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Abstract

We consider Achlioptas processes for k-SAT formulas. We create a semi-random formula with n
variables and m clauses, where each clause is a choice, made on-line, between two or more uniformly
random clauses. Our goal is to delay the satisfiability/unsatisfiability transition, keeping the formula
satisfiable up to densities m/n beyond the satisfiability threshold αk for random k-SAT. We show that
three choices suffice to delay the transition for any k ≥ 3, and that two choices suffice for all 3 ≤ k ≤ 25.
We also show that two choices suffice to lower the threshold for all k ≥ 3, making the formula unsatisfiable
at a density below αk.

1 Introduction

The Erdős-Rényi model of random graphs undergoes a celebrated phase transition. Specifically, suppose we
form a random graph G(n,m) with n vertices and m edges by choosing m times uniformly from the

(

n
2

)

possible edges. The average degree of this graph is d = 2m/n. If d < 1, then with high probability in the
limit n → ∞, G(n,m) consists almost entirely of trees, and the largest component has size O(log n). But if
d > 1, then with high probability G(n,m) has a giant connected component containing Θ(n) vertices.

In 2001, Dimitris Achlioptas posed the following question. Suppose at each step we are presented with
two uniformly random edges. We are allowed to choose between them, adding one of them to the graph and
throwing away the other. We play this game on-line; that is, our choice can depend on the graph up to this
point, but not on future pairs of edges. Can we delay the appearance of the giant component, ensuring that
the largest component has size o(n) after m = cn edges for some c > 1/2?

A positive answer was given by Bohman and Frieze [5], who showed that two choices suffice to delay
the giant up to c = 0.535. Achlioptas, D’Souza, and Spencer [1] studied a particular rule where we choose
the edge that minimizes the product of the component sizes of its endpoints, which exhibits a phenomenon
they call explosive percolation. It is also possible to speed up the appearance of the giant component [13, 6];
Spencer and Wormald [27] showed that it can be brought into existence at c = 0.334.

In analogy with G(n,m), we can consider random k-SAT formulas Fk(n,m). Specifically, given n variables
x1, . . . , xn, we create a k-SAT formula by choosing m clauses uniformly from the 2k

(

n
k

)

possibilities. The
satisfiability threshold conjecture states that there is a critical density αk = m/n at which Fk(n,m) undergoes
a phase transition from satisfiable to unsatisfiable:

Conjecture 1. For each k ≥ 2, there is a constant αk such that

lim
n→∞

Pr[Fk(n, αn) is satisfiable] =

{

1 α < αk

0 α > αk .
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This conjecture has been proved only for k = 2 [9, 15, 12], where α2 = 1. For the NP-complete case k ≥ 3,
there are strong arguments from statistical physics that it is true, and very precise conjectures for the value
of αk from calculations using the cavity method [20, 21].

There are rigorous upper and lower bounds on αk assuming it exists. That is, there are known values
αlow
k , αhigh

k such that Fk(n, αn) is satisfiable if α < αlow
k and unsatisfiable if α > αhigh

k . In that case, we write

αlow
k ≤ αk ≤ αhigh

k . Specifically, for k = 3 we have [10, 16, 18]

3.52 ≤ α3 ≤ 4.4898 , (1)

while the cavity method gives α3 = 4.267. For arbitrary k, the first and second moment methods give [4]

2k ln 2−O(k) ≤ αk < 2k ln 2− ln 2

2
, (2)

while the cavity method gives

αk = 2k ln 2− 1 + ln 2

2
+O(2−k) .

Sinclair and Vilenchik [26] asked whether Achlioptas processes can delay the satisfiability/unsatisfiability
transition for k-SAT. In other words, suppose at each step we are given a choice of two clauses, each of
which is uniformly random. We choose one of them and add it to the formula, and our goal is keeping the
formula satisfiable up to m = αn clauses for some α > αk. They showed that two choices are enough to
delay the 2-SAT transition up to α = 1.0002, and also that two choices can delay the k-SAT transition for
k = ω(logn). Perkins [25] showed that for any k, there is a strategy with t choices, for a constant t, that
delays the k-SAT transition. In fact, his analysis shows that three choices suffice for sufficiently large k, and
that 7 choices suffice for all k ≥ 3.

We improve these results in the following ways. First, we give a simple, nonadaptive strategy that, given
a choice between three clauses, increases the k-SAT threshold for all k ≥ 2. Secondly, we give a two-choice
strategy that increases the threshold for all 3 ≤ k ≤ 25, and we conjecture that it works for all large k as
well. Finally, we give a simple two-choice strategy that lowers the threshold for all k.

2 Three Choices Suffice to Raise the Threshold for all k

In this section and the next, we show that a constant number of choices suffice to raise the satisfiability
threshold. Our strategy is simple and nonadaptive. Indeed, it is oblivious to the “topology” of the formula,
which variables appear together in clauses, and is sensitive only to the signs of the literals. Given a choice
of t clauses, we choose the one with the largest number of positive literals.

To show that the resulting k-SAT formula is satisfiable, we convert it into an ℓ-SAT formula in the
following way: for each k-SAT clause c, we form an ℓ-SAT clause by taking ℓ of the most positive literals in
c. If the resulting ℓ-SAT formula is satisfiable, then so is the original k-SAT formula. In Theorem 1, we use
ℓ = 2; in Theorems 2–4, we use ℓ = 3.

We note that Perkins [25] used a similar strategy, with ℓ = 2, to show that a constant number of choices
suffice for any k. Here we improve his results, showing that three choices suffice.

Theorem 1. Three choices suffice to increase the k-SAT threshold for any k ≥ 2.

Proof. As described above, our strategy is simply to take the clause c with the largest number of positive
literals. We then generate a 2-SAT formula by taking two of the most positive literals from each clause.
Specifically, if c has two or more positive literals, we form a 2-SAT clause by choosing uniformly from all
such pairs; if c has exactly one positive literal, we take it and choose uniformly from the k − 1 others; and
if all of c’s literals are negative, we choose uniformly from all

(

k
2

)

pairs.

2



If c is the most-positive of t uniformly random clauses, then the probabilities that the resulting 2-SAT
clause has 0, 1, or 2 positive literals are

p0 = 2−kt

p1 =
(

2−k(k + 1)
)t − p0

p2 = 1− p0 − p1 . (3)

If there are m = αn clauses, this gives a biased random 2-SAT formula with, in expectation, αp0n, αp1n,
and αp2n clauses of these three types. Note that the variables appearing in each clause are independent and
uniformly random.

Recall that a 2-SAT formula on n is equivalent to a directed graph on 2n vertices, corresponding to the
literals xi and xi for each 1 ≤ i ≤ n. Each clause (xi ∨ xj) is equivalent to a pair of edges, namely the
implications xi → xj and xj → xi. The formula is satisfiable if and only if no contradictory cycle exists,
leading from xi to xi and back to xi for some i.

Unit clause propagation is the process of satisfying a unit clause, i.e. a clause consisting of a single literal,
and generating the unit clauses implied by it and whatever 2-clauses that variable appears in. For instance,
if (xi ∨ xj) is one of the 2-clauses in the formula, satisfying the unit clause (xi) will generate the unit clause
(xj). In a random formula with αp0n variables, a positive unit clause (xi) will give rise, on average, to 2αp0
negative unit clauses (xj). Similarly, a positive unit clause will give rise, on average to p1 negative ones, and
so on. Unit clause propagation is thus described by a two-type branching process, with a matrix αM where

M =

(

p1 2p0
2p2 p1

)

, (4)

where we treat the number of negative and positive unit clauses in the current generation as a column vector
and multiply by M on the left.

Given an initial unit clause u =

(

1
0

)

or

(

0
1

)

, the expected population generated by the entire process is

(

1+ αM + (αM)2 + · · ·
)

· u .
If αλ < 1 where λ is the largest eigenvalue ofM , this series converges to (1−αM)−1 ·u, so in expectation just
O(1) unit clauses are implied by the initial one. Intuitively, this makes it very unlikely that a contradictory
loop of implications exists, and therefore suggests that the 2-SAT formula is satisfiable with high probability.

Indeed, this was proved by Mossel and Sen [24]. They showed that the critical density for random 2-SAT
formulas of this kind is exactly

α∗ =
1

λ
=

1

p1 + 2
√
p0p2

.

For the unbiased case p1 = 1/2 and p0 = p2 = 1/4, this reproduces the 2-SAT threshold α2 = 1. Putting in
our expressions (3) for p0, p1, and p2 gives

α∗ =
2kt/2

2−kt/2((k + 1)t − 1) + 2
√

1− (2−k(k + 1))t

For large k, α∗ grows as 2kt/2/2. If we set t = 3, then α∗ exceeds the k-SAT threshold for all k ≥ 3. In
particular, for k = 3 we have α∗ > 4.86, which exceeds the best known upper bound on α3 of 4.4898 [10].
For k ≥ 4, α∗ exceeds the first moment upper bound 2k ln 2.

Note that we have shown not just that three choices are enough to generate satisfiable formulas above the
satisfiability threshold, but that these formulas can be satisfied in polynomial time: just use the polynomial-
time algorithm for 2-SAT to find a satisfying assignment. For the case k = 2 and t = 2, we have also shown
that two choices raise the 2-SAT threshold to 1.203, which improves the results of [26, 25].

Note also that setting t = 1 in the proof of Theorem 1 shows that the threshold for random k-SAT
without any choices grows as αk = Ω(2k/2). This is far below the second moment lower bound Ω(2k) [2, 4],
but the proof is much simpler.
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3 Two Choices Suffice to Raise the Threshold for 3 ≤ k ≤ 25

In this section we show that two choices suffice for k up to 25. We do this by analyzing simple linear-
time algorithms with differential equations. Regrettably, these equations seem too complicated to solve
analytically; thus we are not able to prove that these results hold for all k ≥ 3, though we conjecture that
they do.

We start by showing that a particularly simple algorithm works for 5 ≤ k ≤ 25. We then use slightly
more sophisticated algorithms to raise the threshold for k = 3 and k = 4.

Theorem 2. Two choices suffice to increase the k-SAT threshold for all 5 ≤ k ≤ 25.

Proof. Our strategy is the same as before: given a choice of t clauses, take the one with the most positive
literals. We then form a 3-SAT clause by choosing uniformly from among the most-positive triplets of literals.
Analogous to (3), the probability that the resulting clause has 0, 1, 2, or 3 positive literals is

p0 = 2−kt

p1 =
(

2−k(k + 1)
)t − p0

p2 =

(

2−k

((

k

2

)

+ k + 1

))t

− p1

p3 = 1− p0 − p1 − p2 . (5)

Now consider the following algorithm, which we call BUC for Biased Unit Clause. At each step it sets some
variable x permanently, removing clauses that agree with that setting and hence are satisfied, and shortening
clauses that disagree with it.

1. (Forced step) If there are any unit clauses, choose one uniformly and satisfy it.

2. (Free step) Otherwise, choose x uniformly from all unset variables, and set x true.

This is identical to the UC algorithm for random k-SAT studied by Chao and Franco [7, 8] except that, on
a free step, UC flips a coin to determine the truth value of x. If at any point we have two contradictory
unit clauses, we simply give up rather than backtracking. Our goal is to use differential equations to show
that BUC succeeds with positive probability. The existence of a nonuniform threshold [14], which we claim
applies to these biased 3-SAT formulas as well, then implies that they are satisfiable with high probability.

After T of the variables have been set, let Sij(T ) denote the number of i-clauses with j positive literals,
for i = 2, 3 and 0 ≤ j ≤ i. Initially we have S3,j(0) = αpjn and S2,j(0) = 0. Let q0(T ) and q1(T ) denote the
probability that the variable on the T th step is set false or true respectively. Then the expected change in
Sij at each step is

for all 0 ≤ j ≤ 3 , E [∆S3,j ] = − 3S3,j

n− T
+ o(1)

for all 0 ≤ j ≤ 2 , E [∆S2,j ] =
(3− j)q1S3,j + (j + 1)q0S3,j+1 − 2S2,j

n− T
+ o(1) .

The key fact behind these equations is that, at all times throughout the algorithm’s progress, the formula
consisting of the remaining clauses is uniformly random once we condition on the number of clauses of each
type. In particular, the variables appearing in each clause are uniformly random among the n − T unset
variables, as is the variable x set on a given step. Thus each 3-clause is either satisfied or shortened with
probability 3/(n − T ); if it has j positive literals and we set x false, then with probability j/(n − T ) it
becomes a 2-clause with j − 1 positive literals; and so on.
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k 3 4 5 6 7 8 9 10
α∗

BUC 4.232 9.491 24.306 66.811 190.806 554.106 1610.88 4637.05
2k ln 2 22.181 44.362 88.723 177.446 354.891 709.783

Table 1: The lower bound α∗

BUC achieved by choosing the clause with the most positive literals, and running
the Biased Unit Clause algorithm on the 3-SAT formula consisting of one of the the most-positive triplets of
each clause. For 5 ≤ k ≤ 25, α∗

BUC exceeds the first-moment upper bound on αk, showing that two choices
are enough to raise the threshold.

Rescaling to real-valued variables t = T/n and sij(t) = Sij(tn)/n in the usual way gives the differential
equations

for all 0 ≤ j ≤ 3 ,
ds3,j
dt

= − 3s3,j
1− t

(6)

for all 0 ≤ j ≤ 2 ,
ds2,j
dt

=
(k − j)q1s3,j + (j + 1)q0s3,j+1 − 2s2,j

1− t
, (7)

with the initial conditions s3,j(0) = αpj and s2,j(0) = 0. Then classic results [29] show that, with high
probability, Sij(T ) = sij(T/n)n + o(n) for all T , where sij(t) is the unique solution to this system of
differential equations.

The caveat to this, of course, is that a contradictory pair of unit clauses does not appear. Standard
arguments show that as long as the branching process of unit clauses stays subcritical throughout the
algorithm, then the probability that no contradiction occurs, and that the algorithm succeeds in satisfying
all the clauses, is Θ(1).

Analogous to (4), the unit clauses obey a two-type branching process between negative and positive unit
clauses, where the expected number of children of each type is within o(1) of the matrix

M =
1

1− t

(

s2,1 2s2,0
2s2,2 s2,1

)

. (8)

We can group steps together into rounds, where each round consists of a free step followed by a cascade
of forced steps. Let λ denote the largest eigenvector of M . As long as λ < 1, the branching process is
subcritical, and the total expected number b0, b1 of variables set false or true respectively in a round is

(

b0
b1

)

=
(

1+M +M2 + · · ·
)

·
(

0
1

)

= (1−M)−1 ·
(

0
1

)

,

where we use the fact that the initial free step in each round sets a variable true. Averaging over many steps,
but not so many that M changes appreciably, the probability that a variable is set false or true is

q0 =
b0

b0 + b1
, q1 =

b1
b0 + b1

.

Similar analyses of multi-type branching processes in algorithms appear in [3, 17].
The differential equation (10) for s3,j is easy to solve: namely, s3,j = αpj(1− t)3. We integrate the rest

of the system (7) numerically, and use binary search to find the largest α, up to some precision, such that
maxt λ(t) < 1. In Table 1 we show the resulting lower bound α∗

BUC for the first few values of k. For k = 3
and k = 4, α∗

BUC is below the conjectured values of the threshold [19], namely 4.267 and 9.931. But for
5 ≤ k ≤ 25, α∗

BUC exceeds the first moment upper bound 2k ln 2.

Asymptotically, α∗

BUC seems to grow roughly as 2.5k. It is tempting to think that we can prove a lower
bound on α∗

BUC sufficient to show that two choices suffice for all k > 25 as well, but we have not been able
to do that.

The next two theorems use slight improvements to Theorem 2 to raise the threshold for k = 3 and k = 4.
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Theorem 3. Two choices suffice to increase the 4-SAT threshold.

Proof. Given two clauses, we again take the one with more positive clauses, but now we apply the BUC algo-
rithm directly to the resulting 4-SAT formula. Most of the analysis of Theorem 2 goes through unchanged,
except that the probability that a clause has a given number of positive literals is now

p0 =
1

256
, p1 =

3

32
, p2 =

3

8
, p3 =

13

32
, p4 =

31

256
.

The differential equations (7) for the density of 2-clauses and the matrix M for the branching process of unit
clauses (8) are unchanged. The differential equations for 4- and 3-clauses are now

for all 0 ≤ j ≤ 4 ,
ds4,j
dt

= − 4s4,j
1− t

for all 0 ≤ j ≤ 3 ,
ds3,j
dt

=
(4− j)q1s4,j + (j + 1)q0s4,j+1 − 3s3,j

1− t
, (9)

and the initial conditions are s4,j(0) = αpj and s3,j(0) = s2,j(0) = 0.
Integrating this system numerically, we find that M ’s largest eigenvalue λ is less than 1 up to α = 10.709.

This is less than the naive first moment upper bound on α4, but it exceeds an improved upper bound of
10.217 based on counting locally maximal assignments [11].

Finally, we use a biased version of the Short Clause (SC) algorithm, which Chvatal and Reed used to prove
a lower bound on the 3-SAT threshold [9], to show that two choices can delay the satisfiability transition in
3-SAT.

Theorem 4. Two choices suffice to increase the 3-SAT threshold.

Proof. Once again our strategy is to take the more positive of the two clauses. The probability that a clause
has a given number of positive literals is

p0 =
1

64
, p1 =

15

64
, p2 =

33

64
, p3 =

15

64
.

We now analyze the following algorithm, which we call Biased Short Clause (BSC).

1. (Forced step) If there are any unit clauses, choose one uniformly and satisfy it.

2. (Free step) Otherwise, if there are any 2-clauses, choose one uniformly. If it has any positive literals,
choose one uniformly and satisfy it. If both its literals are negative, choose one uniformly and satisfy
it.

3. (Really free step) If there are no unit clauses or 2-clauses, choose x uniformly from the unset variables
and choose x’s truth value uniformly.

This is identical to Short Clause [9] except that, whenever possible, we satisfy the chosen 2-clause by setting
a variable true.

During the critical phase of the algorithm, there are Θ(n) 2-clauses, so we can effectively ignore the
possibility of a really free step. Let pfree denote the probability that a given step is free. The differential
equations for 3- and 2-clauses are then

for all 0 ≤ j ≤ 3 ,
ds3,j
dt

= − 3s3,j
1− t

(10)

for all 0 ≤ j ≤ 2 ,
ds2,j
dt

=
(k − j)q1s3,j + (j + 1)q0s3,j+1 − 2s2,j

1− t
− pfree

s2,j
s2,0 + s2,1 + s2,2

, (11)

where the additional term is due to the fact that we choose and satisfy a random 2-clause on every free step.

6



As before, consider a round consisting of a free step followed by a cascade of forced steps, and let b0 and
b1 denote the total expected number of variables set false or true during a round. The probability that a
given step is free is 1 divided by the expected length of the round,

pfree =
1

b0 + b1
,

and the probability that a given step sets a variable false or true is q0 = b0/(b0 + b1) and q1 = b1/(b0 + b1)
respectively. The matrix M describing the branching process of unit clauses is the same as in BUC. However,
the initial population of unit clauses in each round is different. Rather than always setting a variable true,
a free step sets a variable true if the chosen 2-clause has at least one positive literal, and otherwise it sets a
variable false. Thus

(

b0
b1

)

=
1

s2,0 + s2,1 + s2,2
(1−M)−1 ·

(

s2,0
s2,1 + s2,2

)

.

Integrating this system numerically, we find that M ’s largest eigenvalue λ stays below 1 for all t as long
as α < 4.581. This exceeds the best known upper bound α3 < 4.4898, completing the proof.

All these results show that two choices are enough to create a formula at a density above αk that can be
satisfied, with probability Θ(1), in linear time.

4 Two Choices Suffice to Lower the Threshold, If There Is One

We now show that two choices are enough to lower the satisfiability threshold if the threshold exists. If there
is no threshold, we can still lower it; we explain below what we mean by this tongue-in-cheek statement.

Theorem 5. Two choices suffice to lower the threshold for k-SAT for any k, assuming that the threshold
conjecture holds.

Proof. Our strategy depends on the topology of the formula, but in a very simple way. Let 0 < a < 1 be a
constant to be determined. We simply prefer clauses whose variables are all in the set U = {x1, x2, . . . , xan}
to those with one or more variables outside U .

If we have t choices, the probability that the chosen clause has all its variables in U is

q = 1− (1− ak)t ,

If the subformula consisting of these clauses is unsatisfiable, then so is the entire formula. But this subformula
is uniformly random in Fk(n

′,m′) where n′ = an and E [m′] = qm. By the Chernoff bound, its density is
arbitrarily close to

α′ =
m′

n′
= αγ where γ =

1− (1 − ak)t

a
. (12)

Thus the chosen formula is unsatisfiable w.h.p. if α > αk/γ, lowering the threshold by a factor of γ.
To confirm that there is an a such that γ > 1, we maximize γ as a function of a. Specifically, if t = 2

then γ is maximized at

a =

(

2k − 2

2k − 1

)1/k

,

where

γ =
4k(k − 1)

(2k − 1)2

(

2k − 1

2k − 2

)1/k

≥ 1 +
1

4k2
. (13)

This completes the proof.
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We remark that a similar strategy shows that two choices are enough to create a giant component with
m = cn edges where c = (3/8)

√

3/2 = 0.459.
What if we don’t take the threshold conjecture for granted? Theorems 1–4 still “raise the threshold”

unconditionally, in the sense that two or three choices give formulas that are w.h.p. satisfiable at densities
where random k-SAT formulas are w.h.p. unsatisfiable. We can give an analogous result for lowering the
threshold:

Theorem 6. For any k, there is a constant t such that t choices suffice to generate formulas that are w.h.p.
unsatisfiable at densities where random k-SAT formulas are w.h.p. satisfiable. For sufficiently large k, two
choices suffice.

Proof. Following the proof of Theorem 5, we just have to ensure that γ > γk where γk = αhigh
k /αlow

k is the
ratio between the best known upper and lower bounds on the threshold, i.e. the lowest and highest densities
where random k-SAT formulas are known to be unsatisfiable or satisfiable respectively.

Examining (12), we see that for any k and any γk there are a, t such that γ > γk. For instance, let
a = 1/(2γk) and let t be large enough so that (1− ak)t < 1/2.

For large k, from (2) we have γk = 1 +O(2−kk), where O represents a constant independent of k. Since
from (13) we can achieve γ = 1 + Θ(1/k2) with two choices, there is some k0 such that two choices suffice
for all k ≥ k0.

For 3-SAT in particular, where the current value of γk is 4.898/3.52 = 1.275, maximizing γ as a function
of a shows that 6 choices suffice to lower the threshold unconditionally.

5 Conclusion

We have shown that three choices are enough to raise the satisfiability threshold in random k-SAT, and that
two are enough to lower it, for any k. We have also shown that two are enough to raise it for k ≤ 25. We
are left with several questions.

1. Are two choices enough to raise the threshold for any k? This seems incontrovertible, but we not see
how to extend our analysis of Biased Unit Clause to arbitrary k.

2. Sinclair and Vilenchik [26] point out that if we are allowed to choose off-line, i.e. if we are given all
pairs of clauses in advance, then with two choices can raise the k-SAT threshold exactly to the 2k-SAT
threshold, since a choice of two k-SAT clauses is equivalent to a 2k-SAT clause. Can we do nearly this
well in the on-line version? Or is there a stricter upper bound on how high we can raise the k-SAT
threshold with two on-line choices, say O(2ck) for some c < 2?

3. Our two-choice strategy for lowering the threshold does so by a factor of 1 + O(1/k2). Is there a
strategy with two choices, or a constant number of choices, that lowers the threshold by a constant
factor for all k?

Acknowledgments We are grateful to Stephan Mertens and Will Perkins for helpful conversations. T.H.
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