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Abstract

In Achlioptas processes, starting from an empty graph, in each step
two potential edges are chosen uniformly at random, and using some rule
one of them is selected and added to the evolving graph. Although the
evolution of such ‘local’ modifications of the Erdős–Rényi random graph
process has received considerable attention during the last decade, so far
only rather simple rules are well understood. Indeed, the main focus has
been on ‘bounded-size’ rules, where all component sizes larger than some
constant B are treated the same way, and for more complex rules very
few rigorous results are known.

In this paper we study Achlioptas processes given by (unbounded)
size rules such as the sum and product rules. Using a variant of the
neighbourhood exploration process and branching process arguments we
show that certain key statistics are tightly concentrated at least until the
susceptibility (the expected size of the component containing a randomly
chosen vertex) diverges. Our convergence result is most likely best possible
for certain rules: in the later evolution the number of vertices in small
components may not be concentrated. Furthermore, we believe that for
a large class of rules the critical time where the susceptibility ‘blows up’
coincides with the percolation threshold.

1 Introduction

In 2000 Dimitris Achlioptas suggested a class of variants of the classical random
graph process, now called Achlioptas processes. Such a process defines, for
each n, a random sequence (Gi)i>0 = (GR

i )i>0 of graphs with vertex set [n] as
follows: start with an empty graph G0 on n vertices. At each step i > 1, two
potential edges e1 and e2 are chosen independently and uniformly at random
from all

(
n
2

)
possible edges (or from those edges not present in Gi−1). One

of these edges is selected according to a rule R and added to the graph, so
Gi = Gi−1 ∪ {e} for e = e1 or e2. (As usual in combinatorics, we omit the
dependence on n in the notation to avoid clutter.) Achlioptas processes are
a special case of the more general class of ℓ-vertex rules, where in each step
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ℓ > 2 vertices v1, . . . , vℓ are chosen independently and uniformly at random and
then at least (usually exactly) one edge between these vertices is added. Always
adding e = e1 (or e = v1v2) gives the Erdős–Rényi random graph process,
which has been extensively studied for more than 50 years; by now many of
its properties are extremely well understood, in particular the evolution of the
component structure, see e.g. [8, 9, 11].

During the last decade the evolution of certain ‘simple’ Achlioptas processes
has received considerable attention, mainly for so-called bounded-size rules, see
e.g. [3, 4, 6, 12, 13, 18, 21]. These make their decisions based only on the sizes
of the components containing the endvertices of e1 and e2, with the restriction
that all sizes larger than some constant B are treated in the same way. For
bounded-size rules a number of results have been established concerning con-
centration of the number of vertices in components of fixed size [6, 21], the size
of the second largest component [18], the existence and location of the perco-
lation phase transition where the (unique) linear size ‘giant’ component first
emerges [6, 21], the ‘order’ of the phase transition [18], and the rescaled size of
the largest component [18]. For one particular bounded-size rule (a variant of a
process suggested by Bohman and Frieze [4]), some finer details of the percola-
tion phase transition have recently been investigated [3, 12, 13]. The punchline
of the work mentioned above is that bounded-size rules seem to show many qual-
itative similarities with the ‘classical’ Erdős–Rényi random graph process; in the
language of mathematical physics they appear to be in the same ‘universality
class’.

In contrast, for more involved Achlioptas processes very few rigorous results
are known, although these have been widely studied in recent years. This in
particular applies to the class of ‘unbounded’-size rules, usually simply called
size rules, whose choices depend only on the sizes of the four components con-
taining the endvertices of the two offered edges. To illustrate our very limited
understanding of these, we mention that in one line of research, stimulated by a
conjecture of Achlioptas, D’Souza and Spencer published in Science [1] (based
on ‘conclusive numerical evidence’), it was believed that certain size rules (in
particular the product rule) could give rise to a discontinuous (‘first order’)
phase transition. However, recently it was rigorously shown in [18, 20] that the
phase transition is in fact continuous for all Achlioptas processes (even for a
larger class of processes). The surprises that (unbounded) size rules have shown
so far indicate that our intuition for these processes still needs to be developed.
In fact, obtaining non-trivial results for involved Achlioptas processes using e.g.
the product rule is well known to be a technical challenge (see e.g. [1, 10]).

Given a graph G, let Nk(G) denote the number of vertices of G in compo-
nents of size k, and define the susceptibility of G as S(G) =

∑
kNk(G)/n, so

S(G) is the expected size of the component containing a randomly chosen ver-
tex. Let L1(G) denote the number of vertices in the (a, if there is a tie) largest
component of G. We say that tc = tRc is the percolation threshold for the process
(GR

i ) if for t < tc whp L1(Gtn) = o(n) while for t > tc whp L1(Gtn) = Ω(n) (as
usual, we henceforth ignore the irrelevant rounding to integers, and say that an
event holds whp, if it holds with probability tending to 1 as n → ∞). The anal-
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ysis for bounded-size rules in [6, 12, 21] uses S(Gi) as well as Nk(Gi) for fixed
k as key statistics. In the ‘subcritical’ regime t < tc, they use Wormald’s differ-
ential equation method [22, 23] to establish the existence of functions ρk = ρRk ,
s = sR such that Nk(Gtn) ≈ ρk(t)n and S(Gtn) ≈ s(t) hold whp. Based on
this they show that tc = tRc is given by the blow-up point of the susceptibil-
ity: limtրtc s(t) = ∞. As indicated by Spencer and Wormald [21], for general
size rules the approximation of the key statistics using the differential equation
method seems difficult. Another intricacy for such rules is that the dependencies
among the selected edges often seem to be more complex in comparison with
bounded-size rules, for which a large subset of the added edges can be thought
of as chosen uniformly at random (essentially, when all four endvertices are in
components of size larger than B); we return to this in Section 3.

1.1 Main result

In this paper we establish the first rigorous convergence result for Achlioptas
processes using unbounded size rules such as the product rule: we show that the
number of vertices in components of size k > 1 (and the susceptibility) is tightly
concentrated until the susceptibility ‘blows up’, which happens at a critical time
tb. In fact, our result holds for a very large class of Achlioptas-like processes,
including essentially all Achlioptas processes studied so far (see Section 2 for

the formal definition of ℓ-vertex size rules). Here S(GR
tn)

p→ ∞ as n → ∞ means
that for any C > 0 we have P(S(GR

tn) 6 C) → 0 as n → ∞, and N>k(G) denotes
the number of vertices of G in components of size at least k.

Theorem 1. Let ℓ > 2 and let R be an ℓ-vertex size rule. There exist tb =
tRb ∈ [ 1

ℓ(ℓ−1) , 1] and functions (ρk)k>1 with ρk = ρRk : [0, tb) → [0, 1] such that

the following holds. For every t > tb we have

S(GR
tn)

p→ ∞ (1)

as n → ∞. For every t < tb we have
∑

k>1 ρk(t) = 1. Also, for every t < tb
there exist a,A,C > 0 (depending only on R, ℓ, t) such that for every t′ ∈ [0, t]
we have ρk(t′) 6 Ae−ak for all k > 1. In addition, for n > n0(R, ℓ, t) the
following holds with probability at least 1 − n−99: for every 0 6 i 6 tn we have

|Nk(GR
i ) − ρk(i/n)n| 6 (logn)Cn1/2 for all k > 1, (2)

|S(GR
i ) −∑k>1kρk(i/n)| 6 (logn)Cn−1/2, (3)

and N>k(GR
i ) 6 Ae−akn for all k > 1.

To interpret this result, we think of the functions ρk(t) as describing the
‘scaling limit’ of the component size distribution at ‘time’ t < tb, where time
is the number of steps divided by n. A key aspect of the result is that this
limit does not depend on n; in fact, most of our technical work is devoted to
establishing this property – to show only that Nk(GR

tn) is concentrated around
its expectation, simpler arguments would suffice. The tail bound on ρk given
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in Theorem 1 states that the idealized component size distribution has an ex-
ponential tail for t < tb, as one would expect in a strictly sub-critical random
graph. It implies that s(t) =

∑
k>1 kρk(t) < ∞ if t < tb, so (3) implies that

that for t < tb we have
S(GR

tn)
p→ s(t) < ∞, (4)

where
p→ denotes convergence in probability. The proof of Theorem 1 will show

that s(tb − ε) > (ℓ(ℓ − 1)ε)−1, so the (idealized) susceptibility s(t) blows up
at tb. The last statement of the theorem implies that for t < tb we have
L1(G

R
tn) 6 Bt logn whp, for some constant Bt that depends on t. Finally, we

shall show in the Appendix that (unless R directly adds cycles to the graph),
for t < tb whp almost all components are trees, with the rest unicyclic.

Theorem 1 allows us to say something about what happens at time t = tb.
Indeed, the definition of an ℓ-vertex rule ensures that in one step, at most ℓ
components are destroyed and at most ℓ (in fact at most ℓ/2) are created, so
|Nk(GR

i+1) −Nk(GR
i )| 6 ℓk. It follows that each ρk is Lipschitz continuous on

[0, tb) with constant kℓ. Hence we can extend each ρk continuously to the point
tb, and (2) and the Lipschitz properties of Nk and ρk imply that

Nk(GR
tbn

)/n
p→ ρk(tb). (5)

Together with Theorem 1, the continuity results of [18, 20] imply that L1(Gtbn)/n
p→

0, and that
∑

k ρk(tb) = 1, so the numbers (ρk(tb))k>1 do capture the asymp-
totic component size distribution of GR

tbn
, although we do not have such tight

error bounds as in (2).
The proof of Theorem 1 is based on a variant of the neighbourhood ex-

ploration process and relies on branching process (approximation) arguments.
This is quite different from previous approaches in this area, which are based on
the differential equation method; for certain (restricted) classes of rules these
establish local convergence, i.e., that there exist functions ρk = ρRk : R+ → [0, 1]

such that, for each fixed k > 1 and t > 0, we have Nk(GR
tn)/n

p→ ρk(t) as
n → ∞. The limitations of these approaches are that they (i) only apply to
certain bounded-size rules [6, 21], or (ii) when applied to size rules need the ad-
ditional assumption that certain systems of differential equations have unique
solutions [19], which is not known to hold for the product rule, for example. So,
Theorem 1 establishes for the first time (a strong form of) local convergence for
unbounded size rules (such as the product rule) until the susceptibility diverges.
We believe that this convergence result is best possible: on the basis of heuris-
tics and simulations presented in [17] we believe that there are certain natural
size rules for which beyond t = tb a giant component emerges whose size is not
concentrated. In these rules the numbers of vertices in components of each fixed
size k are presumably also not concentrated after this point.

Theorem 1 has some analogies with ‘classical’ percolation theory on, for
example, the infinite lattice Z

d, where there are two a priori different critical
probabilities pH and pT. Intuitively, these correspond to the thresholds for (i)
having (with positive probability) an infinite cluster and (ii) the expected cluster
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size being infinite. For essentially all ‘natural’ lattices of interest it is nowadays
known that pH = pT (see e.g. [2, 16]), but this fact is not at all obvious! Note
that in the finite setting of this paper these two properties correspond to (i)
having a linear size component, and (ii) diverging susceptibility. More formally,

define tc = tRc as the supremum of the set of t > 0 for which L1(GR
tn)/n

p→ 0
as n → ∞, and tb = tRb as the supremum of the set of t > 0 for which S(GR

tn)

is bounded in probability. Note that L1(G) 6
√
nS(G) implies tb 6 tc. The

remark after Theorem 1 entails that for size rules tb is equal to the infimum of

the set of t > 0 for which (1) holds, and that S(GR
tbn)

p→ ∞. In fact, we believe
that both thresholds coincide for size rules (analogous to the ‘classical’ case).

Conjecture 2. Let ℓ > 2 and let R be an ℓ-vertex size rule. Then tRb = tRc .
More precisely, for any t > tRb and ε > 0 there exist δ, n0 > 0 (depending only
on R, ℓ, t, ε) such that P(L1(GR

tn) > δn) > 1 − ε for n > n0.

Recall that Achlioptas processes (where the choice is between two edges)
are a sub-class of 4-vertex rules. Conjecture 2 was proved for bounded-size
Achlioptas processes by Spencer and Wormald [21], and for a subset of these
processes by Bohman and Kravitz [6]. We shall show in Section 3.1 that it holds
for all bounded-size ℓ-vertex rules, as well as many other size rules, including
the ‘reverse product rule’, for example. However, it does not hold for general
ℓ-vertex rules. Indeed, in Section 3.2 we show that modified size rules with one
additional feature, namely that they may once switch their behaviour based
on the number n of vertices and the number i of steps (or the value of the
susceptibility), can delay the appearance of a linear size component for Ω(n)
steps beyond the point where the susceptibility diverges.

2 Evolution of Achlioptas processes with an ini-

tial graph

In this paper we consider the evolution of Achlioptas processes starting with an
initial graph F with vertex set V = [n]; we restrict our attention to ℓ-vertex size
rules R, whose decisions depend only on the sizes of the components containing
the randomly chosen vertices. More precisely, each such rule R yields a random
sequence (FR

i )i>0 of graphs on V with FR
0 = F . For every i > 0 we draw

ℓ vertices vi+1 = (v1, . . . , vℓ) from V independently and uniformly at random,
and then, writing ci+1 = (c1, . . . , cℓ) for the sizes of the components containing
v1, . . . , vℓ in FR

i , we obtain obtain FR
i+1 by adding a non-empty set of edges Ei+1

to FR
i , where R deterministically selects Ei+1 as a subset of all pairs between

vertices in vi+1 based only on the list of component sizes ci+1. Usually exactly
one edge is added, but there is no reason to insist on this.

When F = G0 is the empty graph on n vertices we obtain the ‘standard’
Achlioptas processes using ℓ-vertex size rules R as defined in [18]. As usual, we
can allow for small variations in the above definition; this includes, for example,
each time picking an ℓ-tuple of distinct vertices, or picking (the ends of) ℓ/2
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randomly selected (distinct) edges not already present in GR
i , see also [18]. For

ℓ = 2 we thus recover the ‘classical’ Erdős–Rényi random graph process by
always adding the pair v1v2. In addition, our proofs can be written to allow R
to make randomized decisions(with the probability of adding some set of edges
depending only on ci+1), and, furthermore, to allow R to know which vertices
in vi+1 are in the same components of FR

i (for compatibility with [18] we then
require Ei+1 6= ∅ whenever all vj are in distinct components, although nothing
in the proof of Theorem 1, except for the bound tb 6 1, needs this).

One difficulty in the proof of Theorem 1 is that there is a complicated de-
pendence between the decisions of R in each round (and their order is also
important). Indeed, changes can ‘propagate’ throughout the process: if the
sizes of a few components are modified (e.g. by altering decisions of R or tuples
v = (v1, . . . , vℓ) offered), then this might change many future decisions of R,
which in turn might alter further decisions, etc. To overcome this our proof
proceeds by induction, always establishing concentration only for a small num-
ber of steps; this is also the reason why we study the more general evolution
starting from an initial graph F . Each time we rely on a two-round exposure
argument: in the first round we reveal which tuples are selected, and in the
second we then expose their order. For size rules not all tuples and components
of F ‘influence’ the size of the component in FR

i containing v: only those which
can be reached from v after adding all pairs of each ℓ-tuple to the graph (every
rule only selects a subset of these pairs). The key observation is now that given
the corresponding ‘relevant’ tuples and components of F of the first round, the
order of these tuples (exposed in the second round) determines the size of the
component containing v. It turns out that if we only consider σn rounds for σ
sufficiently small, then an exploration process determining these relevant tuples
and components in the first round can be closely approximated by a subcritical
branching process Xσ which is defined without reference to n. Since the out-
come of the second round is a (random) function of the first one, it thus seems
plausible that ENk(FR

σn)/n is independent of n (up to small error terms). In
addition, since the first round is subcritical, this means that there typically are
not too many tuples and components which influence the size of the compo-
nent containing v. At least on an intuitive level this makes it plausible that it
should be possible to establish concentration of Nk(FR

i ) around its expectation
by applying McDiarmid’s inequality.

The rest of this paper is organized as follows. In the next section we state
our main technical result (Theorem 3), and then show in Section 2.2 how it im-
plies Theorem 1. Afterwards, in Section 2.3 we present some branching process
preliminaries; these are used in Section 2.4, where we establish Theorem 3. In
Section 3 we discuss Conjecture 2, giving examples of classes of size rules for
which we can prove the conjecture, and examples of non-size rules for which
it does not hold. Finally, in the appendix we consider the cycle structure of
Achlioptas processes.
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2.1 Main technical result

Our main technical result establishes concentration during the evolution of
Achlioptas processes starting with an initial graph F . The special case of
an Erdős–Rényi evolution from an initial graph F (which can be seen as an
evolving version of a special case of the inhomogeneous random graph model of
Bollobás, Janson and Riordan [7]) has been previously studied by Spencer and
Wormald [21] and Janson and Spencer [12], the main focus being on the size of
the largest component. In this context the susceptibility turns out to be the key
parameter, and both papers use in essential ways that the Erdős–Rényi evolu-
tion corresponds to the addition of uniform random edges (or pairs of vertices).
In contrast, when studying the evolution of Achlioptas processes, we need to
deal with intricate dependencies between the edges added.

Using susceptibility as a guide, we now briefly motivate the number of steps
our result applies to. Suppose that, starting with F satisfying S(F ) = L, we
use the rule I which in each step joins all ℓ random vertices by edges. Set
s(t) = S(F I

tn). If the sizes of the joined components are ci, then (assuming that
all components are distinct) the susceptibility changes by (

∑
ci)

2/n−∑ c2i /n =∑
i6=j cicj/n. So, since the vertices of each tuple are chosen uniformly at random,

it seems plausible that typicality we have s′(t) ≈ nE(S(F I
tn+1) − S(F I

tn)) ≈
ℓ(ℓ− 1)s(t)2. For t < [ℓ(ℓ− 1)L]−1 = ts this suggests s(t) ≈ [1/L− ℓ(ℓ− 1)t]−1.
Since in each step any rule R only adds a subset of all

(
ℓ
2

)
pairs to the graph,

this indicates that the susceptibility does not ‘blow up’ as long as t < ts. The
following result confirms this heuristic argument and shows that, under suitable
conditions, for t < ts the number of vertices in components of size k > 1 is also
tightly concentrated (the function ρ intuitively results from an ‘infinite’ version
of the rule R). Here we set χ(ϕ) =

∑
k>1 kϕ(k) and χ(ρ, t) =

∑
k>1 kρ(k, t),

and write x = a± b as shorthand for x ∈ [a− b, a + b].

Theorem 3. Let ℓ > 2 and let R be an ℓ-vertex size rule. Suppose β > 1,
B > 0, L > 1 and ϕ : N → [0, 1] satisfy

∑
k>1ϕ(k) = 1, (6)

∑
k>1ϕ(k)βk

6 B, (7)

χ(ϕ) 6 L. (8)

There is a function ρ : N × R
+ → [0, 1] (depending only on ϕ,R, ℓ) such that

for all σ > 0 satisfying
σ < [ℓ(ℓ− 1)L]−1 (9)

there exist β̃, B̃, L̃ > 1 (depending only on ℓ, L, σ, β,B) such that for every
t ∈ [0, σ] equations (6)–(8) hold when β,B, L, ϕ(·) are replaced by β̃, B̃, L̃, ρ(·, t).
If in addition F is a graph on n vertices which for C > 0 satisfies

Nk(F ) = ϕ(k)n± (log n)Cn1/2 for all k > 1, (10)
∑

k∈[n]Nk(F )βj
6 Bn, (11)

S(F ) 6 L, (12)
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then, setting C̃ = C + 9, for n > n0(ℓ, L, σ, β,B,C) the following holds with
probability at least 1 − n−200: for every 0 6 i 6 σn we have

S(FR
i ) = χ(ρ, i/n) ± (logn)C̃n−1/2, (13)

and equations (10)–(12) hold when β,B, L,C, F, ϕ(·) are replaced by β̃, B̃, L̃, C̃, FR
i , ρ(·, i/n).

The proof of Theorem 3 is quite involved and is deferred to Section 2.4. It
is useful to observe that since β > 1 holds, (7) and (11) imply the tail bounds
max{∑j>k ϕ(j), N>k(F )/n} 6 Bβ−k for all k > 1, so L1(F ) = O(log n). By

Theorem 3 analogous estimates also hold for FR
i with i 6 σn. In fact, for (11),

(12) to hold with β,B, L, F replaced by β̃, B̃, L̃, FR
i , a minor modification of

our proof shows that it suffices to assume (9), (11) and (12) only; for the special
case ℓ = 2 this was established by Spencer and Wormald [21] under similar
conditions. However, the key point of Theorem 3 is (10), i.e., that we obtain
concentration of number of vertices in components of size k.

Turning to the susceptibility, by combining (10) with the tail bounds fol-
lowing from (7) and (11), for each fixed j we readily obtain rather precise
estimates for Sj(F

R
i ) =

∑
k∈[n] k

jNk(FR
i )/n with i 6 σn, similar to (13). Fur-

thermore, since L1(F
R
σn) = O(log n) whp, we can easily use the differential

equation method to make our heuristic discussion regarding the susceptibility
rigorous, which e.g. yields χ(ρ, σ) 6 [1/L − ℓ(ℓ − 1)σ]−1 (for the special case
ℓ = 2 this was noted by Bohman et. al [5]; it is also implicit in [21]). However,
this crude bound, which follows from always connecting all ℓ vertices by edges
in each step, is generally far from the truth; for this reason it does not suffice in
our inductive application of Theorem 3, where we use the ‘correct’ value given
by (13).

2.2 Proof of Theorem 1

This section is devoted to the proof of Theorem 1, which we establish by an
inductive application of Theorem 3: each time we show concentration during a
small number of steps (and maintain certain technical conditions), where the
lengths of these intervals decrease as the susceptibility increases. This is also
the main idea of the following rather technical construction: as we shall see in
the proof of Lemma 4, for each interval of length ∆j it determines the scaling
limits ρk (and certain tail bounds) in a way that does not depend on n.

We inductively define a sequence (βj , Bj , ρj ,∆j , Lj)j>0 with βj > 1, Bj > 0,
∆j > 0, Lj > 1 and ρj : N×R

+ → [0, 1], where the βj are decreasing (βj+1 6 βj)
and the Bj are increasing (Bj+1 > Bj). In addition, for each j > 0 the sequence
satisfies the following invariant: for every t ∈ [0,∆j] equations (6) and (7) hold
with β,B, ϕ(·) replaced by βj , Bj , ρj(·, t). We start by setting β0 = B0 = L0 =
2, ∆0 = 0 and defining ρ0 : N × R

+ → [0, 1] with ρ0(1, 0) = 1 and ρ0(k, t) = 0
otherwise. Given j > 1, recall that χ(ρj−1, t) =

∑
k>1 kρj−1(k, t) and set

Lj = χ(ρj−1,∆j−1) + 1 and ∆j = [ℓ(ℓ− 1) (Lj + 1)]−1. (14)

8



Applying the first part of Theorem 3 with β = βj−1, B = Bj−1, L = Lj and
ϕ(k) = ρj−1(k,∆j−1), we use the resulting ρ to define ρj = ρ. Furthermore,

by considering σ = ∆j we obtain β̃, B̃ and set βj = min{β̃, βj−1} and Bj =

max{B̃, Bj−1}; by Theorem 3 these satisfy the required invariant. Furthermore,
it is not difficult to see that the entire sequence (βj , Bj , ρj ,∆j , Lj)j>0 depends
only on R, ℓ.

Next we combine the ρj (each valid on an interval of length ∆j) to form
ϕ(k, t), which will eventually be ρk(t) in Theorem 1; this notation avoids con-
fusion with the ρj used. For t > 0 we define rt as the smallest r such that
t 6

∑
06j6r ∆j and set r = ∞ if no such r exists. For all (k, t) ∈ N× R

+ set

ϕ(k, t) =

{
ρrt(k, t−

∑
06j<rt

∆j), if rt < ∞,

0, otherwise.
(15)

Transferring this definition to the invariant of the sequence introduced above,
for all t > 0 with rt < ∞ it follows that

∑
k>1ϕ(k, t) = 1, (16)

and that for every t′ ∈ [0, t] we have

∑
k>1ϕ(k, t′)βk

rt 6 Brt . (17)

Now we are ready to prove the following concentration result, which also
implies that in the previous construction we always have rt < ∞ if (1) fails.

Lemma 4. Let ℓ > 2 and let R be an ℓ-vertex size rule. For every t > 0 for
which (1) fails we have rt < ∞, and there exist a,A,C > 0 (depending only on
R, ℓ, t) such that the following holds for n > n0(R, ℓ, t) with probability at least
1 − n−99: for every 0 6 i 6 tn we have

Nk(GR
i ) = ϕ(k, i/n)n± (log n)Cn1/2 for all k > 1,

S(GR
i ) =

∑
k>1kϕ(k, i/n) ± (logn)Cn−1/2,

and N>k(GR
i ) 6 Ae−akn for all k > 1.

Proof. Given t > 0, if (1) fails there exists ε > 0 and an infinite subsequence n̄
of N (depending only on R, ℓ, t) satisfying

P(S(GR
tn̄) 6 ε−1) > ε. (18)

Let L = ε−1 + 3 and K = ⌈tℓ(ℓ− 1)L⌉ + 1. Let t0 = 0, and for j > 1 let

tj =

{
tj−1, if tj−1 > t,

tj−1 + ∆j , otherwise.

9



For n > n0(R, ℓ, t) we inductively show that for every 0 6 j 6 K, setting
Cj = 9j + 2, with probability at least 1− jn−200, for every 0 6 i 6 tjn we have

Nk(GR
i ) = ϕ(k, i/n)n± (log n)Cjn1/2 for all k > 1, (19)

∑
k∈[n]Nk(GR

i )βk
j 6 Bjn, (20)

S(GR
i ) = χ(ϕ, i/n) ± (log n)Cjn−1/2, (21)

and for every 0 6 s 6 j with ts 6 t we have

χ(ϕ, ts) = χ(ρs,∆s) < L− 2. (22)

Note that if tK < t, then substituting (22) into (14) yields ∆j > [ℓ(ℓ−1)L]−1 for
all 1 6 j 6 K. From K > tℓ(ℓ−1)L it thus follows that tK > t, a contradiction.
Thus (22) implies tK > t, i.e., rt < ∞. Recall that (βj , Bj)j>1 and K depend
only on R, ℓ and on R, ℓ, t respectively. Hence the induction hypothesis for
j = K implies Lemma 4, where the tail bounds follow from (20) as βK > 1.

For the base case j = 0 we start with an empty graph on n vertices, and it is
easy to see that (19)–(22) hold with β0 = B0 = C0 = 2 and ϕ(k, 0) = ρ0(k, 0),
as defined above (14).

Given j > 1, for the induction step we may assume that tj−1 6 t (otherwise
tj = tj−1, and there is nothing to prove). We first assume that GR

tj−1n satisfies
the induction hypothesis, i.e., (19)–(22) with j replaced by j − 1. In particular,
(16) and (17) hold for t = tj−1 with rt = j − 1, and we have S(GR

tj−1n) 6

χ(ϕ, tj−1) + 1 = χ(ρj−1,∆j−1) + 1 = Lj for n > n0(Cj−1). Now we condition
on GR

tj−1n = F and, analogous as after (14), apply Theorem 3 with β = βj−1,
B = Bj−1, L = Lj , σ = ∆j , C = Cj−1 and ϕ(k) = ρj−1(k,∆j−1) = ϕ(k, tj−1),
which is possible by the induction hypothesis (and the properties established
above). So, for n > n0(ℓ, Lj,∆j , βj−1, Bj−1, Cj−1), with probability at least
1 − n−200, for every 0 6 i 6 ∆jn the graph FR

i satisfies (6)–(7), (10)–(11)

and (13) when β,B,C, F, ϕ(·) are replaced by β̃, B̃, C̃, FR
i , ρ(·, i/n), where C̃ =

Cj−1+9. Note that for size rules FR
∆jn

is exactly GR
tjn conditional on GR

tj−1n = F .

It is crucial that β̃, B̃, C̃, ρ do not depend on the initial graph F , and that by
construction ρ = ρj , βj 6 β̃, Bj > B̃ and Cj = C̃. So, by appealing to
the induction hypothesis and recalling (15), it follows that with probability at
least 1 − (j − 1)n−200 − n−200 equations (19)–(21) hold. It remains to show
that (22) holds. To this end recall that (21) holds with probability at least
1 − jn−200 > 1 − ε for all n > n0(Cj ,K, ε). So, using that susceptibility is
monotone increasing, by (18) it follows that for all 0 6 t′ 6 min{t, tj} we
have χ(ϕ, t′) < ε−1 + 1 = L − 2, say. Now (22) follows by combining the
previous estimate with the observation that for every s 6 j with ts 6 t we have
χ(ϕ, ts) = χ(ρs,∆s). This completes the induction step.

Finally, to see that n > n0(R, ℓ, t) suffices note that in each of the K steps
we only used n > n0(ℓ, Lj ,∆j , βj−1, Bj−1, Cj−1, Cj ,K, ε), where Cj = 9j + 2
and Lj ,∆j , βj−1, Bj−1 depend only on R, ℓ. This concludes the proof since ε
(and thus K) only depends on R, ℓ, t.
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Now we define tb = tRb as the infimum of the set of t > 0 for which (1) holds
as n → ∞; so (1) fails for t < tb. The remark after the proof of Lemma 4 in [18]
implies that for t > 1 we whp have L1(GR

tn) > cn for c = c(ℓ, t) > 0, yielding
S(GR

tn) > [L1(GR
tn)]2/n > c2n; so tb 6 1. Furthermore, for t < [ℓ(ℓ − 1)]−1 an

application of Theorem 3 to the empty graph F = GR
0 on n vertices with σ = t

and L = 1 (similar as in the proof of Lemma 4) readily shows S(GR
σn) 6 L̃ whp,

so tb > [ℓ(ℓ−1)]−1. Now suppose that (1) fails for t = tb. The proof of Lemma 4
then shows that whp (19)–(21) hold for i = tbn, and that χ(ϕ, tb) < L − 2.
It follows that we can apply Theorem 3 with σ = [ℓ2L]−1 and L = L; this
implies S(GR

(tb+σ)n) 6 L̃ whp, contradicting the definition of tb. So, since the

susceptibility is monotone increasing, it follows that (1) holds for all t > tb.
Combining our findings, Lemma 4, (16) and (17) now yield Theorem 1 with
ρk(t) = ϕ(k, t).

2.3 Branching processes preliminaries

The following basic results for branching processes will be used in the proof
of Theorem 3. They are similar to Theorems 3.2 and 3.3 in [21], where they
are attributed to much earlier results of Crámer. Given a non-negative integer
valued random variable X , let FX(z) = EzX denote the (probability) generating
function of X . Note that FX(z) is convex and monotone increasing for z > 0.

The first lemma essentially states that a two-generation branching process
has (uniform) exponential tails provided that the generating function of each
offspring distribution has radius of convergence strictly larger than one (and
thus also exhibits exponential decay).

Lemma 5. Let X,Y > 0 be integer valued random variables with FX(α) 6 A
and FY (β) 6 B, where α, β > 1. Let Z be the number of grandchildren in the
two-generation branching process in which the root node has X children and then
each child, independently, has Y children. There exists a > 0 (depending only
on α, β,A,B) such that P(Z > s) 6 Ae−as for all s > 0.

Proof. Pick C > max{B, 2} such that x = 1+(α−1)(β−1)/(C−1) 6 β. Using
FY (1) = 1 and FY (β) 6 B 6 C, convexity yields FY (z) 6 [(z − 1)C + (β −
z)]/(β − 1) for all z ∈ [1, β]. So, by choice of x we have FY (x) 6 α. Observing
that FZ(z) = FX(FY (z)), using monotonicity we obtain FZ(x) = FX(FY (x)) 6
FX(α) 6 A. Since x > 1 implies FZ(x) > P(Z > s)xs for every s > 0, we
deduce P(Z > s) 6 Ae−as for a = log x > 0, completing the proof.

The second lemma is a standard result for subcritical Galton–Watson branch-
ing process: these exhibit (uniform) exponential decay if the offspring distribu-
tion itself has (uniform) exponential tails.

Lemma 6. Let Z > 0 be an integer valued random variable with EZ 6 µ < 1
and FZ(β) 6 B, where β > 1. Let T be the total size of the Galton–Watson
branching process in which each node, independently, has Z children. There
exist δ > 1 and D > 0 (depending only on β,B, µ) such that FT (δ) 6 D.
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Proof. Let f(t) = E(et(Z−1)). Observe that f(0) = 1 and f ′(0) = E(Z − 1) 6

µ − 1. As in the proof of Lemma 5, FZ(β) 6 B for β > 1 yields P(Z >

s) 6 Bβ−s, which in turn readily implies that for some C = C(β,B) we have
f ′′(t) = E((Z−1)2et(Z−1)) 6 C for all 0 6 t 6 (log β)/2, say. So, using Taylor’s
theorem, for 0 6 t 6 (log β)/2 we deduce f(t) 6 1+(µ−1)t+Ct2/2 = h(t). Let
x = min{(log β)/2, (1 − µ)/C} > 0, and observe that c = max{h(x), 1/2} > 0
satisfies f(x) 6 c < 1. Exploring the branching process tree as usual in breadth-
first search order, we see that T > s implies

∑s
i=1 Zi > s, where the Zi are

independent copies of Z (corresponding to the number of children of the i-th
node). Now, using Markov’s inequality and independence of the Zi, for every
s > 0 we obtain P(T > s) 6 E(ex(

∑s
i=1

Zi))e−xs = f(x)s 6 cs. Finally, picking
1 < δ < 1/c, it follows that FT (δ) 6 D = D(δ, c), as claimed.

2.4 Proof of Theorem 3

The proof of Theorem 3 relies on a two-round exposure argument: we first reveal
the random tuples selected, and afterwards expose their order of appearance.
It will be convenient to work with a continuous-time random graph model,
where the nℓ tuples arrive according to independent Poisson processes with
rates 1/nℓ−1. So tuples appear with rate n, and each tuple is chosen uniformly
at random and independently of all previous choices. Let Et denote the set
of tuples which arrive in [0, t]; so |Et| ∼ Po(tn). Observe that for each tuple
u ∈ [n]ℓ the number Au(t) of its arrivals in [0, t] satisfies Au(t) ∼ Po(t/nℓ−1), and
that these random variables are independent for different tuples. Furthermore,
writing x = t/nℓ−1 and using e−x > 1 − x twice, note that for ℓ > 2 we have

P(Au(t) > 2) = 1 − e−x − xe−x
6 x(1 − e−x) 6 x2

6 t2/nℓ. (23)

Similarly
P(Au(t) > 1) = 1 − e−x

6 x = t/nℓ−1. (24)

Starting with F , for each tuple u ∈ Et we join all
(
ℓ
2

)
pairs of vertices by edges,

and we denote the resulting graph by Ht. We define HR
t as the graph which we

obtain by starting with F , and then presenting the tuples to R (together with
the component sizes of the vertices) in a random order, always updating the
graph according to the decisions of R (adding the pairs selected by R). Since
conditioned on |Et| = i we have i tuples chosen independently and uniformly at
random, it follows that

E(Nk(HR
t ) | |Et| = i) = ENk(FR

i ). (25)

Furthermore, mimicking the proof of Pittel’s inequality (see e.g. [8]) for 0 <
tn < nℓ, a short calculation shows that for any graph property Q we have

P(FR
tn 6∈ Q) 6 3

√
tn · P(HR

t 6∈ Q). (26)

In the following sections we always tacitly assume that the assumptions of
Theorem 3 hold and consider t = t(n) satisfying

0 6 t 6 σ 6 1, (27)
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where σ 6 1 follows from (9). Furthermore, unless stated otherwise, we will use
the continuous-time random graph models Ht and HR

t . For later usage let

U = (logn)6/5. (28)

2.4.1 Component exploration process for ℓ = 2

Our main ingredient for analyzing the first exposure round is a certain explo-
ration process. Given a (random) vertex v, it finds all tuples in Et and com-
ponents of F that are ‘relevant’ in the second exposure round for determining
|Cv(HR

t )|, where we write Cv(G) for the set of vertices of G that are in the
same component as v. As certain details are rather technical for Achlioptas
processes, here we first outline some of the basic ideas and techniques for the
simpler case of an Erdős–Rényi evolution starting from an initial graph F (in
this special case similar ideas were used by Spencer and Wormald [21]). This
formally corresponds to the special case ℓ = 2 and the rule which always adds
the offered pair v1v2 to the evolving graph; so Ht = HR

t .
One major difference to the Erdős–Rényi case (where we start with an empty

graph on n vertices) is that here we have two sources of edges: (i) the initial
graph F and (ii) the random pairs in Et. As edges of type (i) are deterministic
and those of type (ii) are random, our exploration process explicitly considers
them separately. In the first round we start with a randomly chosen v and mark
all u ∈ Cv(F ) as reached ; all other vertices are unreached. In each later round
we sequentially go through the vertices w reached in the previous round (the
order does not matter here) and determine all its so far unreached neighbours
u in Et (corresponding to pairs (u1, u2) ∈ Et containing u and w), each time
marking all ũ ∈ Cu(F ) as reached. Note that upon termination Cv(Ht) equals
the set of all reached vertices.

The previous procedure yields an associated ‘exploration tree’ Tv(Ht) in a
rather natural way: loosely speaking, u is a child of w if u was ‘reached’ via w.
With an eye to the upcoming analysis for size rules, here we already introduce
different types of nodes: vertex nodes, component nodes, and root nodes. More
precisely, we define Tv(Ht) inductively as follows: it has a root node v, whose
children are vertex nodes u ∈ Cv(F ). Then, given any vertex node w, each of
its so far unreached neighbours u in Et yields a component node as a child,
which in turn has vertex nodes ũ ∈ Cu(F ) as children. It follows that the set
of all vertex nodes in Tv(Ht) equals Cv(Ht). The main point is that, even after
ignoring all labels, the structure of Tv(Ht) is enough to determine |Cv(Ht)|.

The key idea is now to approximate Tv(Ht) by an ‘idealized’ branching pro-
cess, similar as in the ‘classical’ Erdős–Rényi case (exploiting, as usual, that by
construction every edge is tested at most once). Recall that in Tv(Ht) already
reached vertices are ‘ignored’. So, noting that endpoints of random pairs in
Et correspond to random vertices, and that each edge gives rise to two ordered
tuples, it seems plausible that Tv(Ht) is dominated by (may be regarded as a
subset of) a branching process Tv,t where (ignoring for simplicity the root and
all labels) every vertex node, independently, has Po(2t) component nodes as
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children, each which in turn, independently, has N vertex node descendants,
where N ∼ |Cu(F )| for a randomly chosen vertex u. Now, using (9) and (12)
each vertex node has in expectation 2t ·S(F ) 6 2σL < 1 vertex nodes as grand-
children, so we expect that Tv,t resembles a subcritical branching process which
has O(log n) size with very high probability. From this it follows that Tv(Ht)
and Tv,t are both small and have similar offspring distribution (as not too many
vertices are reached and thus ignored), so it seems plausible that we can couple
them so that they agree whp. Note that Tv,t still depends on n and the initial
graph F . Define P(R = k) = ϕ(k), where ϕ is given by Theorem 3. The point
is now that using (10) it follows that R is very close to N . So, denoting by
Xϕ,t the ‘idealized’ version of Tv,t where we use R instead of N , the former
considerations suggest that there is a coupling such that whp Tv,t

∼= Xϕ,t holds
(ignoring the labels of the vertices). To summarize, we just outlined that using
the ‘intermediate’ process Tv,t we can couple Tv(Ht) and Xϕ,t so that they typ-
ically agree up to isomorphisms. Consequently, the distribution of |Cv(Ht)| can
be approximated using Xϕ,t, which does not depend on n or F .

In the above construction and analysis we used in essential ways that in
each round only one pair of vertices is chosen and connected by an edge. In
contrast, when considering Achlioptas processes several vertices v = (v1, . . . , vℓ)
are chosen in each round, and only a subset of the edges between these vertices
is added to the evolving graph. Furthermore, in the second exposure round
the order in which the tuples v are presented matters (as well as the order
of the vertices in each tuple). This motivates the more involved exploration
processes used in the next section, whose associated exploration tree captures
more detailed structural information (also using more types of nodes).

2.4.2 Component exploration process (the general case)

In this section we consider the first exposure round, where the selected set of
tuples Et is revealed. Note that this defines Ht, which we obtain by starting
with F and then joining all ℓ vertices of each tuple in Et by edges. Using
a natural variant of the standard neighbourhood exploration process, for any
vertex v we can determine Cv(Ht) as follows. First we determine Cv(F ), i.e.,
find all other vertices which are in the same component of F as v. Then, for
each w ∈ Cv(F ) we find all tuples u = (u1, . . . , uℓ) ∈ Et containing w, and
repeat the same procedure (recursively) for each uj 6= w, see Figure 1. Observe
that for determining Cv(Ht) it suffices to consider only those vertices uj 6= w
which we have not already reached in some previous exploration step.

In the analysis it is easier to start with a random vertex v and break down
the above exploration process into small steps, constructing an an associated
exploration tree Tv,t = Tv,t(F ). As we shall see, one key property of Tv,t is that
we can (typically) reconstruct the vertices and components which have been
reached, as well as the tuples which have been ‘tested’ so far. The vertices of
each exploration tree have different types: vertex nodes, component nodes and
tuple nodes will represent vertices, components of F and ℓ-tuples, respectively.
For technical reasons we also have root nodes and index nodes. We denote the
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wv

Cv(F )

u1

u3

(u1, w, u3)

Cu1
(F )

Cu3
(F )

Figure 1: Example of the neighbourhood exploration process for ℓ = 3. It
determines Cv(Ht) by first finding other vertices in the same component of F ,
then finding tuples containing them; afterwards it repeats this procedure for the
new vertices in those tuples, and so on.

vertex nodes of Tv,t by Vv,t.
As mentioned above, our exploration starts with a random vertex v, which

serves as the root node of Tv,t, see Figure 2. Next we (deterministically) find all
vertices w ∈ Cv(F ) and then add the vertex nodes w as children of the root. In
the following we sequentially traverse each level containing vertex nodes (which
essentially corresponds to a breadth first search). Given a vertex node w, we
add ℓ index nodes w1, . . . , wℓ as children, where wj is an index node of type j.
For each j = 1, . . . , ℓ we sequentially test for the presence and multiplicity of
all so far untested tuples u = (u1, . . . , uℓ) with uj = w; we denote the resulting
multiset of found tuples by Sj,w. Now we sequentially traverse the u ∈ Sj,w.
For each such u = (u1, . . . , uℓ) we add a tuple node u and traverse the ui with
i 6= j sequentially. For each i 6= j, we add a component node ui of type λj(i)
as a child of u, where λj(i) = i for i < j and λj(i) = i − 1 for i > j (so
that the component nodes {ui} with i 6= j have types 1, . . . , ℓ − 1). If ui is
already contained in Tv,t then we ‘ignore’ this component node. Otherwise we
add vertex nodes w ∈ Cui

(F ) as children of ui, see Figure 2. Note that Cv(Ht)
consists exactly of the union of all vertex nodes of Tv,t, so

Cv(HR
t ) ⊆ Cv(Ht) = Vv,t. (29)

The main point is that whenever no component nodes are ignored, then
from Tv,t we can reconstruct all explored tuples (in Et) and components (of
F ), which for size rules are the only ones relevant for determining the size of
Cv(HR

t ). In fact, up to relabellings, we can reconstruct these tuples and the
relevant component sizes of F without looking at the vertex labels (the tree
structure, including the node types, is enough). Motivated by this we say that
Sj,w is bad if one of the following conditions hold:

• Sj,w contains some tuple u = (u1, . . . , uℓ) multiple times.

• Sj,w contains a tuple u = (u1, . . . , uℓ) where ui with i 6= j is already a
vertex node of Tv,t constructed so far.
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wv

u1

u3

(u1, w, u3)

w1

w2

w3

Figure 2: Example of the exploration tree Tv,t for ℓ = 3. The children of the
root vertex v are w ∈ Cv(F ) (vertex nodes), which in turn each have children
w1, w2, w3 (index nodes of types 1, 2, 3). Every wj has all (so far untested) tuples
u = (u1, u2, u3) ∈ Et with uj = w as children (tuple nodes), whose descendants
are component nodes ui with i 6= j (of types 1, 2). If ui is not already a vertex
node of Tv,t, then its children are w ∈ Cui

(F ) (vertex nodes), for which we
repeat the above construction.

• Sj,w contains a tuple u = (u1, . . . , uℓ) where ui and uk with i 6= k are in
the same component of F (note that this holds for ui ∈ Cw(F ) for i 6= j).

• Sj,w contains tuples u = (u1, . . . , uℓ) and v = (v1, . . . , vℓ) for which ui and
vk with i, k 6= j are in the same component of F .

Otherwise Sj,w is good ; Observe that if Sj,w is good, then in Tv,t none of w’s
component node descendants ui with u = (u1, . . . , uℓ) ∈ Sj,w are ignored. For
this reason we call Tv,t good if every Sj,w is good. In the following we estimate
the probability that Sj,w is bad. Clearly, there are at most nℓ−1 different tuples
with uj = w. Recalling that Vv,t denotes the vertex nodes of Tv,t, there are at
most ℓnℓ−2|Vv,t| different tuples satisfying the second condition, and at most
ℓ2nℓ−2|L1(F )| tuples to which the third condition applies. Similarly, there are at
most ℓ2n2(ℓ−2)+1|L1(F )| pairs of tuples which satisfy the last condition. Recall
that the random variables Au(t), which count the number of times u is in Et,
are independent for different tuples u. So, using (23), (24) and t 6 1, whenever
max{|Vv,t|, |L1(F )|} 6 U holds we see that the probability of Sj,w being bad is
at most

nℓ−1 · t2/nℓ + 2ℓ2nℓ−2U · t/nℓ−1 + ℓ2n2ℓ−3U · t2/n2(ℓ−1)
6 4ℓ2U/n. (30)

To understand the structural properties of Tv,t it will be useful to compare
it with a closely related process that is simpler to analyze. Recall that when
determining the Sj,w we only consider so far untested tuples. Thus each Sj,w

is dominated (with respect to the subset relation) by S̃j,w, where for each of
the nℓ−1 tuples u = (u1, . . . , uℓ) with uj = w, independently, the number of
its arrivals is given by a Po(t/nℓ−1) distribution. There is a natural coupling
between Sj,w and S̃j,w which only fails if S̃j,w contains u which are forbidden
for Sj,w. Since each of these ‘bad’ tuples contains at least one vertex from
Vv,t, there are at most ℓ|Vv,t|nℓ−2 of them. So, with (24) and t 6 1 in mind,
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by considering the probability that S̃j,w selects at least one of them, whenever
|Vv,t| 6 U holds it follows that

dTV

(
Sj,w , S̃j,w

)
6 ℓ|Vv,t|nℓ−2 · t/nℓ−1

6 ℓU/n. (31)

We now define Tv,t = Tv,t(F ) similarly to Tv,t: we employ the same construction

except that we use (independent copies of) S̃j,w instead of Sj,w and always

proceed as if S̃j,w is good. Since each Sj,w is dominated by (may be regarded

as a subset of) S̃j,w, it follows that Tv,t is dominated by Tv,t with respect to
the subgraph relation. Denoting the set of vertex nodes of Tv,t by Vv,t, we see
that Vv,t is dominated by Vv,t.

The next lemma states that the number of vertex nodes in Tv,t and Tv,t have
(uniform) exponential decay.

Lemma 7. Suppose that (9) and (11)–(12) hold with β > 1. There exist a,A >
0 (depending only on ℓ, L, σ, β,B) such that for all 0 6 t 6 σ and s > 0
we have P(|Vv,t| > s) 6 P(|Vv,t| > s) 6 Ae−as, EN>s(H

R
t ) 6 Ae−asn and

P(L1(HR
t ) > s) 6 Ae−asn.

Before giving the proof of this result, which is based on branching processes
arguments, we use it to show that Tv,t and Tv,t can be coupled so that they
typically agree. Note that at distance 4i + 1, 4i + 2, 4i + 3, 4i + 4 from the root
Tv,t and Tv,t always have vertex, index, tuple and component nodes.

Lemma 8. Suppose n > n0(ℓ, L, σ, β,B) and that the assumptions of Theorem 3
as well as (27) hold. There exists a coupling of Tv,t and Tv,t so that with
probability at least 1 − (log n)4/n we have Tv,t = Tv,t and Tv,t is good.

Proof. We write T i for the restriction of a rooted tree T to all vertices within
distance at most i from the root. Let V i

v,t and V
i
v,t denote the vertex nodes in

T i
v,t and Ti

v,t, respectively. Recall that U = (logn)6/5. Since β > 1, note that
L1(F ) 6 U follows from (11) for n > n0(B, β).

We inductively couple T 4i+1
v,t and T

4i+1
v,t for 0 6 i 6 U so that with probability

at least 1 − i · 5ℓ3U2/n we have either max{|V4i+1
v,t |, |V4i+1

v,t |} > U , or T 4i+1
v,t =

T
4i+1
v,t with all Sj,w of T 4i+1

v,t being good. The base case i = 0 is straightforward,
as both use the same procedure for generating the root and its children. Now
suppose that we have constructed T 4i+1

v,t and T
4i+1
v,t coupled as above. In the

following we sequentially consider vertex nodes w at distance 4i+1 from the root
and extend the coupling to their descendants with distance up to 4(i+1)+1; here
we clearly may assume |V4i+1

v,t | = |V4i+1
v,t | < U . For each vertex node w we create

ℓ index nodes w1, . . . wℓ (of types 1, . . . , ℓ). We abandon our coupling whenever
we have found more than U vertex nodes (in which case we are done), so (31)
holds. Thus we can couple Sj,w and S̃j,w so that they agree with probability
at least 1 − ℓU/n. Now we also abandon our coupling whenever Sj,w is bad,
which happens with probability at most 4ℓ2U/n by (30). The point is that given
good Sj,w = S̃j,w, in both cases the same deterministic construction is used for
generating the descendants of wj with distance up to 4(i + 1) + 1 from the
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root. So, by repeating this for w1, . . . , wℓ, with probability at least 1 − 5ℓ3U/n
we can couple the descendants of w with distance up to 4(i + 1) + 1 from the
root. Since we follow this argument for each of the at most U vertex nodes at

distance 4i from the root, we see that we can extend our coupling to T 4(i+1)+1
v,t

and T
4(i+1)+1
v,t with probability at least 1 − 5ℓ3U2/n, establishing the claim.

Finally, by Lemma 7 we know that V = max{|Vv,t|, |Vv,t|} < U/10 holds
with probability at least, say, 1 − n−9 for n > n0(a,A). This together with the
above coupling completes the proof (as there are no vertex nodes with distance
larger than 4V + 1 from the root).

We now introduce an idealized ‘infinite’ version Xϕ,t of the exploration tree
that is defined without reference to n or F , and in which ‘bad’ things (such as
‘ignored’ component nodes) cannot happen by definition. Let R be the random
variable with P(R = k) = ϕ(k) for each k > 1, where ϕ is given by Theorem 3.
We start Xϕ,t with a root node and add R vertex nodes as children. Then, given
any vertex node, we deterministically create ℓ children (index nodes of types
1, . . . , ℓ). Each of these, independently, has Z ∼ Po(t) children (tuple nodes).
For each of these grandchildren we assign again (deterministically) ℓ−1 children
(component nodes of types 1, . . . , ℓ− 1). All of these, independently, give birth
to R many descendants (vertex nodes).

For our subsequent analysis it will be key to observe that if we are only
interested in equality up to isomorphisms, then we can generate Tv,t in a more
convenient way, similarly to Xϕ,t. Indeed, using standard properties of Poisson
processes and noting that selecting a uniform tuple u = (u1, . . . , uℓ) with uj = w
is equivalent to picking ℓ− 1 random vertices, we can generate the descendants
of wj constructed by S̃j,w using the following three-generation tree process:
the root has Z ∼ Po(t) children (tuple nodes); then for each of the resulting
children we construct (deterministically) ℓ− 1 grandchildren (component nodes
of types 1, . . . , ℓ − 1), which each in turn give birth to N descendants (vertex
nodes), where N ∼ |Cu(F )| for a uniformly and independently chosen vertex u.
Comparing the resulting construction with Xϕ,t, it follows that we can generate
Tv,t up to relabellings in the same way as Xϕ,t, with the only difference that we
use N instead of R.

Proof of Lemma 7. Since Vv,t is dominated by (may be regarded as a subset of)
Vv,t, we have P(|Vv,t| > s) 6 P(|Vv,t| > s). Using this inequality, we claim
that it is enough to prove existence of a,A > 0 (depending only on ℓ, L, σ, β,B)
satisfying

P(|Vv,t| > s) 6 Ae−as for all s > 0. (32)

Indeed, recall that v is chosen uniformly at random, so that P(|Cv(HR
t )| >

s | HR
t = G) = N>s(G)/n. Taking expectations, we see that EN>s(H

R
t ) =

nP(|Cv(HR
t )| > s). Using (29) we have |Cv(HR

t )| 6 |Vv,t|, so P(|Cv(HR
t )| >

s) 6 Ae−as by (32). Now Markov’s inequality gives P(L1(HR
t ) > s) 6 Ae−asn.

In the remainder we establish (32) using Lemmas 5 and 6. Let Zj be in-
dependent copies of Z ∼ Po(t), and let vj,r,k be uniformly and independently
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chosen random vertices. We henceforth construct Tv,t up to relabellings, as
described in the paragraph proceeding this proof. Given a vertex node w with
distance 4i + 1 from the root, in this tree construction it has

W =
∑

16j6ℓ

∑

16r6Zj

∑

16k6ℓ−1

|Cvj,r,k(F )|

vertex node descendants at distance 4(i + 1) + 1 from the root, where E(W ) =
ℓt(ℓ − 1)S(F ) 6 ℓσ(ℓ − 1)L < 1 due to t 6 σ and (9). Note that FW (z) =
[FZ([FN (z)]ℓ−1)]ℓ, where N ∼ |Cu(F )| for a uniformly chosen vertex u. By (11)
we have [FN (β)]ℓ−1 6 Bℓ−1. Now, since Z ∼ Po(t) and 0 6 t 6 σ, it easily
follows that FZ(z) = et(z−1) 6 eσz for z > 0, so FW (β) 6 B̃ = B̃(ℓ, σ,B). Let
W+ be the size of the Galton–Watson branching process in which each node,
independently, has W children. Lemma 6 yields FW+(δ) 6 D, where δ > 1 and
D > 0 depend only on ℓ, L, σ, β, B̃. Since the distribution of W does not depend
on the w or i considered above, it in particular follows that each vertex node
with distance 1 from the root has W+ vertex node descendants in Tv,t.

Finally, note that Tv,t starts with a root vertex which gives birth to N vertex
node children, each of whose vertex nodes descendants is given by independent
copies of W+. With this in mind |Vv,t| ∼ T , where T is a two-generation
branching process where the root has N children, and then each of these, in-
dependently, has W+ children. Recall that FN (β) 6 B̃ and FW+(δ) 6 D for
β, δ > 1 and B̃,D > 0. So, Lemma 5 yields (32) for A = B̃ and a > 0 depending
only on β, δ, B̃,D. As explained, this completes the proof.

Recall that Xϕ,t uses the same construction as Tv,t, with the difference that
it employs R instead of N . When establishing the exponential decay in the
proof of Lemma 7, note that the only properties of N used are EN = S(F ) 6 L
and FN (β) 6 B. Since ER = χ(ϕ) 6 L and FR(β) 6 B by (6)–(8), the same
argument thus carries over word-by-word when applied to the vertex nodes of
Xϕ,t, which we denote by Vϕ,t.

Lemma 9. Suppose that (6)–(8) and (9) hold with β > 1. There exist a,A > 0
(depending only on ℓ, L, σ, β,B) such that for all 0 6 t 6 σ and s > 0 we
have P(|Vϕ,t| > s) 6 Ae−as, where a,A are defined in the same way as in
Lemma 7.

After these preparations, we are now ready to show that we can couple Tv,t
and Xϕ,t so that they typically agree up to isomorphisms (by using Tv,t as an
‘intermediate’ process).

Lemma 10. Suppose n > n0(ℓ, L, σ, β,B) and that the assumptions of Theo-
rem 3 as well as (27) hold. There exists a coupling of Tv,t and Xϕ,t so that with
probability at least 1 − (log n)C+5n−1/2 we have Tv,t ∼= Xϕ,t and Tv,t is good.

Proof. Recall that U = (logn)6/5. By Lemma 8 it suffices to couple Tv,t and Xϕ,t

so that with probability at least 1 − 4ℓ2U4(logn)Cn−1/2 we have Tv,t
∼= Xϕ,t.

To this end we use a similar but simpler argument as in the proof of Lemma 8,
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inductively extending our coupling from distance 4i + 1 to 4(i + 1) + 1 from
the root. As before, using Lemma 7 and 9 we can safely abandon our coupling
whenever we have seen at least U vertex nodes, or when we reach distance
U from the root. In the inductive step, the only difference between Xϕ,t and
Tv,t is that Xϕ,t uses R whereas Tv,t uses N . Recall that P(R = k) = ϕ(k)
and P(N = k) = Nk(F )/n. It is not difficult to see that (7) and (11) imply
P(R > U) 6 n−2 and P(N > U) = 0 for n > n0(β,B). Using these tail
estimates together with (10), by distinguishing values smaller and larger than
U we obtain

dTV

(
R ,N

)
6 U · (logn)Cn−1/2 + n−2

6 2U(logn)Cn−1/2. (33)

We furthermore may safely abandon our coupling whenever some index node
has Z > U children, since (using t 6 σ) this occurs with probability at most
n−9 for n > n0(σ). The point is that this ensures that we only need to couple R
and N at most ℓ2U2 times when going from distance 4i + 1 to 4(i + 1) + 1. So,
each time we can extend the coupling inductively with probability at least, say,
1 − 3ℓ2U3(logn)Cn−1/2. Arguing as in the proof of Lemma 8, this completes
the coupling argument.

2.4.3 Expected component sizes

After analyzing the tuple and component structure induced by Et, we now
consider the second exposure round, where the selected tuples are presented
in random order to R. Intuitively, the coupling given by Lemma 10 allows us
to estimate ENk(HR

t ) using Xϕ,t. As we shall see, this also carries over to
ENk(FR

tn).
Recall that if the exploration tree Tv,t ∼= T is good, then during its construc-

tion no component nodes are ignored. As mentioned in Section 2.4.2, the key
point is that if no nodes are ignored (i.e., all component nodes have at least
one child), then from the structure of T (which includes the vertex types) we
can reconstruct all tuples in Et and component sizes of F (up to relabellings)
which are relevant for determining |Cv(HR

t )|. We denote the corresponding set
of tuples and component sizes by TT and CT , respectively. As the above ‘recon-
struction’ procedure only uses the tree-structure of T , it in fact can be applied
to any exploration tree in which each component node has at least one child;
so, in particular, to Xϕ,t

∼= T . In the following we define |CR(T )| for any ex-
ploration tree T , where we formally set |CR(T )| = 0 if T contains a component
node with 0 descendants. Otherwise, we traverse in (uniform) random order the
tuples in TT ; for each tuple we present the component sizes of its vertices to R
and update the list of components (and their sizes) according to the decisions of
R (by adding the pairs selected by R). Finally, we define |CR(T )| as the size of
the resulting component which contains the root vertex of T . Since the second
exposure round of HR

t presents the tuples in Et to R in random order, a mo-
ment’s thought reveals that conditional on Tv,t ∼= T being good, both |Cv(HR

t )|
and |CR(Tv,t)| have exactly the same distribution for size rules. So, for all k > 1
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we have

P(|Cv(HR
t )| = k | Tv,t ∼= T is good) = P(|CR(Tv,t)| = k | Tv,t ∼= T is good).

(34)
Before using this observation to estimate ENk(HR

t ), we first collect some basic
properties of the function ρ, where we set

ρ(k, t) = P(|CR(Xϕ,t)| = k) for all (k, t) ∈ N× R
+. (35)

Lemma 11. Suppose that (6)–(8) and (9) hold with β > 1. The function ρ : N×
R

+ → [0, 1] defined in (35) depends only on ϕ,R, ℓ and satisfies
∑

k>1 ρ(k, t) =
1 for all 0 6 t 6 σ. Furthermore, there exist a,A > 0 (depending only on
ℓ, L, σ, β,B) such that for all 0 6 t 6 σ and s > 0 we have ρ(s, t) 6 Ae−as,
where a,A are given by Lemma 9.

Proof. The definitions of CR(·) and of Xϕ,t depend only on R, ℓ and on ϕ,R, ℓ, t
respectively. So, from (35) we see that ρ : N × R

+ → [0, 1] depends only on
ϕ,R, ℓ. Since the component containing the root vertex of Xϕ,t can only contain
vertex nodes of Xϕ,t, we see that 1 6 |CR(Xϕ,t)| 6 |Vϕ,t| holds, from which
ρ(0, t) = 0 follows. Furthermore, Lemma 9 implies ρ(s, t) 6 P(|Vϕ,t| > s) 6

Ae−as for all s > 1, where a,A > 0 depend only on ℓ, L, σ, β,B. Similarly, for
all s > 0 we have P(Xϕ,t is infinite) 6 P(|Vϕ,t| > s) 6 Ae−as. But Ae−as → 0
as s → ∞, so P(Xϕ,t is infinite) = 0, which in turn yields

∑
k>1 ρ(k, t) = 1.

Lemma 12. Suppose n > n0(ℓ, L, σ, β,B) and that the assumptions of Theo-
rem 3 as well as (27) hold. We have

ENk(HR
t ) = ρ(k, t)n± (log n)C+6n1/2 for all k > 1. (36)

Proof. Similar as in the proof of Lemma 7, since v is chosen uniformly at ran-
dom we have ENk(HR

t ) = nP(|Cv(HR
t )| = k). To prove the claim it thus

suffices to relate P(|Cv(HR
t )| = k) and ρ(k, t) = P(|CR(Xϕ,t)| = k). The cou-

pling of Lemma 10 implies that Xϕ,t
∼= Tv,t holds with probability at least

1 − (logn)C+5n−1/2 for n > n0(ℓ, L, σ, β,B). Hence

P(|CR(Tv,t)| = k) = P(|CR(Xϕ,t)| = k) ± 2(logn)C+5n−1/2.

Since this coupling also implies that Tv,t is good, using (34) it follows that

P(|Cv(HR
t )| = k) = P(|CR(Tv,t)| = k) ± 2(logn)C+5n−1/2.

Finally, combining our findings and recalling (35), we readily obtain (36).

Now we relate HR
t with FR

tn by establishing that ENk(HR
t ) ≈ ENk(FR

tn).

Lemma 13. Suppose that 0 6 t 6 1. Then for n > n0(ℓ) we have

ENk(FR
tn) = ENk(HR

t ) ± k(logn)n1/2 for all k > 1. (37)
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Proof. Observe that Nk changes by at most ℓk per step. So, for r 6 s we have
E(Nk(FR

s ) | FR
r = G) = Nk(G)± (s−r)ℓk. Taking expectations and restricting

our attention to r ∈ {tn− i, tn} shows that for each i > 0 we have

ENk(FR
tn±i) = ENk(FR

tn) ± ℓki. (38)

Set s = 3
√
n logn. Using t 6 1, standard Chernoff bounds yield that |Et| =

tn± s with probability at least 1 − n−2 for n > n0. Combining this with (25)
and (38), we readily obtain

ENk(HR
t ) = ENk(FR

tn) ± ℓks± n · n−2,

which implies (37) for n > n0(ℓ), with room to spare.

2.4.4 Concentration of component sizes

In this section we establish concentration of Nk(FR
i ) around its expected value.

The main technical difficulty here is that few changes of the offered tuples might
alter many decisions of size rules (as the component sizes observed in later
rounds can change); as we shall see, the bounds for L1(·) implied by Lemma 7
will be a crucial ingredient for showing that this is typically not the case.

Lemma 14. Suppose n > n0(ℓ, L, σ, β,B) and that the assumptions of The-
orem 3 hold. With probability at least 1 − n−250, for every 0 6 i 6 σn we
have

Nk(FR
i ) = ENk(FR

i ) ± (logn)2n1/2 for all 1 6 k 6 (logn)2. (39)

Proof. We sequentially draw σn random tuples and consider two associated
graph sequences FR

i and F I
i , where the ‘influence’ rule I in each step simply

joins all ℓ randomly chosen vertices by edges. Note that FR
i ⊆ F I

i always holds.
Let L denote the event that L1(F

I
σn) < U = (logn)6/5, which by monotonicity

implies L1(F I
i ) < U for all 0 6 i 6 σn. Combining Lemma 7 with (26), for

n > n0(a,A, σ) we have, say,

P(¬L) 6 3
√
σn · P(L1(H

I
σ ) > U) 6 n−300. (40)

For every 1 6 i 6 σn let Xk,i denote the number of vertices which satisfy
|Cv(FR

i )| = k and |Cv(F I
i )| < U . When L holds no vertices are ‘ignored’ due

to |Cv(F I
i )| > U , so we have Xk,i = Nk(FR

i ). Together with (40) this readily
gives, say, EXk,i = ENk(FR

i ) ± n−1. So, for ∆ = U3/2n1/2 it follows that

P({|Nk(FR
i ) − ENk(FR

i )| > 2∆} ∩ L) 6 P(|Xk,i − EXk,i| > ∆). (41)

Note that for every size rule R the random variable Xk,i can be written as
Xk,i = f(v1, . . . , vi), where the vj denote the ℓ-tuples generated by the ℓ-vertex
process in each step (uniformly and independently). We claim that the function
f satisfies |f(ω)−f(ω̃)| 6 4ℓU whenever ω and ω̃ differ in one coordinate, i.e., in
one tuple. Assuming that (v1, . . . , vi) yield FR

i and F I
i , respectively, let F̃R

i and
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F̃ I
i denote the graphs which result by changing vj to ṽj . Since F I

i and F̃ I
i only

differ in the edges induced by vj and ṽj , there is a set of vertices W containing at

most 2ℓ components in each of F I
i and F̃ I

i so that outside of W the component
structure of both graphs is the same (to see this note that the order is irrelevant
for I, so we may assume i = j; then defining W as the union of the components
containing the vertices of vj and ṽj in F I

i−1 = F̃ I
i−1 suffices). The key point is

now that for size rules the decisions of R in FR
i and F̃R

i are the same for all
tuples which contain no vertices from W (indeed, if a decision of R is modified
then any changes of the resulting component sizes can only ‘propagate’ inside
the components of F I

i and F̃ I
i ; so only tuples containing vertices from W can

be affected). It follows that the component structure outside of W is also the
same in FR

i and F̃R
i . Recall that W contains at most 2ℓ components in each of

F I
i and F̃ I

i . So, since Xk,i only counts those vertices v with |Cv(F I
i )| < U , we

see that a change of one tuple can alter f by at most 2 · 2ℓ · U , as claimed. So,
recalling that 1 6 i 6 σn, for n > n0(ℓ, σ) McDiarmid’s inequality [15] implies

P(|Xk,i − EXk,i| > ∆) 6 exp

(
− 2∆2

i(4ℓU)2

)
6 n−300 . (42)

Finally, after combining (40)–(42), taking a union bound to account for all
choices of 1 6 i 6 σn and 1 6 k 6 (logn)2 completes the proof (noting that the
claim is trivial for i = 0).

Using the main idea of the above proof we can directly show that ENk(FR
i )

is essentially independent of the initial graph FR
0 = F for i 6 σn: for any two

graphs F, F̃ satisfying the assumptions of Theorem 3 their expected values can
differ by at most, say, (log n)C+3n1/2. The key point is that for such graphs
we can construct a bijection Ψ between their vertex sets which, up to an excep-
tional set W of at most, say, 4U(logn)Cn1/2 vertices, preserves the component
structure of F and F̃ , respectively. Now, using Ψ we couple FR

i , F I
i and F̃R

i , F̃ I
i

in a measure preserving way. Since changes can only propagate inside the com-
ponents of the ‘influence’ graphs, only those vertices whose components in F I

i

or F̃ I
i contain vertices of W or Ψ(W ) can be ‘spoiled’. Intuitively, since the

components usually have size at most U , under this coupling Nk thus typically
differs by at most 2|W | · U for both graphs. Taking the error probability of
max{L1(F I

σn), L1(F̃ I
σn)} < U into account, the claim now follows without much

work.

2.4.5 Putting things together

In this section we combine our findings to prove Theorem 3. Lemma 11 easily
implies the first part, i.e., existence of ρ : N × R

+ → [0, 1] with the desired
properties. Indeed, it ensures that for every σ > 0 satisfying (9) there exist
a,A > 0 (depending only on ℓ, L, σ, β,B) such that for every t ∈ [0, σ] we have∑

k>1 ρ(k, t) = 1 and

ρ(s, t) 6 Ae−as for all s > 0. (43)
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For later usage we remark that Lemma 7 holds for the same a,A. Let D =
300/a > 0 and β̃ = min{ea/2, e1/(4D)} > 1. Now, using (43) we see that

∑

k>1

ρ(k, t)β̃k
6 A

∑

k>1

e−ak/2 = B̃ − 1, (44)

with 1 < B̃ < ∞ depending only on a,A. Similarly, we obtain

χ(ρ, t) =
∑

k>1

kρ(k, t) 6 A
∑

k>1

ke−ak = L̃− 1, (45)

with 1 < L̃ < ∞ depending only on a,A. Summarizing, equations (6)–(8) hold
when β,B, L, ϕ(·) are replaced by β̃, B̃, L̃, ρ(·, t), with room to spare.

Turning to properties of FR
i , from Lemmas 12–14 it follows that with prob-

ability at least 1 − n−250, for every 0 6 i 6 σn (by considering t = i/n ∈ [0, σ])
we have

Nk(FR
i ) = ρ(k, i/n)n± 3(logn)C+6n1/2 for all 1 6 k 6 (logn)2 (46)

for n > n0(ℓ, L, σ, β,B). Recall that Lemma 7 holds with the a,A chosen above.
By definition of D it follows that, with probability at least 1 − n−250, we have

L1(FR
σn) 6 D logn (47)

for n > n0(A). In the remainder we assume that (46)–(47) hold. Recalling (43)
and the definition of D, note that for all k > D logn and 0 6 i 6 σn we have,
say, |ρ(k, i/n)| 6 n−9 for n > n0(A). Using (47) it follows that

Nk(FR
i ) = ρ(k, i/n)n± (logn)Cn1/2 for all k > D logn and 0 6 i 6 σn.

Together with (46), for every 0 6 i 6 σn this establishes (10) with C,F, ϕ(·)
replaced by C̃, FR

i , ρ(·, i/n) for n > n0(D), where C̃ = C + 9. Now, using (44)
and (46)–(47) we see that for every 0 6 i 6 σn we have (as i/n ∈ [0, σ])
∑

k∈[n]

Nk(FR
i )β̃k

6 n
∑

16k6D logn

ρ(k, i/n)β̃s + 3D(logn)C+6n1/2
∑

16k6D log n

β̃k

6 n
∑

k>1

ρ(k, i/n)β̃k + 3D2(logn)C+7n3/4
6 B̃n

for n > n0(C,D), which establishes (11) with β,B, F replaced by β̃, B̃, FR
i .

It remains to show that (12)–(13) hold. Recall that S(G) =
∑

k∈[n] kNk(G)/n.

Now, assuming n > n0(a,A,D) and using (45)–(47) similarly as above, for every
0 6 i 6 σn we have

S(FR
i ) =

∑

k>1

kρ(k, i/n) ±A
∑

k>D logn

ke−ak ± 3D2(logn)C+8n−1/2

= χ(ρ, i/n) ± 4D2(log n)C+8n−1/2,

which establishes (13) for n > n0(D). Finally, recalling (45), it follows that (12)
holds with L, F replaced by L̃, FR

i for n > n0(C,D), which completes the proof
of Theorem 3.
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3 When does tb = tc?

In this section we discuss Conjecture 2, first showing that it does hold for many
size rules and then, in Section 3.2, showing that it cannot be extended to general
ℓ-vertex rules, i.e., that the critical point where the susceptibility blows up need
not always coincide with the percolation threshold.

3.1 Rules with uniform random edges

It is well known, and not hard to check, that under suitable assumptions the
graph Fθn given by adding θn independent and uniformly random edges to a
given n-vertex initial graph F can be viewed as an instance of the inhomogeneous
random graph model of Bollobás, Janson and Riordan [7]. To make this precise,

consider instead the (multi-)graph F̃θ obtained from F by adding a Poisson
number Po(2θ/n) of copies of each of the

(
n
2

)
possible edges, with these numbers

independent; we may then ignore multiple edges, as we are only interested in
the component structure. Since Po(θ(n−1)) edges are added in total, and there

will be few multiple edges, F̃θ and Fθn are essentially interchangeable (one may
use domination arguments comparing them for different θ to make this precise).
Given two components C1 and C2 of F , the number of edges between them in
F̃θ is Poisson with mean |C1||C2|2θ/n. Making (for a change) the n dependence
explicit, let Hn be the random graph whose vertices are the components of F ,
with an edge between two vertices if these components are joined by an edge of
F̃θ. We say that a vertex of Hn has type k if the corresponding component of
F has k vertices. Then the probability of an edge between a given type-i vertex
and a given type-j vertex of Hn is 1−e−2θij/n, which is around 2θij/n if i and j
are not too big, and the events that different edges are present are independent.

More precisely, let κ(i, j) = 2θij for all positive integers i and j. Suppose
that µ is a finite measure on Z

+, i.e., that µk = µ({k}) > 0 for all k and
0 <

∑
k>1 µk < ∞. Let F = Fn be a random n-vertex starting graph. Suppose

that, for each fixed k > 1,
Nk(Fn)

kn

p→ µk (48)

as n → ∞, i.e., that Hn has asymptotically µkn vertices of type k, and that

∑

k>1

kµk = 1. (49)

Then one can use (49), the fact that Fn has n vertices and (48) to show that
whenever K(n) → ∞ we have

N>K(n)(Fn)/n
p→ 0, (50)

and it follows that for any A ⊂ Z
+ we have

∑

k∈A

Nk(Fn)

kn

p→
∑

k∈A

µk. (51)
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In the terminology of [7], this means that the (random) sets of vertices of the
graphs Hn, together with their types, form a generalized vertex space on the
generalized ground space (Z+, µ). Taking A = Z

+ in (51), we have in particular

that |Hn|/n p→ µ(Z+) ∈ (0,∞). By (49) the function κ forms an integrable
kernel on the ground space (Z+, µ), with integral 2θ. Finally, the technical

‘graphicality’ condition of [7] is met since F̃θ has asymptotically θn edges. It
follows that under these assumptions, the results of [7] apply to Hn (see Remark
2.4 there). The most important of these results is [7, Theorem 3.1], which tells
us that Hn will whp contain a giant component (one with Θ(n) vertices) if and
only if ||Tκ|| > 1, where Tκ is a certain integral operator associated to κ. In
particular, if ||Tκ|| > 1 then there is some constant α = α(κ, µ) > 0 (anything
smaller than the quantity ρ(κ) in [7]) such that whp Hn has a component with at
least αn vertices. For the particular κ considered here, which is ‘rank 1’, we have
||Tκ|| =

∑
k 2θk2µk; see (16.8) in [7]. Note that if Hn contains a component

with at least αn vertices, then so does F̃θ – the union of the components of
F corresponding to these vertices of Hn. So, in short, if (48) and (49) hold,

then F̃θ will have a giant component (whp) if (and, one can check, only if)∑
k 2θk2µk > 1. Moreover, it is not hard to check that these conclusions remain

true if we delete some subset of the components of Fn, and adjust µ, as long as
(48) holds for the new graph and Θ(n) components remain; this is because (51)
still holds, and the kernel is still graphical.

We shall apply the observations above with initial graph F = Fn = GR
tbn

,
where R is some ℓ-vertex size rule. By (5), the condition (48) holds with µk =
ρk(tb)/k. Furthermore, as noted after (5), we have

∑
k ρk(tb) = 1, which gives

(49). Finally, note that

||Tκ|| =
∑

k

2θkρk(tb) = 2θs(tb) = ∞, (52)

since s(t) =
∑

k ρk(t) diverges at t = tb. So far this tells us only that if we run
any size rule up to time t = tRb and then switch to adding uniformly random
edges, after any constant times n further edges a giant component will emerge.
The key point is that variants of this argument can be used to study the further
evolution of GR

i for suitable rules R. A related approach was taken in [21]
and [12].

Theorem 15. Let R be a bounded-size ℓ-vertex rule. Then the conclusion of
Conjecture 2 holds for R; in particular, tRc = tRb , and moreover for any ε > 0
there is an α > 0 such that whp L1(GR

(tb+ε)n) > αn.

Note that this result was proved for some bounded-size 4-vertex rules (ones
in which either v1v2 or v3v4 is added) already by Spencer and Wormald [21].

Proof. By definition of bounded-size rules, there is a constant B such that R
treats all components of size greater than B in the same way. Consider the graph
GR

tbn generated by the rule after tbn steps. Let W be the set of vertices of this
graph in components of size greater than B, and let F = Fn be the subgraph
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of GR
tbn

induced by W . Noting that s(tb) =
∑

k kρk(tb) = ∞ > B, we have
ρk(tb) > 0 for some k > B, and it follows that for some constant β > 0, we have
|W | > βn whp. From now on we assume that this is the case. In all subsequent
steps of our original process GR

i , every vertex of W is in a component of size
greater than B. Fix ε > 0. Let us call a step good if in this step all ℓ selected
vertices are in W . Then each step is good with probability at least βℓ, and it
follows that whp at least θn of the next εn steps are good, where θ = εβℓ/2 is
a positive constant. Again using the definition of a bounded-size rule, in each
good step at least one edge is added and by symmetry it is chosen uniformly at
random from all possible edges with ends in W . It follows that we may couple
GR

(tb+ε)n and F̃θ so that whp the former contains the latter as a subgraph. But

F satisfies the assumptions above with µk = ρk(tb)/k for k > B and µk = 0
for k 6 B. Since the sum in (52) remains infinite after removing the first B
terms, Theorem 3.1 of [7] and the discussion above imply that for some positive

α, whp F̃θ contains a component with at least αn vertices.

Our next result concerns a different generalization of the Bohman–Frieze
process [4]. Let us call an Achlioptas rule R take-it-or-leave-it if, when presented
with a choice of two edges e1 and e2, the rule decides which to select depending
only on the current graph and on e1. In other words, the rule first sees e1 and
must decide whether to take this edge of not; if not, it selects the uniformly
random edge e2. Bounded-size rules of this type were studied, for example, by
Bohman and Kravitz [6]; here we do not assume that the rule is bounded-size.

Theorem 16. Let R be a take-it-or-leave-it size rule. Then the conclusions of
Conjecture 2 and Theorem 15 hold for R.

Proof. Consider the process (GR
tbn+i)i>0, i.e., our Achlioptas process started at

step tbn. As above, set F = Fn = GR
tbn. Since R is a take-it-or-leave-it rule, the

further evolution may be described as follows. Let L1 and L2 be independent
lists of independent (potential) edges each chosen uniformly at random from all(
n
2

)
possibilities. In step i of our process (step tbn + i of the original), take for

e1 the ith element of L1. The rule now decides whether to add this edge to the
current graph. If not, take for e2 the next edge from L2, and add that. Thus,
the jth time that the rule declines the first edge, we take the jth edge from L2.

Since the edges in L2 are uniformly random, the discussion before Theo-
rem 15 shows that for any constant δ > 0, whp the first δn edges from L2 will,
when added to F = GR

tbn, be enough to form a giant component. Fix ε > 0,
and define as above a graph Hn whose vertices are the components of F , with
edges corresponding to the first εn edges from L1. As noted before, this graph
Hn may be viewed as an instance of the model studied in [7], and there is some
α > 0 such that whp Hn has a component with at least αn vertices. Further-
more, by the stability result [7, Theorem 3.9], there is some δ > 0 such that
whp Hn has the property that deleting any δn edges still leaves a component
with at least αn/2 vertices of Hn. Hence, whp L1 has the property that if we
add any subset of at least (ε − δ)n of the first εn edges to F , we will create a
component of size at least αn/2, and whp L2 has the property that adding its
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first δn edges to F creates a component of size at least some constant times n.
But when both properties hold, then whatever the rule does, GR

(tb+ε)n will have
a giant component.

For our final result, let us call an Achlioptas rule large-biased if there exists
some constant B such that if both endvertices of e1 are isolated vertices (com-
ponents of size one) and both endvertices of e2 are in components of size greater
than B, then the rule will select e2. Perhaps the most interesting examples of
such rules are the reverse product rule, where we select the (a if there is a tie)
edge maximizing the product of the sizes of the components containing its end-
vertices, or the reverse sum rule, defined similarly but with product replaced by
sum. Perhaps surprisingly (given the difficulty of analyzing the usual product
rule), we can prove Conjecture 2 for such rules.

Theorem 17. Let R be a large-biased size rule. Then the conclusions of Con-
jecture 2 and Theorem 15 hold for R.

Proof. The proof is very similar to that of Theorem 15. Indeed, as usual we
start from F = GR

tbn. As before, let W be the set of vertices of F in components
of size greater than B. Call a subsequent step good if e1 joins two vertices in
components of size one and e2 joins two vertices in W . Since there are whp at
least some constant times n isolated vertices in GR

(tb+1)n, and (as before), W
whp has size at least a constant times n, off an event of small probability the
conditional probability (given the history) that the next step is good is always
at least some positive constant. Furthermore, when a step is good, the added
edge is uniformly random among all possible edges inside W . The remainder of
the argument is as for Theorem 15; we omit the details.

The results above all illustrate the idea that if we can find a reasonable
number of uniformly random edges among the edges selected by our process,
then the process will be ‘well behaved’ (will have tc = tb). This approach can
be used to prove Conjecture 2 for other special classes of size rules, but it seems
that additional ideas are needed for the general case.

3.2 Examples of delayed percolation

Having given several partial results supporting our belief in Conjecture 2, in this
section we show that the conjecture cannot be extended to arbitrary ℓ-vertex
rules. More concretely, we give examples of simple rules that can delay the
appearance of linear size components for Ω(n) steps beyond the point where the
susceptibility diverges. The rules we use behave like size rules almost all the
time.

We start by introducing the r-sum rule Sr, which is a 2r-vertex size rule.
Given vertices (v1, . . . , vℓ) and the corresponding list of component sizes (c1, . . . , cℓ),
the r-sum rule adds the pair v2j−1v2j with the (smallest, if there are ties) j ∈ [r]
that minimizes the sum c2j−1 + c2j of the component sizes. Recall the defini-
tion of FR

i given in Section 2: informally it denotes the graph that we obtain
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by starting with the initial graph FR
0 = F and then following i steps of an

Achlioptas process using the rule R (to decide which edges to add in each step).
Intuitively, the next lemma states that the r-sum rule does not substantially
change (uniform) polynomial tails for N>k during some δn steps (here we use
Sr for concreteness; other size rules exhibit similar behaviour).

Lemma 18. Let F be a graph on n vertices. Suppose there are x,C > 0 and
K = K(n) > 1 such that for all 1 6 k 6 K we have

N>k(F ) 6 Ck−xn. (53)

Given r > 1 + 1/x there exists δ = δ(x,C, r) > 0 such if n is large enough then,
with probability at least 1 − n−99, for all 1 6 k 6 K ′ = min{K,n1/[2(1+x)]} we
have

N>k(FSr

δn ) 6 2Ck−xn. (54)

Proof. Set δ = 2−[(2+x)r+3]C−(r−1). Let Ei′,k′ denote the event that for all
0 6 i 6 i′ and 1 6 k 6 k′ we have

N>k(FSr

i ) 6 2Ck−xn. (55)

Observe that it suffices to show that Eδn,K′ fails with probability at most n−99.

For k 6 K ′ let Xk,i denote the indicator function of the event N>k(FSr

i ) 6=
N>k(FSr

i−1). Set Xk =
∑

16i6δn Xk,i and Yk =
∑

16i6δn Yk,i, where

Yk,i =

{
Xk,i, if Ei−1,k−1 holds,

0, otherwise.

Note that in each step a new component of size at least k is only created by
Sr if in each pair v2j−1v2j at least one vertex is in a component of size at least
⌈k/2⌉. So, whenever Ei−1,k−1 holds, using (55) and r > 1 + 1/x, we see that the
probability that Xk,i = 1 is at most

(
2N>⌈k/2⌉(F

Sr

i−1)

n

)r

6

(
4C

(k/2)x

)r

=

(
22+xC

)r

krx
6

(
22+xC

)r

k1+x
= ξk.

Since Yk,i = 0 whenever Ei−1,k−1 fails, it follows that Yk is stochastically
dominated by a binomial random variable with δn trials and success prob-
ability ξk. Note that (53) implies C > 1. Now, using k 6 K ′ we have
δnξk > C/8 · n1/2 > 600 logn for n > n0, so standard Chernoff bounds yield

P(Yk > 2δnξk) 6 e−δnξk/3 6 n−200. (56)

Next we claim that Eδn,k−1 and Yk < 2δnξk together imply Eδn,k, so that
P(¬Eδn,k) 6 P(¬Eδn,k−1) + P(Yk > 2δnξk). Indeed, by monotonicity Eδn,k−1

implies Ei,k−1 for every 0 6 i 6 δn, so Yk = Xk. Now, since N>k increases by
at most 2k per step, by choice of δ it follows that

N>k(FSr

δn ) −N>k(FSr

0 ) 6 2kYk 6 4δ
(
22+xC

)r
k−xn 6 Ck−xn,
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which together with N>k(FSr

0 ) = N>k(F ) 6 Ck−xn implies N>k(FSr

δn ) 6

2Ck−xn, as claimed. Iterating the above argument for k 6 K ′ and noting
that Eδn,1 always holds due to C > 1, using (56) we obtain

P(¬Eδn,K′) 6
∑

26k6K′

P(Yk > 2δnξk) 6 n−99,

and the proof is complete.

Let Dr denote the rule which always adds the pair v1v2 during the first
n/2 steps (corresponding to an Erdős–Rényi evolution with ℓ = 2); afterwards
it ‘switches’ and uses the r-sum rule Sr. The point is that many properties
of the ‘critical’ Erdős–Rényi random graph Gn,n/2 are well known: there exist
constants C,α > 0 and a function K = K(n) with K → ∞ as n → ∞ such
that whp S(Gn,n/2) > nα and N>k(Gn,n/2) 6 Ck−1/2n for all 1 6 k 6 K. So,
by conditioning on these properties and then using Lemma 18, we immediately
deduce the main result of this section. Indeed, using the rule Dr for r > 3 we
whp have diverging susceptibility after n/2 steps, but in δn subsequent steps
whp no linear size components appear (in fact, in this case tb = 1/2 < tc holds).

Corollary 19. For every r > 3 there exists δ = δ(r) > 0 such that we have whp
S(GDr

n/2) = ω(1) and L1(GDr

n/2+δn) = o(n).

Alternatively, using essentially the same line of reasoning, we obtain a similar
result by switching after the first step where the susceptibility is at least L =
L(n) = ω(1), for L not too large. Furthermore, we can replace Sr by other
suitable size rules. For example, the rule Mℓ, which always connects two vertices
with the two smallest component sizes cj , satisfies an analogue of Lemma 18
for ℓ > 2 + 1/x. So the rule Cℓ, which switches from an Erdős–Rényi evolution
(always adding v1v2) to Mℓ after n/2 steps, yields another example with tb < tc.

Corollary 20. For every ℓ > 4 there exists δ = δ(ℓ) > 0 such that we have whp
S(GCℓ

n/2) = ω(1) and L1(GCℓ

n/2+δn) = o(n).

Note that the examples given in Corollary 19 and 20 always behave like size
rules except that once between two steps they change the rule used (by only
querying natural parameters such as the number of vertices and steps, or the
susceptibility). So, one can argue that Conjecture 2 already fails for a rather
restricted superset of size rules.
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A Appendix

In this appendix we show that, as long as an Achlioptas process contains only
small components, it will have a very simple cycle structure: most components
will be trees, some will be unicyclic, and there will (whp) be no ‘complex’
components, i.e., ones containing more than one cycle. In fact, we prove the
result for the more general class of ℓ-vertex rules. However, here we need an
additional assumption: in each round the set of added edges is a forest. Allowing
slightly greater generality, we call a rule acyclic if the edges between v1, . . . , vℓ
added in a single step correspond to a forest on 1, . . . , ℓ. This in particular holds
if in each step at most two edges are added. Note that such an assumption is in
fact necessary for ℓ > 3, since always connecting all vertices in each step quickly
creates many cycles and complex components.

Lemma 21. Let ℓ > 2 and let R be an acyclic ℓ-vertex rule. Given 0 < δ < 1/4
and U = U(n), suppose that for n > n0(ℓ, δ) we have 1 6 U 6 n1/4−δ. For
n > n0(ℓ, δ), with probability at least 1 − n−δ/2 the following holds for every
0 6 i 6 n1+δ: in GR

i there are no components of size at most U which contain
at least two cycles, and the number of vertices in components of size at most U
with exactly one cycle is at most U2n2δ.

Proof. Set m = n1+δ. Let B1,i denote the event that in step i one of the
following happens: (a) at least three of the ℓ randomly chosen vertices are
contained in the same component of size at most U , or (b) there are randomly
chosen vertices w1, w2, w3, w4 and two components C1, C2 of size at most U
such that w1, w2 ∈ C1 and w3, w4 ∈ C2. It is easy to see that B1,i holds with
probability at most ℓ3U2/n2 + ℓ4U2/n2. So, denoting by B1 the event that B1,i

holds for some i 6 m, we see that

P(¬B1) 6 m · 2ℓ4U2/n2
6 2ℓ4n−1/2−δ.

Let Si,U denote the set of vertices of GR
i which are in components of size

at most U containing exactly one cycle, and let B2 be the event that Si,U

contains at least 2ℓ3Um/n components for some i 6 m. Then ¬B2 implies
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|Si,U | 6 2ℓ3U2m/n = R for every i 6 m, where R 6 U2n2δ for n > n0(ℓ, δ).
Since in each step the number of components in Si,U changes by at most ℓ, when
B2 holds there are at least 2ℓ2Um/n steps in which the number of components in
Si,U increases. This can only happen if at least two randomly chosen vertices are
in the same component of size at most U . Since in each step this has probability
at most ℓ2U/n, the expected number of such steps is bounded by λ = ℓ2Um/n.
Using standard Chernoff bounds (and stochastic domination) it follows that

P(B2) 6 e−λ/3
6 e−nδ

.

Let B3 denote the event that in some GR
i with i 6 m there exists a compo-

nent of size at most U which contains at least two cycles. In each step where
B1,i fails, note that a new complex component of size at most U can only be
created if (a) at least two randomly chosen vertices are in Si−1,U or (b) one
randomly chosen vertex lies in Si−1,U , and two randomly chosen vertices are in
the same tree component of size at most U . So, by considering the probability
that this happens for some i 6 m (assuming |Si−1,U | 6 R), we see that

P(¬B1 ∩ ¬B2 ∩ B3) 6 m · (ℓ2R2/n2 + ℓ3RU/n2) 6 5ℓ8U4m3/n4
6 5ℓ8n−δ,

completing the proof for n > n0(δ, ℓ).

Theorem 1 tells us that for size rules, for any fixed t < tb, the largest
component of GR

tn whp has size at most O(log n). Taking U = (log n)2, say, we
see that if R is acyclic, then whp there are no complex components, and at most
no(1) vertices on cyclic components – in other words, almost all components are
trees. (We have not tried to optimize the bound here – the method actually
gives some power of logn.)
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