < δ(α).

Proof. We prove the lemma by induction on the number of vertices of H. If v(H) = 1, then
(a) holds vacuously with ξ = 1 for every choice of G. Let us then assume that v(H) > 2, let
v1 be the first vertex of H (i.e., the vertex corresponding to the set V1 from the definition of
the family of blow-ups of H), set H̃ = H − v1, and let α1 = 1

v(H)
. Given a function δ, define

δ̃ by letting δ̃(x) = δ
(
δ(α1) · x

)
for each x ∈ [0, 1] and let α̃0, ξ̃, and Ñ be the constants

obtained by invoking the inductive assumption with H replaced by H̃ and δ replaced by δ̃.
Furthermore, let

α0 = min
{
α1, α̃0 · δ(α1)

}
, N =

Ñ

δ(α1)
, and ξ = α1 · δ(α1)v(H)−1 · ξ̃.

Now, let n1, . . . , nv(H) be integers satisfying n1, . . . , nv(H) > N and let G be an arbitrary
graph from G(H;n1, . . . , nv(H)). Suppose first that for some vj ∈ NH(v1), the set W1,j

defined by

W1,j =
{
w ∈ V1 : degG(w, Vj) < δ(α1)nj

}
contains at least α1n1 vertices. In this case, it is not hard to see that (b) is satisfied with
α = α1, i = 1, A1 = W1,j, and Aj = Vj. Hence, since α1 = 1

v(H)
, we may assume that the set

W1 defined by

W1 = V1 \
⋃

j∈NH(v1)

W1,j =
{
w ∈ V1 : degG(w, Vj) > δ(α1)nj for all vj ∈ NH(v1)

}
contains at least α1n1 vertices. For each w ∈ W1, let Gw be the subgraph of G induced by
the set V2(w) ∪ . . . ∪ Vv(H)(w), where for each j ∈ {2, . . . , v(H)},

Vj(w) =

{
Vj ∩NG(w) if vj ∈ NH(v1),

Vj if vj 6∈ NH(v1).

Note that the assumption that w ∈ W1 implies that |Vj(w)| > δ(α1)nj > Ñ for each j.
Hence, we may apply the induction hypothesis to each graph Gw.

Suppose first that for some w ∈ W1, we obtain an α̃ with α̃ > α̃0, vertices i, j ∈ V (H̃),
and a pair Ai ⊆ Vi(w) ⊆ Vi, Aj ⊆ Vj(w) ⊆ Vj such that

|A`| > α̃|V`(w)| > α̃δ(α1)n` for both ` ∈ {i, j}
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and dG(Ai, Aj) = dGw(Ai, Aj) < δ̃(α̃) = δ
(
α̃δ(α1)

)
. Then we are done, since (b) is satisfied

with α = α̃δ(α1). Otherwise, for each w ∈ W1, the number of canonical copies of H̃ in the

graph Gw is at least ξ̃|V2(w)| . . . |Vv(H)(w)|, which is at least ξ̃δ(α1)v(H)−1n2 . . . nv(H). Since
w extends each of those copies to a canonical copy of H in G, it follows that in this case,
the number of canonical copies of H in G is at least |W1| · ξ̃δ(α1)v(H)−1n2 . . . nv(H), which is
at least ξn1 . . . nv(H), as required. �

Our next lemma is more straightforward. It allows us to count (ε, p)-regular subgraphs
of a graph that has a ‘hole’, as in Lemma 9.1(b). Recall that G(K2, n,m, p, ε) denotes the
collection of all (ε, p)-regular bipartite graphs with m edges and n vertices in each part.
Given such G, let V1(G) and V2(G) denote the two parts. For each β ∈ (0, 1), define a
function δ : (0, 1]→ (0, 1) by setting

δ(x) =
1

4e

(
β

2

)2/x2

(41)

for each x ∈ (0, 1]. The following lemma says that a graph G̃ that has a hole of size αn and
density at most δ(α) has very few subgraphs in G(K2, n,m,m/n

2, ε).

Lemma 9.2. For every positive α0 and β, there exists a positive constant ε such that the
following holds. Let G̃ ⊆ Kn,n be such that there exist subsets A ⊂ V1(G̃) and B ⊂ V2(G̃)
with

min{|A|, |B|} > αn and dG(A,B) < δ(α)

for some α ∈ [α0, 1]. Then, for every m with 0 6 m 6 n2, there are at most

βm
(
n2

m

)
subgraphs of G̃ that belong to G(K2, n,m,m/n

2, ε).

Proof. We begin by noting that, by choosing random subsets of A and B if necessary, we may
assume that |A| = |B| = αn. Set ε = min{α0, 1/2}, write G∗ for the family of all subgraphs
of G̃ that belong to G(K2, n,m,m/n

2, ε), and let G ∈ G∗. In particular, G is (ε, p)-regular,
where p = m/n2 and since ε 6 α, it follows that the pair (A,B) must have density at least
(1 − ε)p in G. Thus, writing eG̃(A,B) for the number of edges of G̃ that lie between the
sets A and B, since dG̃(A,B) < δ(α), then the number of choices for G can be estimated as
follows:

|G∗| 6
∑

`>(1−ε)p|A||B|

(
eG̃(A,B)

`

)(
e(G̃)− eG̃(A,B)

m− `

)
6

∑
`>α2m/2

(
δ(α)α2n2

`

)(
n2

m− `

)
. (42)

Note that the right-hand side of (42) is zero if m > 2δ(α)n2, so we may assume that
m 6 2δ(α)n2 6 n2/2. Thus, using (14) and (16), (42) implies that

|G∗| 6
∑

`>α2m/2

(
eδ(α)α2n2

`

)`(
m

n2 −m

)`(
n2

m

)
6

∑
`>α2m/2

(
2eδ(α)α2m

`

)`(
n2

m

)
. (43)
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Since δ(α) < 1/4e, the summand in the right-hand side of (43) is decreasing in ` on
(α2m/2,∞) and hence

|G∗| 6 m
(
4eδ(α)

)α2m/2
(
n2

m

)
6 βm

(
n2

m

)
,

as required, since
(
4eδ(α)

)α2/2
= β/2. �

We can now easily deduce Theorem 1.8 from Theorem 2.2.

Proof of Theorem 1.8. Let H be a fixed 2-balanced graph, let n ∈ N, and let H(n) be the
largest graph in the family G(H;n, . . . , n), i.e., the complete blow-up of H, where each
vertex of H is replaced by an independent set of size n and each edge of H is replaced by
the complete bipartite graph Kn,n. Let H be the e(H)-uniform hypergraph on the vertex set
E(H(n)) whose edges are all nv(H) canonical copies of H in H(n).

Fix an arbitrary positive constant β, let δ : (0, 1] → (0, 1) be the function defined in (41)
with β replaced by β2/4, i.e., set

δ(x) =
1

4e

(
β2

8

)2/x2

for each x ∈ (0, 1], and let α0 = (α0)9.1(H, δ), ξ = ξ9.1(H, δ), and N = N9.1(H, δ). Let
F be the family of all subgraphs of H(n), i.e., graphs in G(H;n, . . . , n), for which (b) in
Lemma 9.1 is not satisfied. Clearly F is an upset, and so, by Lemma 9.1, H is (F , ξ)-dense
provided that n > N .

Now, since H is contained in the hypergraph of all copies of H in the complete graph on
v(H)n vertices and contains a positive proportion of those copies, it follows from Proposi-
tion 7.3 that H satisfies the assumptions of Theorem 2.2 with p = n2−1/m2(H) and ε = ξ, for
some constants c and c′ depending only on H. Therefore, there is a constant C ′, a family

S ⊆
( E(H(n))

6C′n2−1/m2(H)

)
, and functions f : S → F and g : I(H)→ S such that

g(I) ⊆ I and I \ g(I) ⊆ f(g(I))

for every I ∈ I(H).
Let ε be a sufficiently small positive constant such that, in particular, ε 6 ε9.2(α0, β

2/4),
let C = C ′/ε, and suppose that m > Cn2−1/m2(H). Let G∗ = G∗(H,n,m,m/n2, ε) and note
that G∗ ⊆ I(H). We are required to bound from above the number of graphs in G∗.

To this end, fix an S ∈ S, let

G∗S =
{
G ∈ G∗ : g(G) = S

}
,

and let GS = f(S). For each {u,w} ∈ E(H), let s(u,w) = eS(Vu, Vw) and note that∑
{u,w}∈E(H) s(u,w) = |S|. Since

|S| 6 C ′n2−1/m2(H) 6 ε · Cn2−1/m2(H) 6 εm,

then s(u, v) 6 εm for every uv ∈ E(H).
Now, since GS ∈ F , it follows that there exist an α ∈ [α0, 1], an edge {i, j} ∈ E(H), and

sets Ai ⊆ Vi, Aj ⊆ Vj such that |Ai|, |Aj| > αn and dGS
(Ai, Aj) < δ(α). By Lemma 9.2, it
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follows that there are at most (
β2

4

)m−s(i,j)(
n2

m− s(i, j)

)
choices for the edges between Vi and Vj such that G[Vi, Vj] ∈ G(K2, n,m,m/n

2, ε) and
G[Vi, Vj] ⊂ GS[Vi, Vj]. Since m− s(i, j) > m/2, it follows immediately that

|G∗S| 6
(
β

2

)m ∏
uv∈E(H)

(
n2

m− s(u, v)

)
.

Summing over sets S ∈ S, and using (14) and (16), we obtain

|G∗| 6
∑
S∈S

(
β

2

)m ∏
uv∈E(H)

(
m

n2 −m

)s(u,v)(
n2

m

)
=

(
β

2

)m(
n2

m

)e(H)∑
S∈S

(
m

n2 −m

)|S|

6

(
β

2

)m(
n2

m

)e(H) ∑
s6εm

(
e(H)n2

s

)(
2m

n2

)s
6

(
β

2

)m(
n2

m

)e(H) ∑
s6εm

(
2e · e(H)m

s

)s
.

Now, since ε was chosen to be sufficiently small, it follows that the summand above is
increasing in s on (0, εm] and hence

|G∗| 6
(
β

2

)m(
n2

m

)e(H)

m

(
2e · e(H)

ε

)εm
6 βm

(
n2

m

)e(H)

,

as required. �
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