INTRODUCTION TO RANDOM GRAPHS

ALAN FRIEZE and MICHAŁ KAROŃSKI

September 10, 2021
To Carol and Jola
Contents

I Basic Models 1

1 Random Graphs 3
 1.1 Models and Relationships .. 3
 1.2 Thresholds and Sharp Thresholds 9
 1.3 Pseudo-Graphs .. 16
 1.4 Exercises ... 18
 1.5 Notes ... 19

2 Evolution 21
 2.1 Sub-Critical Phase ... 21
 2.2 Super-Critical Phase .. 34
 2.3 Phase Transition ... 40
 2.4 Exercises ... 46
 2.5 Notes ... 48

3 Vertex Degrees 51
 3.1 Degrees of Sparse Random Graphs 51
 3.2 Degrees of Dense Random Graphs 57
 3.3 Exercises ... 64
 3.4 Notes ... 64

4 Connectivity 67
 4.1 Connectivity .. 67
 4.2 k-connectivity .. 71
 4.3 Exercises ... 73
 4.4 Notes ... 74

5 Small Subgraphs 75
 5.1 Thresholds ... 75
 5.2 Asymptotic Distributions 79
 5.3 Exercises ... 81
CONTENTS

5.4 Notes ... 83

6 Spanning Subgraphs ... 85
6.1 Perfect Matchings ... 85
6.2 Hamilton Cycles ... 93
6.3 Long Paths and Cycles in Sparse Random Graphs 97
6.4 Greedy Matching Algorithm 99
6.5 Random Subgraphs of Graphs with Large Minimum Degree 103
6.6 Spanning Subgraphs ... 106
6.7 Exercises ... 108
6.8 Notes ... 111

7 Extreme Characteristics ... 115
7.1 Diameter ... 115
7.2 Largest Independent Sets ... 121
7.3 Interpolation ... 125
7.4 Chromatic Number ... 127
7.5 Eigenvalues ... 133
7.6 Exercises ... 139
7.7 Notes ... 141

8 Extremal Properties ... 145
8.1 Containers ... 145
8.2 Ramsey Properties ... 146
8.3 Turán Properties ... 148
8.4 Containers and the proof of Theorem 8.1 150
8.5 Exercises ... 158
8.6 Notes ... 158

9 Resilience ... 161
9.1 Perfect Matchings ... 161
9.2 Hamilton Cycles ... 162
9.3 The chromatic number ... 174
9.4 Exercises ... 175
9.5 Notes ... 175

II Basic Model Extensions ... 177

10 Inhomogeneous Graphs ... 179
10.1 Generalized Binomial Graph ... 179
10.2 Expected Degree Model ... 186
10.3 Kronecker Graphs .. 193
10.4 Exercises ... 198
10.5 Notes ... 199

11 Fixed Degree Sequence .. 203
11.1 Configuration Model ... 203
11.2 Connectivity of Regular Graphs 214
11.3 Existence of a giant component 217
11.4 $G_{n,r}$ is asymmetric .. 222
11.5 $G_{n,r}$ versus $G_{n,p}$... 226
11.6 Exercises .. 236
11.7 Notes ... 238

12 Intersection Graphs .. 241
12.1 Binomial Random Intersection Graphs 241
12.2 Random Geometric Graphs 251
12.3 Exercises .. 260
12.4 Notes ... 261

13 Digraphs ... 267
13.1 Strong Connectivity ... 267
13.2 Hamilton Cycles ... 275
13.3 Exercises .. 278
13.4 Notes ... 279

14 Hypergraphs .. 281
14.1 Component Size .. 281
14.2 Hamilton Cycles ... 286
14.3 Thresholds .. 290
14.4 Exercises .. 304
14.5 Notes ... 306

III Other models .. 309
15 Trees ... 311
15.1 Labeled Trees ... 311
15.2 Recursive Trees ... 318
15.3 Inhomogeneous Recursive Trees 328
15.4 Exercises .. 338
15.5 Notes ... 339
CONTENTS

16 Mappings 345
 16.1 Permutations ... 345
 16.2 Mappings .. 348
 16.3 Exercises .. 355
 16.4 Notes .. 356

17 k-out 359
 17.1 Connectivity .. 359
 17.2 Perfect Matchings 362
 17.3 Hamilton Cycles .. 371
 17.4 Nearest Neighbor Graphs 374
 17.5 Exercises .. 377
 17.6 Notes .. 378

18 Real World Networks 381
 18.1 Preferential Attachment Graph 381
 18.2 Spatial Preferential Attachment 389
 18.3 Preferential Attachment with Deletion 395
 18.4 Bootstrap Percolation 403
 18.5 A General Model of Web Graphs 404
 18.6 Small World .. 413
 18.7 Exercises .. 419
 18.8 Notes .. 420

19 Weighted Graphs 423
 19.1 Minimum Spanning Tree 423
 19.2 Shortest Paths .. 426
 19.3 Minimum Weight Assignment 430
 19.4 Exercises .. 433
 19.5 Notes .. 435

20 Brief notes on uncovered topics 439

IV Tools and Methods 451

21 Moments 453
 21.1 First and Second Moment Method 453
 21.2 Convergence of Moments 456
 21.3 Stein–Chen Method 460
CONTENTS

22 Inequalities 463
- 22.1 Binomial Coefficient Approximation 463
- 22.2 Balls in Boxes 464
- 22.3 FKG Inequality 465
- 22.4 Sums of Independent Bounded Random Variables 467
- 22.5 Sampling Without Replacement 473
- 22.6 Janson’s Inequality 474
- 22.7 Martingales. Azuma-Hoeffding Bounds 476
- 22.8 Talagrand’s Inequality 483
- 22.9 Dominance 486

23 Differential Equations Method 489

24 Branching Processes 495

25 Entropy 497
- 25.1 Basic Notions 497
- 25.2 Shearer's Lemma 500

26 Indices 557
- Author Index 558
- Main Index 565
Our purpose in writing this book is to provide a gentle introduction to a subject that is enjoying a surge in interest. We believe that the subject is fascinating in its own right, but the increase in interest can be attributed to several factors. One factor is the realization that networks are “everywhere”. From social networks such as Facebook, the World Wide Web and the Internet to the complex interactions between proteins in the cells of our bodies, we face the challenge of understanding their structure and development. By and large natural networks grow in an unpredictable manner and this is often modeled by a random construction. Another factor is the realization by Computer Scientists that NP-hard problems are often easier to solve than their worst-case suggests and that an analysis of running times on random instances can be informative.

History

Random graphs were used by Erdős [285] to give a probabilistic construction of a graph with large girth and large chromatic number. It was only later that Erdős and Rényi began a systematic study of random graphs as objects of interest in their own right. Early on they defined the random graph $G_{n,m}$ and founded the subject. Often neglected in this story is the contribution of Gilbert [382] who introduced the model $G_{n,p}$, but clearly the credit for getting the subject off the ground goes to Erdős and Rényi. Their seminal series of papers [286], [288], [289], [290] and in particular [287], on the evolution of random graphs laid the groundwork for other mathematicians to become involved in studying properties of random graphs.

In the early eighties the subject was beginning to blossom and it received a boost from two sources. First was the publication of the landmark book of Béla Bollobás [135] on random graphs. Around the same time, the Discrete Mathematics group in Adam Mickiewicz University began a series of conferences in 1983. This series continues biennially to this day and is now a conference attracting more and more participants.

The next important event in the subject was the start of the journal Random Structures and Algorithms in 1990 followed by Combinatorics, Probability and Computing a few years later. These journals provided a dedicated outlet for work in the area and are flourishing today.
Scope of the book

We have divided the book into four parts. Part one is devoted to giving a detailed description of the main properties of $G_{n,m}$ and $G_{n,p}$. The aim is not to give best possible results, but instead to give some idea of the tools and techniques used in the subject, as well to display some of the basic results of the area. There is sufficient material in part one for a one semester course at the advanced undergraduate or beginning graduate level. Once one has finished the content of the first part, one is equipped to continue with material of the remainder of the book, as well as to tackle some of the advanced monographs such as Bollobás [135] and the more recent one by Janson, Łuczak and Ruciński [449].

Each chapter comes with a few exercises. Some are fairly simple and these are designed to give the reader practice with making some the estimations that are so prevalent in the subject. In addition each chapter ends with some notes that lead through references to some of the more advanced important results that have not been covered.

Part two deals with models of random graphs that naturally extend $G_{n,m}$ and $G_{n,p}$. Part three deals with other models. Finally, in part four, we describe some of the main tools used in the area along with proofs of their validity.

Having read this book, the reader should be in a good position to pursue research in the area and we hope that this book will appeal to anyone interested in Combinatorics or Applied Probability or Theoretical Computer Science.

Acknowledgement

Several people have helped with the writing of this book and we would like to acknowledge their help. First there are the students who have sat in on courses based on early versions of this book and who helped to iron out the many typo’s etc.

We would next like to thank the following people for reading parts of the book before final submission: Andrew Beveridge, Deepak Bal, Malgosia Bednarska, Patrick Bennett, Mindaugas Bloznelis, Antony Bonato, Boris Bukh, Fan Chung, Amin Coja-Oghlan, Colin Cooper, Andrzej Dudek, Asaf Ferber, Nikolas Fountoulakis, Catherine Greenhill, Dan Hefetz, Paul Horn, Hsien–Kuei Hwang, Jerzy Jaworski, Tony Johansson, Mihyun Kang, Michael Krivelevich, Tomasz Łuczak, Colin McDiarmid, Andrew McDowell, Hosam Mahmoud, Mike Molloy, Tobias Müller, Rajko Nenadov, Wesley Pegden, Boris Pittel, Dan Poole, Pawel Prałat, Oliver Riordan, Andrzej Ruciński, Katarzyna Rybarczyk, Wojtek Samotij, Yilun Shang, Matas Šileikis, Greg Sorkin, Joel Spencer, Dudley Stark, Angelika Steger, Prasad Tetali, Andrew Thomason, Linnus Wästlund, Nick Wormald, Stephen
Thanks also to Béla Bollobás for his advice on the structure of the book.

Conventions/Notation

Often in what follows, we will give an expression for a large positive integer. It might not be obvious that the expression is actually an integer. In which case, the reader can rest assured that he/she can round up or down and obtain any required property. We avoid this rounding for convenience and for notational purposes.

In addition we list the following notation:

Mathematical relations

- $f(x) = O(g(x))$: $|f(x)| \leq K|g(x)|$ for some constant $K > 0$ and all $x \in \mathbb{R}$.
- $f(x) = \Theta(g(x))$: $f(n) = O(g(x))$ and $g(x) = O(f(x))$.
- $f(x) = o(g(x))$ as $x \to a$: $f(x)/g(x) \to 0$ as $x \to a$.
- $A \ll B$: $A/B \to 0$ as $n \to \infty$.
- $A \gg B$: $A/B \to \infty$ as $n \to \infty$.
- $A \approx B$: $A/B \to 1$ as some parameter converges to 0 or ∞ or another limit.
- $A \lesssim B$ or $B \gtrsim A$ if $A \leq (1 + o(1))B$.
- $[n]$: This is $\{1, 2, \ldots, n\}$. In general, if $a < b$ are positive integers, then $[a, b] = \{a, a+1, \ldots, b\}$.
- If S is a set and k is a non-negative integer then $\binom{S}{k}$ denotes the set of k-element subsets of S. In particular, $\binom{[n]}{k}$ denotes the set of k-sets of $\{1, 2, \ldots, n\}$. Furthermore, $\binom{S}{\leq k} = \bigcup_{j=0}^{k} \binom{S}{j}$.

Graph Notation

- $G = (V, E)$: $V = V(G)$ is the vertex set and $E = E(G)$ is the edge set.
- $e(G) = |E(G)|$ and for $S \subseteq V$ we have $e_G(S) = |\{e \in E : e \subseteq S\}|$.
- $N(S) = N_G(S) = \{w \notin S : \exists v \in S \text{ such that } \{v, w\} \in E\}$ and $d_G(S) = |N_G(S)|$ for $S \subseteq V(G)$.
- $N_G(S, X) = N_G(S) \cap X$ for $X, S \subseteq V$.

• $d_S(x) = | \{ y \in S : \{ x, y \} \in E \}|$ for $x \in V, S \subseteq V$.

• For sets $X, Y \subseteq V(G)$ we let $N_G(X, Y) = \{ y \in Y : \exists x \in X, \{ x, y \} \in E(G) \}$ and $e_G(X, Y) = |N_G(X, Y)|$.

• For $K \subseteq V(G)$ and $v \in V(G)$, we let $d_K(v)$ denote the number of neighbors of v in K. The graph G is hopefully clear in the context in which this is used.

• For a graph H, $\text{aut}(H)$ denotes the number of automorphisms of H.

Random Graph Models

• $[n]$: The set $\{1, 2, \ldots, n\}$.

• $\mathcal{G}_{n,m}$: The family of all labeled graphs with vertex set $V = [n] = \{1, 2, \ldots, n\}$ and exactly m edges.

• $\mathbb{G}_{n,m}$: A random graph chosen uniformly at random from $\mathcal{G}_{n,m}$.

• $E_{n,m} = E(\mathbb{G}_{n,m})$.

• $\mathbb{G}_{n,p}$: A random graph on vertex set $[n]$ where each possible edge occurs independently with probability p.

• $E_{n,p} = E(\mathbb{G}_{n,p})$.

• $\mathbb{G}^{\delta \geq k}_{n,m}$: $G_{n,m}$, conditioned on having minimum degree at least k.

• $\mathbb{G}_{n,n,p}$: A random bipartite graph with vertex set consisting of two disjoint copies of $[n]$ where each of the n^2 possible edges occurs independently with probability p.

• $\mathbb{G}_{n,r}$: A random r-regular graph on vertex set $[n]$.

• $\mathcal{G}_{n,d}$: The set of graphs with vertex set $[n]$ and degree sequence $d = (d_1, d_2, \ldots, d_n)$.

• $\mathbb{G}_{n,d}$: A random graph chosen uniformly at random from $\mathcal{G}_{n,d}$.

• $\mathbb{H}_{n,m;k}$: A random k-uniform hypergraph on vertex set $[n]$ and m edges of size k.

• $\mathbb{H}_{n,p;k}$: A random k-uniform hypergraph on vertex set $[n]$ where each of the $\binom{n}{k}$ possible edges occurs independently with probability p.

• \mathbb{G}_{k-out}: A random digraph on vertex set $[n]$ where each $v \in [n]$ independently chooses k random out-neighbors.
• G_{k-out}: The graph obtained from \tilde{G}_{k-out} by ignoring orientation and coalescing multiple edges.

Probability

• $\mathbb{P}(A)$: The probability of event A.

• $\mathbb{E}Z$: The expected value of random variable Z.

• $h(Z)$: The entropy of random variable Z.

• $\text{Po}(\lambda)$: A random variable with the Poisson distribution with mean λ.

• $N(0, 1)$: A random variable with the normal distribution, mean 0 and variance 1.

• $\text{Bin}(n, p)$: A random variable with the binomial distribution with parameters n, the number of trials and p, the probability of success.

• $\text{EXP}(\lambda)$: A random variable with the exponential distribution, mean λ i.e. $\mathbb{P}(\text{EXP}(\lambda) \geq x) = e^{-\lambda x}$. We sometimes say rate $1/\lambda$ in place of mean λ.

• w.h.p.: A sequence of events $\mathcal{A}_n, n = 1, 2, \ldots$, is said to occur with high probability (w.h.p.) if $\lim_{n \to \infty} \mathbb{P}(\mathcal{A}_n) = 1$.

• \Rightarrow: We write $X_n \Rightarrow X$ to say that a random variable X_n converges in distribution to a random variable X, as $n \to \infty$. Occasionally we write $X_n \Rightarrow N(0, 1)$ (resp. $X_n \Rightarrow \text{Po}(\lambda)$) to mean that X has the corresponding normal (resp. Poisson) distribution.
Part I

Basic Models
Chapter 1

Random Graphs

Graph theory is a vast subject in which the goals are to relate various graph properties, i.e. proving that Property A implies Property B for various properties A,B. In some sense, the goals of Random Graph theory are to prove results of the form “Property A almost always implies Property B”. In many cases Property A could simply be “Graph G has m edges”. A more interesting example would be the following: Property A is “G is an r-regular graph, r ≥ 3” and Property B is “G is r-connected”. This is proved in Chapter 11.

Before studying questions such as these, we will need to describe the basic models of a random graph.

1.1 Models and Relationships

The study of random graphs in their own right began in earnest with the seminal paper of Erdős and Rényi [287]. This paper was the first to exhibit the threshold phenomena that characterize the subject.

Let $\mathcal{G}_{n,m}$ be the family of all labeled graphs with vertex set $V = [n] = \{1, 2, \ldots, n\}$ and exactly m edges, $0 \leq m \leq \binom{n}{2}$. To every graph $G \in \mathcal{G}_{n,m}$, we assign a probability

$\mathbb{P}(G) = \binom{n}{2}^{-1}$.

Equivalently, we start with an empty graph on the set $[n]$, and insert m edges in such a way that all possible $\binom{n}{2}$ choices are equally likely. We denote such a random graph by $\mathcal{G}_{n,m} = ([n], E_{n,m})$ and call it a uniform random graph.

We now describe a similar model. Fix $0 \leq p \leq 1$. Then for $0 \leq m \leq \binom{n}{2}$, assign to each graph G with vertex set $[n]$ and m edges a probability

$\mathbb{P}(G) = p^m (1 - p)^{\binom{n}{2} - m}$,

where $0 \leq p \leq 1$. Equivalently, we start with an empty graph with vertex set $[n]$ and perform $\binom{n}{2}$ Bernoulli experiments inserting edges independently with probability p. We call such a random graph, a binomial random graph and denote it by $\mathcal{G}_{n,p} = ([n], E_{n,p})$. This was introduced by Gilbert [382].
As one may expect there is a close relationship between these two models of random graphs. We start with a simple observation.

Lemma 1.1. A random graph $G_{n,p}$, given that its number of edges is m, is equally likely to be one of the $\binom{n^2}{m}$ graphs that have m edges.

Proof. Let G_0 be any labeled graph with m edges. Then since $\{G_{n,p} = G_0\} \subseteq \{|E_{n,p}| = m\}$ we have

$$
P(G_{n,p} = G_0 \mid |E_{n,p}| = m) = \frac{P(G_{n,p} = G_0, |E_{n,p}| = m)}{P(|E_{n,p}| = m)} = \frac{P(G_{n,p} = G_0)}{P(|E_{n,p}| = m)} = \frac{p^m(1-p)^{\binom{n^2}{2} - m}}{\binom{n^2}{m} p^m (1-p)^{\binom{n^2}{2} - m}} = \binom{\binom{n^2}{2}}{m}^{-1}.
$$

Thus $G_{n,p}$ conditioned on the event $\{G_{n,p} \text{ has } m \text{ edges}\}$ is equal in distribution to $G_{n,m}$, the graph chosen uniformly at random from all graphs with m edges. Obviously, the main difference between those two models of random graphs is that in $G_{n,m}$ we choose its number of edges, while in the case of $G_{n,p}$ the number of edges is the Binomial random variable with the parameters $\binom{n^2}{2}$ and p. Intuitively, for large n random graphs $G_{n,m}$ and $G_{n,p}$ should behave in a similar fashion when the number of edges m in $G_{n,m}$ equals or is “close” to the expected number of edges of $G_{n,p}$, i.e., when

$$
m = \binom{n^2}{2} p \approx \frac{n^2 p}{2}, \tag{1.1}
$$
or, equivalently, when the edge probability in $G_{n,p}$

$$
p \approx \frac{2m}{n^2}. \tag{1.2}
$$

Throughout the book, we will use the notation $f \approx g$ to indicate that $f = (1 + o(1))g$, where the $o(1)$ term will depend on some parameter going to 0 or ∞.

We next introduce a useful “coupling technique” that generates the random graph $G_{n,p}$ in two independent steps. We will then describe a similar idea in relation to $G_{n,m}$. Suppose that $p_1 < p$ and p_2 is defined by the equation

$$1 - p = (1 - p_1)(1 - p_2),$$

or, equivalently,

$$p = p_1 + p_2 - p_1p_2.$$

Thus an edge is not included in $G_{n,p}$ if it is not included in either of G_{n,p_1} or G_{n,p_2}.

It follows that

$$G_{n,p} = G_{n,p_1} \cup G_{n,p_2},$$

where the two graphs G_{n,p_1}, G_{n,p_2} are independent. So when we write

$$G_{n,p_1} \subseteq G_{n,p},$$

we mean that the two graphs are coupled so that $G_{n,p}$ is obtained from G_{n,p_1} by superimposing it with G_{n,p_2} and replacing eventual double edges by a single one.

We can also couple random graphs G_{n,m_1} and G_{n,m_2} where $m_2 \geq m_1$ via

$$G_{n,m_2} = G_{n,m_1} \cup H.$$

Here H is the random graph on vertex set $[n]$ that has $m = m_2 - m_1$ edges chosen uniformly at random from $\binom{n}{2} \setminus E_{n,m_1}$.

Consider now a graph property \mathcal{P} defined as a subset of the set of all labeled graphs on vertex set $[n]$, i.e., $\mathcal{P} \subseteq 2^{\binom{n}{2}}$. For example, all connected graphs (on n vertices), graphs with a Hamiltonian cycle, graphs containing a given subgraph, planar graphs, and graphs with a vertex of given degree form a specific “graph property”.

We will state below two simple observations which show a general relationship between $G_{n,m}$ and $G_{n,p}$ in the context of the probabilities of having a given graph property \mathcal{P}. The constant 10 in the next lemma is not best possible, but in the context of the usage of the lemma, any constant will suffice.

Lemma 1.2. Let \mathcal{P} be any graph property and $p = m/\binom{n}{2}$ where $m = m(n) \to \infty$, $\binom{n}{2} - m \to \infty$. Then, for large n,

$$P(G_{n,m} \in \mathcal{P}) \leq 10m^{1/2}P(G_{n,p} \in \mathcal{P}).$$

Proof. By the law of total probability,

$$P(G_{n,p} \in \mathcal{P}) = \sum_{k=0}^{\binom{n}{2}} P(G_{n,p} \in \mathcal{P} | |E_{n,p}| = k)P(|E_{n,p}| = k).$$
CHAPTER 1. RANDOM GRAPHS

\[\sum_{k=0}^{\binom{n}{2}} \mathbb{P}(G_{n,k} \in \mathcal{P}) \mathbb{P}(|E_{n,p}| = k) \geq \mathbb{P}(G_{n,m} \in \mathcal{P}) \mathbb{P}(|E_{n,p}| = m). \] (1.4)

To justify (1.4), we write

\[\mathbb{P}(G_{n,p} \in \mathcal{P} \mid |E_{n,p}| = k) = \frac{\mathbb{P}(G_{n,p} \in \mathcal{P} \land |E_{n,p}| = k)}{\mathbb{P}(|E_{n,p}| = k)} = \frac{\sum_{G \in \mathcal{P}} \frac{N!}{k!(N-k)!} p^k(1-p)^{N-k}}{\sum_{G \in \mathcal{P}} \frac{1}{k!}} \mathbb{P}(|E_{n,p}| = k) \]

Next recall that the number of edges $|E_{n,p}|$ of a random graph $G_{n,p}$ is a random variable with the Binomial distribution with parameters $\binom{n}{2}$ and p. Applying Stirling’s Formula:

\[k! = (1 + o(1)) \left(\frac{k}{e} \right)^k \sqrt{2\pi k}, \] (1.5)

and putting $N = \binom{n}{2}$, we get, after substituting (1.5) for the factorials in $\binom{N}{m}$,

\[\mathbb{P}(|E_{n,p}| = m) = \binom{N}{m} p^m (1 - p)^{\binom{n}{2} - m} \]

\[= (1 + o(1)) \frac{N^N \sqrt{2\pi N}}{m^m (N-m)^{N-m}} \frac{p^m (1 - p)^{N-m}}{2\pi \sqrt{m(N-m)}}, \] (1.6)

Hence

\[\mathbb{P}(|E_{n,p}| = m) \geq \frac{1}{10\sqrt{m}}, \]

so

\[\mathbb{P}(G_{n,m} \in \mathcal{P}) \leq 10m^{1/2} \mathbb{P}(G_{n,p} \in \mathcal{P}). \]

We call a graph property \mathcal{P} monotone increasing if $G \in \mathcal{P}$ implies $G + e \in \mathcal{P}$, i.e., adding an edge e to a graph G does not destroy the property. For example,
connectivity and Hamiltonicity are monotone increasing properties. A monotone increasing property is non-trivial if the empty graph $\bar{K}_n \notin \mathcal{P}$ and the complete graph $K_n \in \mathcal{P}$.

A graph property is monotone decreasing if $G \in \mathcal{P}$ implies $G - e \in \mathcal{P}$, i.e., removing an edge from a graph does not destroy the property. Properties of a graph not being connected or being planar are examples of monotone decreasing graph properties. Obviously, a graph property \mathcal{P} is monotone increasing if and only if its complement is monotone decreasing. Clearly not all graph properties are monotone. For example having at least half of the vertices having a given fixed degree d is not monotone.

From the coupling argument it follows that if \mathcal{P} is a monotone increasing property then, whenever $p < p'$ or $m < m'$,

$$\Pr(G_n, p \in \mathcal{P}) \leq \Pr(G_n, p' \in \mathcal{P}),$$

(1.7)

and

$$\Pr(G_n, m \in \mathcal{P}) \leq \Pr(G_n, m' \in \mathcal{P}),$$

(1.8)

respectively.

For monotone increasing graph properties we can get a much better upper bound on $\Pr(G_n, m \in \mathcal{P})$, in terms of $\Pr(G_n, p \in \mathcal{P})$, than that given by Lemma 1.2.

Lemma 1.3. Let \mathcal{P} be a monotone increasing graph property and $p = \frac{m}{N}$. Then, for large n and $p = o(1)$ such that $Np, N(1 - p)/(Np)^{1/2} \to \infty$,

$$\Pr(G_n, m \in \mathcal{P}) \leq 3 \Pr(G_n, p \in \mathcal{P}).$$

Proof. Suppose \mathcal{P} is monotone increasing and $p = \frac{m}{N}$, where $N = \binom{n}{2}$. Then

$$\Pr(G_n, p \in \mathcal{P}) = \sum_{k=0}^{N} \Pr(G_n, k \in \mathcal{P}) \Pr(|E_n| = k)$$

$$\geq \sum_{k=m}^{N} \Pr(G_n, k \in \mathcal{P}) \Pr(|E_n| = k)$$

However, by the coupling property we know that for $k \geq m$,

$$\Pr(G_n, k \in \mathcal{P}) \geq \Pr(G_n, m \in \mathcal{P}).$$

The number of edges $|E_n|$ in G_n, p has the Binomial distribution with parameters N, p. Hence

$$\Pr(G_n, p \in \mathcal{P}) \geq \Pr(G_n, m \in \mathcal{P}) \sum_{k=m}^{N} \Pr(|E_n| = k)$$
CHAPTER 1. RANDOM GRAPHS

\[P(G_{n,m} \in \mathcal{G}) \sum_{k=m}^{N} u_k, \quad (1.9) \]

where

\[u_k = \binom{N}{k} p^k (1 - p)^{N-k}. \]

Now, using Stirling’s formula,

\[u_m = (1 + o(1)) \frac{N^N p^m (1 - p)^{N-m}}{m^m (N-m)^{N-m} (2\pi m)^{1/2}} = 1 + o(1) \frac{1}{(2\pi m)^{1/2}}. \]

Furthermore, if \(k = m + t \) where \(0 \leq t \leq m^{1/2} \) then

\[\frac{u_{k+1}}{u_k} = \frac{(N-k)p}{(k+1)(1-p)} = \frac{1 - \frac{t}{N-m}}{1 + \frac{t+1}{m}} \geq \exp \left\{ - \frac{t}{N-m-t} - \frac{t+1}{m} \right\}, \]

after using Lemma 22.1(a),(b) to obtain the inequality, and our assumptions on \(N, p \) to obtain the second.

It follows that for \(0 \leq t \leq m^{1/2} \),

\[u_{m+t} \geq \frac{1 + o(1)}{(2\pi m)^{1/2}} \exp \left\{ - \sum_{s=0}^{t-1} \left(\frac{s}{N-m-s} - \frac{s+1}{m} \right) \right\} \geq \exp \left\{ - \frac{t^2}{2m} - o(1) \right\} \frac{1}{(2\pi m)^{1/2}}, \]

where we have used the fact that \(m = o(N) \).

It follows that

\[\sum_{k=m}^{m+n^{1/2}} u_k \geq \frac{1 - o(1)}{(2\pi)^{1/2}} \int_{x=0}^{1} e^{-x^2/2} dx \geq \frac{1}{3} \]

and the lemma follows from (1.9).

Lemmas 1.2 and 1.3 are surprisingly applicable. In fact, since the \(G_{n,p} \) model is computationally easier to handle than \(G_{n,m} \), we will repeatedly use both lemmas to show that \(P(G_{n,p} \in \mathcal{G}) \to 0 \) implies that \(P(G_{n,m} \in \mathcal{G}) \to 0 \) when \(n \to \infty \). In other situations we can use a stronger and more widely applicable result. The theorem below, which we state without proof, gives precise conditions for the asymptotic equivalence of random graphs \(G_{n,p} \) and \(G_{n,m} \). It is due to Łuczak [555].
1.2. THRESHOLDS AND SHARP THRESHOLDS

Theorem 1.4. Let \(0 \leq p_0 \leq 1, s(n) = n\sqrt{p(1-p)} \to \infty, \) and \(\omega(n) \to \infty \) arbitrarily slow as \(n \to \infty. \)

(i) Suppose that \(\mathcal{P} \) is a graph property such that \(\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \to p_0 \) for all \(m \in \left[\begin{pmatrix} n \end{pmatrix} p - \omega(n)s(n), \begin{pmatrix} n \end{pmatrix} p + \omega(n)s(n) \right]. \)

Then \(\mathbb{P}(\mathbb{G}_{n,p} \in \mathcal{P}) \to p_0 \) as \(n \to \infty. \)

(ii) Let \(p_- = p - \omega(n)s(n)/n^3 \) and \(p_+ = p + \omega(n)s(n)/n^3 \) Suppose that \(\mathcal{P} \) is a monotone graph property such that \(\mathbb{P}(\mathbb{G}_{n,p_-} \in \mathcal{P}) \to p_0 \) and \(\mathbb{P}(\mathbb{G}_{n,p_+} \in \mathcal{P}) \to p_0. \) Then \(\mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) \to p_0, \) as \(n \to \infty, \) where \(m = \left\lfloor \begin{pmatrix} n \end{pmatrix} p \right\rfloor. \)

1.2 Thresholds and Sharp Thresholds

One of the most striking observations regarding the asymptotic properties of random graphs is the “abrupt” nature of the appearance and disappearance of certain graph properties. To be more precise in the description of this phenomenon, let us introduce threshold functions (or just thresholds) for monotone graph properties. We start by giving the formal definition of a threshold for a monotone increasing graph property \(\mathcal{P}. \)

Definition 1.5. A function \(m^* = m^*(n) \) is a threshold for a monotone increasing property \(\mathcal{P} \) in the random graph \(\mathbb{G}_{n,m} \) if

\[
\lim_{n \to \infty} \mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) = \begin{cases}
0 & \text{if } m/m^* \to 0, \\
1 & \text{if } m/m^* \to \infty,
\end{cases}
\]

as \(n \to \infty. \)

A similar definition applies to the edge probability \(p = p(n) \) in a random graph \(\mathbb{G}_{n,p}. \)

Definition 1.6. A function \(p^* = p^*(n) \) is a threshold for a monotone increasing property \(\mathcal{P} \) in the random graph \(\mathbb{G}_{n,p} \) if

\[
\lim_{n \to \infty} \mathbb{P}(\mathbb{G}_{n,p} \in \mathcal{P}) = \begin{cases}
0 & \text{if } p/p^* \to 0, \\
1 & \text{if } p/p^* \to \infty,
\end{cases}
\]

as \(n \to \infty. \)
It is easy to see how to define thresholds for monotone decreasing graph properties and therefore we will leave this to the reader.

Notice also that the thresholds defined above are not unique since any function which differs from \(m^*(n) \) (resp. \(p^*(n) \)) by a constant factor is also a threshold for \(\mathcal{P} \).

A large body of the theory of random graphs is concerned with the search for thresholds for various properties, such as containing a path or cycle of a given length, or, in general, a copy of a given graph, or being connected or Hamiltonian, to name just a few. Therefore the next result is of special importance. It was proved by Bollobás and Thomason [156].

Theorem 1.7. Every non-trivial monotone graph property has a threshold.

Proof. Without loss of generality assume that \(\mathcal{P} \) is a monotone increasing graph property. Given \(0 < \varepsilon < 1 \) we define \(p(\varepsilon) \) by

\[
\Pr(G_n, p(\varepsilon) \in \mathcal{P}) = \varepsilon.
\]

Note that \(p(\varepsilon) \) exists because

\[
\Pr(G_n, p \in \mathcal{P}) = \sum_{G \in \mathcal{P}} p^{|E(G)|} (1 - p)^{N - |E(G)|}
\]

is a polynomial in \(p \) that increases from 0 to 1. This is not obvious from the expression, but it is obvious from the fact that \(\mathcal{P} \) is monotone increasing and that increasing \(p \) increases the likelihood that \(G_n, p \in \mathcal{P} \).

We will show that \(p^* = p(1/2) \) is a threshold for \(\mathcal{P} \). Let \(G_1, G_2, \ldots, G_k \) be independent copies of \(G_{n,p} \). The graph \(G_1 \cup G_2 \cup \ldots \cup G_k \) is distributed as \(G_{n,1-\omega(1-p)} \). Now \(1 - (1-p)^k \leq kp \), and therefore by the coupling argument

\[
G_{n,1-(1-p)} \subseteq G_{n,kp},
\]

and so \(G_{n,kp} \notin \mathcal{P} \) implies \(G_1, G_2, \ldots, G_k \notin \mathcal{P} \). Hence

\[
\Pr(G_{n,kp} \notin \mathcal{P}) = \Pr(G_{n,p} \notin \mathcal{P})^k.
\]

Let \(\omega \) be a function of \(n \) such that \(\omega \to \infty \) arbitrarily slowly as \(n \to \infty \), \(\omega \ll \log \log n \). (We say that \(f(n) \ll g(n) \) or \(f(n) = o(g(n)) \) if \(f(n)/g(n) \to 0 \) as \(n \to \infty \). Of course in this case we can also write \(g(n) \gg f(n) \).) Suppose also that

\[
p = p^* = p(1/2) \quad \text{and} \quad k = \omega.
\]

Then

\[
\Pr(G_{n,\omega p^*} \notin \mathcal{P}) \leq 2^{-\omega} = o(1).
\]
1.2. THRESHOLDS AND SHARP THRESHOLDS

On the other hand for \(p = p^*/\omega \),
\[
\frac{1}{2} = \mathbb{P}(G_{n,p^*} \notin \mathcal{P}) \leq \left[\mathbb{P}(G_{n,p^*/\omega} \notin \mathcal{P}) \right]^{\omega}.
\]
So
\[
\mathbb{P}(G_{n,p^*/\omega} \notin \mathcal{P}) \geq 2^{-1/\omega} = 1 - o(1).
\]

In order to shorten many statements of theorems in the book we say that a sequence of events \(E_n \) occurs \textit{with high probability} (w.h.p.) if
\[
\lim_{n \to \infty} \mathbb{P}(E_n) = 1.
\]
Thus the statement that says \(p^* \) is a threshold for a property \(\mathcal{P} \) in \(G_{n,p} \) is the same as saying that \(G_{n,p} \notin \mathcal{P} \) w.h.p. if \(p \ll p^* \), while \(G_{n,p} \in \mathcal{P} \) w.h.p. if \(p \gg p^* \).

In many situations we can observe that for some monotone graph properties more “subtle” thresholds hold. We call them “\textit{sharp thresholds}”. More precisely,

\textbf{Definition 1.8.} A function \(m^* = m^*(n) \) is a \textit{sharp threshold} for a monotone increasing property \(\mathcal{P} \) in the random graph \(G_{n,m} \) if for every \(\varepsilon > 0 \),
\[
\lim_{n \to \infty} \mathbb{P}(G_{n,m} \in \mathcal{P}) = \begin{cases}
0 & \text{if } m/m^* \leq 1 - \varepsilon \\
1 & \text{if } m/m^* \geq 1 + \varepsilon.
\end{cases}
\]

A similar definition applies to the edge probability \(p = p(n) \) in the random graph \(G_{n,p} \).

\textbf{Definition 1.9.} A function \(p^* = p^*(n) \) is a \textit{sharp threshold} for a monotone increasing property \(\mathcal{P} \) in the random graph \(G_{n,p} \) if for every \(\varepsilon > 0 \)
\[
\lim_{n \to \infty} \mathbb{P}(G_{n,p} \in \mathcal{P}) = \begin{cases}
0 & \text{if } p/p^* \leq 1 - \varepsilon \\
1 & \text{if } p/p^* \geq 1 + \varepsilon.
\end{cases}
\]

We will illustrate both types of threshold in a series of examples dealing with very simple graph properties. Our goal at the moment is to demonstrate basic techniques to determine thresholds rather than to “discover” some “striking” facts about random graphs.

We will start with the random graph \(G_{n,p} \) and the property
\[
\mathcal{P} = \{ \text{all non-empty (non-edgeless) labeled graphs on } n \text{ vertices} \}.
\]
This simple graph property is clearly monotone increasing and we will show below that \(p^* = 1/n^2 \) is a threshold for a random graph \(G_{n,p} \) of having at least one edge (being non-empty).
Lemma 1.10. Let \mathcal{P} be the property defined above, i.e., stating that $\mathbb{G}_{n,p}$ contains at least one edge. Then

$$\lim_{n \to \infty} \mathbb{P}(\mathbb{G}_{n,p} \in \mathcal{P}) = \begin{cases} 0 & \text{if } p \ll n^{-2} \\ 1 & \text{if } p \gg n^{-2}. \end{cases}$$

Proof. Let X be a random variable counting edges in $\mathbb{G}_{n,p}$. Since X has the Binomial distribution, then $\mathbb{E}X = \binom{n}{2}p$, and $\text{Var}X = \binom{n}{2}p(1 - p) = (1 - p)\mathbb{E}X$.

A standard way to show the first part of the threshold statement, i.e. that w.h.p. a random graph $\mathbb{G}_{n,p}$ is empty when $p = o(n^{-2})$, is a very simple consequence of Markov’s inequality, called the First Moment Method, see Lemma 21.2. It states that if X is a non-negative integer valued random variable, then

$$\mathbb{P}(X > 0) \leq \mathbb{E}X.$$

Hence, in our case

$$\mathbb{P}(X > 0) \leq \frac{n^2}{2}p \to 0$$

as $n \to \infty$, since $p \ll n^{-2}$.

On the other hand, if we want to show that $\mathbb{P}(X > 0) \to 1$ as $n \to \infty$ then we cannot use the First Moment Method and we should use the Second Moment Method, which is a simple consequence of the Chebyshev inequality, see Lemma 21.3. We will use the inequality to show concentration around the mean. By this we mean that w.h.p. $X \approx \mathbb{E}X$. The Chebyshev inequality states that if X is a non-negative integer valued random variable then

$$\mathbb{P}(X > 0) \geq 1 - \frac{\text{Var}X}{(\mathbb{E}X)^2}.$$

Hence $\mathbb{P}(X > 0) \to 1$ as $n \to \infty$ whenever $\text{Var}X/(\mathbb{E}X)^2 \to 0$ as $n \to \infty$. (For proofs of both of the above Lemmas see Section 21.1 of Chapter 21.)

Now, if $p \gg n^{-2}$ then $\mathbb{E}X \to \infty$ and therefore

$$\frac{\text{Var}X}{(\mathbb{E}X)^2} = \frac{1 - p}{\mathbb{E}X} \to 0$$

as $n \to \infty$, which shows that the second statement of Lemma 1.10 holds, and so $p^* = 1/n^2$ is a threshold for the property of $\mathbb{G}_{n,p}$ being non-empty.

Let us now look at the degree of a fixed vertex in both models of random graphs. One immediately notices that if $\text{deg}(v)$ denotes the degree of a fixed vertex
in $\mathbb{G}_{n,p}$, then $\text{deg}(v)$ is a binomially distributed random variable, with parameters $n-1$ and p, i.e., for $d = 0, 1, 2, \ldots, n-1$,

$$
\mathbb{P}(\text{deg}(v) = d) = \binom{n-1}{d} p^d (1-p)^{n-1-d},
$$

while in $\mathbb{G}_{n,m}$ the distribution of $\text{deg}(v)$ is Hypergeometric, i.e.,

$$
\mathbb{P}(\text{deg}(v) = d) = \binom{n-1}{d} \binom{m-d}{(\frac{n}{2})} \binom{m}{(\frac{n}{2})}.
$$

Consider the monotone decreasing graph property that a graph contains an isolated vertex, i.e. a vertex of degree zero:

$$
\mathcal{P} = \{\text{all labeled graphs on } n \text{ vertices containing isolated vertices}\}.
$$

We will show that $m^* = \frac{1}{2}n \log n$ is the sharp threshold function for the above property \mathcal{P} in $\mathbb{G}_{n,m}$.

Lemma 1.11. Let \mathcal{P} be the property that a graph on n vertices contains at least one isolated vertex and let $m = \frac{1}{2}n(\log n + o(n))$. Then

$$
\lim_{n \to \infty} \mathbb{P}(\mathbb{G}_{n,m} \in \mathcal{P}) = \begin{cases}
1 & \text{if } o(n) \to -\infty \\
0 & \text{if } o(n) \to \infty.
\end{cases}
$$

Proof. To see that the second statement of Lemma 1.11 holds we use the First Moment Method. Namely, let $X_0 = X_{n,0}$ be the number of isolated vertices in the random graph $\mathbb{G}_{n,m}$. Then X_0 can be represented as the sum of indicator random variables

$$
X_0 = \sum_{v \in V} I_v,
$$

where

$$
I_v = \begin{cases}
1 & \text{if } v \text{ is an isolated vertex in } \mathbb{G}_{n,m} \\
0 & \text{otherwise}.
\end{cases}
$$

So

$$
\mathbb{E}X_0 = \sum_{v \in V} \mathbb{E}I_v = n \frac{\binom{n-1}{2}}{\binom{m}{2}} = n \frac{\binom{n-2}{n}}{\binom{m}{2}} = \prod_{i=0}^{m-1} \left(1 - \frac{4i}{n(n-1)(n-2)-2i(n-2)}\right).
$$
\[n \left(\frac{n - 2}{n} \right)^m \left(1 + O \left(\frac{(\log n)^2}{n} \right) \right), \quad (1.10) \]

assuming that \(\omega = o(\log n) \).

(For the product we use \(1 \geq \prod_{i=0}^{m-1} (1-x_i) \geq 1 - \sum_{i=0}^{m-1} x_i \) which is valid for all \(0 \leq x_0, x_1, \ldots, x_{m-1} \leq 1 \).

Hence,
\[\mathbb{E}X_0 \leq n \left(\frac{n - 2}{n} \right)^m \leq ne^{-\frac{2m}{n}} = e^{-\omega}, \]

for \(m = \frac{1}{2}n(\log n + \omega(n)) \).

\((1 + x \leq e^x \) is one of the basic inequalities stated in Lemma 22.1.)

So \(\mathbb{E}X_0 \to 0 \) when \(\omega(n) \to -\infty \) as \(n \to \infty \) and the First Moment Method implies that \(X_0 = 0 \) w.h.p.

To show that Lemma 1.11 holds in the case when \(\omega \to -\infty \) we first observe from (1.10) that in this case
\[
\mathbb{E}X_0 = (1 - o(1))n \left(\frac{n - 2}{n} \right)^m \\
\geq (1 - o(1))n \exp \left\{ -\frac{2m}{n - 2} \right\} \\
\geq (1 - o(1))e^{-\omega} \to \infty, \quad (1.11)
\]
The second inequality in the above comes from Lemma 22.1(b), and we have once again assumed that \(\omega = o(\log n) \) to justify the first equation.

We caution the reader that \(\mathbb{E}X_0 \to \infty \) does not prove that \(X_0 > 0 \) w.h.p. In Chapter 5 we will see an example of a random variable \(X_H \), where \(\mathbb{E}X_H \to \infty \) and yet \(X_H = 0 \) w.h.p.

We will now use a stronger version of the Second Moment Method (for its proof see Section 21.1 of Chapter 21). It states that if \(X \) is a non-negative integer valued random variable then
\[
\mathbb{P}(X > 0) \geq \frac{(\mathbb{E}X)^2}{\mathbb{E}X^2} = 1 - \frac{\text{Var}X}{\mathbb{E}X^2}. \quad (1.12)
\]
Notice that
\[
\mathbb{E}X_0^2 = \mathbb{E} \left(\sum_{v \in V} I_v \right)^2 = \sum_{u,v \in V} \mathbb{E}(I_u I_v) \\
= \sum_{u,v \in V} \mathbb{P}(I_u = 1, I_v = 1) \\
= \sum_{u \neq v} \mathbb{P}(I_u = 1, I_v = 1) + \sum_{u=v} \mathbb{P}(I_u = 1, I_v = 1)
\]
1.2. THRESHOLDS AND SHARP THRESHOLDS

\[= n(n - 1) \binom{n-2}{m} + E X_0 \]

\[\leq n^2 \left(\frac{n-2}{n} \right)^{2m} + E X_0 \]

\[= (1 + o(1))(E X_0)^2 + E X_0. \]

The last equation follows from (1.10).

Hence, by (1.12),

\[P(X_0 > 0) \geq \frac{(E X_0)^2}{E X_0^2} \]

\[= \frac{(E X_0)^2}{1 + o(1))(E X_0)^2 + E X_0} \]

\[= \frac{1}{1 + o(1)) + (E X_0)^{-1}} \]

\[= 1 - o(1), \]

on using (1.11). Hence \(P(X_0 > 0) \to 1\) when \(\omega(n) \to -\infty\) as \(n \to \infty\), and so we can conclude that \(m = m(n)\) is the sharp threshold for the property that \(G_{n,m}\) contains isolated vertices. \(\square\)

For this simple random variable, we worked with \(G_{n,m}\). We will in general work with the more congenial independent model \(G_{n,p}\) and translate the results to \(G_{n,m}\) if so desired.

For another simple example of the use of the second moment method, we will prove

Theorem 1.12. If \(m/n \to \infty\) then w.h.p. \(G_{n,m}\) contains at least one triangle.

Proof. Because having a triangle is a monotone increasing property we can prove the result in \(G_{n,p}\) assuming that \(np \to \infty\).

Assume first that \(np = \omega \leq \log n\) where \(\omega = \omega(n) \to \infty\) and let \(Z\) be the number of triangles in \(G_{n,p}\). Then

\[E Z = \binom{n}{3} p^3 \geq (1 - o(1)) \frac{\omega^3}{6} \to \infty. \]

We remind the reader that simply having \(E Z \to \infty\) is not sufficient to prove that \(Z > 0\) w.h.p.

Next let \(T_1, T_2, \ldots, T_M, M = \binom{n}{3}\) denote the triangles of \(K_n\). Then

\[E Z^2 = \sum_{i,j=1}^{M} P(T_i, T_j \in G_{n,p}) \]
\[M \sum_{i=1}^{M} \mathbb{P}(T_i \in \mathbb{G}_{n,p}) \sum_{j=1}^{M} \mathbb{P}(T_j \in \mathbb{G}_{n,p} \mid T_i \in \mathbb{G}_{n,p}) = \mathbb{E} Z \times M \sum_{j=1}^{M} \mathbb{P}(T_j \in \mathbb{G}_{n,p} \mid T_1 \in \mathbb{G}_{n,p}). \] (1.13)
\[= M \mathbb{P}(T_1 \in \mathbb{G}_{n,p}) \sum_{j=1}^{M} \mathbb{P}(T_j \in \mathbb{G}_{n,p} \mid T_1 \in \mathbb{G}_{n,p}) \] (1.14)
\[= \mathbb{E} Z \times M \sum_{j=1}^{M} \mathbb{P}(T_j \in \mathbb{G}_{n,p} \mid T_1 \in \mathbb{G}_{n,p}). \]

Here (1.14) follows from (1.13) by symmetry.

Now suppose that \(T_j, T_1 \) share \(\sigma_j \) edges. Then
\[\sum_{j=1}^{M} \mathbb{P}(T_j \in \mathbb{G}_{n,p} \mid T_1 \in \mathbb{G}_{n,p}) = 1 + \sum_{j: \sigma_j = 1} \mathbb{P}(T_j \in \mathbb{G}_{n,p} \mid T_1 \in \mathbb{G}_{n,p}) + \sum_{j: \sigma_j = 0} \mathbb{P}(T_j \in \mathbb{G}_{n,p} \mid T_1 \in \mathbb{G}_{n,p}) \]
\[= 1 + 3(n-3)p^2 + \left(\binom{n}{3} - 3n + 8 \right) p^3 \]
\[\leq 1 + \frac{3\omega^2}{n} + \mathbb{E} Z. \]

It follows that
\[\text{Var} Z \leq (\mathbb{E} Z) \left(1 + \frac{3\omega^2}{n} + \mathbb{E} Z \right) - (\mathbb{E} Z)^2 \leq 2 \mathbb{E} Z. \]

Applying the Chebyshev inequality we get
\[\mathbb{P}(Z = 0) \leq \mathbb{P}(|Z - \mathbb{E} Z| \geq \mathbb{E} Z) \leq \frac{\text{Var} Z}{(\mathbb{E} Z)^2} \leq \frac{2}{\mathbb{E} Z} = o(1). \]

This proves the theorem for \(p \leq \frac{\log n}{n} \). For larger \(p \) we can use (1.7). \(\square \)

We can in fact use the second moment method to show that if \(m/n \to \infty \) then w.h.p. \(\mathbb{G}_{n,m} \) contains a copy of a \(k \)-cycle \(C_k \) for any fixed \(k \geq 3 \). See Theorem 5.3, see also Exercise 1.4.7.

1.3 Pseudo-Graphs

We sometimes use one of the two the following models that are related to \(\mathbb{G}_{n,m} \) and have a little more independence. (We will use Model A in Section 7.3 and Model B in Section 6.4).
1.3. PSEUDO-GRAPHS

Model A: We let \(x = (x_1, x_2, \ldots, x_{2m}) \) be chosen uniformly at random from \([n]^{2m}\).

Model B: We let \(x = (x_1, x_2, \ldots, x_{2m}) \) be chosen uniformly at random from \(\binom{[n]}{2m} \).

The (multi-)graph \(G_{n,m}^{(X)} \), \(X \in \{A, B\} \) has vertex set \([n]\) and edge set \(E_m = \{\{x_{2i-1}, x_{2i}\} : 1 \leq i \leq m\} \). Basically, we are choosing edges with replacement. In Model A we allow loops and in Model B we do not. We get simple graphs from \(\{\} \).

Here we have used the inequality \(P \). It follows that if \(X \) is some graph property then \(G_{n,m}^{(X)} \) is distributed as \(G_{n,m}^* \), see Exercise (1.4.11).

More importantly, we have that for \(G_1, G_2 \in G_{n,m} \),

\[
\mathbb{P}(G_{n,m}^{(X)} = G_1 \mid G_{n,m} \text{ is simple}) = \mathbb{P}(G_{n,m}^{(X)} = G_2 \mid G_{n,m} \text{ is simple}), \quad (1.15)
\]

for \(X = A, B \).

This is because for \(i = 1, 2 \),

\[
\mathbb{P}(G_{n,m}^{(A)} = G_i) = \frac{m!2^m}{n^{2m}} \quad \text{and} \quad \mathbb{P}(G_{n,m}^{(B)} = G_i) = \frac{m!2^m}{\binom{n}{2}^{m}2^m}.
\]

Indeed, we can permute the edges in \(m! \) ways and permute the vertices within edges in \(2^m \) ways without changing the underlying graph. This relies on \(G_{n,m}^{(X)} \) being simple.

Secondly, if \(m = cn \) for a constant \(c > 0 \) then with \(N = \binom{n}{2} \), and using Lemma 22.2,

\[
\mathbb{P}(G_{n,m}^{(X)} \text{ is simple}) \geq \left(\frac{N}{m} \right)^{m!2^m} \geq (1 - o(1)) \frac{m!2^m}{n^{2m}} \exp \left\{ -\frac{m^2}{2N} - \frac{m^3}{6N^2} \right\} \frac{m!2^m}{n^{2m}}.
\]

\[
= (1 - o(1))e^{-(c^2+c)}. \quad (1.16)
\]

It follows that if \(\mathcal{P} \) is some graph property then

\[
\mathbb{P}(G_{n,m} \in \mathcal{P}) = \mathbb{P}(G_{n,m}^{(X)} \in \mathcal{P} \mid G_{n,m}^{(X)} \text{ is simple}) \leq (1 + o(1))e^{c^2+c} \mathbb{P}(G_{n,m}^{(X)} \in \mathcal{P}). \quad (1.17)
\]

Here we have used the inequality \(\mathbb{P}(A \mid B) \leq \mathbb{P}(A) / \mathbb{P}(B) \) for events \(A, B \).

We will use this model a couple of times and (1.17) shows that if \(\mathbb{P}(G_{n,m}^{(X)} \in \mathcal{P}) = o(1) \) then \(\mathbb{P}(G_{n,m} \in \mathcal{P}) = o(1) \), for \(m = O(n) \).
Model $G_{n,m}^{(A)}$ was introduced independently by Bollobás and Frieze [146] and by Chvátal [195].

1.4 Exercises

We point out here that in the following exercises, we have not asked for best possible results. These exercises are for practise. You will need to use the inequalities from Section 22.1.

1.4.1 Suppose that $p = d/n$ where $d = o(n^{1/3})$. Show that w.h.p. $G_{n,p}$ has no copies of K_4.

1.4.2 Suppose that $p = d/n$ where $d > 1$. Show that w.h.p. $G_{n,p}$ contains an induced path of length $(\log n)^{1/2}$.

1.4.3 Suppose that $p = d/n$ where $d = O(1)$. Prove that w.h.p., in $G_{n,p}$, for all $S \subseteq [n], |S| \leq n/\log n$, we have $e(S) \leq 2|S|$, where $e(S)$ is the number of edges contained in S.

1.4.4 Suppose that $p = \log n/n$. Let a vertex of $G_{n,p}$ be small if its degree is less than $\log n/100$. Show that w.h.p. there is no edge of $G_{n,p}$ joining two small vertices.

1.4.5 Suppose that $p = d/n$ where d is constant. Prove that w.h.p., in $G_{n,p}$, no vertex belongs to more than one triangle.

1.4.6 Suppose that $p = d/n$ where d is constant. Prove that w.h.p. $G_{n,p}$ contains a vertex of degree exactly $\lceil (\log n)^{1/2} \rceil$.

1.4.7 Suppose that $k \geq 3$ is constant and that $np \to \infty$. Show that w.h.p. $G_{n,p}$ contains a copy of the k-cycle, C_k.

1.4.8 Suppose that $0 < p < 1$ is constant. Show that w.h.p. $G_{n,p}$ has diameter two.

1.4.9 Let $f : [n] \to [n]$ be chosen uniformly at random from all n^n functions from $[n] \to [n]$. Let $X = \{ j : \exists i \ s.t. \ f(i) = j \}$. Show that w.h.p. $|X| \approx e^{-1}n$.

1.4.10 Prove Theorem 1.4.

1.4.11 Show that conditional on the value of m^X that $G_{n,m}^{X*}$ is distributed as G_{n,m^*}, where $X = A,B$.
Friedgut and Kalai [329] and Friedgut [330] and Bourgain [160] and Bourgain and Kalai [159] provide much greater insight into the notion of sharp thresholds. Friedgut [328] gives a survey of these aspects. For a graph property \mathcal{A} let $\mu(p, \mathcal{A})$ be the probability that the random graph $G_{n,p}$ has property \mathcal{A}. A threshold is coarse if it is not sharp. We can identify coarse thresholds with $p \frac{d\mu(p, \mathcal{A})}{dp} < C$ for some absolute constant $0 < C$. The main insight into coarse thresholds is that to exist, the occurrence of \mathcal{A} can in the main be attributed to the existence of one of a bounded number of small subgraphs. For example, Theorem 2.1 of [328] states that there exists a function $K(C, \varepsilon)$ such that the following holds. Let \mathcal{A} be a monotone property of graphs that is invariant under automorphism and assume that $p \frac{d\mu(p, \mathcal{A})}{dp} < C$ for some constant $0 < C$. Then for every $\varepsilon > 0$ there exists a finite list of graphs G_1, G_2, \ldots, G_m all of which have no more than $K(\varepsilon, C)$ edges, such that if \mathcal{B} is the family of graphs having one of these graphs as a subgraph then $\mu(p, \mathcal{A} \Delta \mathcal{B}) \leq \varepsilon$.
Chapter 2

Evolution

Here begins our story of the typical growth of a random graph. All the results up to Section 2.3 were first proved in a landmark paper by Erdős and Rényi [287]. The notion of the evolution of a random graph stems from a dynamic view of a graph process: viz. a sequence of graphs:

\[G_0 = ([n], \emptyset), G_1, G_2, \ldots, G_m, \ldots, G_N = K_n. \]

where \(G_{m+1} \) is obtained from \(G_m \) by adding a random edge \(e_m \). We see that there are \(\binom{n}{2} \) ! such sequences and \(G_m \) and \(G_{n,m} \) have the same distribution.

In process of the evolution of a random graph we consider properties possessed by \(G_m \) or \(G_{n,m} \) w.h.p., when \(m = m(n) \) grows from 0 to \(\binom{n}{2} \), while in the case of \(G_{n,p} \) we analyse its typical structure when \(p = p(n) \) grows from 0 to 1 as \(n \to \infty \).

In the current chapter we mainly explore how the typical component structure evolves as the number of edges \(m \) increases.

2.1 Sub-Critical Phase

The evolution of Erdős-Rényi type random graphs has clearly distinguishable phases. The first phase, at the beginning of the evolution, can be described as a period when a random graph is a collection of small components which are mostly trees. Indeed the first result in this section shows that a random graph \(G_{n,m} \) is w.h.p. a collection of tree-components as long as \(m = o(n) \), or, equivalently, as long as \(p = o(n^{-1}) \) in \(G_{n,p} \). For clarity, all results presented in this chapter are stated in terms of \(G_{n,m} \). Due to the fact that computations are much easier for \(G_{n,p} \) we will first prove results in this model and then the results for \(G_{n,m} \) will follow by the equivalence established either in Lemmas 1.2 and 1.3 or in Theorem 1.4.

We will also assume, throughout this chapter, that \(\omega = \omega(n) \) is a function growing slowly with \(n \), e.g. \(\omega = \log \log n \) will suffice.
CHAPTER 2. EVOLUTION

Theorem 2.1. If $m \ll n$, then G_m is a forest w.h.p.

Proof. Suppose $m = n/\omega$ and let $N = \binom{n}{2}$, so $p = m/N \leq 3/(\omega n)$. Let X be the number of cycles in $G_{n,p}$. Then

$$
\mathbb{E}X = \sum_{k=3}^{n} \binom{n}{k} \frac{(k-1)!}{2} p^k
\leq \sum_{k=3}^{n} \frac{n^k (k-1)!}{k!} p^k
\leq \sum_{k=3}^{n} \frac{n^k 3^k}{2k \omega^k n^k}
= O(\omega^{-3}) \to 0.
$$

Therefore, by the First Moment Method, (see Lemma 21.2),

$$
\mathbb{P}(G_{n,p} \text{ is not a forest}) = \mathbb{P}(X \geq 1) \leq \mathbb{E}X = o(1),
$$

which implies that

$$
\mathbb{P}(G_{n,p} \text{ is a forest}) \to 1 \text{ as } n \to \infty.
$$

Notice that the property that a graph is a forest is monotone decreasing, so by Lemma 1.3

$$
\mathbb{P}(G_m \text{ is a forest}) \to 1 \text{ as } n \to \infty.
$$

(Note that we have actually used Lemma 1.3 to show that $\mathbb{P}(G_{n,p} \text{ is not a forest}) = o(1)$ implies that $\mathbb{P}(G_m \text{ is not a forest}) = o(1)$.)

We will next examine the time during which the components of G_m are isolated vertices and single edges only, w.h.p.

Theorem 2.2. If $m \ll n^{1/2}$ then G_m is the union of isolated vertices and edges w.h.p.

Proof. Let $p = m/N$, $m = n^{1/2}/\omega$ and let X be the number of paths of length two in the random graph $G_{n,p}$. By the First Moment Method,

$$
\mathbb{P}(X > 0) \leq \mathbb{E}X = 3 \binom{n}{3} p^2 \leq \frac{n^4}{2N^2 \omega^2} \to 0,
$$
as $n \to \infty$. Hence

$$\Pr(G_{n,p} \text{ contains a path of length two}) = o(1).$$

Notice that the property that a graph contains a path of a given length two is monotone increasing, so by Lemma 1.3,

$$\Pr(G_m \text{ contains a path of length two}) = o(1),$$

and the theorem follows.

Now we are ready to describe the next step in the evolution of G_m.

Theorem 2.3. If $m \gg n^{1/2}$, then G_m contains a path of length two w.h.p.

Proof. Let $p = \frac{m}{N}$, $m = \omega n^{1/2}$ and X be the number of paths of length two in $G_{n,p}$. Then

$$\mathbb{E}X = 3 \binom{n}{3} p^2 \approx 2 \omega^2 \to \infty,$$

as $n \to \infty$. This however does not imply that $X > 0$ w.h.p.! To show that $X > 0$ w.h.p. we will apply the Second Moment Method.

Let P_2 be the set of all paths of length two in the complete graph K_n, and let \hat{X} be the number of isolated paths of length two in $G_{n,p}$, i.e. paths that are also components of $G_{n,p}$. We will show that w.h.p. $G_{n,p}$ contains such an isolated path. Now,

$$\hat{X} = \sum_{P \in P_2} I_{P \subseteq G_{n,p}}.$$

We always use $I_{\mathcal{E}}$ to denote the indicator for an event \mathcal{E}. The notation \subseteq indicates that P is contained in $G_{n,p}$ as a component (i.e. P is isolated). Having a path of length two is a monotone increasing property. Therefore we can assume that $m = o(n)$ and so $np = o(1)$ and the result for larger m will follow from monotonicity and coupling. Then

$$\mathbb{E}\hat{X} = 3 \binom{n}{3} p^2 (1 - p)^{3(n-3)+1} \geq (1 - o(1)) \frac{n^3 4 \omega^2 n}{2} \frac{1}{n^4} (1 - 3np) \to \infty,$$

as $n \to \infty$.

In order to compute the second moment of the random variable \hat{X} notice that,

$$\hat{X}^2 = \sum_{P \in P_2} \sum_{Q \in P_2} I_{P \subseteq G_{n,p}} I_{Q \subseteq G_{n,p}} = \sum_{P \in P_2} \sum_{Q \in P_2} I_{P \subseteq G_{n,p}} I_{Q \subseteq G_{n,p}},$$
where the last sum is taken over \(P, Q \in \mathcal{P}_2 \) such that either \(P = Q \) or \(P \) and \(Q \) are vertex disjoint. The simplification that provides the last summation is precisely the reason that we introduce path-components (isolated paths). Now

\[
E \hat{X}^2 = \sum_P \left\{ \sum_Q \mathbb{P}(Q \subseteq_i G_{n,p} \mid P \subseteq_i G_{n,p}) \right\} \mathbb{P}(P \subseteq_i G_{n,p}).
\]

The expression inside the brackets is the same for all \(P \) and so

\[
E \hat{X}^2 = E \hat{X} \left(1 + \sum_{Q \cap P = \emptyset} \mathbb{P}(Q \subseteq_i G_{n,p} \mid P_{1,2,3} \subseteq_i G_{n,p}) \right),
\]

where \(P_{1,2,3} \) denotes the path on vertex set \([3] = \{1, 2, 3\}\) with middle vertex 2. By conditioning on the event \(P_{1,2,3} \subseteq_i G_{n,p} \), i.e., assuming that \(P_{1,2,3} \) is a component of \(G_{n,p} \), we see that all of the nine edges between \(Q \) and \(P_{1,2,3} \) must be missing. Therefore

\[
E \hat{X}^2 \leq E \hat{X} \left(1 + 3 \binom{n}{3} p^2 (1 - p)^{3(n-6)+1} \right) \leq E \hat{X} \left(1 + (1 - p)^{-9} E \hat{X} \right).
\]

So, by the Second Moment Method (see Lemma 21.5),

\[
\mathbb{P}(\hat{X} > 0) \geq \frac{(E \hat{X})^2}{E \hat{X}^2} \geq \frac{(E \hat{X})^2}{E \hat{X} (1 + (1 - p)^{-9} E \hat{X})} \geq \frac{1}{(1 - p)^{-9} + [E \hat{X}]^{-1}} \to 1
\]

as \(n \to \infty \), since \(p \to 0 \) and \(E \hat{X} \to \infty \). Thus

\[
\mathbb{P}(G_{n,p} \text{ contains an isolated path of length two}) \to 1,
\]

which implies that \(\mathbb{P}(G_{n,p} \text{ contains a path of length two}) \to 1 \). As the property of having a path of length two is monotone increasing it in turn implies that

\[
\mathbb{P}(G_m \text{ contains a path of length two}) \to 1
\]

for \(m \gg n^{1/2} \) and the theorem follows.

From Theorems 2.2 and 2.3 we obtain the following corollary.

Corollary 2.4. The function \(m^*(n) = n^{1/2} \) is the threshold for the property that a random graph \(G_m \) contains a path of length two, i.e.,

\[
\mathbb{P}(G_m \text{ contains a path of length two}) = \begin{cases} o(1) & \text{if } m \ll n^{1/2}, \\ 1 - o(1) & \text{if } m \gg n^{1/2}. \end{cases}
\]
2.1. SUB-CRITICAL PHASE

As we keep adding edges, trees on more than three vertices start to appear. Note that isolated vertices, edges and paths of length two are also trees on one, two and three vertices, respectively. The next two theorems show how long we have to “wait” until trees with a given number of vertices appear w.h.p.

Theorem 2.5. Fix \(k \geq 3 \). If \(m \ll n^{k-2} \), then w.h.p. \(\mathbb{G}_m \) contains no tree with \(k \) vertices.

Proof. Let \(m = n^{k-1}/\omega \) and then \(p = \frac{m}{N} \approx \frac{2}{\omega n^k/(k-1)} \leq \frac{3}{\omega n^k/(k-1)} \). Let \(X_k \) denote the number of trees with \(k \) vertices in \(\mathbb{G}_{n,p} \). Let \(T_1, T_2, \ldots, T_M \) be an enumeration of the copies of \(k \)-vertex trees in \(K_n \). Let

\[A_i = \{ T_i \text{ occurs as a subgraph in } \mathbb{G}_{n,p} \}. \]

The probability that a tree \(T \) occurs in \(\mathbb{G}_{n,p} \) is \(p^{e(T)} \), where \(e(T) \) is the number of edges of \(T \). So,

\[\mathbb{E} X_k = \sum_{t=1}^{M} \mathbb{P}(A_t) = Mp^{k-1}. \]

But \(M = \binom{n}{k} k^{k-2} \) since one can choose a set of \(k \) vertices in \(\binom{n}{k} \) ways and then by Cayley’s formula choose a tree on these vertices in \(k^{k-2} \) ways. Hence

\[\mathbb{E} X_k = \binom{n}{k} k^{k-2} p^{k-1}. \quad (2.1) \]

Noting also that (see Lemma 22.1(c))

\[\binom{n}{k} \leq \left(\frac{ne}{k} \right)^k, \]

we see that

\[\mathbb{E} X_k \leq \left(\frac{ne}{k} \right)^k k^{k-2} \left(\frac{3}{\omega n^k/(k-1)} \right)^{k-1} \]

\[= \frac{3^{k-1} e^k}{k^2 \omega^{k-1}} \to 0, \]

as \(n \to \infty \), seeing as \(k \) is fixed.

Thus we see by the first moment method that,

\[\mathbb{P}(\mathbb{G}_{n,p} \text{ contains a tree with } k \text{ vertices}) \to 0. \]

This property is monotone increasing and therefore

\[\mathbb{P}(\mathbb{G}_m \text{ contains a tree with } k \text{ vertices}) \to 0. \]
Let us check what happens if the number of edges in G_m is much larger than n^{k^2}.

Theorem 2.6. Fix $k \geq 3$. If $m \gg n^{k^2}$, then w.h.p. G_m contains a copy of every fixed tree with k vertices.

Proof. Let $p = \frac{m}{n}$, $m = \omega n^{k^2}$ where $\omega = o(\log n)$ and fix some tree T with k vertices. Denote by \hat{X}_k the number of isolated copies of T in G_n, p. Let $\text{aut}(H)$ denote the number of automorphisms of a graph H. Note that there are $k! / \text{aut}(T)$ copies of T in the complete graph K_k. To see this choose a copy of T with vertex set $[k]$. There are $k!$ ways of mapping the vertices of T to the vertices of K_k. Each map f induces a copy of T and two maps f_1, f_2 induce the same copy iff $f_2 f_1^{-1}$ is an automorphism of T.

So,

$$
\mathbb{E} \hat{X}_k = \binom{n}{k} \frac{k!}{\text{aut}(T)} p^{k-1} (1 - p)^{k(n-k) + \binom{k}{2} - k + 1}
= (1 + o(1)) \frac{(2 \omega)^{k-1}}{\text{aut}(T)} \to \infty.
$$

In (2.2) we have approximated $\binom{n}{k} \leq \frac{n^k}{k!}$ and used the fact that $\omega = o(\log n)$ in order to show that $(1 - p)^{k(n-k) + \binom{k}{2} - k + 1} = 1 - o(1)$.

Next let \mathcal{F} be the set of copies of T in K_n and $T_{[k]}$ be a fixed copy of T on vertices $[k]$ of K_n. Then, arguing as in (2.3),

$$
\mathbb{E} \hat{X}_k^2 = \sum_{T_1, T_2 \in \mathcal{F}} \mathbb{P}(T_2 \subseteq_i G_n, p | T_1 \subseteq_i G_n, p) \mathbb{P}(T_1 \subseteq_i G_n, p)
= \mathbb{E} \hat{X}_k \left(1 + \sum_{T_2 \in \mathcal{F}} \mathbb{P}(T_2 \subseteq_i G_n, p | T_{[k]} \subseteq_i G_n, p) \right)
\leq \mathbb{E} \hat{X}_k \left(1 + (1 - p)^{-k^2} \mathbb{E} X_k \right).
$$

Notice that the $(1 - p)^{-k^2}$ factor comes from conditioning on the event $T_{[k]} \subseteq_i G_n, p$ which forces the non-existence of fewer than k^2 edges.

Hence, by the Second Moment Method,

$$
\mathbb{P}(\hat{X}_k > 0) \geq \frac{(\mathbb{E} \hat{X}_k)^2}{\mathbb{E} \hat{X}_k \left(1 + (1 - p)^{-k^2} \mathbb{E} \hat{X}_k \right)} \to 1.
$$
2.1. SUB-CRITICAL PHASE

Then, by a similar reasoning to that in the proof of Theorem 2.3,

\[\mathbb{P}(G_m \text{ contains a copy of } T) \rightarrow 1, \]

as \(n \rightarrow \infty \).

Combining the two above theorems we arrive at the following conclusion.

Corollary 2.7. The function \(m^*(n) = n^{\frac{k-2}{k-1}} \) is the threshold for the property that a random graph \(G_m \) contains a tree with \(k \geq 3 \) vertices, i.e.,

\[\mathbb{P}(G_m \supseteq k\text{-vertex-tree}) = \begin{cases} o(1) & \text{if } m \ll n^{\frac{k-2}{k-1}} \\ 1 - o(1) & \text{if } m \gg n^{\frac{k-2}{k-1}} \end{cases} \]

In the next theorem we show that “on the threshold” for \(k \) vertex trees, i.e., if \(m = cn^{\frac{k-2}{k-1}} \), where \(c \) is a constant, \(c > 0 \), the number of tree components of a given order asymptotically follows the Poisson distribution. This time we will formulate both the result and its proof in terms of \(G_m \).

Theorem 2.8. If \(m = cn^{\frac{k-2}{k-1}} \), where \(c > 0 \), and \(T \) is a fixed tree with \(k \geq 3 \) vertices, then

\[\mathbb{P}(G_m \text{ contains an isolated copy of tree } T) \rightarrow 1 - e^{-\lambda}, \]

as \(n \rightarrow \infty \), where \(\lambda = \frac{(2c)^{k-1}}{\text{aut}(T)} \).

More precisely, the number of copies of \(T \) is asymptotically distributed as the Poisson distribution with expectation \(\lambda \).

Proof. Let \(T_1, T_2, \ldots, T_M \) be an enumeration of the copies of some \(k \) vertex tree \(T \) in \(K_n \).

Let

\[A_i = \{ T_i \text{ occurs as a component in } G_m \}. \]

Suppose \(J \subseteq [M] = \{1, 2, \ldots, M\} \) with \(|J| = t \), where \(t \) is fixed. Let \(A_J = \bigcap_{i \in J} A_i \). We have \(\mathbb{P}(A_J) = 0 \) if there are \(i, j \in J \) such that \(T_i, T_j \) share a vertex. Suppose \(T_i, i \in J \) are vertex disjoint. Then

\[\mathbb{P}(A_J) = \frac{\binom{n-kt}{m-(k-1)t}}{\binom{n}{m}}. \]

Note that in the numerator we count the number of ways of choosing \(m \) edges so that \(A_J \) occurs.

If, say, \(t \leq \log n \), then

\[\binom{n-kt}{2} = N \left(1 - \frac{kt}{n} \right) \left(1 - \frac{kt}{n-1} \right) = N \left(1 - O \left(\frac{kt}{n} \right) \right), \]
and so
\[\frac{m^2}{(n-kt)^2} \to 0. \]

Then from Lemma 22.1(f),
\[
\left(\begin{array}{c} n \\ \ \ \ \ 2 \\ m - (k-1)t \end{array} \right) = (1 + o(1)) \frac{N (1 - O \left(\frac{k_t}{N} \right))^{m-(k-1)t}}{(m-(k-1)t)!} \\
= (1 + o(1)) \frac{N^{m-(k-1)t} (1 - O \left(\frac{mkt}{N} \right))}{(m-(k-1)t)!} \\
= (1 + o(1)) \frac{N^{m-(k-1)t}}{(m-(k-1)t)!}.
\]

Similarly, again by Lemma 22.1,
\[
\left(\begin{array}{c} N \\ m \end{array} \right) = (1 + o(1)) \frac{N^m}{m!},
\]

and so
\[
P(A_J) = (1 + o(1)) \frac{m!}{(m-(k-1)t)!} N^{-(k-1)t} = (1 + o(1)) \left(\frac{m}{N} \right)^{(k-1)t}.
\]

Thus, if \(Z_T \) denotes the number of components of \(G_m \) that are copies of \(T \), then,
\[
\mathbb{E} \left(\begin{array}{c} Z_t \\ t \end{array} \right) \approx \frac{1}{t!} \left(\begin{array}{c} n \\ \ \ \ \ k, k, \ldots, k \end{array} \right) \left(\frac{k!}{\text{aut}(T)} \right)^t \left(\frac{m}{N} \right)^{(k-1)t} \\
\approx \frac{n^k}{t! (k!)^t} \left(\frac{k!}{\text{aut}(T)} \right)^t \left(\frac{cn^t (k-2)/(k-1)}{N} \right)^{(k-1)t} \\
\approx \frac{\lambda^t}{t!},
\]

where
\[\lambda = \frac{(2e)^{k-1}}{\text{aut}(T)}. \]

So by Corollary 21.11 the number of copies of \(T \)-components is asymptotically distributed as the Poisson distribution with expectation \(\lambda \) given above, which combined with the statements of Theorem 2.1 and Corollary 2.7 proves the theorem. Note that Theorem 2.1 implies that w.h.p. there are no non-component copies of \(T \). \(\square \)
2.1. SUB-CRITICAL PHASE

We complete our presentation of the basic features of a random graph in its sub-critical phase of evolution with a description of the order of its largest component.

Theorem 2.9. If \(m = \frac{1}{2}cn \), where \(0 < c < 1 \) is a constant, then w.h.p. the order of the largest component of a random graph \(G_m \) is \(O(\log n) \).

The above theorem follows from the next three lemmas stated and proved in terms of \(G_{n,p} \) with \(p = c/n \), \(0 < c < 1 \). In fact the first of those three lemmas covers a little bit more than the case of \(p = c/n \), \(0 < c < 1 \).

Lemma 2.10. If \(p \leq \frac{1}{n} - \frac{\omega}{n^{4/3}} \), where \(\omega = \omega(n) \to \infty \), then w.h.p. every component in \(G_{n,p} \) contains at most one cycle.

Proof. Suppose that there is a pair of cycles that are in the same component. If such a pair exists then there is minimal pair \(C_1, C_2 \), i.e., either \(C_1 \) and \(C_2 \) are connected by a path (or meet at a vertex) or they form a cycle with a diagonal path (see Figure 2.1). Then in either case, \(C_1 \cup C_2 \) consists of a path \(P \) plus another two distinct edges, one from each endpoint of \(P \) joining it to another vertex in \(P \). The number of such graphs on \(k \) labeled vertices can be bounded by \(k^2k! \).

![Figure 2.1: \(C_1 \cup C_2 \)](image-url)
Let X be the number of subgraphs of the above kind (shown in Figure 2.1) in the random graph $\mathbb{G}_{n,p}$. By the first moment method (see Lemma 2.12),

\[P(X > 0) \leq \mathbb{E}X \leq \sum_{k=4}^{n} \binom{n}{k} k^2 k! p^{k+1} \leq \int_{0}^{\infty} \frac{x^2}{n} \exp \left(-\frac{\omega x}{n^{1/3}} \right) dx = \frac{2}{\omega^3} = o(1). \]

(2.3)

We remark for later use that if $p = c/n$, $0 < c < 1$ then (2.3) implies

\[P(X > 0) \leq \sum_{k=4}^{n} k^2 c^{k+1} n^{-1} = O(n^{-1}). \]

(2.4)

Hence, in determining the order of the largest component we may concentrate our attention on unicyclic components and tree-components (isolated trees). However the number of vertices on unicyclic components tends to be rather small, as is shown in the next lemma.

Lemma 2.11. If $p = c/n$, where $c \neq 1$ is a constant, then in $\mathbb{G}_{n,p}$ w.h.p. the number of vertices in components with exactly one cycle, is $O(\omega)$ for any growing function ω.

Proof. Let X_k be the number of vertices on unicyclic components with k vertices. Then

\[\mathbb{E}X_k \leq \binom{n}{k} k^{k-2} \binom{k}{2} k p^k (1 - p)^{k(n-k)+\binom{k}{2}}. \]

(2.5)

The factor $k^{k-2} \binom{k}{2}$ in (2.5) is the number of choices for a tree plus an edge on k vertices in $[k]$. This bounds the number $C(k,k)$ of connected graphs on $[k]$ with k edges. This is off by a factor $O(k^{1/2})$ from the exact formula which is given below for completeness:

\[C(k,k) = \sum_{r=3}^{k} \binom{k}{r} \frac{(r-1)!}{2} r k^{k-r-1} \approx \sqrt{\frac{\pi}{8}} k^{k-1/2}. \]

(2.6)
The remaining factor, other than \(\binom{n}{k} \), in (2.5) is the probability that the \(k \) edges of the unicyclic component exist and that there are no other edges on \(G_{n,p} \) incident with the \(k \) chosen vertices.

Noting also that by Lemma 22.1(d),

\[
\binom{n}{k} \leq \frac{n^k}{k!} e^{-\frac{k(k-1)}{2n}},
\]

and so we get

\[
\mathbb{E} X_k \leq \frac{n^k}{k!} e^{-\frac{k(k-1)}{2n}} k^{k+1} e^{-ck+\frac{k(k-1)}{2n} + \frac{c}{2}}
\leq \frac{e^k}{k^k} e^{-\frac{k(k-1)}{2n}} k^{k+1} e^{-ck+\frac{k(k-1)}{2n} + c}
\leq k (ce^{1-c})^k e^c.
\]

So,

\[
\mathbb{E} \sum_{k=3}^{n} X_k \leq \sum_{k=3}^{n} k (ce^{1-c})^k e^c = O(1), \tag{2.7}
\]

since \(ce^{1-c} < 1 \) for \(c \neq 1 \). By Markov’s inequality, if \(\omega = \omega(n) \to \infty \), (see Lemma 21.1)

\[
\mathbb{P} \left(\sum_{k=3}^{n} X_k \geq \omega \right) = O \left(\frac{1}{\omega} \right) \to 0 \text{ as } n \to \infty,
\]

and the Lemma follows.

After proving the first two lemmas one can easily see that the only remaining candidate for the largest component of our random graph is an isolated tree.

Lemma 2.12. Let \(p = \frac{c}{n} \), where \(c \neq 1 \) is a constant, \(\alpha = c - 1 - \log c \), and \(\omega = \omega(n) \to \infty \), \(\omega = o(\log \log n) \). Then

(i) w.h.p. there exists an isolated tree of order

\[
k_- = \frac{1}{\alpha} \left(\log n - \frac{5}{2} \log \log n \right) - \omega,
\]

(ii) w.h.p. there is no isolated tree of order at least

\[
k_+ = \frac{1}{\alpha} \left(\log n - \frac{5}{2} \log \log n \right) + \omega
\]
CHAPTER 2. EVOLUTION

Proof. Note that our assumption on c means that α is a positive constant.

Let X_k be the number of isolated trees of order k. Then

$$\mathbb{E} X_k = \binom{n}{k} k^{k-2} p^{k-1} (1 - p)^{k(n-k) + \binom{k}{2} - k + 1}. \quad (2.8)$$

To prove (i) suppose $k = O(\log n)$. Then $\binom{n}{k} \approx \frac{n^k}{k!}$ and by using Lemma 22.1(a),(b) and Stirling's approximation (1.5) for $k!$ we see that

$$\mathbb{E} X_k = \left(1 + o(1)\right) \frac{n k^{k-2}}{c k!} (ce^{-c})^k \quad (2.9)$$

Putting $k = k^-$ we see that

$$\mathbb{E} X_k = \left(1 + o(1)\right) \frac{n e^{\alpha \omega} (\log n)^{5/2}}{c \sqrt{2\pi}} k^{5/2} n \geq A e^{\alpha \omega}, \quad (2.10)$$

for some constant $A > 0$.

We continue via the Second Moment Method, this time using the Chebyshev inequality as we will need a little extra precision for the proof of Theorem 2.14. Using essentially the same argument as for a fixed tree T of order k (see Theorem 2.6), we get

$$\mathbb{E} X_k^2 \leq \mathbb{E} X_k \left(1 + (1 - p)^{-k^2} \mathbb{E} X_k\right).$$

So

$$\text{Var} X_k \leq \mathbb{E} X_k + (\mathbb{E} X_k)^2 \left((1 - p)^{-k^2} - 1\right) \leq \mathbb{E} X_k + 2ck^2 (\mathbb{E} X_k)^2 / n.$$

Thus, by the Chebyshev inequality (see Lemma 21.3), we see that for any fixed $\varepsilon > 0$,

$$\mathbb{P}(|X_k - \mathbb{E} X_k| \geq \varepsilon \mathbb{E} X_k) \leq \frac{1}{\varepsilon^2 \mathbb{E} X_k} + 2ck^2 / \varepsilon^2 n = o(1). \quad (2.11)$$

Thus w.h.p. $X_k \geq A e^{\alpha \omega / 2}$ and this completes the proof of (i).

For (ii) we go back to the formula (2.8) and write, for some new constant $A > 0$,

$$\mathbb{E} X_k \leq \frac{A}{\sqrt{k}} \left(\frac{ne}{k}\right)^k k^{k-2} \left(1 - \frac{k}{2n}\right)^{k-1} \left(\frac{ck^2}{n} - 1\right)^{k-1} e^{-ck + \frac{ck^2}{2n}}$$
2.1. SUB-CRITICAL PHASE

\[\leq \frac{2An}{c_k k^{5/2}} (\hat{c}_k e^{1-\hat{c}_k})^k, \]

where \(\hat{c}_k = c \left(1 - \frac{k}{2n}\right). \)

In the case \(c < 1 \) we have \(\hat{c}_k e^{1-\hat{c}_k} \leq ce^{1-c} \) and \(\hat{c}_k \approx c \) and so we can write

\[\sum_{k=1}^{n} \mathbb{E}X_k \leq \frac{3An}{c} \sum_{k=1}^{n} \left(ce^{1-c}\right)^k = \frac{3An}{ck^{5/2}} \sum_{k=1}^{\infty} e^{-\alpha k} = \frac{3An e^{-\alpha k}}{ck^{5/2} (1 - e^{-\alpha})} = \frac{(3A + o(1)) \alpha^{5/2} e^{-\alpha \omega}}{c(1 - e^{-\alpha})} = o(1). \tag{2.12} \]

If \(c > 1 \) then for \(k \leq \frac{n}{\log n} \) we use \(\hat{c}_k e^{1-\hat{c}_k} = e^{-\alpha - O(1/\log n)} \) and for \(k > \frac{n}{\log n} \) we use \(c_k \geq c/2 \) and \(\hat{c}_k e^{1-\hat{c}_k} \leq 1 \) and replace (2.12) by

\[\sum_{k=1}^{n} \mathbb{E}X_k \leq \frac{3An}{c} \frac{n}{\log n} \sum_{k=1}^{n} e^{-(\alpha + O(1/\log n)) k} + \frac{6An}{c} \sum_{k=n/\log n}^{\infty} \frac{1}{k^{5/2}} = o(1). \]

Finally, applying Lemmas 2.11 and 2.12 we can prove the following useful identity: Suppose that \(x = x(c) \) is given as

\[x = x(c) = \begin{cases} c & c \leq 1 \\ \text{The solution in } (0,1) \text{ to } xe^{-x} = ce^{-c} & c > 1. \end{cases} \]

Note that \(xe^{-x} \) increases continuously as \(x \) increases from 0 to 1 and then decreases. This justifies the existence and uniqueness of \(x \).

Lemma 2.13. If \(c > 0, \ c \neq 1 \) is a constant, and \(x = x(c) \) is defined above, then

\[\frac{1}{x} \sum_{k=1}^{\infty} \frac{k^{k-1}}{k!} \left(ce^{-c}\right)^k = 1. \]

Proof. Let \(p = \frac{c}{\hat{c}_k} \). Assume first that \(c < 1 \) and let \(X \) be the total number of vertices of \(\mathbb{G}_{n,p} \) that lie in non-tree components. Let \(X_k \) be the number of tree-components of order \(k \). Then,

\[n = \sum_{k=1}^{n} kX_k + X. \]

So,

\[n = \sum_{k=1}^{n} k\mathbb{E}X_k + \mathbb{E}X. \]

Now,
(i) by (2.4) and (2.7), \(E X = O(1) \),

(ii) by (2.9), if \(k < k_+ \) then

\[
E X_k = (1 + o(1)) \frac{n}{e^k} k^{k-2} (ce^{-c})^k.
\]

So, by Lemma 2.12,

\[
n = o(n) + \sum_{k_+}^{\infty} \frac{k^{k-1}}{k!} (ce^{-c})^k
\]

\[
= o(n) + \sum_{k_+}^{\infty} \frac{k^{k-1}}{k!} (ce^{-c})^k.
\]

Now divide through by \(n \) and let \(n \to \infty \).

This proves the identity for the case \(c < 1 \). Suppose now that \(c > 1 \). Then, since \(x \) is a solution of equation \(ce^{-c} = xe^{-x}, 0 < x < 1 \), we have

\[
\sum_{k_+}^{\infty} \frac{k^{k-1}}{k!} (ce^{-c})^k = \sum_{k_+}^{\infty} \frac{k^{k-1}}{k!} (xe^{-x})^k = x,
\]

by the first part of the proof (for \(c < 1 \)).

We note that in fact, Lemma 2.13 is also true for \(c = 1 \). \(\square \)

2.2 Super-Critical Phase

The structure of a random graph \(G_m \) changes dramatically when \(m = \frac{1}{2} cn \) where \(c > 1 \) is a constant. We will give a precise characterisation of this phenomenon, presenting results in terms of \(G_m \) and proving them for \(G_{n,p} \) with \(p = c/n, c > 1 \).

Theorem 2.14. If \(m = cn/2, c > 1 \), then w.h.p. \(G_m \) consists of a unique giant component, with \((1 - \frac{x}{c} + o(1)) n \) vertices and \((1 - \frac{x^2}{2 c} + o(1)) \frac{cn}{2} \) edges. Here \(0 < x < 1 \) is the solution of the equation \(xe^{-x} = ce^{-c} \). The remaining components are of order at most \(O(\log n) \).

Proof. Suppose that \(Z_k \) is the number of components of order \(k \) in \(G_{n,p} \). Then, bounding the number of such components by the number of trees with \(k \) vertices that span a component, we get

\[
\mathbb{E} Z_k \leq \binom{n}{k} k^{k-2} p^{k-1} (1-p)^{(n-k)}
\]

(2.13)
2.2. **SUPER-CRITICAL PHASE**

\[
\leq A \left(\frac{ne}{k} \right)^k k^{k-2} \left(\frac{c}{n} \right)^{k-1} e^{-ck + ck^2/n}
\leq An \left(ce^{1-c+ck/n} \right)^k
\]

Now let \(\beta_1 = \beta_1(c) \) be small enough so that
\[
ce^{1-c+\beta_1} < 1,
\]
and let \(\beta_0 = \beta_0(c) \) be large enough so that
\[
\left(ce^{1-c+o(1)} \right)^{\beta_0 \log n} < \frac{1}{n^2}.
\]

If we choose \(\beta_1 \) and \(\beta_0 \) as above then it follows that w.h.p. there is no component of order \(k \in [\beta_0 \log n, \beta_1 n] \).

Our next task is to estimate the number of vertices on small components i.e. those of size at most \(\beta_0 \log n \).

We first estimate the total number of vertices on small tree components, i.e., on isolated trees of order at most \(\beta_0 \log n \).

Assume first that \(1 \leq k \leq k_0 \), where \(k_0 = \frac{1}{2\alpha} \log n \), where \(\alpha \) is from Lemma 2.12.

It follows from (2.9) that
\[
\mathbb{E} \left(\sum_{k=1}^{k_0} kX_k \right) \approx \frac{n}{c} \sum_{k=1}^{k_0} k^{k-1} \left(ce^{-c} \right)^k
\approx \frac{n}{c} \sum_{k=1}^{\infty} k^{k-1} \left(ce^{-c} \right)^k,
\]

using \(k^{k-1}/k! < e^k \), and \(ce^{-c} < e^{-1} \) for \(c \neq 1 \) to extend the summation from \(k_0 \) to infinity.

Putting \(\epsilon = 1/\log n \) and using (2.11) we see that the probability that any \(X_k, 1 \leq k \leq k_0 \), deviates from its mean by more than \(1 \pm \epsilon \) is at most
\[
\sum_{k=1}^{k_0} \left[\frac{(\log n)^2}{n^{1/2-o(1)}} + O \left(\frac{(\log n)^4}{n} \right) \right] = o(1),
\]

where the \(n^{1/2-o(1)} \) term comes from putting \(\omega \approx k_0/2 \) in (2.10). \(\omega = o(\log \log n) \) in Lemma 2.12. We can however use \(\omega \approx k_0/2 \) for \(k \) at most \(k_+ /2 \).

Thus, if \(x = x(c), 0 < x < 1 \) is the unique solution in \((0,1) \) of the equation \(xe^{-x} = ce^{-c} \), then w.h.p.,
\[
\sum_{k=1}^{k_0} kX_k \approx \frac{n}{c} \sum_{k=1}^{\infty} k^{k-1} \left(xe^{-x} \right)^k
\]
by Lemma 2.13.

Now consider \(k_0 < k \leq \beta_0 \log n \).

\[
\mathbb{E} \left(\sum_{k=k_0+1}^{\beta_0 \log n} kX_k \right) \leq \frac{n \beta_0 \log n}{c} \sum_{k=k_0+1}^{\beta_0 \log n} \left(ce^{1-c} + c k / n \right)^k
= O \left(n (ce^{1-c})^{k_0} \right)
= O \left(n^{1/2+o(1)} \right).
\]

So, by the Markov inequality (see Lemma 21.1), w.h.p.,

\[
\sum_{k=k_0+1}^{\beta_0 \log n} kX_k = o(n).
\]

Now consider the number \(Y_k \) of non-tree components with \(k \) vertices, \(1 \leq k \leq \beta_0 \log n \).

\[
\mathbb{E} \left(\sum_{k=1}^{\beta_0 \log n} kY_k \right) \leq \sum_{k=1}^{\beta_0 \log n} \binom{n}{k} (k-1)^{k-1} \left(\frac{c}{n} \right)^k \left(1 - \frac{c}{n} \right)^{k(n-k)}
\leq \sum_{k=1}^{\beta_0 \log n} k \left(ce^{1-c} + c k / n \right)^k
= O(1).
\]

So, again by the Markov inequality, w.h.p.,

\[
\sum_{k=1}^{\beta_0 \log n} kY_k = o(n).
\]

Summarising, we have proved so far that w.h.p. there are approximately \(\frac{nx}{c} \) vertices on components of order \(k \), where \(1 \leq k \leq \beta_0 \log n \) and all the remaining giant components are of size at least \(\beta_1 n \).

We complete the proof by showing the uniqueness of the giant component. Let

\[
c_1 = c - \frac{\log n}{n} \quad \text{and} \quad p_1 = \frac{c_1}{n}.
\]

Define \(p_2 \) by

\[
1 - p = (1 - p_1)(1 - p_2)
\]
2.2. SUPER-CRITICAL PHASE

and note that $p_2 \geq \frac{\log n}{n^2}$. Then, see Section 1.2,

$$G_{n,p} = G_{n,p_1} \cup G_{n,p_2}.$$

If $x_1 e^{-x_1} = c_1 e^{-c_1}$, then $x_1 \approx x$ and so, by our previous analysis, w.h.p., G_{n,p_1} has no components with number of vertices in the range $[\beta_1 \log n, \beta_1 n]$. Suppose there are components C_1, C_2, \ldots, C_l with $|C_i| > \beta_1 n$. Here $l \leq 1/\beta_1$. Now we add edges of G_{n,p_2} to G_{n,p_1}. Then

$$P\left(\exists i, j: \text{no } G_{n,p_2} \text{ edge joins } C_i \text{ with } C_j\right) \leq \left(\frac{1}{2}\right)(1 - p_2)^{(\beta_1 n)^2} \leq l^2 e^{-\beta_1^2 \log n} = o(1).$$

So w.h.p. $G_{n,p}$ has a unique component with more than $\beta_0 \log n$ vertices and it has $\approx \left(1 - \frac{1}{c}\right)n$ vertices.

We now consider the number of edges in the giant C_0. Suppose that the edges of G are e_1, e_2, \ldots, e_m in random order. We estimate the probability that $e = e_m = \{x, y\}$ is an edge of the giant. Let G_1 be the graph induced by $\{e_1, e_2, \ldots, e_{m-1}\}$. G_1 is distributed as $G_{n,m-1}$ and so we know that w.h.p. G_1 has a unique giant C_1 and other components are of size $O(\log n)$. So the probability that e is an edge of the giant is $o(1)$ plus the probability that x or y is a vertex of C_1. Thus,

$$P\left(x \notin C_0 \mid |C_1| \approx n \left(1 - \frac{x}{c}\right)\right) = P\left(\exists e \cap C_1 = \emptyset \mid |C_1| \approx n \left(1 - \frac{x}{c}\right)\right) = \left(1 - \frac{|C_1|}{n}\right) \left(1 - \frac{|C_1| - 1}{n}\right) \approx \left(\frac{x}{c}\right)^2. \quad (2.14)$$

It follows that the expected number of edges in the giant is as claimed. To prove concentration, it is simplest to use the Chebyshev inequality, see Lemma 21.3. So, now fix $i, j \leq m$ and let C_2 denote the unique giant component of $G_{n,m} - \{e_i, e_j\}$. Then, arguing as for (2.14),

$$P(e_i, e_j \subseteq C_0) = o(1) + P(e_j \cap C_2 \neq \emptyset \mid e_i \cap C_2 \neq \emptyset) P(e_i \cap C_2 \neq \emptyset)$$

$$= (1 + o(1)) P(e_i \subseteq C_0) P(e_j \subseteq C_0).$$

In the $o(1)$ term, we hide the probability of the event

$$\{e_i \cap C_2 \neq \emptyset, e_j \cap C_2 \neq \emptyset, e_i \cap e_j \neq \emptyset\}$$
which has probability $o(1)$. We should double this $o(1)$ probability here to account for switching the roles of i, j.

The Chebyshev inequality can now be used to show that the number of edges is concentrated as claimed.

We will see later, see Lemma 2.17, that w.h.p. each of the small components have at most one cycle.

From the above theorem and the results of previous sections we see that, when $m = cn/2$ and c passes the critical value equal to 1, the typical structure of a random graph changes from a scattered collection of small trees and unicyclic components to a coagulated lump of components (the giant component) that dominates the graph. This short period when the giant component emerges is called the phase transition. We will look at this fascinating period of the evolution more closely in Section 2.3.

We know that w.h.p. the giant component of $G_{n,m}, m = cn/2, c > 1$ has $\approx 1 - \frac{1}{c}$ vertices and $\approx \left(1 - \frac{1}{c}\right)\frac{cn}{2}$ edges. So, if we look at the graph H induced by the vertices outside the giant, then w.h.p. H has $\approx n_1 = \frac{nx}{c}$ vertices and $\approx m_1 = \frac{xn_1}{2}$ edges. Thus we should expect H to resemble G_{n_1,m_1}, which is sub-critical since $x < 1$. This can be made precise, but the intuition is clear.

Now increase m further and look on the outside of the giant component. The giant component subsequently consumes the small components not yet attached to it. When m is such that $m/n \rightarrow \infty$ then unicyclic components disappear and a random graph G_m achieves the structure described in the next theorem.

Theorem 2.15. Let $\omega = \omega(n) \rightarrow \infty$ as $n \rightarrow \infty$ be some slowly growing function. If $m \geq \omega(n)$ but $m \leq n(\log n - \omega)/2$, then G_m is disconnected and all components, with the exception of the giant, are trees w.h.p.

Tree-components of order k die out in the reverse order they were born, i.e., larger trees are ”swallowed” by the giant earlier than smaller ones.

Cores

Given a positive integer k, the k-core of a graph $G = (V,E)$ is the largest set $S \subseteq V$ such that the minimum degree δ_S in the vertex induced subgraph $G[S]$ is at least k. This is unique because if $\delta_S \geq k$ and $\delta_T \geq k$ then $\delta_{S \cup T} \geq k$. Cores were first discussed by Bollobás [134]. It was shown by Łuczak [559] that for $k \geq 3$ either there is no k-core in $G_{n,p}$ or one of linear size, w.h.p. The precise size and first occurrence of k-cores for $k \geq 3$ was established in Pittel, Spencer and Wormald [654]. The 2-core, C_2 which is the set of vertices that lie on at least one cycle
behaves differently to the other cores, \(k \geq 3 \). It grows gradually. We will need the following result in Section 17.2.

Lemma 2.16. Suppose that \(c > 1 \) and that \(x < 1 \) is the solution to \(xe^{-x} = ce^{-c} \). Then w.h.p. the 2-core \(C_2 \) of \(G_{n,p}, p = c/n \) has \((1 - x)(1 - \frac{x}{c} + o(1))n \) vertices and \((1 - \frac{x}{c} + o(1))^2 \frac{cn}{2} \) edges.

Proof. Fix \(v \in [n] \). We estimate \(\mathbb{P}(v \in C_2) \). Let \(C_1 \) denote the unique giant component of \(G_1 = G_{n,p} - v \). Now \(G_1 \) is distributed as \(G_{n-1,p} \) and so \(C_1 \) exists w.h.p. To be in \(C_2 \), either (i) \(v \) has two neighbors in \(C_1 \) or (ii) \(v \) has two neighbors in some other component. Now because all components other than \(C_1 \) have size \(O(\log n) \) w.h.p., we see that

\[
\mathbb{P}((ii)) = o(1) + n\left(\frac{O(\log n)}{2}\right)^2 = o(1).
\]

Now w.h.p. \(|C_1| \approx (1 - \frac{x}{c})n \) and it is independent of the edges incident with \(v \) and so

\[
\mathbb{P}((i)) = o(1) + 1 - \mathbb{P}(0 \text{ or } 1 \text{ neighbors in } C_1) =
\]

\[
= o(1) + (1 + o(1))\mathbb{E}\left(1 - \left(1 - \frac{c}{n}\right)^{|C_1|} + |C_1| \left(1 - \frac{c}{n}\right)^{|C_1|-1} \frac{c}{n}\right)
\]

\[
= o(1) + 1 - (e^{-c+x} + (c-x)e^{-c+x})
\]

\[
= o(1) + (1 - x)\left(1 - \frac{x}{c}\right),
\]

where the last line follows from the fact that \(e^{-c+x} = \frac{1}{e} \). Also, one has to be careful when estimating something like \(\mathbb{E}\left(1 - \frac{c}{n}\right)^{|C_1|} \). For this we note that Jensen’s inequality implies that

\[
\mathbb{E}\left(1 - \frac{c}{n}\right)^{|C_1|} \geq \left(1 - \frac{c}{n}\right)^\mathbb{E}|C_1| = e^{-c+x+o(1)}.
\]

On the other hand, if \(n_g = (1 - \frac{x}{c})n \),

\[
\mathbb{E}\left(1 - \frac{c}{n}\right)^{|C_1|} \leq \mathbb{E}\left(\left(1 - \frac{c}{n}\right)^{|C_1|} \mid |C_1| \geq (1 - o(1))n_g\right) \mathbb{P}(|C_1| \geq (1 - o(1))n_g)
\]

\[
+ \mathbb{P}(|C_1| \leq (1 - o(1))n_g) = e^{-c+x+o(1)}.
\]

It follows from (2.15) that \(\mathbb{E}(|C_2|) \approx (1 - x)\left(1 - \frac{x}{c}\right)n \). To prove concentration of \(|C_2| \), we can use the Chebyshev inequality as we did in the proof of Theorem 2.14 to prove concentration for the number of edges in the giant.
To estimate the expected number of edges in C_2, we proceed as in Theorem 2.14 and turn to $G = G_{n,m}$ and estimate the probability that $e_1 \subseteq C_2$. If $G' = G \setminus e$ and C'_1 is the giant of G' then e_1 is an edge of C_2 iff $e_1 \subseteq C'_1$ or e_1 is contained in a small component. This latter condition is unlikely. Thus,

$$P(e_1 \subseteq C_2) = o(1) + E \left(\frac{|C'_1|}{n}\right)^2 = o(1) + \left(1 - \frac{x}{c}\right)^2.$$

The estimate for the expectation of the number of edges in the 2-core follows immediately and one can prove concentration using the Chebyshev inequality.

2.3 Phase Transition

In the previous two sections we studied the asymptotic behavior of G_m (and $G_{n,p}$) in the “sub-critical phase” when $m = cn, c < 1/2$ ($p = c/n, c < 1$), as well as in the “super-critical phase” when $m > n/2$ ($p = c/n, c > 1$) of its evolution.

We have learned that when $m = cn, c > 1/2$ our random graph consists w.h.p. of tree components and components with exactly one cycle (see Theorem 2.1 and Lemma 2.11). We call such components simple while components which are not simple, i.e. components with at least two cycles, will be called complex.

All components during the sub-critical phase are rather small, of order $\log n$, tree-components dominate the typical structure of G_m, and there is no significant gap in the order of the first and the second largest component. This follows from Lemma 2.12. The proof of this lemma shows that w.h.p. there are many trees of height k. The situation changes when $m > n/2$, i.e., when we enter the super-critical phase and then w.h.p. G_m consists of a single giant complex component (of the order comparable to n), and some number of simple components, i.e., tree components and components with exactly one cycle (see Theorem 2.14). One can also observe a clear gap between the order of the largest component (the giant) and the second largest component which is of the order $O(\log n)$. This phenomenon of dramatic change of the typical structure of a random graph is called its phase transition.

A natural question arises as to what happens when $m/n \to 1/2$, either from below or above, as $n \to \infty$. It appears that one can establish, a so called, scaling window or critical window for the phase transition in which G_m is undergoing a rapid change in its typical structure. A characteristic feature of this period is that a random graph can w.h.p. consist of more than one complex component (recall: there are no complex components in the sub-critical phase and there is a unique complex component in the super-critical phase).

Erdős and Rényi [287] studied the size of the largest tree in the random graph $G_{n,m}$ when $m = n/2$ and showed that it was likely to be around $n^{2/3}$. They called
the transition from \(O(\log n) \) through \(\Theta(n^{2/3}) \) to \(\Omega(n) \) the “double jump”. They did not study the regime \(m = n/2 + o(n) \). Bollobás [133] opened the detailed study of this and Łuczak [557] continued this analysis. He established the precise size of the “scaling window” by removing a logarithmic factor from Bollobás’s estimates. The component structure of \(G_{n,m} \) for \(m = n/2 + o(n) \) is rather complicated and the proofs are technically challenging. We will begin by stating several results that give an idea of the component structure in this range, referring the reader elsewhere for proofs: Chapter 5 of Janson, Łuczak and Ruciński [449]; Aldous [16]; Bollobás [133]; Janson [436]; Janson, Knuth, Łuczak and Pittel [453]; Łuczak [557], [558], [562]; Łuczak, Pittel and Wierman [565]. We will finish with a proof by Nachmias and Peres that when \(p = 1/n \) the largest component is likely to have size of order \(n^{2/3} \).

The first theorem is a refinement of Lemma 2.10.

Theorem 2.17. Let \(m = \frac{n}{2} - s \), where \(s = s(n) \geq 0 \).

(a) The probability that \(G_{n,m} \) contains a complex component is at most \(\frac{n^2}{4s^3} \).

(b) If \(s \gg n^{2/3} \) then w.h.p. the largest component is a tree of size asymptotic to \(\frac{n^{2s^2}}{2\pi \log \frac{3}{n}} \).

The next theorem indicates when the phase in which we may have more than one complex component “ends”, i.e., when a single giant component emerges.

Theorem 2.18. Let \(m = \frac{n}{2} + s \), where \(s = s(n) \geq 0 \). Then the probability that \(G_{n,m} \) contains more than one complex component is at most \(6n^{2/3}/s^1/3 \).

For larger \(s \), the next theorem gives a precise estimate of the size of the largest component for \(s \gg n^{2/3} \). For \(s > 0 \) we let \(\bar{s} > 0 \) be defined by

\[
\left(1 - \frac{2\bar{s}}{n} \right) \exp \left\{ \frac{2\bar{s}}{n} \right\} = \left(1 + \frac{2s}{n} \right) \exp \left\{ -\frac{2s}{n} \right\}.\]

Theorem 2.19. Let \(m = \frac{n}{2} + s \) where \(s \gg n^{2/3} \). Then with probability at least \(1 - 7n^{2/3}/s^{1/3} \),

\[
\left| L_1 - \frac{2(s + \bar{s})n}{n + 2s} \right| \leq \frac{n^{2/3}}{5}
\]

where \(L_1 \) is the size of the largest component in \(G_{n,m} \). In addition, the largest component is complex and all other components are either trees or unicyclic components.
To get a feel for this estimate of L_1 we remark that
\[
\bar{s} = s - \frac{4s^2}{3n} + O\left(\frac{s^3}{n^2}\right).
\]

The next theorem gives some information about ℓ-components inside the scaling window $m = n/2 + O(n^{2/3})$. An ℓ-component is one that has ℓ more edges than vertices. So trees are (-1)-components.

Theorem 2.20. Let $m = \frac{n}{2} + O(n^{2/3})$ and let r_ℓ denote the number of ℓ-components in $G_{n,m}$. For every $0 < \delta < 1$ there exists C_δ such that if n is sufficiently large, then with probability at least $1 - \delta$, $\sum_{\ell \geq 3} \ell r_\ell \leq C_\delta$ and the number of vertices on complex components is at most $C_\delta n^{2/3}$.

One of the difficulties in analysing the phase transition stems from the need to estimate $C(k, \ell)$, which is the number of connected graphs with vertex set $[k]$ and ℓ edges. We need good estimates for use in first moment calculations. We have seen the values for $C(k, k - 1)$ (Cayley’s formula) and $C(k, k)$, see (2.6). For $\ell > 0$, things become more tricky. Wright [758], [759], [760] showed that $C_{k,k+\ell} \approx \gamma_\ell k^{k-(3\ell-1)/2}$ for $\ell = o(k^{1/3})$ where the Wright coefficients γ_ℓ satisfy an explicit recurrence and have been related to Brownian motion, see Aldous [16] and Spencer [719]. In a breakthrough paper, Bender, Canfield and McKay [75] gave an asymptotic formula valid for all k. Łuczak [556] in a beautiful argument simplified a large part of their argument, see Exercise (4.3.6). Bollobás [135] proved the useful simple estimate $C_{k,k+\ell} \leq c(\ell/2)k^{k+(3\ell-1)/2}$ for some absolute constant $c > 0$. It is difficult to prove tight statements about $G_{n,m}$ in the phase transition window without these estimates. Nevertheless, it is possible to see that the largest component should be of size order $n^{2/3}$, using a nice argument from Nachmias and Peres. They have published a stronger version of this argument in [623].

Theorem 2.21. Let $p = \frac{1}{n}$ and A be a large constant. Let Z be the size of the largest component in $G_{n,p}$. Then

\[
\begin{align*}
(i) & \quad \mathbb{P}\left(Z \leq \frac{1}{A}n^{2/3}\right) = O(A^{-1}), \\
(ii) & \quad \mathbb{P}\left(Z \geq An^{2/3}\right) = O(A^{-1}).
\end{align*}
\]

Proof. We will prove part (i) of the theorem first. This is a standard application of the first moment method, see for example Bollobás [135]. Let X_k be the number
of tree components of order k and let $k \in \left[\frac{1}{4} n^{2/3}, \frac{An^{2/3}}{2} \right]$. Then, see also (2.8),

$$
\mathbb{E} X_k = \binom{n}{k} k^{k-2} p^{k-1} (1 - p)^{(n-k) + \left(\frac{k}{2} \right) - k + 1}.
$$

But

$$
(1 - p)^{(n-k) + \left(\frac{k}{2} \right) - k + 1} \approx (1 - p)^{kn - k^2/2} = \exp \{(kn - k^2/2) \log(1 - p)\} \\
\approx \exp \left\{ - \frac{kn - k^2/2}{n} \right\}.
$$

Hence, by the above and Lemma 22.2,

$$
\mathbb{E} X_k \approx \frac{n}{\sqrt{2\pi}} \frac{1}{k^{5/2}} \exp \left\{ - \frac{k^3}{6n^2} \right\}. \tag{2.16}
$$

So if

$$
X = \sum_{k \sim \frac{An^{2/3}}{2n^{2/3}}} X_k,
$$

then

$$
\mathbb{E} X \approx \frac{1}{\sqrt{2\pi}} \int_{x = 4}^{A} e^{-3x^3/6} x^{-5/2} dx \\
= \frac{4}{3\sqrt{\pi}} A^{3/2} + O(A^{1/2}).
$$

Arguing as in Lemma 2.12 we see that

$$
\mathbb{E} X_k^2 \leq \mathbb{E} X_k + (1 + o(1)) \mathbb{E} X_k^2,
$$

$$
\mathbb{E}(X_k X_l) \leq (1 + o(1)) \mathbb{E} X_k \mathbb{E} X_l, \quad k \neq l.
$$

It follows that

$$
\mathbb{E} X^2 \leq \mathbb{E} X + (1 + o(1))(\mathbb{E} X)^2.
$$

Applying the second moment method, Lemma 21.6, we see that

$$
\mathbb{P}(X > 0) \geq \frac{1}{\mathbb{E} X^{-1} + 1 + o(1)} \\
= 1 - O(A^{-1}),
$$
which completes the proof of part (i).

To prove (ii) we first consider a breadth first search (BFS) starting from, say, vertex x. We construct a sequence of sets $S_1 = \{x\}, S_2, \ldots$, where

$$S_{i+1} = \{v \notin S_i : \exists w \in S_i \text{ such that } (v, w) \in E(G_{n,p})\}.$$

We have

$$E(|S_{i+1}| | S_i) \leq (n - |S_i|) \left(1 - (1 - p)^{|S_i|} \right) \leq (n - |S_i|)|S_i|p \leq |S_i|.$$

So

$$E |S_{i+1}| \leq E |S_i| \leq \cdots \leq E |S_1| = 1. \quad (2.17)$$

We prove next that

$$\pi_k = P(S_k \neq \emptyset) \leq \frac{4}{k}. \quad (2.18)$$

This is clearly true for $k \leq 4$ and we obtain (2.18) by induction from

$$\pi_{k+1} \leq \sum_{i=1}^{n-1} \binom{n-1}{i} p^i (1-p)^{n-1-i} (1 - (1 - \pi_k)^i). \quad (2.19)$$

To explain the above inequality note that we can couple the construction of S_1, S_2, \ldots, S_k with a (branching) process where $T_1 = \{1\}$ and T_{k+1} is obtained from T_k as follows: each T_k independently spawns $\text{Bin}(n-1, p)$ individuals. Note that $|T_k|$ stochastically dominates $|S_k|$. This is because in the BFS process, each $w \in S_k$ gives rise to at most $\text{Bin}(n-1, p)$ new vertices. Inequality (2.19) follows, because $T_{k+1} \neq \emptyset$ implies that at least one of 1’s children give rise to descendants at level k. Going back to (2.19) we get

$$\pi_{k+1} \leq 1 - (1-p)^{n-1} - (1-p + p(1-\pi_k)^{n-1} + (1-p)^{n-1}$$

$$= 1 - (1-p\pi_k)^{n-1}$$

$$\leq 1 - 1 + (n-1)p\pi_k - \left(\frac{n-1}{2} p^2 \pi_k^2 + \left(\frac{n-1}{3} p^3 \pi_k^3 \right)$$

$$\leq \pi_k - \left(\frac{1}{2} + o(1)\right) \pi_k^2 + \left(\frac{1}{6} + o(1)\right) \pi_k^3$$

$$= \pi_k \left(1 - \pi_k \left(\left(\frac{1}{2} + o(1)\right) - \left(\frac{1}{6} + o(1)\right) \pi_k \right) \right)$$
This expression increases for $0 \leq \pi_k \leq 1$ and immediately gives $\pi_5 \leq 3/4 \leq 4/5$. In general we have by induction that

$$\pi_{k+1} \leq \frac{4}{k} \left(1 - \frac{1}{k}\right) \leq \frac{4}{k+1},$$

completing the inductive proof of (2.18).

Let C_x be the component containing x and let $\rho_x = \max\{k : S_k \neq \emptyset\}$ in the BFS from x. Let

$$X = \left|\left\{x : |C_x| \geq n^{2/3}\right\}\right| \leq X_1 + X_2,$$

where

$$X_1 = \left|\left\{x : |C_x| \geq n^{2/3} \text{ and } \rho_x \leq n^{1/3}\right\}\right|,$$

$$X_2 = \left|\left\{x : \rho_x > n^{1/3}\right\}\right|.$$

It follows from (2.18) that

$$\mathbb{P}(\rho_x > n^{1/3}) \leq \frac{4}{n^{1/3}},$$

and so

$$\mathbb{E}X_2 \leq 4n^{2/3}.$$

Furthermore,

$$\mathbb{P}\left\{|C_x| \geq n^{2/3} \text{ and } \rho_x \leq n^{1/3}\right\} \leq \mathbb{P}\left(|S_1| + \ldots + |S_{n^{1/3}}| \geq n^{2/3}\right) \leq \frac{\mathbb{E}(|S_1| + \ldots + |S_{n^{1/3}}|)}{n^{2/3}} \leq \frac{1}{n^{1/3}},$$

after using (2.17). So $\mathbb{E}X_1 \leq n^{2/3}$ and $\mathbb{E}X \leq 5n^{2/3}$.

Now let C_{max} denote the size of the largest component. Now

$$C_{\text{max}} \leq |X| + n^{2/3}$$

where the addition of $n^{2/3}$ accounts for the case where $X = 0$.
So we have
\[\mathbb{E} C_{\text{max}} \leq 6n^{2/3} \]
and part (ii) of the theorem follows from the Markov inequality (see Lemma 21.1).

2.4 Exercises

2.4.1 Prove Theorem 2.15.

2.4.2 Show that if \(p = \omega / n \) where \(\omega = \omega(n) \to \infty \) then w.h.p. \(G_{n,p} \) contains no unicyclic components. (A component is unicyclic if it contains exactly one cycle i.e. is a tree plus one extra edge).

2.4.3 Prove Theorem 2.17.

2.4.4 Suppose that \(m = cn/2 \) where \(c > 1 \) is a constant. Let \(C_1 \) denote the giant component of \(G_{n,m} \), assuming that it exists. Suppose that \(C_1 \) has \(n' \leq n \) vertices and \(m' \leq m \) edges. Let \(G_1, G_2 \) be two connected graphs with \(n' \) vertices from \([n]\) and \(m' \) edges. Show that
\[\mathbb{P}(C_1 = G_1) = \mathbb{P}(C_1 = G_2). \]
(I.e. \(C_1 \) is a uniformly random connected graph with \(n' \) vertices and \(m' \) edges).

2.4.5 Suppose that \(Z \) is the length of the cycle in a randomly chosen connected unicyclic graph on vertex set \([n]\). Show that, where \(N = (\binom{n}{2}) \),
\[\mathbb{E} Z = \frac{n^{n-2}(N-n+1)}{C(n,n)}. \]

2.4.6 Suppose that \(c < 1 \). Show that w.h.p. the length of the longest path in \(G_{n,p} \), \(p = c/n \) is \(\approx \frac{\log n}{\log 1/c} \).

2.4.7 Suppose that \(c \neq 1 \) is constant. Show that w.h.p. the number of edges in the largest component that is a path in \(G_{n,p} \), \(p = c/n \) is \(\approx \frac{\log n}{c-\log c} \).

2.4.8 Let \(G_{n,n,p} \) denote the random bipartite graph derived from the complete bipartite graph \(K_{n,n} \) where each edge is included independently with probability \(p \). Show that if \(p = c/n \) where \(c > 1 \) is a constant then w.h.p. \(G_{n,n,p} \) has a unique giant component of size \(\approx 2G(c)n \) where \(G(c) \) is as in Theorem 2.14.
2.4.9 Consider the bipartite random graph $G_{n,n,p=c/n}$, with constant $c > 1$. Define $0 < x < 1$ to be the solution to $xe^{-x} = ce^{-c}$. Prove that w.h.p. the 2-core of $G_{n,n,p=c/n}$ has $\approx 2(1-x)(1-\frac{x}{c})n$ vertices and $\approx c\left(1 - \frac{x}{c}\right)^2 n$ edges.

2.4.10 Let $p = \frac{1+\epsilon}{n}$. Show that if ϵ is a small positive constant then w.h.p. $G_{n,p}$ contains a giant component of size $(2\epsilon + O(\epsilon^2))n$.

2.4.11 Let $m = \frac{n}{2} + s$, where $s = s(n) \geq 0$. Show that if $s \gg n^{2/3}$ then w.h.p. the random graph $G_{n,m}$ contains exactly one complex component. (A component C is complex if it contains at least two distinct cycles. In terms of edges, C is complex iff it contains at last $|C| + 1$ edges).

2.4.12 Let $m_k(n) = n (\log n + (k-1) \log \log n + \omega)/(2k)$, where $|\omega| \rightarrow \infty$, $|\omega| = o(\log n)$. Show that
\[
\Pr(G_{m_k} \not\supseteq k\text{-vertex-tree-component}) = \begin{cases} o(1) & \text{if } \omega \rightarrow -\infty \\ 1 - o(1) & \text{if } \omega \rightarrow \infty \end{cases}.
\]

2.4.13 Let $k \geq 3$ be fixed and let $p = \frac{c}{n}$. Show that if c is sufficiently large, then w.h.p. the k-core of $G_{n,p}$ is non-empty.

2.4.14 Let $k \geq 3$ be fixed and let $p = \frac{c}{n}$. Show that there exists $\theta = \theta(c,k) > 0$ such that w.h.p. all vertex sets S with $|S| \leq \theta n$ contain fewer than $k|S|/2$ edges. Deduce that w.h.p. either the k-core of $G_{n,p}$ is empty or it has size at least θn.

2.4.15 Suppose that $p = \frac{c}{n}$ where $c > 1$ is a constant. Show that w.h.p. the giant component of $G_{n,p}$ is non-planar. (Hint: Assume that $c = 1 + \epsilon$ where ϵ is small. Remove a few vertices from the giant so that the girth is large. Now use Euler’s formula).

2.4.16 Show that if $\omega = \omega(n) \rightarrow \infty$ then w.h.p. $G_{n,p}$ has at most ω complex components.

2.4.17 Suppose that $np \rightarrow \infty$ and $3 \leq k = O(1)$. Show that $G_{n,p}$ contains a k-cycle w.h.p.

2.4.18 Suppose that $p = c/n$ where $c > 1$ is constant and let $\beta = \beta(c)$ be the smallest root of the equation
\[
\frac{1}{2}c\beta + (1-\beta)ce^{-c\beta} = \log \left(c(1-\beta)^{(\beta-1)/\beta}\right).
\]
(a) Show that if $\omega \to \infty$ and $\omega \leq k \leq \beta n$ then w.h.p. $G_{n,p}$ contains no maximal induced tree of size k.

(b) Show that w.h.p. $G_{n,p}$ contains an induced tree of size $(\log n)^2$.

(c) Deduce that w.h.p. $G_{n,p}$ contains an induced tree of size at least βn.

2.4.19 Show that if $c \neq 1$ and $xe^{-x} = ce^{-c}$ where $0 < x < 1$ then

$$\frac{1}{c} \sum_{k=1}^{\infty} \frac{k^{k-2}}{k!} (ce^{-c})^k = \begin{cases} 1 - \frac{c}{2} & c < 1, \\ \frac{x}{c} (1 - \frac{x}{2}) & c > 1. \end{cases}$$

2.4.20 Let $G_{n,m}^{\delta \geq k}$ denote a graph chosen uniformly at random from the set of graphs with vertex set $[N]$, M edges and minimum degree at least k. Let C_k denote the k core of $G_{n,m}$ (if it exists). Show that conditional on $|C_k| = N$ and $|E(C_k)| = M$ that the graph induced by C_k is distributed as $G_{N,M}^{\delta \geq k}$.

2.5 Notes

Phase transition

The paper by Łuczak, Pittel and Wierman [565] contains a great deal of information about the phase transition. In particular, [565] shows that if $m = n/2 + \lambda n^{2/3}$ then the probability that $G_{n,m}$ is planar tends to a limit $p(\lambda)$, where $p(\lambda) \to 0$ as $\lambda \to \infty$. The landmark paper by Janson, Knuth, Łuczak and Pittel [453] gives the most detailed analysis to date of the events in the scaling window.

Outside of the critical window $\frac{n}{2} \pm O(n^{2/3})$ the size of the largest component is asymptotically determined. Theorem 2.17 describes $G_{n,m}$ before reaching the window and on the other hand a unique “giant” component of size $\approx 4s$ begins to emerge at around $m = \frac{n}{2} + s$, for $s \gg n^{2/3}$. Ding, Kim, Lubetzky and Peres [256] give a useful model for the structure of this giant.

Achlioptas processes

Dimitris Achlioptas proposed the following variation on the basic graph process. Suppose that instead of adding a random edge e_i to add to G_{i-1} to create G_i, one is given a choice of two random edges e_i, f_i and one chooses one of them to add. He asked whether it was possible to come up with a choice rule that would delay the occurrence of some graph property \mathcal{P}. As an initial challenge he asked whether it was possible to delay the production of a giant component beyond $n/2$. Bohman and Frieze [117] showed that this was possible by the use
of a simple rule. Since that time this has grown into a large area of research. Kang, Perkins and Spencer [481] have given a more detailed analysis of the “Bohman-Frieze” process. Bohman and Kravitz [124] and in greater generality Spencer and Wormald [721] analyse “bounded size algorithms” in respect of avoiding giant components. Flaxman, Gamarnik and Sorkin [319] consider how to speed up the occurrence of a giant component. Riordan and Warnke [675] discuss the speed of transition at a critical point in an Achlioptas process.

Graph Minors

Fountoulakis, Kühn and Osthus [325] show that for every $\varepsilon > 0$ there exists C_ε such that if $np > C_\varepsilon$ and $p = o(1)$ then w.h.p. $G_{n,p}$ contains a complete minor of size $(1 \pm \varepsilon)\left(\frac{n^2 p}{\log np}\right)$. This improves earlier results of Bollobás, Catlin and Erdős [139] and Krivelevich and Sudakov [530]. Ajtai, Komlós and Szemerédi [10] showed that if $np \geq 1 + \varepsilon$ and $np = o(n^{1/2})$ then w.h.p. $G_{n,p}$ contains a topological clique of size almost as large as the maximum degree. If we know that $G_{n,p}$ is non-planar w.h.p. then it makes sense to determine its thickness. This is the minimum number of planar graphs whose union is the whole graph. Cooper [208] showed that the thickness of $G_{n,p}$ is strongly related to its arboricity and is asymptotic to $np/2$ for a large range of p.
Chapter 3

Vertex Degrees

In this chapter we study some typical properties of the degree sequence of a random graph. We begin by discussing the typical degrees in a sparse random graph i.e. one with $O(n)$ edges and prove some results on the asymptotic distribution of degrees. Next we look at the typical values of the minimum and maximum degrees in dense random graphs. We then describe a simple canonical labelling algorithm for the graph isomorphism problem on a dense random graph.

3.1 Degrees of Sparse Random Graphs

Recall that the degree of an individual vertex of $\mathbb{G}_{n,p}$ is a Binomial random variable with parameters $n-1$ and p. One should also notice that the degrees of different vertices are only mildly correlated.

We will first prove some simple but often useful properties of vertex degrees when $p = o(1)$. Let $X_0 = X_{n,0}$ be the number of isolated vertices in $\mathbb{G}_{n,p}$. In Lemma 1.11, we established the sharp threshold for “disappearance” of such vertices. Now we will be more precise and determine the asymptotic distribution of X_0 “below”, “on” and “above” the threshold. Obviously,

$$\mathbb{E}X_0 = n(1 - p)^{n-1},$$

and an easy computation shows that, as $n \to \infty$,

$$\mathbb{E}X_0 \to \begin{cases}
\infty & \text{if } np - \log n \to -\infty \\
e^{-c} & \text{if } np - \log n \to c, \ c < \infty, \\
0 & \text{if } np - \log n \to \infty
\end{cases} \quad (3.1)$$

We denote by $Po(\lambda)$ a random variable with the Poisson distribution with parameter λ, while $N(0,1)$ denotes the random variable with the Standard Normal
distribution. We write $X_n \xrightarrow{D} X$ to say that a random variable X_n converges in distribution to a random variable X, as $n \to \infty$.

The following theorem shows that the asymptotic distribution of X_0 passes through three phases: it starts in the Normal phase; next when isolated vertices are close to “dying out”, it moves through a Poisson phase; it finally ends up at the distribution concentrated at 0.

Theorem 3.1. Let X_0 be the random variable counting isolated vertices in a random graph $\mathbb{G}_{n,p}$. Then, as $n \to \infty$,

1. $\bar{X}_n = (X_0 - \mathbb{E}X_0)/\sqrt{\text{Var}X_0} \xrightarrow{D} N(0, 1)$, if $n^2 p \to \infty$ and $np - \log n \to -\infty$,

2. $X_0 \xrightarrow{D} \text{Po}(e^{-c})$, if $np - \log n \to c$, $c < \infty$,

3. $X_0 \xrightarrow{D} 0$, if $np - \log n \to \infty$.

Proof. For the proof of (i) we refer the reader to Chapter 6 of Janson, Łuczak and Ruciński [449] (or to [62] and [518]).

To prove (ii) one has to show that if $p = p(n)$ is such that $np - \log n \to c$, then

$$
\lim_{n \to \infty} \mathbb{P}(X_0 = k) = \frac{e^{-ck}}{k!} e^{-e^{-c}},
$$

for $k = 0, 1, \ldots$. Now,

$$
X_0 = \sum_{v \in V} I_v,
$$

where

$$
I_v = \begin{cases}
1 & \text{if } v \text{ is an isolated vertex in } \mathbb{G}_{n,p} \\
0 & \text{otherwise.}
\end{cases}
$$

So

$$
\mathbb{E}X_0 = \sum_{v \in V} \mathbb{E}I_v = n(1-p)^{n-1}
= n \exp\{(n-1)\log(1-p)\}
= n \exp\left\{ -(n-1) \sum_{k=1}^{\infty} \frac{p^k}{k} \right\}
= n \exp\left\{ -(n-1)p + O(np^2) \right\}
= n \exp\left\{ -\left(\log n + c\right) + O\left(\frac{(\log n)^2}{n}\right) \right\}
$$
3.1. DEGREES OF SPARSE RANDOM GRAPHS

\[\approx e^{-c}. \]

The easiest way to show that (3.2) holds is to apply the Method of Moments (see Chapter 21). Briefly, since the distribution of the random variable \(X_0 \) is uniquely determined by its moments, it is enough to show, that either the \(k \)th factorial moment \(\mathbb{E} X_0(X_0 - 1) \cdots (X_0 - k + 1) \) of \(X_0 \), or its binomial moment \(\mathbb{E} (X_0)^k \), tend to the respective moments of the Poisson distribution, i.e., to either \(e^{-ck} \) or \(e^{-ck}/k! \). We choose the binomial moments, and so let

\[B_k^{(n)} = \mathbb{E} \binom{X_0}{k}, \]

then, for every non-negative integer \(k \),

\[B_k^{(n)} = \sum_{1 \leq i_1 < i_2 < \cdots < i_k \leq n} \mathbb{P}(I_{v_{i_1}} = 1, I_{v_{i_2}} = 1, \ldots, I_{v_{i_k}} = 1), \]

\[= \binom{n}{k} (1 - p)^{(n-k)+(k)}. \]

Hence

\[\lim_{n \to \infty} B_k^{(n)} = \frac{e^{-ck}}{k!}, \]

and part (ii) of the theorem follows by Theorem 21.11, with \(\lambda = e^{-c} \).

For part (iii), suppose that \(np = \log n + \omega \) where \(\omega \to \infty \). We repeat the calculation estimating \(\mathbb{E} X_0 \) and replace \(\approx e^{-c} \) in (3.3) by \(\leq (1 + o(1))e^{-\omega} \to 0 \) and apply the first moment method.

From the above theorem we immediately see that if \(np - \log n \to c \) then

\[\lim_{n \to \infty} \mathbb{P}(X_0 = 0) = e^{-e^{-c}}. \]

(3.4)

We next give a more general result describing the asymptotic distribution of the number \(X_d = X_{n,d} \), \(d \geq 1 \) of vertices of any fixed degree \(d \) in a random graph.

Recall, that the degree of a vertex in \(\mathbb{G}_{n,p} \) has the binomial distribution \(\text{Bin}(n-1, p) \). Hence,

\[\mathbb{E} X_d = n \binom{n - 1}{d} p^d (1 - p)^{n-1-d}. \]

(3.5)

Therefore, as \(n \to \infty \),

\[\mathbb{E} X_d \to \begin{cases} 0 & \text{if } p \ll n^{-(d+1)/d}, \\ \lambda_1 & \text{if } p \approx cn^{-(d+1)/d}, c < \infty, \\ \infty & \text{if } p \gg n^{-(d+1)/d} \text{ but } \quad pn - \log n - d \log \log n \to -\infty, \\ \lambda_2 & \text{if } pn - \log n - d \log \log n \to c, c < \infty, \\ 0 & \text{if } pn - \log n - d \log \log n \to \infty, \end{cases} \]

(3.6)
where
\[\lambda_1 = \frac{c^d}{d!} \text{ and } \lambda_2 = \frac{e^{-c}}{d!}. \]
(3.7)

The asymptotic behavior of the expectation of the random variable \(X_d \) suggests possible asymptotic distributions for \(X_d \), for a given edge probability \(p \).

Theorem 3.2. Let \(X_d = X_{n,d} \) be the number of vertices of degree \(d \), \(d \geq 1 \), in \(\mathbb{G}_{n,p} \) and let \(\lambda_1, \lambda_2 \) be given by (3.7). Then, as \(n \to \infty \),

(i) \(X_d \xrightarrow{D} 0 \) if \(p \ll n^{-(d+1)/d} \),

(ii) \(X_d \xrightarrow{D} \text{Po}(\lambda_1) \) if \(p \approx cn^{-(d+1)/d}, \ c < \infty \),

(iii) \(\bar{X}_d := (X_d - \mathbb{E}X_d)/(\text{Var}X_d)^{1/2} \xrightarrow{D} N(0, 1) \) if \(p \gg n^{-(d+1)/d} \), but \(pn - \log n - d \log \log n \to -\infty \)

(iv) \(X_d \xrightarrow{D} \text{Po}(\lambda_2) \) if \(pn - \log n - d \log \log n \to c \), \(-\infty < c < \infty \),

(v) \(X_d \xrightarrow{D} 0 \) if \(pn - \log n - d \log \log n \to \infty \)

Proof. The proofs of statements (i) and (v) are straightforward applications of the first moment method, while the proofs of (ii) and (iv) can be found in Chapter 3 of Bollobás [127] (see also Karpinski and Ruciński [489] for estimates of the rate of convergence). The proof of (iii) can be found in [62].

The next theorem shows the concentration of \(X_d \) around its expectation when in \(\mathbb{G}_{n,p} \) the edge probability \(p = c/n \), i.e., when the average vertex degree is \(c \).

Theorem 3.3. Let \(p = c/n \) where \(c \) is a constant. Let \(X_d \) denote the number of vertices of degree \(d \) in \(\mathbb{G}_{n,p} \). Then, for \(d = O(1) \), w.h.p.

\[X_d \approx \frac{c^d e^{-c}}{d!} n. \]

Proof. Assume that vertices of \(\mathbb{G}_{n,p} \) are labeled 1, 2, \ldots, \(n \). We first compute \(\mathbb{E}X_d \). Thus,

\[
\mathbb{E}X_d = n \mathbb{P}(\text{deg}(1) = d) = \\
= n \binom{n-1}{d} \left(\frac{c}{n} \right)^d \left(1 - \frac{c}{n} \right)^{n-1-d}
\]
3.1. DEGREES OF SPARSE RANDOM GRAPHS

\[n^d \frac{1}{d!} \left(1 + O \left(\frac{d^2}{n} \right) \right) \left(\frac{c}{n} \right)^d \exp \left\{ -(n-1-d) \left(\frac{c}{n} + O \left(\frac{1}{n^2} \right) \right) \right\} \]

\[= n^d e^{-c} \frac{1}{d!} \left(1 + O \left(\frac{1}{n} \right) \right). \]

We now compute the second moment. For this we need to estimate

\[\mathbb{P}(\deg(1) = \deg(2) = d) \]

\[= \frac{c}{n} \left(\left(\frac{n-2}{d-1} \right) \left(\frac{c}{n} \right)^{d-1} \left(1 - \frac{c}{n} \right)^{n-1-d} \right)^2 \]

\[+ \left(1 - \frac{c}{n} \right) \left(\left(\frac{n-2}{d} \right) \left(\frac{c}{n} \right)^d \left(1 - \frac{c}{n} \right)^{n-2-d} \right)^2 \]

\[= \mathbb{P}(\deg(1) = d) \mathbb{P}(\deg(2) = d) \left(1 + O \left(\frac{1}{n} \right) \right). \]

The first line here accounts for the case where \{1,2\} is an edge and the second line deals with the case where it is not.

Thus

\[\text{Var} X_d = \]

\[= \sum_{i=1}^{n} \sum_{j=1}^{n} \left[\mathbb{P}(\deg(i) = d, \deg(j) = d) - \mathbb{P}(\deg(1) = d) \mathbb{P}(\deg(2) = d) \right] \]

\[\leq \sum_{i \neq j}^{n} O \left(\frac{1}{n} \right) + \mathbb{E} X_d \leq An, \]

for some constant \(A = A(c). \)

Applying the Chebyshev inequality (Lemma 21.3), we obtain

\[\mathbb{P}(|X_d - \mathbb{E} X_d| \geq tn^{1/2}) \leq \frac{A}{t^2}, \]

which completes the proof. \(\square \)

We conclude this section with a look at the asymptotic behavior of the maximum vertex degree, when a random graph is sparse.

Theorem 3.4. Let \(\Delta(G_{n,p}) (\delta(G_{n,p})) \) denotes the maximum (minimum) degree of vertices of \(G_{n,p}. \)

(i) If \(p = c/n \) for some constant \(c > 0 \) then w.h.p.

\[\Delta(G_{n,p}) \approx \frac{\log n}{\log \log n}. \]
(ii) If \(np = \omega \log n \) where \(\omega \to \infty \), then w.h.p. \(\delta(G_n, p) \approx \Delta(G_n, p) \approx np \).

Proof. (i) Let \(d_\pm = \left\lceil \frac{\log n}{\log \log n \pm 2 \log \log \log n} \right\rceil \). Then, if \(d = d_- \),

\[
P(\exists v: \deg(v) \geq d) \leq n \left(\frac{n-1}{d} \right) \left(\frac{c}{n} \right)^d
\leq n \left(\frac{c^n}{d} \right)^d = \exp \{ \log n - d \log d + O(d) \}
\] (3.8)

Let \(\lambda = \frac{\log \log \log n}{\log n} \). Then

\[
d \log d \geq \frac{\log n}{\log \log n} \cdot \frac{1}{1 - 2\lambda} \cdot (\log \log n - \log \log \log n + o(1))
\]

\[
= \frac{\log n}{\log \log n} (1 + 2\lambda + O(\lambda^2))(\log \log n - \log \log \log n + o(1))
\]

\[
= \frac{\log n}{\log \log n} (\log \log n + \log \log \log n + o(1)).
\] (3.9)

Plugging this into (3.8) shows that \(\Delta(G_n, p) \leq d_- \) w.h.p.

Now let \(d = d_+ \) and let \(X_d \) be the number of vertices of degree \(d \) in \(G_n, p \). Then

\[
\mathbb{E}(X_d) = n \left(\frac{n-1}{d} \right) \left(\frac{c}{n} \right)^d \left(1 - \frac{c}{n} \right)^{n-d-1}
\]

\[
= \exp \{ \log n - d \log d + O(d) \}
\]

\[
= \exp \left\{ \log n - \frac{\log n}{\log \log n} (\log \log n - \log \log \log n + o(1)) + O(d) \right\}
\] (3.10)

\(\to \infty \).

Here (3.10) is obtained by using \(-\lambda\) in place of \(\lambda \) in the argument for (3.9). Now, for vertices \(v, w \), by the same argument as in the proof of Theorem 3.3, we have

\[
P(\deg(v) = \deg(w) = d) = (1 + o(1)) P(\deg(v) = d) P(\deg(w) = d),
\]

and the Chebyshev inequality implies that \(X_d > 0 \) w.h.p. This completes the proof of (i).

Statement (ii) is an easy consequence of the Chernoff bounds, Corollary 22.7. Let \(\varepsilon = \omega^{-1/3} \). Then

\[
P(\exists v: |\deg(v) - np| \geq \varepsilon np) \leq 2n^{-\varepsilon^2 np/3} = 2n^{-\omega^{1/3}/3} = o(n^{-1}).
\]
3.2 Degrees of Dense Random Graphs

In this section we will concentrate on the case where edge probability p is constant and see how the degree sequence can be used to solve the graph isomorphism problem w.h.p. The main result deals with the maximum vertex degree in dense random graph and is instrumental in the solution of this problem.

Theorem 3.5. Let $d_\pm = (n-1) p + (1 \pm \varepsilon) \sqrt{2(n-1)pq \log n}$, where $q = 1 - p$. If p is constant and $\varepsilon > 0$ is a small constant, then w.h.p.

(i) $d_- \leq \Delta(G_{n,p}) \leq d_+$.

(ii) There is a unique vertex of maximum degree.

Proof. We break the proof of Theorem 3.5 into two lemmas.

Lemma 3.6. Let $d = (n-1)p + x \sqrt{(n-1)pq}$, p be constant, $x \leq n^{1/3} (\log n)^2$, where $q = 1 - p$. Then

$$B_d = \left(\frac{n-1}{d} \right) p^d (1-p)^{n-1-d} = (1+o(1)) \sqrt{\frac{1}{2\pi npq}} e^{-x^2/2}.$$

Proof. Stirling’s formula gives

$$B_d = (1+o(1)) \sqrt{\frac{1}{2\pi npq}} \left(\left(\frac{(n-1)p}{d} \right)^{d/n} \left(\frac{(n-1)q}{n-d} \right)^{n-1} \right). \quad (3.11)$$

Now

$$\left(\frac{d}{(n-1)p} \right)^{d/n} = \left(1 + x \sqrt{\frac{q}{(n-1)p}} \right)^{d/n} =$$

$$\exp \left\{ x \sqrt{\frac{q}{(n-1)p}} - \frac{x^2q}{2(n-1)p} + O \left(\frac{x^3}{n^{3/2}} \right) \right\} \left(p + x \sqrt{\frac{pq}{n-1}} \right)$$

$$= \exp \left\{ x \sqrt{\frac{pq}{n-1}} + \frac{x^2q}{2(n-1)} + O \left(\frac{x^3}{n^{3/2}} \right) \right\},$$

whereas

$$\left(\frac{n-1-d}{(n-1)q} \right)^{1-d/n} = \left(1 - x \sqrt{\frac{p}{(n-1)q}} \right)^{1-d/n} =$$

$$\exp \left\{ - x \sqrt{\frac{p}{(n-1)q}} + \frac{x^2p}{2(n-1)q} + O \left(\frac{x^3}{n^{3/2}} \right) \right\} \left(q - x \sqrt{\frac{pq}{n-1}} \right).$$
CHAPTER 3. VERTEX DEGREES

\[\exp \left\{ -x \sqrt{\frac{pq}{n-1}} + \frac{x^2 p}{2(n-1)} + O \left(\frac{x^3}{n^{3/2}} \right) \right\}, \]

So

\[\left(\frac{d}{(n-1)p} \right)^{d-1} \left(\frac{n-1-d}{(n-1)q} \right)^{1-d} = \exp \left\{ \frac{x^2}{2(n-1)} + O \left(\frac{x^3}{n^{3/2}} \right) \right\}, \]

and lemma follows from (3.11).

The next lemma proves a strengthening of Theorem 3.5.

Lemma 3.7. Let \(\varepsilon = 1/10 \), and \(p \) be constant and \(q = 1 - p \). If

\[d_\pm = (n-1)p + (1 \pm \varepsilon) \sqrt{2(n-1)pq \log n}. \]

then w.h.p.

(i) \(\Delta(\mathbb{G}_{n,p}) \leq d_+ \),

(ii) There are \(\Omega(n^{2\varepsilon(1-\varepsilon)}) \) vertices of degree at least \(d_- \),

(iii) \(\nexists \ u \neq v \) such that \(\deg(u), \deg(v) \geq d_- \) and \(|\deg(u) - \deg(v)| \leq 10 \).

Proof. We first prove that as \(x \to \infty \),

\[\frac{1}{x} e^{-x^2/2} \left(1 - \frac{1}{x^2} \right) \leq \int_x^\infty e^{-y^2/2} \, dy \leq \frac{1}{x} e^{-x^2/2}. \quad (3.12) \]

To see this notice

\[\int_x^\infty e^{-y^2/2} \, dy = -\int_x^\infty \frac{1}{y} \left(e^{-y^2/2} \right)' \, dy \]

\[= -\left[\frac{1}{y} e^{-y^2/2} \right]_x^\infty + \int_x^\infty \frac{1}{y^2} e^{-y^2/2} \, dy \]

\[= \frac{1}{x} e^{-x^2/2} + \left[\frac{1}{y^3} e^{-y^2/2} \right]_x^\infty + 3 \int_x^\infty \frac{1}{y^4} e^{-y^2/2} \, dy \]

\[= \frac{1}{x} e^{-x^2/2} \left(1 - \frac{1}{x^2} \right) + O \left(\frac{1}{x^4} e^{-x^2/2} \right). \]

We can now prove statement (i).

Let \(X_d \) be the number of vertices of degree \(d \). Then \(\mathbb{E}X_d = nB_d \) and so Lemma 3.6 implies that

\[\mathbb{E}X_d = (1 + o(1)) \sqrt{n \frac{n}{2 \pi pq}} \exp \left\{ -\frac{1}{2} \left(\frac{d - (n-1)p}{\sqrt{(n-1)pq}} \right)^2 \right\} \]
assumimg that
\[d \leq d_L = (n - 1)p + (\log n)^2 \sqrt{(n - 1)pq}. \]

Also, if \(d > (n - 1)p \) then
\[\frac{B_{d+1}}{B_d} = \frac{(n - d - 1)p}{(d + 1)q} < 1 \]

and so if \(d \geq d_L \),
\[E_{X_d} \leq E_{X_{d_L}} \leq n \exp\{-\Omega(\log n)^4\}. \]

It follows that
\[\Delta(G_{n,p}) \leq d_L \quad \text{w.h.p.} \quad (3.13) \]

Now if \(Y_d = X_d + X_{d+1} + \cdots + X_{d_L} \) for \(d = d_\pm \) then
\[
\mathbb{E}Y_d \approx \sum_{l=d}^{d_L} \sqrt{\frac{n}{2\pi pq}} \exp \left\{ -\frac{1}{2} \left(\frac{l - (n - 1)p}{\sqrt{(n - 1)pq}} \right)^2 \right\}
\]
\[
\approx \sum_{l=d}^{\infty} \sqrt{\frac{n}{2\pi pq}} \exp \left\{ -\frac{1}{2} \left(\frac{l - (n - 1)p}{\sqrt{(n - 1)pq}} \right)^2 \right\} \quad (3.14)
\]

The justification for (3.14) comes from
\[
\sum_{l=d}^{\infty} \sqrt{\frac{n}{2\pi pq}} \exp \left\{ -\frac{1}{2} \left(\frac{l - (n - 1)p}{\sqrt{(n - 1)pq}} \right)^2 \right\} = O(n) \sum_{x=(\log n)^2}^{\infty} e^{-x^2/2} = O(e^{-(\log n)^2/3}),
\]

and
\[
\sqrt{\frac{n}{2\pi pq}} \exp \left\{ -\frac{1}{2} \left(\frac{d_+ - (n - 1)p}{\sqrt{(n - 1)pq}} \right)^2 \right\} = n^{-O(1)}.
\]

If \(d = (n - 1)p + x\sqrt{(n - 1)pq} \) then, from (3.12) we have
\[
\mathbb{E}Y_d \approx \sqrt{\frac{n}{2\pi pq}} \int_{\lambda=d}^{\infty} \exp \left\{ -\frac{1}{2} \left(\frac{\lambda - (n - 1)p}{\sqrt{(n - 1)pq}} \right)^2 \right\} d\lambda.
\]
\[= \sqrt{\frac{n}{2\pi pq}} \int_{y=x}^{\infty} e^{-y^2/2} dy\]
\[\approx \frac{n}{\sqrt{2\pi x}} e^{-x^2/2}\]
\[\begin{aligned}
&\leq n^{-2\epsilon(1+\epsilon)} \quad d = d_+
\\
&\geq n^{2\epsilon(1-\epsilon)} \quad d = d_-.
\end{aligned}\] (3.15)

Part (i) follows from (3.15).

When \(d = d_-\) we see from (3.15) that \(\mathbb{E}Y_d \to \infty\). We use the second moment method to show that \(Y_{d_-} \neq 0\) w.h.p.

\[\mathbb{E}Y_d(Y_d - 1) = n(n-1) \sum_{d \leq d_1, d_2} \mathbb{P}(\text{deg}(1) = d_1, \text{deg}(2) = d_2)\]
\[= n(n-1) \sum_{d \leq d_1, d_2} (p \mathbb{P}(\hat{d}(1) = d_1 - 1, \hat{d}(2) = d_2 - 1)
\\
+ (1 - p) \mathbb{P}(\hat{d}(1) = d_1, \hat{d}(2) = d_2)),\]

where \(\hat{d}(x)\) is the number of neighbors of \(x\) in \(\{3, 4, \ldots, n\}\). Note that \(\hat{d}(1)\) and \(\hat{d}(2)\) are independent, and

\[\frac{\mathbb{P}(\hat{d}(1) = d_1 - 1)}{\mathbb{P}(\hat{d}(1) = d_1)} = \frac{\binom{n-2}{d_1-1} (1-p)}{\binom{n-2}{d_1} p} = \frac{d_1 (1-p)}{(n-1-d_1)p} = 1 + \tilde{O}(n^{-1/2}).\]

In \(\tilde{O}\) we ignore polylog factors.

Hence

\[\mathbb{E}(Y_d(Y_d - 1))\]
\[= n(n-1) \sum_{d \leq d_1, d_2} \left[\mathbb{P}(\hat{d}(1) = d_1) \mathbb{P}(\hat{d}(2) = d_2)(1 + \tilde{O}(n^{-1/2})) \right]\]
\[= n(n-1) \sum_{d \leq d_1, d_2} \left[\mathbb{P}(\text{deg}(1) = d_1) \mathbb{P}(\text{deg}(2) = d_2)(1 + \tilde{O}(n^{-1/2})) \right]\]
\[= \mathbb{E}Y_d(\mathbb{E}Y_d - 1)(1 + \tilde{O}(n^{-1/2})),\]

since

\[\frac{\mathbb{P}(\hat{d}(1) = d_1)}{\mathbb{P}(\text{deg}(1) = d_1)} = \left(\frac{n-2}{d_1}\right) \left(\frac{n-1}{d_1}\right) (1-p)^{-1}\]
3.2. DEGREES OF DENSE RANDOM GRAPHS

\[= 1 + \tilde{O}(n^{-1/2}). \]

So, with \(d = d_- \)

\[
\mathbb{P}(Y_d \leq \frac{1}{2} \mathbb{E}Y_d) \\
\leq \frac{\mathbb{E}(Y_d(Y_d - 1)) + \mathbb{E}Y_d - (\mathbb{E}Y_d)^2}{(\mathbb{E}Y_d)^2/4} \\
= \tilde{O}\left(\frac{1}{n^\epsilon}\right) \\
= o(1).
\]

This completes the proof of statement \((ii)\). Finally,

\[
\begin{align*}
\mathbb{P}(\neg(iii)) & \leq o(1) + \binom{n}{2} \sum_{d_1 = d_-, d_2 = d_1 + 1} \mathbb{P}(\text{deg}(1) = d_1, \text{deg}(2) = d_2) \\
& = o(1) + \binom{n}{2} \sum_{d_1 = d_-, d_2 = d_1 + 1} \left[p \mathbb{P}(\hat{d}(1) = d_1 - 1) \mathbb{P}(\hat{d}(2) = d_2 - 1) \\
& \quad + (1 - p) \mathbb{P}(\hat{d}(1) = d_1) \mathbb{P}(\hat{d}(2) = d_2) \right].
\end{align*}
\]

Now

\[
\begin{align*}
\sum_{d_1 = d_-} \sum_{d_2 - d_1 \leq 10} \mathbb{P}(\hat{d}(1) = d_1 - 1) \mathbb{P}(\hat{d}(2) = d_2 - 1) \\
\leq 21(1 + \tilde{O}(n^{-1/2})) \sum_{d_1 = d_-} \left[\mathbb{P}(\hat{d}(1) = d_1 - 1) \right]^2,
\end{align*}
\]

and by Lemma 3.6 and by (3.12) we have with

\[
x = \frac{d_- - (n - 1)p}{\sqrt{(n - 1)pq}} \approx (1 - \epsilon)\sqrt{2\log n},
\]

\[
\begin{align*}
\sum_{d_1 = d_-} \left[\mathbb{P}(\hat{d}(1) = d_1 - 1) \right]^2 & \approx \frac{1}{2\pi pqn} \int_{y=x}^\infty e^{-y^2} dy \\
& = \frac{1}{\sqrt{8\pi pqn}} \int_{y=x\sqrt{2}}^\infty e^{-2^2/2} dy \\
& \approx \frac{1}{\sqrt{8\pi pqn} x\sqrt{2}} n^{-2(1-\epsilon)^2},
\end{align*}
\]
CHAPTER 3. VERTEX DEGREES

We get a similar bound for \(\sum_{d_1 = d_{i-1}}^{d_L} \sum_{|d_2 - d_1| \leq 10} \left[\mathbb{P}(\hat{d}(1) = d_1) \right]^2 \). Thus

\[
\mathbb{P}(\neg(iii)) = o \left(n^{2 - 1 - 2(1 - \epsilon)^2} \right) = o(1).
\]

\(\square \)

Application to graph isomorphism

In this section we describe a procedure for canonically labelling a graph \(G \). It is taken from Babai, Erdős and Selkow [44]. If the procedure succeeds then it is possible to quickly tell whether \(G \cong H \) for any other graph \(H \). (Here \(\cong \) stands for graph isomorphism).

Algorithm LABEL

Step 0: Input graph \(G \) and parameter \(L \).

Step 1: Re-label the vertices of \(G \) so that they satisfy

\[d_G(v_1) \geq d_G(v_2) \geq \cdots \geq d_G(v_n). \]

If there exists \(i < L \) such that \(d_G(v_i) = d_G(v_{i+1}) \), then **FAIL**.

Step 2: For \(i > L \) let

\[X_i = \{ j \in \{1, 2, \ldots, L\} : \{v_i, v_j\} \in E(G) \}. \]

Re-label vertices \(v_{L+1}, v_{L+2}, \ldots, v_n \) so that these sets satisfy

\[X_{L+1} \succ X_{L+2} \succ \cdots \succ X_n \]

where \(\succ \) denotes lexicographic order.

If there exists \(i < n \) such that \(X_i = X_{i+1} \) then **FAIL**.

Suppose now that the above ordering/labelling procedure LABEL succeeds for \(G \). Given an \(n \) vertex graph \(H \), we run LABEL on \(H \).

(i) If LABEL fails on \(H \) then \(G \not\cong H \).

(ii) Suppose that the ordering generated on \(V(H) \) is \(w_1, w_2, \ldots, w_n \). Then

\[G \cong H \iff v_i \rightarrow w_i \text{ is an isomorphism.} \]

It is straightforward to verify (i) and (ii).
Theorem 3.8. Let p be a fixed constant, $q = 1 - p$, and let $\rho = p^2 + q^2$ and let $L = 3\log_{1/\rho} n$. Then w.h.p. LABEL succeeds on $G_{n,p}$.

Proof. Lemma 3.7 implies that Step 1 succeeds w.h.p. We must now show that w.h.p. $X_i \neq X_j$ for all $i \neq j > L$. There is a slight problem because the edges from $v_i, i > L$ to $v_j, j \leq L$ are conditioned by the fact that the latter vertices are those of highest degree.

Now fix i,j and let $\hat{G} = \mathbb{G}_{n,p} \setminus \{v_i,v_j\}$. It follows from Lemma 3.7 that if $i, j > L$ then w.h.p. the L largest degree vertices of \hat{G} and $\mathbb{G}_{n,p}$ coincide. So, w.h.p., we can compute X_i, X_j with respect to \hat{G} to create \hat{X}_i, \hat{X}_j, which are independent of the edges incident with v_i, v_j. It follows that if $i, j > L$ then $\hat{X}_i = X_i$ and $\hat{X}_j = X_j$ and this avoids our conditioning problem. Denote by $\mathcal{N}_G(v)$ the set of the neighbors of vertex v in graph \hat{G}. Then

$$
\mathbb{P}(\text{Step 2 fails}) = o(1) + \mathbb{P}(\exists v_i, v_j : \mathcal{N}_G(v_i) \cap \{v_1,\ldots,v_L\} = \mathcal{N}_G(v_j) \cap \{v_1,\ldots,v_L\})
\leq o(1) + \binom{n}{2}(p^2 + q^2)^L = o(1).
$$

□

Corollary 3.9. If $0 < p < 1$ is constant then w.h.p. $G_{n,p}$ has a unique automorphism, i.e. the identity automorphism.

See Exercise 3.3.7.

Application to edge coloring

The chromatic index $\chi'(G)$ of a graph G is the minimum number of colors that can be used to color the edges of G so that if two edges share a vertex, then they have a different color. Vizing’s theorem states that

$$
\Delta(G) \leq \chi'(G) \leq \Delta(G) + 1.
$$

Also, if there is a unique vertex of maximum degree, then $\chi'(G) = \Delta(G)$. So, it follows from Theorem 3.5 (ii) that, for constant p, w.h.p. we have $\chi'((\mathbb{G}_{n,p})) = \Delta(\mathbb{G}_{n,p})$.

3.3 Exercises

3.3.1 Suppose that $m = \frac{dn}{2}$ where d is constant. Prove that the number of vertices of degree k in $G_{n,m}$ is asymptotically equal to $\frac{d^{k} e^{-d}}{k!} n$ for any fixed positive integer k.

3.3.2 Suppose that $c > 1$ and that $x < 1$ is the solution to $xe^{-x} = ce^{-c}$. Show that if $c = O(1)$ is fixed then w.h.p. the giant component of $G_{n,p}, p = \frac{c}{n}$ has $\approx \frac{c^{k} e^{-c}}{k!} \left(1 - \left(\frac{x}{c}\right)^{k}\right) n$ vertices of degree $k \geq 1$.

3.3.3 Suppose that $p \leq \frac{1 + \varepsilon}{n}$ where $n^{1/4} \varepsilon \rightarrow 0$. Show that if Γ is the sub-graph of $G_{n,p}$ induced by the 2-core C_2, then Γ has maximum degree at most three.

3.3.4 Let $p = \frac{\log n + d \log \log n + c}{n}$, $d \geq 1$. Using the method of moments, prove that the number of vertices of degree d in $G_{n,p}$ is asymptotically Poisson with mean e^{-c}.

3.3.5 Prove parts (i) and (v) of Theorem 3.2.

3.3.6 Show that if $0 < p < 1$ is constant then w.h.p. the minimum degree δ in $G_{n,p}$ satisfies

$$|\delta - (n-1)q - \sqrt{2(n-1)pq \log n}| \leq \varepsilon \sqrt{2(n-1)pq \log n},$$

where $q = 1 - p$ and $\varepsilon = 1/10$.

3.3.7 Use the canonical labelling of Theorem 3.8 to show that w.h.p. $G_{n,1/2}$ has exactly one automorphism, the identity automorphism. (An automorphism of a graph $G = (V,E)$ is a map $\varphi : V \rightarrow V$ such that $\{x,y\} \in E$ if and only if $\{\varphi(x),\varphi(y)\} \in E$.)

3.4 Notes

For the more detailed account of the properties of the degree sequence of $G_{n,p}$ the reader is referred to Chapter 3 of Bollobás [135].

Erdős and Rényi [286] and [288] were first to study the asymptotic distribution of the number X_d of vertices of degree d in relation with connectivity of a random graph. Bollobás [131] continued those investigations and provided detailed study of the distribution of X_d in $G_{n,p}$ when $0 < \liminf np(n)/\log n \leq \limsup np(n)/\log n < \infty$. Palka [637] determined certain range of the edge probability p for which the number of vertices of a given degree of a random graph
\(\mathbb{G}_{n,p} \) has a Normal distribution. Barbour [59] and Karoński and Ruciński [489] studied the distribution of \(X_d \) using the Stein–Chen approach. A complete answer to the asymptotic Normality of \(X_d \) was given by Barbour, Karoński and Ruciński [62] (see also Kordecki [518]). Janson [442] extended those results and showed that random variables counting vertices of given degree are jointly normal, when \(p \approx c/n \) in \(\mathbb{G}_{n,p} \) and \(m \approx cn \) in \(\mathbb{G}_{n,m} \), where \(c \) is a constant.

Ivchenko [431] was the first to analyze the asymptotic behavior the \(k \)th-largest and \(k \)th smallest element of the degree sequence of \(\mathbb{G}_{n,p} \). In particular he analysed the span between the minimum and the maximum degree of sparse \(\mathbb{G}_{n,p} \). Similar results were obtained independently by Bollobás [129] (see also Palka [638]). Bollobás [131] answered the question for what values of \(p(n) \), \(\mathbb{G}_{n,p} \) w.h.p. has a unique vertex of maximum degree (see Theorem 3.5).

Bollobás [126], for constant \(p, 0 < p < 1 \), i.e., when \(\mathbb{G}_{n,p} \) is dense, gave an estimate of the probability that maximum degree does not exceed \(pn + O(\sqrt{n \log n}) \). A more precise result was proved by Riordan and Selby [672] who showed that for constant \(p \), the probability that the maximum degree of \(\mathbb{G}_{n,p} \) does not exceed \(pn + b\sqrt{np(1-p)} \), where \(b \) is fixed, is equal to \((c + o(1))^n \), for \(c = c(b) \) the root of a certain equation. Surprisingly, \(c(0) = 0.6102 \ldots \) is greater than 1/2 and \(c(b) \) is independent of \(p \).

McKay and Wormald [591] proved that for a wide range of functions \(p = p(n) \), the distribution of the degree sequence of \(\mathbb{G}_{n,p} \) can be approximated by \(\{X_1, \ldots, X_n\} \sum X_i \text{ is even} \}, \) where \(X_1, \ldots, X_n \) are independent random variables each having the Binomial distribution Bin(\(n-1, p' \)), where \(p' \) is itself a random variable with a particular truncated normal distribution.
Chapter 4

Connectivity

We first establish, rather precisely, the threshold for connectivity. We then view this property in terms of the graph process and show that w.h.p. the random graph becomes connected at precisely the time when the last isolated vertex joins the giant component. This “hitting time” result is the pre-cursor to several similar results. After this we deal with \(k \)-connectivity.

4.1 Connectivity

The first result of this chapter is from Erdős and Rényi [286].

Theorem 4.1. Let \(m = \frac{1}{2} n (\log n + c_n) \). Then

\[
\lim_{n \to \infty} \Pr(G_m \text{ is connected}) = \begin{cases}
0 & \text{if } c_n \to -\infty, \\
e^{-e^{-c}} & \text{if } c_n \to c \text{ (constant)} \\
1 & \text{if } c_n \to \infty.
\end{cases}
\]

Proof. To prove the theorem we consider, as before, a random graph \(G_{n,p} \). It suffices to prove that, when \(p = \frac{\log n + c}{n} \),

\[
\Pr(G_{n,p} \text{ is connected}) \to e^{-e^{-c}}.
\]

and use Theorem 1.4 to translate to \(G_m \) and then use (1.7) and monotonicity for \(c_n \to \pm \infty \).

Let \(X_k = X_{k,n} \) be the number of components with \(k \) vertices in \(G_{n,p} \) and consider the complement of the event that \(G_{n,p} \) is connected. Then

\[
\Pr(G_{n,p} \text{ is not connected})
\]
\[P \left(\bigcup_{k=1}^{n/2} (G_{n,p} \text{ has a component of order } k) \right) =
\]
\[P \left(\bigcup_{k=1}^{n/2} \{ X_k > 0 \} \right). \]

Note that \(X_1 \) counts here isolated vertices and therefore

\[P(X_1 > 0) \leq P(G_{n,p} \text{ is not connected}) \leq P(X_1 > 0) + \sum_{k=2}^{n/2} P(X_k > 0). \]

Now

\[\sum_{k=2}^{n/2} P(X_k > 0) \leq \sum_{k=2}^{n/2} \mathbb{E} X_k \leq \sum_{k=2}^{n/2} \binom{n}{k} k^{-2} p^{k-1} (1-p)^{k(n-k)} = \sum_{k=2}^{n/2} u_k. \]

Now, for \(2 \leq k \leq 10 \),

\[u_k \leq e^k n^k \left(\frac{\log n + c}{n} \right)^{k-1} e^{-k(n-10) \log n/c} \leq (1 + o(1)) e^{k(1-c)} \left(\frac{\log n}{n} \right)^{k-1}, \]

and for \(k > 10 \)

\[u_k \leq \left(\frac{ne}{k} \right)^k k^{-2} \left(\frac{\log n + c}{n} \right)^{k-1} e^{-k(\log n+c)/2} \leq n \left(\frac{e^{1-c/2} + o(1)}{n^{1/2}} \log n \right)^k. \]

So

\[\sum_{k=2}^{n/2} u_k \leq (1 + o(1)) \frac{e^{-c} \log n}{n} + \sum_{k=10}^{n/2} n^{1 + o(1) - k/2} \leq O \left(n^{\omega(1)} \right). \]

It follows that

\[P(G_{n,p} \text{ is connected}) = P(X_1 = 0) + o(1). \]
4.1. CONNECTIVITY

But we already know (see Theorem 3.1) that for \(p = (\log n + c)/n \) the number of isolated vertices in \(G_{n,p} \) has an asymptotically Poisson distribution and therefore, as in (3.4)

\[
\lim_{n \to \infty} \mathbb{P}(X_1 = 0) = e^{-e^{-c}},
\]

and so the theorem follows. \(\square \)

It is possible to tweak the proof of Theorem 4.1 to give a more precise result stating that a random graph becomes connected exactly at the moment when the last isolated vertex disappears.

Theorem 4.2. Consider the random graph process \(\{G_m\} \). Let

\[
m_1^* = \min\{m : \delta(G_m) \geq 1\},
\]

\[
m_c^* = \min\{m : G_m \text{ is connected}\}.
\]

Then, w.h.p.,

\[
m_1^* = m_c^*.
\]

Proof. Let

\[
m_\pm = \frac{1}{2}n \log n \pm \frac{1}{2}n \log \log n,
\]

and

\[
p_\pm = \frac{m_\pm}{N} \approx \frac{\log n \pm \log \log n}{n}.
\]

We first show that w.h.p.

(i) \(G_{m_-} \) consists of a giant connected component plus a set \(V_1 \) of at most \(2 \log n \) isolated vertices,

(ii) \(G_{m_+} \) is connected.

Assume (i) and (ii). It follows that w.h.p.

\[
m_- \leq m_1^* \leq m_c^* \leq m_+.
\]

Since \(G_{m_-} \) consists of a connected component and a set of isolated vertices \(V_1 \), to create \(G_{m_+} \) we add \(m_+ - m_- \) random edges. Note that \(m_1^* = m_c^* \) if none of these edges is contained in \(V_1 \). Thus

\[
\mathbb{P}(m_1^* < m_c^*) \leq o(1) + (m_+ - m_-) \frac{1}{N - m_+} \frac{|V_1|^2}{N - m_+}
\]
\[
\leq o(1) + \frac{2n((\log n)^2) \log \log n}{\frac{1}{2}n^2 - O(n \log n)}
= o(1).
\]

Thus to prove the theorem, it is sufficient to verify (i) and (ii).

Let
\[
p_\min = \frac{m_\min}{N} \approx \frac{\log n - \log \log n}{n},
\]
and let \(X_1\) be the number of isolated vertices in \(G_{n,p_\min}\). Then
\[
\mathbb{E}X_1 = n(1 - p_\min)^{n-1}
\approx ne^{-np_\min}
\approx \log n.
\]

Moreover
\[
\mathbb{E}X_1^2 = \mathbb{E}X_1 + n(n - 1)(1 - p_\min)^{2n-3}
\leq \mathbb{E}X_1 + (\mathbb{E}X_1)^2(1 - p_\min)^{-1}.
\]

So,
\[
\text{Var}X_1 \leq \mathbb{E}X_1 + 2(\mathbb{E}X_1)^2p_\min,
\]
and
\[
\mathbb{P}(X_1 \geq 2 \log n) = \mathbb{P}(|X_1 - \mathbb{E}X_1| \geq (1 + o(1))\mathbb{E}X_1)
\leq (1 + o(1)) \left(\frac{1}{\mathbb{E}X_1} + 2p_\min \right)
= o(1).
\]

Having at least \(2 \log n\) isolated vertices is a monotone property and so w.h.p. \(G_{m_\min}\) has less than \(2 \log n\) isolated vertices.

To show that the rest of \(G_m\) is a single connected component we let \(X_k, 2 \leq k \leq n/2\) be the number of components with \(k\) vertices in \(G_{p_\min}\). Repeating the calculations for \(p_\min\) from the proof of Theorem 4.1, we have
\[
\mathbb{E} \left(\sum_{k=2}^{n/2} X_k \right) = O \left(n^{o(1)} - 1 \right).
\]

Let
\[
\mathcal{E} = \{ \exists \text{ component of order } 2 \leq k \leq n/2 \}.
\]
Then
\[
\mathbb{P}(G_{m+} \in \mathcal{E}) \leq O(\sqrt{n}) \mathbb{P}(G_{n,p} \in \mathcal{E}) = o(1),
\]
and this completes the proof of (i).

To prove (ii) (that \(G_{m+}\) is connected w.h.p.) we note that (ii) follows from the fact that \(G_{n,p}\) is connected w.h.p. for \(np - \log n \to \infty\) (see Theorem 4.1). By implication \(G_m\) is connected w.h.p. if \(\frac{nm}{N} - \log n \to \infty\). But,
\[
\frac{nm}{N} = \frac{n(\frac{1}{2}n \log n + \frac{1}{2}n \log \log n)}{N}
\approx \log n + \log \log n.
\]

4.2 \(k\)-connectivity

In this section we show that the threshold for the existence of vertices of degree \(k\) is also the threshold for the \(k\)-connectivity of a random graph. Recall that a graph \(G\) is \(k\)-connected if the removal of at most \(k-1\) vertices of \(G\) does not disconnect it. In the light of the previous result it should be expected that a random graph becomes \(k\)-connected as soon as the last vertex of degree \(k-1\) disappears. This is true and follows from the results of Erdős and Rényi [288]. Here is a weaker statement.

Theorem 4.3. Let \(m = \frac{1}{2}n(\log n + (k-1) \log \log n + c_n), \ k = 1, 2, \ldots\) Then
\[
\lim_{n \to \infty} \mathbb{P}(G_m \text{ is } k\text{-connected}) = \begin{cases}
0 & \text{if } c_n \to -\infty \\
\frac{e^{\frac{-c}{k-1}}}{(k-1)!} & \text{if } c_n \to c \\
1 & \text{if } c_n \to \infty.
\end{cases}
\]

Proof. Let
\[
p = \frac{\log n + (k-1) \log \log n + c}{n}.
\]
We will prove that, in \(G_{n,p}\), with edge probability \(p\) above,

(i) the expected number of vertices of degree at most \(k-2\) is \(o(1)\),

(ii) the expected number of vertices of degree \(k-1\) is, approximately \(\frac{e^{-c}}{(k-1)!}\).
CHAPTER 4. CONNECTIVITY

We have

\[E(\text{number of vertices of degree } t \leq k-1) = n \binom{n-1}{t} p^t (1-p)^{n-1-t} \approx \frac{n^t (\log n)^t}{t!} \frac{e^{-c}}{n(\log n)^{k-1}} \]

and (i) and (ii) follow immediately.

The distribution of the number of vertices of degree \(k-1 \) is asymptotically Poisson, as may be verified by the method of moments. (See Exercise 3.3.4).

We now show that, if \(A(S, T) = \{ T \text{ is a component of } G_n, p \} \backslash S \) then

\[\mathbb{P}(\exists S, T, |S| < k, 2 \leq |T| \leq \frac{1}{2}(n - |S|) : \mathcal{A}(S, T)) = o(1). \]

This implies that if \(\delta(G_n, p) \geq k \) then \(G_n, p \) is \(k \)-connected and Theorem 4.3 follows. \(|T| \geq 2 \) because if \(T = \{ v \} \) then \(v \) has degree less than \(k \).

We can assume that \(S \) is minimal and then \(N(T) = S \) and denote \(s = |S|, t = |T| \). \(T \) is connected, and so it contains a tree with \(t - 1 \) edges. Also each vertex of \(S \) is incident with an edge from \(S \) to \(T \) and so there are at least \(s \) edges between \(S \) and \(T \). Thus, if \(p = (1 + o(1)) \frac{\log n}{n} \) then

\[
\mathbb{P}(\exists S, T) \leq o(1) + \\
\sum_{s=1}^{k-1} \sum_{t=2}^{(n-s)/2} \binom{n}{s} \binom{n}{t} \left(\frac{n}{s} \right)^{t-2} p^{t-1} \left(\frac{s!}{s} \right) p^s (1-p)^{t(n-s-t)} \\
\leq p^{-1} \sum_{s=1}^{k-1} \sum_{t=2}^{(n-s)/2} \left(\frac{ne}{s} \cdot (te) \cdot p \cdot e^p \right)^s \left(ne \cdot p \cdot e^{-n(t-p)} \right)^t \\
\leq p^{-1} \sum_{s=1}^{k-1} \sum_{t=2}^{(n-s)/2} A^t B^s \quad (4.1)
\]

where

\[
A = nepe^{-(n-t)p} = e^{1+o(1)} n^{-1+(t+o(t))/n \log n} \\
B = ne^2 tpe^p = e^{2+o(1)} t n^{(t+o(t))/n \log n}.
\]

Now if \(2 \leq t \leq \log n \) then \(A = n^{-1+o(1)} \) and \(B = O((\log n)^2) \). On the other hand, if \(t > \log n \) then we can use \(A \leq n^{-1/3} \) and \(B \leq n^2 \) to see that the sum in (4.1) is \(o(1) \). \(\square \)
4.3 Exercises

4.3.1 Let \(m = m_1^* \) be as in Theorem 4.2 and let \(e_m = (u,v) \) where \(u \) has degree one. Let \(0 < \epsilon < 1 \) be a positive constant. Show that w.h.p. there is no triangle containing vertex \(v \).

4.3.2 Let \(m = m_1^* \) as in Theorem 4.2 and let \(e_m = (u,v) \) where \(u \) has degree one. Let \(0 < \epsilon < 1 \) be a positive constant. Show that w.h.p. the degree of \(v \) in \(G_m \) is at least \(\epsilon \log n \).

4.3.3 Suppose that \(n \log n \ll m \leq n^{3/2} \) and let \(d = 2m/n \). Let \(S_i(v) \) be the set of vertices at distance \(i \) from vertex \(v \). Show that w.h.p. \(|S_i(v)| \geq \left(\frac{d}{2} \right)^i \) for all \(v \in [n] \) and \(1 \leq i \leq 2 \log n \).

4.3.4 Suppose that \(m \gg n \log n \) and let \(d = m/n \). Using the previous question, show that w.h.p. there are at least \(d/2 \) internally vertex disjoint paths of length at most \(4 \log n \) between any pair of vertices in \(G_{nm} \).

4.3.5 Suppose that \(m \gg n \log n \) and let \(d = m/n \). Suppose that we randomly color the edges of \(G_{nm} \) with \(q \) colors where \(q \gg (\log n)^2 \). Show that w.h.p. there is a rainbow path between every pair of vertices. (A path is rainbow if each of its edges has a different color).

4.3.6 Let \(C_{k,k+\ell} \) denote the number of connected graphs with vertex set \([k]\) and \(k+\ell \) edges where \(\ell \to \infty \) with \(k \) and \(\ell = o(k) \). Use the inequality

\[
\binom{n}{k} C_{k,k+\ell} p^{k+\ell} (1-p)^{k-\ell+k(n-k)} \leq \frac{n}{k}
\]

and a careful choice of \(p, n \) to prove (see Łuczak [556]) that

\[
C_{k,k+\ell} \leq \sqrt{\frac{k^3}{\ell}} \left(\frac{e + O(\sqrt{\ell/k})}{12\ell} \right)^{\ell/2} k^{k+(3\ell-1)/2}.
\]

4.3.7 Let \(G_{n,n,p} \) be the random bipartite graph with vertex bi-partition \(V = (A,B) \), \(A = [1,n], B = [n+1,2n] \) in which each of the \(n^2 \) possible edges appears independently with probability \(p \). Let \(p = \frac{\log n + \omega}{n} \), where \(\omega \to \infty \). Show that w.h.p. \(G_{n,n,p} \) is connected.
4.4 Notes

Disjoint paths

Being k-connected means that we can find disjoint paths between any two sets of vertices $A = \{a_1, a_2, \ldots, a_k\}$ and $B = \{b_1, b_2, \ldots, b_k\}$. In this statement there is no control over the endpoints of the paths i.e. we cannot specify a path from a_i to b_i for $i = 1, 2, \ldots, k$. Specifying the endpoints leads to the notion of linkedness. Broder, Frieze, Suen and Upfal [169] proved that when we are above the connectivity threshold, we can w.h.p. link any two k-sets by edge disjoint paths, provided some natural restrictions apply. The result is optimal up to constants. Broder, Frieze, Suen and Upfal [168] considered the case of vertex disjoint paths. Frieze and Zhao [367] considered the edge disjoint path version in random regular graphs.

Rainbow Connection

The rainbow connection $rc(G)$ of a connected graph G is the minimum number of colors needed to color the edges of G so that there is a rainbow path between every pair of vertices. Caro, Lev, Roditty, Tuza and Yuster [177] proved that $p = \sqrt{\log n/n}$ is the sharp threshold for the property $rc(G) \leq 2$. This was sharpened to a hitting time result by Heckel and Riordan [418]. He and Liang [417] further studied the rainbow connection of random graphs. Specifically, they obtain a threshold for the property $rc(G) \leq d$ where d is constant. Frieze and Tsourakakis [366] studied the rainbow connection of $G = G(n, p)$ at the connectivity threshold $p = \frac{\log n + \omega}{n}$ where $\omega \to \infty$ and $\omega = o(\log n)$. They showed that w.h.p. $rc(G)$ is asymptotically equal to $\max\{diam(G), Z_1(G)\}$, where Z_1 is the number of vertices of degree one.
Chapter 5

Small Subgraphs

Graph theory is replete with theorems stating conditions for the existence of a subgraph H in a larger graph G. For example Turán’s theorem [738] states that a graph with n vertices and more than $(1 - \frac{1}{r}) \frac{n^2}{2}$ edges must contain a copy of K_{r+1}. In this chapter we see instead how many random edges are required to have a particular fixed size subgraph w.h.p. In addition, we will consider the distribution of the number of copies.

5.1 Thresholds

In this section we will look for a threshold for the appearance of any fixed graph H, with $v_H = |V(H)|$ vertices and $e_H = |E(H)|$ edges. The property that a random graph contains H as a subgraph is clearly monotone increasing. It is also transparent that "denser" graphs appear in a random graph "later" than "sparser" ones. More precisely, denote by

\[d(H) = \frac{e_H}{v_H}, \]

(5.1)

the density of a graph H. Notice that $2d(H)$ is the average vertex degree in H. We begin with the analysis of the asymptotic behavior of the expected number of copies of H in the random graph $\mathbb{G}_{n,p}$.

Lemma 5.1. Let X_H denote the number of copies of H in $\mathbb{G}_{n,p}$.

\[\mathbb{E}X_H = \binom{n}{v_H} \frac{v_H!}{\text{aut}(H)}^e p^{e_H}, \]

where $\text{aut}(H)$ is the number of automorphisms of H.

75
Proof. The complete graph on \(n \) vertices \(K_n \) contains \(\binom{n}{v_H} a_H \) distinct copies of \(H \), where \(a_H \) is the number of copies of \(H \) in \(K_{v_H} \). Thus
\[
\mathbb{E} X_H = \binom{n}{v_H} a_H p^{e_H},
\]
and all we need to show is that
\[
a_H \times \text{aut}(H) = v_H !.
\]
Each permutation \(\sigma \) of \([v_H] = \{1, 2, \ldots, v_H \} \) defines a unique copy of \(H \) as follows: A copy of \(H \) corresponds to a set of \(e_H \) edges of \(K_{v_H} \). The copy \(H_\sigma \) corresponding to \(\sigma \) has edges \(\{(x_\sigma(i), y_\sigma(i)) : 1 \leq i \leq e_H\} \), where \(\{(x_j, y_j) : 1 \leq j \leq e_H\} \) is some fixed copy of \(H \) in \(K_{v_H} \). But \(H_\sigma = H_\tau \sigma \) if and only if for each \(i \) there is \(j \) such that \((x_\tau \sigma(i), y_\tau \sigma(i)) = (x_{\sigma(j)}, y_{\sigma(j)}) \) i.e., if \(\tau \) is an automorphism of \(H \). \(\square \)

Theorem 5.2. Let \(H \) be a fixed graph with \(e_H > 0 \). Suppose \(p = o \left(n^{-1/d(H)} \right) \). Then w.h.p. \(\mathbb{G}_{n,p} \) contains no copies of \(H \).

Proof. Suppose that \(p = \omega^{-1} n^{-1/d(H)} \) where \(\omega = \omega(n) \to \infty \) as \(n \to \infty \). Then
\[
\mathbb{E} X_H = \binom{n}{v_H} \frac{v_H !}{\text{aut}(H)} p^{e_H} \leq n^{v_H} \omega^{-e_H} n^{-e_H/d(H)} = \omega^{-e_H}.
\]
Thus
\[
\mathbb{P}(X_H > 0) \leq \mathbb{E} X_H \to 0 \text{ as } n \to \infty.
\]
\(\square \)

From our previous experience one would expect that when \(\mathbb{E} X_H \to \infty \) as \(n \to \infty \) the random graph \(\mathbb{G}_{n,p} \) would contain \(H \) as a subgraph w.h.p. Let us check whether such a phenomenon holds also in this case. So consider the case when \(pn^{1/d(H)} \to \infty \), i.e. where \(p = \omega n^{-1/d(H)} \) and \(\omega = \omega(n) \to \infty \) as \(n \to \infty \). Then for some constant \(c_H > 0 \)
\[
\mathbb{E} X_H \geq c_H n^{v_H} \omega^{e_H} n^{-e_H/d(H)} = c_H \omega^{e_H} \to \infty.
\]
However, as we will see, this is not always enough for \(\mathbb{G}_{n,p} \) to contain a copy of a given graph \(H \) w.h.p. To see this, consider the graph \(H \) given in Figure 5.1 below.
5.1. THRESHOLDS

Here \(v_H = 6 \) and \(e_H = 8 \). Let \(p = n^{-5/7} \). Now \(1/d(H) = 6/8 > 5/7 \) and so

\[
\mathbb{E}X_H \approx c_H n^{6-8 \times 5/7} \to \infty.
\]

On the other hand, if \(\hat{H} = K_4 \) then

\[
\mathbb{E}X_{\hat{H}} \leq n^{4-6 \times 5/7} \to 0,
\]

and so w.h.p. there are no copies of \(\hat{H} \) and hence no copies of \(H \).

The reason for such “strange” behavior is quite simple. Our graph \(H \) is in fact not balanced, since its overall density is smaller than the density of one of its subgraphs, i.e., of \(\hat{H} = K_4 \). So we need to introduce another density characteristic of graphs, namely the maximum subgraph density defined as follows:

\[
m(H) = \max \{ d(K) : K \subseteq H \}. \tag{5.2}
\]

A graph \(H \) is balanced if \(m(H) = d(H) \). It is strictly balanced if \(d(H) > d(K) \) for all proper subgraphs \(K \subseteq H \).

Now we are ready to determine the threshold for the existence of a copy of \(H \) in \(\mathbb{G}_{n,p} \). Erdős and Rényi [287] proved this result for balanced graphs. The threshold for any graph \(H \) was first found by Bollobás in [127] and an alternative, deterministic argument to derive the threshold was presented in [488]. A simple proof, given here, is due to Ruciński and Vince [686].

Theorem 5.3. Let \(H \) be a fixed graph with \(e_H > 0 \). Then

\[
\lim_{n \to \infty} \mathbb{P}(H \subseteq \mathbb{G}_{n,p}) = \begin{cases}
0 & \text{if } pn^{1/m(H)} \to 0 \\
1 & \text{if } pn^{1/m(H)} \to \infty.
\end{cases}
\]
Proof. Let \(\omega = \omega(n) \to \infty \) as \(n \to \infty \). The first statement follows from Theorem 5.2. Notice, that if we choose \(\hat{H} \) to be a subgraph of \(H \) with \(d(\hat{H}) = m(H) \) (such a subgraph always exists since we do not exclude \(\hat{H} = H \)), then \(p = \omega^{-1}n^{-1/d(\hat{H})} \) implies that \(\mathbb{E}X_{\hat{H}} \to 0 \). Therefore, w.h.p. \(\mathbb{G}_{n,p} \) contains no copies of \(\hat{H} \), and so it does not contain \(H \) as well.

To prove the second statement we use the Second Moment Method. Suppose now that \(p = \omega n^{-1/m(H)} \). Denote by \(H_1, H_2, \ldots, H_t \) all copies of \(H \) in the complete graph on \(\{1, 2, \ldots, n\} \). Note that

\[
t = \binom{n}{v_H} \frac{v_H!}{aut(H)},
\]

where \(aut(H) \) is the number of automorphisms of \(H \). For \(i = 1, 2, \ldots, t \) let

\[
I_i = \begin{cases}
1 & \text{if } H_i \subseteq \mathbb{G}_{n,p}, \\
0 & \text{otherwise}.
\end{cases}
\]

Let \(X_H = \sum_{i=1}^{t} I_i \). Then

\[
\text{Var}X_H = \sum_{i=1}^{t} \sum_{j=1}^{t} \text{Cov}(I_i, I_j) = \sum_{i=1}^{t} \sum_{j=1}^{t} (\mathbb{E}(I_i I_j) - (\mathbb{E}I_i)(\mathbb{E}I_j))
\]

\[
= \sum_{i=1}^{t} \sum_{j=1}^{t} \left(\mathbb{P}(I_i = 1, I_j = 1) - \mathbb{P}(I_i = 1) \mathbb{P}(I_j = 1) \right)
\]

\[
= \sum_{i=1}^{t} \sum_{j=1}^{t} \left(\mathbb{P}(I_i = 1, I_j = 1) - p^{2v_H} \right).
\]

Observe that random variables \(I_i \) and \(I_j \) are independent iff \(H_i \) and \(H_j \) are edge disjoint. In this case \(\text{Cov}(I_i, I_j) = 0 \) and such terms vanish from the above summation. Therefore we consider only pairs \((H_i, H_j) \) with \(H_i \cap H_j = K \), for some graph \(K \) with \(e_K > 0 \). So,

\[
\text{Var}X_H = O\left(\sum_{K \subseteq H, e_K > 0} n^{2v_H - e_K} \left(p^{2e_H - e_K} - p^{2e_H} \right) \right)
\]

\[
= O\left(n^{2v_H} p^{2e_H} \sum_{K \subseteq H, e_K > 0} n^{-v_K} p^{-e_K} \right).
\]

On the other hand,

\[
\mathbb{E}X_H = \binom{n}{v_H} \frac{v_H!}{aut(H)} p^{e_H} = \Omega(n^{v_H} p^{e_H}),
\]
5.2. ASYMPTOTIC DISTRIBUTIONS

thus, by Lemma 21.4,

\[
P(X_H = 0) \leq \frac{\text{Var} X_H}{(\mathbb{E} X_H)^2} = O \left(\sum_{K \subseteq H, e_K > 0} n^{-v_K} p^{-e_K} \right)
\]

\[
= O \left(\sum_{K \subseteq H, e_K > 0} \left(\frac{1}{e_K} \frac{1}{\omega n^{1/d(K) - 1/m(H)}} \right) \right)
\]

\[
= o(1).
\]

Hence w.h.p., the random graph $G_{n,p}$ contains a copy of the subgraph H when $pn^{1/m(H)} \to \infty$.

\[\square\]

5.2 Asymptotic Distributions

We will now study the asymptotic distribution of the number X_H of copies of a fixed graph H in $G_{n,p}$. We start at the threshold, so we assume that $np^{m(H)} \to c$, $c > 0$, where $m(H)$ denotes as before, the maximum subgraph density of H.

Now, if H is not balanced, i.e., its maximum subgraph density exceeds the density of H, then $\mathbb{E} X_H \to \infty$ as $n \to \infty$, and one can show that there is a sequence of numbers a_n, increasing with n, such that the asymptotic distribution of X_H/a_n coincides with the distribution of a random variable counting the number of copies of a subgraph K of H for which $m(H) = d(K)$. Note that K is itself a balanced graph. However the asymptotic distribution of balanced graphs on the threshold, although computable, cannot be given in a closed form. The situation changes dramatically if we assume that the graph H whose copies in $G_{n,p}$ we want to count is strictly balanced, i.e., when for every proper subgraph K of H, $d(K) < d(H) = m(H)$.

The following result is due to Bollobás [127], and Karoński and Ruciński [487].

Theorem 5.4. If H is a strictly balanced graph and $np^{m(H)} \to c$, $c > 0$, then $X_H \xrightarrow{D} \text{Po}(\lambda)$, as $n \to \infty$, where $\lambda = c^{v_H/\text{aut}(H)}$.

Proof. Denote, as before, by H_1, H_2, \ldots, H_t all copies of H in the complete graph on $\{1, 2, \ldots, n\}$. For $i = 1, 2, \ldots, t$, let

\[
I_{H_i} = \begin{cases}
1 & \text{if } H_i \subseteq G_{n,p} \\
0 & \text{otherwise}
\end{cases}
\]

Then $X_H = \sum_{i=1}^t I_{H_i}$ and the kth factorial moment of X_H, $k = 1, 2, \ldots$,

\[
\mathbb{E}(X_H)_k = \mathbb{E}[X_H(X_H - 1) \cdots (X_H - k + 1)],
\]
can be written as
\[
\mathbb{E}(X_H)_k = \sum_{i_1, i_2, \ldots, i_k} \mathbb{P}(I_{H_{i_1}} = 1, I_{H_{i_2}} = 1, \ldots, I_{H_{i_k}} = 1)
\]
\[= D_k + \overline{D}_k,
\]
where the summation is taken over all \(k\)-element sequences of distinct indices \(i_j\) from \(\{1, 2, \ldots, t\}\), while \(D_k\) and \(\overline{D}_k\) denote the partial sums taken over all (ordered) \(k\) tuples of copies of \(H\) which are, respectively, pairwise vertex disjoint (\(D_k\)) and not all pairwise vertex disjoint (\(\overline{D}_k\)). Now, observe that
\[
D_k = \sum_{i_1, i_2, \ldots, i_k} \mathbb{P}(I_{H_{i_1}} = 1) \mathbb{P}(I_{H_{i_2}} = 1) \cdots \mathbb{P}(I_{H_{i_k}} = 1)
\]
\[= \left(\frac{n}{v_H, v_H, \ldots, v_H}\right)^k (a_Hp^{e_H})^k
\]
\[\approx (\mathbb{E}X_H)^k.
\]
So assuming that \(np^{d(H)} = np^{m(H)} \rightarrow c\) as \(n \rightarrow \infty\),
\[
D_k \approx \left(\frac{e_{v_H}}{\text{aut}(H)}\right)^k.
\]
(5.4)

On the other hand we will show that
\[
\overline{D}_k \rightarrow 0\ as\ n \rightarrow \infty.
\]
(5.5)

Consider the family \(\mathcal{F}_k\) of all (mutually non-isomorphic) graphs obtained by taking unions of \(k\) not all pairwise vertex disjoint copies of the graph \(H\). Suppose \(F \in \mathcal{F}_k\) has \(v_F\) vertices (\(v_H \leq v_F \leq kv_H - 1\)) and \(e_F\) edges, and let \(d(F) = e_F/v_F\) be its density. To prove that (5.5) holds we need the following Lemma.

Lemma 5.5. If \(F \in \mathcal{F}_k\) then \(d(F) > m(H)\).

Proof. Define
\[
f_F = m(H)v_F - e_F.
\]
(5.6)
We will show (by induction on \(k \geq 2\)) that \(f_F < 0\) for all \(F \in \mathcal{F}_k\). First note that \(f_H = 0\) and that \(f_K > 0\) for every proper subgraph \(K\) of \(H\), since \(H\) is strictly balanced. Notice also that the function \(f\) is modular, i.e., for any two graphs \(F_1\) and \(F_2\),
\[
f_{F_1 \cup F_2} = f_{F_1} + f_{F_2} - f_{F_1 \cap F_2}.
\]
(5.7)
Assume that the copies of \(H\) composing \(F\) are numbered in such a way that \(H_{i_1} \cap H_{i_2} \neq \emptyset\). If \(F = H_{i_1} \cup H_{i_2}\) then (5.6) and \(f_{H_{i_1}} = f_{H_{i_2}} = 0\) implies
\[
f_{H_{i_1} \cup H_{i_2}} = -f_{H_{i_1} \cap H_{i_2}} < 0.
\]
For arbitrary \(k \geq 3 \), let \(F' = \bigcup_{j=1}^{k-1} H_{i_j} \) and \(K = F' \cap H_{i_k} \). Then by the inductive assumption we have \(f_{F'} < 0 \) while \(f_K \geq 0 \) since \(K \) is a subgraph of \(H \) (in extreme cases \(K \) can be \(H \) itself or an empty graph). Therefore
\[
f_F = f_{F'} + f_{H_{i_k}} - f_K = f_{F'} - f_K < 0,
\]
which completes the induction and implies that \(d(F) > m(H) \). \(\square \)

Let \(C_F \) be the number of sequences \(H_{i_1},H_{i_2},\ldots,H_{i_k} \) of \(k \) distinct copies of \(H \), such that
\[
V\left(\bigcup_{j=1}^{k} H_{i_j} \right) = \{1,2,\ldots,v_F\} \quad \text{and} \quad \bigcup_{j=1}^{k} H_{i_j} \cong F.
\]
Then, by Lemma 5.5,
\[
\mathcal{D}_k = \sum_{F \in \mathcal{F}_k} \binom{n}{v_F} C_F p^{v_F} = O(n^{v_F} p^{v_F})
\]
\[
= O\left(np^{d(F)} v(F) \right) = o(1),
\]
and so (5.5) holds.

Summarizing,
\[
\mathbb{E}(X_H)_k \approx \left(\frac{c^{v_H}}{\text{aut}(H)} \right)^k,
\]
and the theorem follows by the Method of Moments (see Theorem 21.11). \(\square \)

The following theorem describes the asymptotic behavior of the number of copies of a graph \(H \) in \(G_{n,p} \) past the threshold for the existence of a copy of \(H \). It holds regardless of whether or not \(H \) is balanced or strictly balanced. We state the theorem but we do not supply a proof (see Ruciński [685]).

Theorem 5.6. Let \(H \) be a fixed (not-empty) graph. If \(np^{m(H)} \to \infty \) and \(n^2(1-p) \to \infty \), then \((X_H - \mathbb{E}X_H) / (\text{Var}X_H)^{1/2} \overset{D}{\to} \mathcal{N}(0,1) \), as \(n \to \infty \)

5.3 Exercises

5.3.1 Draw a graph which is: (a) balanced but not strictly balanced, (b) unbalanced.

5.3.2 Are the small graphs listed below, balanced or unbalanced: (a) a tree, (b) a cycle, (c) a complete graph, (d) a regular graph, (d) the Petersen graph, (e)
a graph composed of a complete graph on 4 vertices and a triangle, sharing exactly one vertex.

5.3.3 Determine (directly, not from the statement of Theorem 5.3) thresholds \hat{p} for $\mathbb{G}_{n,p} \supseteq G$, for graphs listed in exercise (ii). Do the same for the thresholds of G in $\mathbb{G}_{n,m}$.

5.3.4 For a graph G a balanced extension of G is a graph F, such that $G \subseteq F$ and $m(F) = d(F) = m(G)$. Applying the result of Győri, Rothschild and Ruciński [405] that every graph has a balanced extension, deduce Bollobás’s result (Theorem 5.3) from that of Erdős and Rényi (threshold for balanced graphs).

5.3.5 Let F be a graph obtained by taking a union of triangles such that not every pair of them is vertex-disjoint, Show (by induction) that $e_F > v_F$.

5.3.6 Let f_F be a graph function defined as

$$f_F = a v_F + b e_F,$$

where a, b are constants, while v_F and e_F denote, respectively, the number of vertices and edges of a graph F. Show that the function f_F is modular.

5.3.7 Determine (directly, using exercise (v)) when the random variable counting the number of copies of a triangle in $\mathbb{G}_{n,p}$ has asymptotically the Poisson distribution.

5.3.8 Let X_e be the number of isolated edges (edge-components) in $\mathbb{G}_{n,p}$ and let

$$\omega(n) = 2pn - \log n - \log \log n.$$

Prove that

$$\mathbb{P}(X_e > 0) \to \begin{cases} 0 & \text{if } p \ll n^{-2} \text{ or } \omega(n) \to \infty \\ 1 & \text{if } p \gg n^{-2} \text{ and } \omega(n) \to \infty. \end{cases}$$

5.3.9 Determine when the random variable X_e defined in exercise (vii) has asymptotically the Poisson distribution.

5.3.10 Use Janson’s inequality, Theorem 22.13, to prove (5.8) below.
5.4 Notes

Distributional Questions

In 1982 Barbour [59] adapted the Stein–Chen technique for obtaining estimates of the rate of convergence to the Poisson and the normal distribution (see Section 21.3 or [60]) to random graphs. The method was next applied by Karronski and Ruciński [489] to prove the convergence results for semi-induced graph properties of random graphs.

Barbour, Karronski and Ruciński [62] used the original Stein’s method for normal approximation to prove a general central limit theorem for the wide class of decomposable random variables. Their result is illustrated by a variety of applications to random graphs. For example, one can deduce from it the asymptotic distribution of the number of k-vertex tree-components in $G_{n,p}$, as well as of the number of vertices of fixed degree d in $G_{n,p}$ (in fact, Theorem 3.2 is a direct consequence of the last result).

Barbour, Janson, Karronski and Ruciński [61] studied the number X_k of maximal complete subgraphs (cliques) of a given fixed size $k \geq 2$ in the random graph $G_{n,p}$. They show that if the edge probability $p = p(n)$ is such that the $E X_k$ tends to a finite constant λ as $n \to \infty$, then X_k tends in distribution to the Poisson random variable with the expectation λ. When its expectation tends to infinity, X_k converges in distribution to a random variable which is normally distributed. Poisson convergence was proved using Stein–Chen method, while for the proof of the normal part, different methods for different ranges of p were used such as the first projection method or martingale limit theorem (for details of these methods see Chapter 6 of Janson, Łuczak and Ruciński [449]).

Svante Janson in an a sequence of papers [432],[433], [434], [437] (see also [450]) developed or accommodated various methods to establish asymptotic normality of various numerical random graph characteristics. In particular, in [433] he established the normal convergence by higher semi-invariants of sums of dependent random variables with direct applications to random graphs. In [434] he proved a functional limit theorem for subgraph count statistics in random graphs (see also [450]).

In 1997 Janson [432] answered the question posed by Paul Erdős: What is the length Y_n of the first cycle appearing in the random graph process G_m? He proved that

$$
\lim_{n \to \infty} P(Y_n = j) = \frac{1}{2} \int_0^1 t^{j-1} e^{t/2} + t^2/4 \sqrt{1-t} \, dt, \text{ for every } j \geq 3.
$$
CHAPTER 5. SMALL SUBGRAPHS

Tails of Subgraph Counts in $\mathbb{G}_{n,p}$.

Often one needs exponentially small bounds for the probability that X_H deviates from its expectation. In 1990 Janson [435] showed that for fixed $\varepsilon \in (0, 1)$,

\[\mathbb{P}(X_H \leq (1 - \varepsilon)\mathbb{E}X_H) = \exp\{-\Theta(\Phi_H)\}, \quad (5.8) \]

where $\Phi_H = \min_{K \subseteq H : x_K > 0} n^{x_K} p^{x_K}$.

The upper tail $\mathbb{P}(X_H \geq (1 + \varepsilon)\mathbb{E}X_H)$ proved to be much more elusive. To simplify the results, let us assume that ε is fixed, and p is above the existence threshold, that is, $p \gg n^{-1/m(H)}$, but small enough to make sure that $(1 + \varepsilon)\mathbb{E}X_H$ is at most the number of copies of H in K_n.

Given a graph G, let Δ_G be the maximum degree of G and α^*_G the fractional independence number of G, defined as the maximum of $\sum_{v \in V(G)} w(v)$ over all functions $w : V(G) \to [0, 1]$ satisfying $w(u) + w(v) \leq 1$ for every $uv \in E(G)$.

In 2004, Janson, Oleszkiewicz and Ruciński [447] proved that

\[\exp\{-O(M_H \log(1/p))\} \leq \mathbb{P}(X_H \geq (1 + \varepsilon)\mathbb{E}X_H) \leq \exp\{-\Omega(M_H)\}, \quad (5.9) \]

where the implicit constants in (5.9) may depend on ε, and

\[M_H = \begin{cases}
\min_{K \subseteq H}(n^{x_K} p^{x_K})^{1/\alpha^*_K}, & \text{if } n^{-1/m(H)} \leq p \leq n^{-1/\Delta_H}, \\
2^p n^{\Delta_H}, & \text{if } p \geq n^{-1/\Delta_H}.
\end{cases} \]

For example, if H is k-regular, then $M_H = n^2 p^k$ for every p.

The logarithms of the upper and lower bounds in (5.9) differ by a multiplicative factor $\log(1/p)$. In 2011, DeMarco and Kahn formulated the following plausible conjecture (stated in [243] for $\varepsilon = 1$).

Conjecture: For any H and $\varepsilon > 0$,

\[\mathbb{P}(X_H \geq (1 + \varepsilon)\mathbb{E}X_H) = \exp\{-\Theta(\min\{\Phi_H, M_H \log(1/p)\})\}. \quad (5.10) \]

A careful look reveals that, when $\Delta_H \geq 2$, the minimum in (5.10) is only attained by Φ_H in a tiny range above the existence threshold (when $p \leq n^{-1/m(H)}(\log n)^{\alpha_H}$ for some $\alpha_H > 0$). In 2018, Šileikis and Warnke [715] found counterexample-graphs (all balanced but not strictly balanced) which violate (5.10) close to the threshold, and conjectured that (5.10) should hold under the stronger assumption $p \geq n^{-1/\Delta_H + \delta}$.

DeMarco and Kahn [243] proved (5.10) for cliques $H = K_k$, $k = 3, 4, \ldots$. Adamczak and Wolff [7] proved a polynomial concentration inequality which confirms (5.10) for any cycle $H = C_k$, $k = 3, 4, \ldots$ and $p \geq n^{-k/2k - 1}$. Moreover, Lubetzky and Zhao [554], via a large deviations framework of Chatterjee and Dembo [180], showed that (5.10) holds for any H and $p \geq n^{-\alpha}$ for a sufficiently small constant $\alpha > 0$. For more recent developments see [202], where it is shown that one can take $\alpha > 1/6\Delta_H$.
Chapter 6

Spanning Subgraphs

The previous chapter dealt with the existence of small subgraphs of a fixed size. In this chapter we concern ourselves with the existence of large subgraphs, most notably perfect matchings and Hamilton Cycles. The celebrated theorems of Hall and Tutte give necessary and sufficient conditions for a bipartite and arbitrary graph respectively to contain a perfect matching. Hall’s theorem in particular can be used to establish that the threshold for having a perfect matching in a random bipartite graph can be identified with that of having no isolated vertices.

For general graphs we view a perfect matching as half a Hamilton cycle and prove thresholds for the existence of perfect matchings and Hamilton cycles in a similar way.

Having dealt with perfect matchings and Hamilton cycles, we turn our attention to long paths in sparse random graphs, i.e. in those where we expect a linear number of edges. We then analyse a simple greedy matching algorithm using differential equations.

We then consider random subgraphs of some fixed graph G, as opposed to random subgraphs of K_n. We give sufficient conditions for the existence of long paths and cycles.

We finally consider the existence of arbitrary spanning subgraphs H where we bound the maximum degree $\Delta(H)$.

6.1 Perfect Matchings

Before we move to the problem of the existence of a perfect matching, i.e., a collection of independent edges covering all of the vertices of a graph, in our main object of study, the random graph $G_{n,p}$, we will analyse the same problem in a random bipartite graph. This problem is much simpler than the respective one for $G_{n,p}$, but provides a general approach to finding a perfect matching in a
random graph.

Bipartite Graphs

Let $G_{n,n,p}$ be the random bipartite graph with vertex bi-partition $V = (A,B)$, $A = [1,n], B = [n+1,2n]$ in which each of the n^2 possible edges appears independently with probability p. The following theorem was first proved by Erdős and Rényi [289].

Theorem 6.1. Let $\omega = \omega(n)$, $c > 0$ be a constant, and $p = \frac{\log n + \omega}{n}$. Then

$$
\lim_{n \to \infty} \mathbb{P}(G_{n,n,p} \text{ has a perfect matching}) = \begin{cases}
0 & \text{if } \omega \to -\infty \\
e^{-2e^{-c}} & \text{if } \omega \to c \\
1 & \text{if } \omega \to \infty.
\end{cases}
$$

Moreover,

$$
\lim_{n \to \infty} \mathbb{P}(G_{n,n,p} \text{ has a perfect matching}) = \lim_{n \to \infty} \mathbb{P}(\delta(G_{n,n,p}) \geq 1).
$$

Proof. We will use Hall’s condition for the existence of a perfect matching in a bipartite graph. It states that a bipartite graph contains a perfect matching if and only if the following condition is satisfied:

$$
\forall S \subseteq A, \ |N(S)| \geq |S|,
$$

where for a set of vertices S, $N(S)$ denotes the set of neighbors of S. It is convenient to replace (6.1) by

$$
\forall S \subseteq A, \ |S| \leq \frac{n}{2}, \ |N(S)| \geq |S|,
$$

$$
\forall T \subseteq B, \ |T| \leq \frac{n}{2}, \ |N(T)| \geq |T|.
$$

This is because if $|S| > n/2$ and $|N(S)| < |S|$ then $T = B \setminus N(S)$ will violate (6.3).

Now we can restrict our attention to S,T satisfying (a) $|S| = |T| + 1$ and (b) each vertex in T has at least 2 neighbors in S. Take a pair S,T with $|S| + |T|$ as small as possible. If the minimum degree $\delta \geq 1$ then $|S| \geq 2$.

(i) If $|S| > |T| + 1$, we can remove $|S| - |T| - 1$ vertices from $|S| -$ contradiction.

(ii) Suppose $\exists w \in T$ such that w has less than 2 neighbors in S. Remove w and its (unique) neighbor in $|S| -$ contradiction.
It follows that
\[
\Pr(\exists v : v \text{ is isolated}) \leq \Pr(\not\exists \text{ a perfect matching}) \\
\leq \Pr(\exists v : v \text{ is isolated}) + 2\Pr(\exists S \subseteq A, T \subseteq B, 2 \leq k = |S| \leq n/2, |T| = k - 1, N(S) \subseteq T \text{ and } e(S : T) \geq 2k - 2).
\]

Here \(e(S : T)\) denotes the number of edges between \(S\) and \(T\), and \(e(S : T)\) can be assumed to be at least \(2k - 2\), because of (b) above.

Suppose now that \(p = \frac{\log n + c}{n}\) for some constant \(c\). Then let \(Y\) denote the number of sets \(S\) and \(T\) not satisfying the conditions (6.2), (6.3). Then
\[
\mathbb{E}Y \leq 2 \sum_{k=2}^{n/2} \binom{n}{k} \left(\frac{n}{k-1} \right)^k \frac{k(k-1)}{2k-2} p^{2k-2} (1 - p)^{k(n-k)} \\
\leq 2 \sum_{k=2}^{n/2} \left(\frac{ne}{k} \right)^k \left(\frac{ne}{k-1} \right)^{k-1} \left(\frac{ke(\log n + c)}{2n} \right)^{2k-2} e^{-npk(1-k/n)} \\
\leq \sum_{k=2}^{n/2} n \left(\frac{eO(1)n^k/(\log n)^2}{n} \right)^k \\
= \sum_{k=2}^{n/2} u_k.
\]

Case 1: \(2 \leq k \leq \frac{3}{4}n^3\).
\[
u_k = n \left(eO(1)n^{-1}\log n \right)^k.
\]
So
\[
\sum_{k=2}^{n^{3/4}} u_k = O \left(\frac{1}{n^{1-o(1)}} \right).
\]

Case 2: \(\frac{3}{4}n^3 < k \leq n/2\).
\[
u_k \leq n^{1-k(1/2-o(1))}
\]
So
\[
\sum_{k=n^{3/4}}^{n/2} u_k = O \left(n^{-n^{3/4}/3} \right).
\]
So
\[
\Pr(\not\exists \text{ a perfect matching}) = \Pr(\exists \text{ isolated vertex}) + o(1).
\]

Let \(X_0\) denote the number of isolated vertices in \(G_{n,n,p}\). Then
\[
\mathbb{E}X_0 = 2n(1 - p)^n \approx 2e^{-c}.
\]
By previously used techniques we have
\[P(X_0 = 0) \approx e^{-2e^{-c}} \]
To prove the case for \(|\omega| \to \infty\) we can use monotonicity and (1.7) and the fact that \(e^{-2e^{-c}} \to 0\) if \(c \to -\infty\) and \(e^{-2e^{-c}} \to 1\) if \(c \to \infty\).

Non-Bipartite Graphs

We now consider \(G_n, p\). We could try to replace Hall’s theorem by Tutte’s theorem. A proof along these lines was given by Erdős and Rényi [290]. We can however get away with a simpler approach based on simple expansion properties of \(G_n, p\). The proof here can be traced back to Bollobás and Frieze [146].

Theorem 6.2. Let \(\omega = \omega(n), c > 0\) be a constant, and let \(p = \frac{\log n + c_n}{n}\). Then

\[
\lim_{n \to \infty} P(G_n, p \text{ has a perfect matching}) = \begin{cases}
0 & \text{if } c_n \to -\infty \\
e^{-e^{-2c}} & \text{if } c_n \to c \\
1 & \text{if } c_n \to \infty.
\end{cases}
\]

Moreover,

\[
\lim_{n \to \infty} P(G_n, p \text{ has a perfect matching}) = \lim_{n \to \infty} P(\delta(G_n, p) \geq 1).
\]

Proof. We will for convenience only consider the case where \(c_n = \omega \to \infty\) and \(\omega = o(\log n)\). If \(c_n \to -\infty\) then there are isolated vertices, w.h.p. and our proof can easily be modified to handle the case \(c_n \to c\).

Our combinatorial tool that replaces Tutte’s theorem is the following: We say that a matching \(M\) isolates a vertex \(v\) if no edge of \(M\) contains \(v\).

For a graph \(G\) we let
\[\mu(G) = \max \{|M| : M \text{ is a matching in } G\}. \] (6.4)

Let \(G = (V, E)\) be a graph without a perfect matching i.e. \(\mu(G) < \lfloor |V| / 2 \rfloor\). Fix \(v \in V\) and suppose that \(M\) is a maximum matching that isolates \(v\). Let \(S_0(v, M) = \{u \neq v : M \text{ isolates } u\}\). If \(u \in S_0(v, M)\) and \(e = \{x, y\} \in M\) and \(f = \{u, x\} \in E\) then flipping \(e, f\) replaces \(M\) by \(M' = M + f - e\). Here \(e\) is flipped-out. Note that \(y \in S_0(v, M')\).

Now fix a maximum matching \(M\) that isolates \(v\) and let
\[A(v, M) = \bigcup_{M'} S_0(v, M') \]
where we take the union over \(M'\) obtained from \(M\) by a sequence of flips.
Lemma 6.3. Let G be a graph without a perfect matching and let M be a maximum matching and v be a vertex isolated by M. Then $|N_G(A(v, M))| < |A(v, M)|$.

Proof. Suppose that $x \in N_G(A(v, M))$ and that $f = \{u, x\} \in E$ where $u \in A(v, M)$. Now there exists y such that $e = \{x, y\} \in M$, else $x \in S_0(M) \subseteq A(v, M)$. We claim that $y \in A(v, M)$ and this will prove the lemma. Since then, every neighbor of $A(v, M)$ is the neighbor via an edge of M.

Suppose that $y \notin A(v, M)$. Let M' be a maximum matching that (i) isolates u and (ii) is obtainable from M by a sequence of flips. Now $e \in M'$ because if e has been flipped out then either x or y is placed in $A(v, M)$. But then we can do another flip with M', e and the edge $f = \{u, x\}$, placing $y \in A(v, M)$, contradiction. \hfill \Box

We now change notation and write $A(v)$ in place of $A(v, M)$, understanding that there is some maximum matching that isolates v. Note that if $u \in A(v)$ then $A(u)$ is well-defined. Furthermore, it always that case that if v is isolated by some maximum matching and $u \in A(v)$ then $\mu(G + \{u, v\}) = \mu(G) + 1$.

Now let

$$p = \frac{\log n + \theta \log \log n + \omega}{n}$$

where $\theta \geq 0$ is a fixed integer and $\omega \to \infty$ and $\omega = o(\log \log n)$.

We have introduced θ so that we can use some of the following results for the Hamilton cycle problem.

We write

$$G_{n, p} = G_{n, p_1} \cup G_{n, p_2},$$

where

$$p_1 = \frac{\log n + \theta \log \log n + \omega/2}{n}$$

and

$$1 - p = (1 - p_1)(1 - p_2)$$

so that $p_2 \approx \frac{\omega}{2n}$.

Note that Theorem 4.3 implies:

The minimum degree in G_{n, p_1} is at least $\theta + 1$ w.h.p.

We consider a process where we add the edges of G_{n, p_2} one at a time to G_{n, p_1}. We want to argue that if the current graph does not have a perfect matching then there is a good chance that adding such an edge $\{x, y\}$ will increase the size of a largest matching. This will happen if $y \in A(x)$. If we know that w.h.p. every set S for which $|N_{G_{n, p_1}}(S)| < |S|$ satisfies $|S| \geq \alpha n$ for some constant $\alpha > 0$, then

$$\mathbb{P}(y \in A(x)) \geq \frac{\binom{\alpha n}{2} - i}{\binom{n}{2}} \geq \frac{\alpha^2}{2},$$

(6.6)
provided \(i = O(n) \).

This is because the edges we add will be uniformly random and there will be at least \(\binom{n}{2} \) edges \(\{x, y\} \) where \(y \in A(x) \). Here given an initial \(x \) we can include edges \(\{x', y'\} \) where \(x' \in A(x) \) and \(y' \in A(x') \). We have subtracted \(i \) to account for not re-using edges in \(f_1, f_2, \ldots, f_{i-1} \).

In the light of this we now argue that sets \(S \), with \(|N_{G_{n,p_1}}(S)| < (1 + \theta)|S| \) are w.h.p. of size \(\Omega(n) \).

Lemma 6.4. Let \(M = 100(\theta + 7) \). W.h.p. \(S \subseteq [n], |S| \leq \frac{n}{2\theta + 5} \) implies \(|N(S)| \geq (\theta + 1)|S| \), where \(N(S) = N_{G_{n,p_1}}(S) \).

Proof. Let a vertex of graph \(G_1 = \mathbb{G}_{n,p_1} \) be large if its degree is at least \(\lambda = \frac{\log n}{100} \), and small otherwise. Denote by \(\text{LARGE} \) and \(\text{SMALL} \), the set of large and small vertices in \(G_1 \), respectively.

Claim 1. W.h.p. if \(v, w \in \text{SMALL} \) then \(\text{dist}(v, w) \geq 5 \).

Proof. If \(v, w \) are small and connected by a short path \(P \), then \(v, w \) will have few neighbors outside \(P \) and conditional on \(P \) existing, \(v \) having few neighbors outside \(P \) is independent of \(w \) having few neighbors outside \(P \). Hence,

\[
\Pr(\exists v, w \in \text{SMALL} \text{ in } \mathbb{G}_{n,p_1} \text{ such that } \text{dist}(v, w) < 5)
\leq \binom{n}{2} \left(\sum_{k=0}^{\lambda} \binom{n}{k} p_1^k (1 - p_1)^{n-k} \right)^2
\leq n(\log n)^4 \left(\sum_{k=0}^{\lambda} \frac{(\log n)^k}{k!} \cdot \frac{(\log n)^{\theta + 1}/100 \cdot e^{-\omega/2}}{n \log n} \right)^2
\leq 2n(\log n)^4 \left(\frac{(\log n)^{\lambda}}{\lambda!} \cdot \frac{(\log n)^{\theta + 1}/100 \cdot e^{-\omega/2}}{n \log n} \right)^2
= O \left(\frac{(\log n)^{O(1)}}{n} \left(100e \right)^{2\log n} \right)
= O(n^{-3/4})
= o(1).
\]

The bound in (6.7) holds since \(l! \geq \left(\frac{l}{2} \right)^l \) and \(\frac{u_{k+1}}{u_k} > 100 \) for \(k \leq l \), where

\[
u_k = \frac{(\log n)^k}{k!} \cdot \frac{(\log n)^{\theta + 1}/100 \cdot e^{-\omega/2}}{n \log n}.
\]
6.1. PERFECT MATCHINGS

Claim 2. W.h.p. \(\mathbb{G}_{n,p_1}\) does not have a 4-cycle containing a small vertex.

Proof.

\[
P(\exists \text{ a 4-cycle containing a small vertex})
\leq 4n^4 p_1^4 \sum_{k=0}^{\left(\frac{\log n}{100}\right)} \binom{n-4}{k} p_1^k (1-p_1)^{n-4-k}
\leq n^{-3/4} (\log n)^4
= o(1).
\]

Claim 3. W.h.p. in \(\mathbb{G}_{n,p_1}\) for every \(S \subseteq [n], |S| \leq \frac{n}{2eM}, e(S) < \frac{|S|\log n}{M}\).

Proof.

\[
P(\exists |S| \leq \frac{n}{2eM} \text{ and } e(S) \geq \frac{|S|\log n}{M})
\leq \sum_{s=\log n/M}^{n/2eM} \binom{n}{s} \binom{s}{\frac{s}{2}} p_1^{s\log n/M}
\leq \sum_{s=\log n/M}^{n/2eM} \left(\frac{ne}{s} \left(\frac{Me^{1+o(1)}}{2n}\right)^{s\log n/M}\right)
\leq \sum_{s=\log n/M}^{n/2eM} \left((\frac{s}{n})^{-1+\log n/M} \cdot (Me^{1+o(1)})^{\log n/M}\right)^s
= o(1).
\]

Claim 4. Let \(M\) be as in Claim 3. Then, w.h.p. in \(\mathbb{G}_{n,p_1}\), if \(S \subseteq \text{LARGE}, |S| \leq \frac{n}{2e(\theta+5)M}\) then \(|N(S)| \geq (\theta + 4)|S|\).

Proof. Let \(T = N(S), s = |S|, t = |T|\). Then we have

\[
e(S \cup T) \geq e(S, T) \geq \frac{|S|\log n}{100} - 2e(S) \geq \frac{|S|\log n}{100} - \frac{2|S|\log n}{M}.
\]
Then if \(|T| \leq (\theta + 4)|S|\) we have \(|S \cup T| \leq (\theta + 5)|S| \leq \frac{n}{2eM}\) and

\[e(S \cup T) \geq \frac{|S \cup T|}{\theta + 5} \left(\frac{1}{100} - \frac{2}{M} \right) \log n = \frac{|S \cup T| \log n}{M}.
\]

This contradicts Claim 3.

We can now complete the proof of Lemma 6.4. Let \(|S| \leq \frac{n}{2eM(\theta + 5)}\) and assume that \(G_{n,p}\) has minimum degree at least \(\theta + 1\).

Let \(S_1 = S \cap \text{SMALL}\) and \(S_2 = S \setminus S_1\). Then

\[
|N(S)| \geq |N(S_1)| + |N(S_2)| - |N(S_1) \cap S_2| - |N(S_2) \cap S_1| - |N(S_1) \cap N(S_2)|.
\]

But Claim 1 and Claim 2 and minimum degree at least \(\theta + 1\) imply that

\[
|N(S_1)| \geq (\theta + 1)|S_1|, \quad |N(S_2) \cap S_1| \leq \min\{|S_1|, |S_2|\}, \quad |N(S_1) \cap N(S_2)| \leq |S_2|.
\]

So, from this and Claim 4 we obtain

\[
|N(S)| \geq (\theta + 1)|S_1| + (\theta + 4)|S_2| - 3|S_2| = (\theta + 1)|S|.
\]

We now go back to the proof of Theorem 6.2 for the case \(c = \omega \rightarrow \infty\). Let the edges of \(G_{n,p}\) be \(\{f_1, f_2, \ldots, f_s\}\) in random order, where \(s \approx \omega n/4\). Let \(G_0 = G_{n,p_1}\) and \(G_i = G_{n,p_1} + \{f_1, f_2, \ldots, f_i\}\) for \(i \geq 1\). It follows from Lemmas 6.3 and 6.4 that with \(\mu(G)\) as in (6.4), and if \(\mu(G_i) < n/2\) then, assuming \(G_{n,p_1}\) has the expansion claimed in Lemma 6.4, with \(\theta = 0\) and \(\alpha = \frac{1}{10eM}\),

\[
P(\mu(G_{i+1}) \geq \mu(G_i) + 1 \mid f_1, f_2, \ldots, f_i) \geq \frac{\alpha^2}{2}, \quad (6.8)
\]

see (6.6).

It follows that

\[
P(G_{n,p} \text{ does not have a perfect matching}) \leq o(1) + \mathbb{P}(\text{Bin}(s, \alpha^2/2) < n/2) = o(1).
\]

We have used the notion of dominance, see Section 22.9 in order to use the binomial distribution in the above inequality.
6.2 Hamilton Cycles

This was a difficult question left open in [287]. A breakthrough came with the result of Pósa [658]. The precise theorem given below can be credited to Komlós and Szemerédi [512], Bollobás [133] and Ajtai, Komlós and Szemerédi [12].

Theorem 6.5. Let \(p = \frac{\log n + \log \log n + c_n}{n} \). Then

\[
\lim_{n \to \infty} P(\mathbb{G}_{n,p} \text{ has a Hamilton cycle}) = \begin{cases}
0 & \text{if } c_n \to -\infty \\
e^{-e^{-x}} & \text{if } c_n \to c \\
1 & \text{if } c_n \to \infty.
\end{cases}
\]

Moreover,

\[
\lim_{n \to \infty} P(\mathbb{G}_{n,p} \text{ has a Hamilton cycle}) = \lim_{n \to \infty} P(\delta(\mathbb{G}_{n,p}) \geq 2).
\]

Proof. We will first give a proof of the first statement under the assumption that \(c_n = \omega \to \infty \) where \(\omega = o(\log \log n) \). The proof of the second statement is postponed to Section 6.3. Under this assumption, we have \(\delta(G_{n,p}) \geq 2 \) w.h.p., see Theorem 4.3. The result for larger \(p \) follows by monotonicity.

We now set up the main tool, viz. Pósa’s Lemma. Let \(P \) be a path with end points \(a, b \), as in Figure 6.1. Suppose that \(b \) does not have a neighbor outside of \(P \).

![Figure 6.1: The path P](image)

Notice that the \(P' \) below in Figure 6.2 is a path of the same length as \(P \), obtained by a *rotation* with vertex \(a \) as the **fixed endpoint**. To be precise, suppose that \(P = (a, \ldots, x, y, y', \ldots, b, b) \) and \(\{b, x\} \) is an edge where \(x \) is an interior vertex of \(P \). The path \(P' = (a, \ldots, x, b, b', \ldots, y', y) \) is said to be obtained from \(P \) by a rotation.

Now let \(\text{END} = \text{END}(P) \) denote the set of vertices \(v \) such that there exists a path \(P_v \) from \(a \) to \(v \) such that \(P_v \) is obtained from \(P \) by a sequence of rotations with vertex \(a \) fixed as in Figure 6.3.
Here the set \(END \) consists of all the white vertices on the path drawn below in Figure 6.4.

Lemma 6.6. If \(v \in P \setminus END \) and \(v \) is adjacent to \(w \in END \) then there exists \(x \in END \) such that the edge \(\{v, x\} \in P \).

Proof. Suppose to the contrary that \(x, y \) are the neighbors of \(v \) on \(P \) and that \(v, x, y \notin END \) and that \(v \) is adjacent to \(w \in END \). Consider the path \(P_w \). Let \(\{r, t\} \) be the neighbors of \(v \) on \(P_w \). Now \(\{r, t\} = \{x, y\} \) because if a rotation deleted \(\{v, y\} \) say then \(v \) or \(y \) becomes an endpoint. But then after a further rotation from \(P_w \) we see that \(x \in END \) or \(y \in END \).
6.2. *HAMILTON CYCLES*

![Diagram](image)

Figure 6.4: The set END

![Diagram](image)

Figure 6.5: One of r, t will become an endpoint after a rotation

\(\square\)

Corollary 6.7.

\[|N(END)| < 2|END|. \]

\(\square\)

It follows from Lemma 6.4 with $\theta = 1$ that w.h.p. we have

\[|END| \geq \alpha n \text{ where } \alpha = \frac{1}{12eM}. \]

(6.9)

We now consider the following algorithm that searches for a Hamilton cycle in a connected graph G. The probability p_1 is above the connectivity threshold and so G_{n,p_1} is connected w.h.p. Our algorithm will proceed in stages. At the beginning of Stage k we will have a path of length k in G and we will try to grow it by one vertex in order to reach Stage $k + 1$. In Stage $n - 1$, our aim is simply to create a Hamilton cycle, given a Hamilton path. We start the whole procedure with an arbitrary path of G.

Algorithm Pósa:

(a) Let P be our path at the beginning of Stage k. Let its endpoints be x_0, y_0. If x_0 or y_0 have neighbors outside P then we can simply extend P to include one of these neighbors and move to stage $k + 1$.

\(\square\)
(b) Failing this, we do a sequence of rotations with \(x_0 \) as the fixed vertex until one of two things happens: (i) We produce a path \(Q \) with an endpoint \(y \) that has a neighbor outside of \(Q \). In this case we extend \(Q \) and proceed to stage \(k + 1 \).
(ii) No sequence of rotations leads to Case (i). In this case let \(END \) denote the set of endpoints of the paths produced. If \(y \in END \) then \(P_y \) denotes a path with endpoints \(x_0, y \) that is obtained from \(P \) by a sequence of rotations.

(c) If we are in Case (bii) then for each \(y \in END \) we let \(END(y) \) denote the set of vertices \(z \) such that there exists a longest path \(Q_z \) from \(y \) to \(z \) such that \(Q_z \) is obtained from \(P_y \) by a sequence of rotations with vertex \(y \) fixed. Repeating the argument above in (b) for each \(y \in END \), we either extend a path and begin Stage \(k + 1 \) or we go to (d).

(d) Suppose now that we do not reach Stage \(k + 1 \) by an extension and that we have constructed the sets \(END \) and \(END(y) \) for all \(y \in END \). Suppose that \(G \) contains an edge \((y, z)\) where \(z \in END(y) \). Such an edge would imply the existence of a cycle \(C = (z, Q_y, z) \). If this is not a Hamilton cycle then connectivity implies that there exist \(u \in C \) and \(v \notin C \) such that \(u, v \) are joined by an edge. Let \(w \) be a neighbor of \(u \) on \(C \) and let \(P' \) be the path obtained from \(C \) by deleting the edge \((u, w)\). This creates a path of length \(k + 1 \) viz. the path \(w, P', v \), and we can move to Stage \(k + 1 \).

A pair \((z, y)\) where \(z \in END(y) \) is called a booster in the sense that if we added this edge to \(G_{n, p} \) then it would either (i) make the graph Hamiltonian or (ii) make the current path longer. We argue now that \(G_{n, p} \) can be used to "boost" \(P \) to a Hamilton cycle, if necessary.

We observe now that when \(G = G_{n, p} \), \(|END| \geq \alpha n \) w.h.p., see (6.9). Also, \(|END(y)| \geq \alpha n \) for all \(y \in END \). So we will have \(\Omega(n^2) \) boosters.

For a graph \(G \) let \(\lambda(G) \) denote the length of a longest path in \(G \), when \(G \) is not Hamiltonian and let \(\lambda(G) = n \) when \(G \) is Hamiltonian. Let the edges of \(G_{n, p_2} \) be \(\{f_1, f_2, \ldots, f_s\} \) in random order, where \(s \approx \omega n / 4 \). Let \(G_0 = G_{n, p_1} \) and \(G_i = G_{n, p_1} + \{f_1, f_2, \ldots, f_i\} \) for \(i \geq 1 \). It follows from Lemmas 6.3 and 6.4 that if \(\lambda(G_i) < n \) then, assuming \(G_{n, p_1} \) has the expansion claimed in Lemma 6.4,

\[
\mathbb{P}(\lambda(G_{i+1}) \geq \lambda(G_i) + 1 \mid f_1, f_2, \ldots, f_i) \geq \frac{\alpha^2}{2},
\]

see (6.6), replacing \(A(v) \) by \(END(v) \).

It follows that

\[
\mathbb{P}(G_{n, p} \text{ is not Hamiltonian}) \leq o(1) + \mathbb{P}(\text{Bin}(s, \alpha^2/2) < n) = o(1).
\]
6.3 Long Paths and Cycles in Sparse Random Graphs

In this section we study the length of the longest path and cycle in $G_{n,p}$ when $p = c/n$ where $c = O(\log n)$, most importantly for c is a large constant. We have seen in Chapter 1 that under these conditions, $G_{n,p}$ will w.h.p. have isolated vertices and so it will not be Hamiltonian. We can however show that it contains a cycle of length $\Omega(n)$ w.h.p.

The question of the existence of a long path/cycle was posed by Erdős and Rényi in [287]. The first positive answer to this question was given by Ajtai, Komlós and Szemerédi [11] and by de la Vega [744]. The proof we give here is due to Krivelevich, Lee and Sudakov. It is subsumed by the more general results of [523].

Theorem 6.8. Let $p = c/n$ where c is sufficiently large but $c = O(\log n)$. Then w.h.p.

(a) $G_{n,p}$ has a path of length at least $\left(1 - \frac{6\log c}{c}\right)n$.

(b) $G_{n,p}$ has a cycle of length at least $\left(1 - \frac{12\log c}{c}\right)n$.

Proof. We prove this theorem by analysing simple properties of Depth First Search (DFS). This is a well known algorithm for exploring the vertices of a component of a graph. We can describe the progress of this algorithm using three sets: U is the set of unexplored vertices that have not yet been reached by the search. D is the set of dead vertices. These have been fully explored and no longer take part in the process. $A = \{a_1, a_2, \ldots, a_r\}$ is the set of active vertices and they form a path from a_1 to a_r. We start the algorithm by choosing a vertex v from which to start the process. Then we let $A = \{v\}$ and $D = \emptyset$ and $U = [n] \setminus \{v\}$ and $r = 1$.

We now describe how these sets change during one step of the algorithm.

Step (a) If there is an edge $\{a_r, w\}$ for some $w \in U$ then we choose one such w and extend the path defined by A to include w.

$$a_{r+1} \leftarrow w; A \leftarrow A \cup \{w\}; U \leftarrow U \setminus \{w\}; r \leftarrow r + 1.$$

We now repeat Step (a).

If there is no such w then we do Step (b):

Step (b) We have now completely explored a_r.

$$D \leftarrow D \cup \{a_r\}; A \leftarrow A \setminus \{a_r\}; r \leftarrow r - 1.$$
If \(r \geq 1 \) we go to Step (a). Otherwise, if \(U = \emptyset \) at this point then we terminate the algorithm. If \(U \neq \emptyset \) then we choose some \(v \in U \) to re-start the process with \(r = 1 \). We then go to Step (a).

We make the following simple observations:

1. A step of the algorithm increases \(|D| \) by one or decreases \(|U| \) by one and so at some stage we must have \(|D| = |U| = s \) for some positive integer \(s \).

2. There are no edges between \(D \) and \(U \) because we only add \(a_r \) to \(D \) when there are no \(a_r : U \) edges and \(U \) does not increase from this point on.

Thus at some stage we have two disjoint sets \(D, U \) of size \(s \) with no edges between them and a path of length \(|A| - 1 = n - 2s - 1 \). This plus the following claim implies that \(\mathbb{G}_{n,p} \) has a path \(P \) of length at least \(\left(1 - \frac{6 \log c}{c} \right) n \) w.h.p. Note that if \(c \) is large then
\[
\alpha > \frac{3 \log c}{c} \implies c > \frac{2}{\alpha} \log \left(\frac{e}{\alpha} \right).
\]

Claim 5. Let \(0 < \alpha < 1 \) be a positive constant. If \(p = c/n \) and \(c > \frac{2}{\alpha} \log \left(\frac{e}{\alpha} \right) \) then w.h.p. in \(\mathbb{G}_{n,p} \), every pair of disjoint sets \(S_1, S_2 \) of size at least \(\alpha n - 1 \) are joined by at least one edge.

Proof. The probability that there exist sets \(S_1, S_2 \) of size (at least) \(\alpha n - 1 \) with no joining edge is at most
\[
\left(\frac{n}{\alpha n - 1} \right)^2 (1 - p)^{(\alpha n - 1)^2} \leq \left(\frac{e^{2 + o(1)}}{e^{2 - c\alpha}} - e^{-c\alpha} \right)^{\alpha n - 1} = o(1).
\]

To complete the proof of the theorem, we apply the above lemma to the vertices \(S_1, S_2 \) on the two sub-paths \(P_1, P_2 \) of length \(\frac{3 \log c}{c} n \) at each end of \(P \). There will w.h.p. be an edge joining \(S_1, S_2 \), creating the cycle of the claimed length.

Krivelevich and Sudakov [531] used DFS to give simple proofs of good bounds on the size of the largest component in \(\mathbb{G}_{n,p} \) for \(p = \frac{1 + \epsilon}{n} \) where \(\epsilon \) is a small constant. Exercises 6.7.19, 6.7.20 and 6.7.21 elaborate on their results.

Completing the proof of Theorem 6.5

We need to prove part (b). So we let \(1 - p = (1 - p_1)(1 - p_2) \) where \(p_2 = \frac{1}{n \log n} \)
Then we apply Theorem 6.8(a) to argue that w.h.p. \(G_{n,p_1} \) has a path of length
\[
n \left(1 - O \left(\frac{\log \log n}{\log n} \right) \right).
\]
Now, conditional on G_{n, p_1} having minimum degree at least two, the proof of the statement of Lemma 6.4 goes through without change for $\theta = 1$ i.e. $S \subseteq [n], |S| \leq \frac{n}{\log n}$ implies $|N(S)| \geq 2|S|$. We can then use the extension-rotation argument that we used to prove Theorem 6.5(c). This time we only need to close $O\left(\frac{n \log \log n}{\log n}\right)$ cycles and we have $\Omega\left(\frac{n}{\log \log n}\right)$ edges. Thus (6.11) is replaced by

$$\mathbb{P}(G_{n, p} \text{ is not Hamiltonian } | \delta(G_{n, p_1}) \geq 2) \leq o(1) + \mathbb{P}\left(\text{Bin}\left(\frac{c_1 n}{\log \log n}, 10^{-8}\right) < \frac{c_2 n \log \log n}{\log n}\right) = o(1),$$

for some hidden constants c_1, c_2.

6.4 Greedy Matching Algorithm

In this section we see how we can use differential equations to analyse the performance of a greedy algorithm for finding a large matching in a random graph.

Finding a large matching is a standard problem in Combinatorial Optimisation. The first polynomial time algorithm to solve this problem was devised by Edmonds in 1965 and runs in time $O(|V|^4)$ [282]. Over the years, many improvements have been made. Currently the fastest such algorithm is that of Micali and Vazirani which dates back to 1980. Its running time is $O(|E|\sqrt{|V|})$ [598]. These algorithms are rather complicated and there is a natural interest in the performance of simpler heuristic algorithms which should find large, but not necessarily maximum matchings. One well studied class of heuristics goes under the general title of the GREEDY heuristic.

The following simple greedy algorithm proceeds as follows: Beginning with graph $G = (V, E)$ we choose a random edge $e = \{u, v\} \in E$ and place it in a set M. We then delete u, v and their incident edges from G and repeat. In the following, we analyse the size of the matching M produced by this algorithm.

Algorithm GREEDY

```
begin
    M \leftarrow \emptyset;
    while $E(G) \neq \emptyset$ do
        begin
            A: Randomly choose $e = \{x, y\} \in E$
            $G \leftarrow G \setminus \{x, y\}$;
            $M \leftarrow M \cup \{e\}$
        end;
    Output $M$
end
```
(\(G \setminus \{x,y\}\) is the graph obtained from \(G\) by deleting the vertices \(x,y\) and all incident edges.)

We will study this algorithm in the context of the pseudo-graph model \(G^{(B)}_{n,m}\) of Section 1.3 and apply (1.17) to bring the results back to \(G_{n,m}\). We will argue next that if at some stage \(G\) has \(\nu\) vertices and \(\mu\) edges then \(G\) is equally likely to be any pseudo-graph with these parameters.

We will use the method of deferred decisions, a term coined in Knuth, Motwani and Pittel [507]. In this scenario, we do not expose the edges of the pseudo-graph until we actually need to. So, as a thought experiment, think that initially there are \(m\) boxes, each containing a uniformly random pair of distinct integers from \([n]\). Until the box is opened, the contents are unknown except for their distribution. Observe that opening box A and observing its contents tells us nothing more about the contents of box B. This would not be the case if as in \(G_{n,m}\) we insisted that no two boxes had the same contents.

Remark 6.9. A step of GREEDY involves choosing the first unopened box at random to expose its contents \(x,y\).

After this, the contents of the remaining boxes will of course remain uniformly random over \(\binom{V(G)}{2}\). The algorithm will then ask for each box with \(x\) or \(y\) to be opened. Other boxes will remain unopened and all we will learn is that their contents do not contain \(x\) or \(y\) and so they are still uniform over the remaining possible edges.

We need the following

Lemma 6.10. Suppose that \(m = cn\) for some constant \(c > 0\). Then w.h.p. the maximum degree in \(G^{(B)}_{n,m}\) is at most \(\log n\).

Proof. The degree of a vertex is distributed as \(\text{Bin}(m, 2/n)\). So, if \(\Delta\) denotes the maximum degree in \(G^{(B)}_{n,m}\), then with \(\ell = \log n\),

\[
P(\Delta \geq \ell) \leq n \binom{m}{\ell} \left(\frac{2}{n}\right)^{\ell} \leq n \left(\frac{2ce}{\ell}\right)^{\ell} = o(1).
\]

\(\square\)

Now let \(X(t) = (\nu(t), \mu(t)), t = 1,2,\ldots,\) denote the number of vertices and edges in the graph at the start of the \(t\)th iterations of GREEDY. Also, let \(G_t = (V_t, E_t) = G\) at this point and let \(G'_t = (V_t, E_t \setminus e)\) where \(e\) is a uniform random edge of \(E_t\). Thus \(\nu(1) = n, \mu(1) = m\) and \(G_1 = G^{(B)}_{n,m}\). Now \(\nu(t+1) = \nu(t) - 2\)
and so \(v(t) = n - 2t \). Let \(d_t(\cdot) \) denote degree in \(G'_t \) and let \(\theta_t(x,y) \) denote the number of copies of the edge \(\{x,y\} \) in \(G_t \), excluding \(e \). Then we have

\[
\mathbb{E}(\mu(t+1) \mid G_t) = \mu(t) - (d_t(x) + d_t(y) - 1 + \theta_t(x,y)).
\]

Taking expectations over \(G_t \) we have

\[
\mathbb{E}(\mu(t+1)) = \mathbb{E}(\mu(t)) - \mathbb{E}(d_t(x)) - \mathbb{E}(d_t(y)) + 1 + \mathbb{E}(\theta_t(x,y)).
\]

Now

\[
\mathbb{E}(d_t(x) \mid G_t) = \sum_{i=1}^{v(t)} \frac{d_t(i)}{2\mu(t)} d_t(i)
\]

\[
\mathbb{E}(d_t(y) \mid G_t) = \mathbb{E}_x \left(\sum_{i=1}^{v(t)} \frac{d_t(i)}{2\mu(t) - 1} d_t(i) \right)
\]

\[
= \sum_{i=1}^{v(t)} \frac{d_t(i)}{2\mu(t) - 1} d_t(i) - \mathbb{E} \left(\frac{d_t(x)^2}{2\mu(t) - 1} \right) = \sum_{i=1}^{v(t)} \frac{d_t(i)^2}{2\mu(t)} + O \left(\frac{1}{n-2t} \right).
\]

We will see momentarity that \(\mathbb{E}(d_t(x)^2) = O(1) \). In the model \(G^B_{n,m} \),

\[
\mathbb{E} \left(\sum_{i=1}^{v(t)} d_t(i)^2 \right) = v(t) \sum_{k=0}^{\mu(t)} k^2 \left(\frac{\mu(t)}{k} \right) \left(\frac{1}{v(t)} - \frac{2}{v(t)} \right)^{\mu(t)-k} = 2\mu(t) \left(1 - \frac{2}{v(t)} + \frac{2\mu(t)}{v(t)} \right).
\]

So,

\[
\mathbb{E}(\mu(t+1)) = \mathbb{E}(\mu(t)) - \frac{4\mathbb{E}(\mu(t))}{n-2t} - 1 + O \left(\frac{1}{n-2t} \right).
\]

Here we use Remark 6.9 to argue that \(\mathbb{E} \theta_t(x,y) = O(1/(n-2t)) \).

This suggests that w.h.p. \(\mu(t) \approx nz(t/n) \) where \(z(0) = c \) and \(z(\tau) \) is the solution to the differential equation

\[
\frac{dz}{d\tau} = -\frac{4z(\tau)}{1-2\tau} - 1.
\]

This is easy to solve and gives

\[
z(\tau) = \left(c + \frac{1}{2} \right) (1-2\tau)^2 - \frac{1-2\tau}{2}.
\]

The smallest root of \(z(\tau) = 0 \) is \(\tau = \frac{c}{2c+1} \). This suggests the following theorem.
Theorem 6.11. W.h.p., running GREEDY on $G_{n,m}$ finds a matching of size $\frac{c+o(1)}{2c+1}n$.

Proof. We will replace $G_{n,m}$ by $G_{n,m}^{(B)}$ and consider the random sequence $\mu(t)$, $t = 1, 2, \ldots$. The number of edges in the matching found by GREEDY equals one less than the first value of t for which $\mu(t) = 0$. We show that w.h.p. $\mu(t) > 0$ if and only if $t \leq \frac{c+o(1)}{2c+1}n$. We will use Theorem 23.1 of Chapter 23.

In our set up for the theorem we let

$$f(t, x) = -\frac{4x}{1 - 2\tau} - 1.$$

Let $X(t) = \mu(t)$ for the statement of the theorem. Then we have to check the conditions:

(P1) $|\mu(t)| \leq cn$, $\forall t < T_D = \mathcal{T}_Dn$.

(P2) $|\mu(t + 1) - \mu(t)| \leq 2\log n$, $\forall t < T_D$.

(P3) $|\mathbb{E}(\mu(t + 1) - \mu(t)|H, \mathcal{E}) - f(t/n, X(t)/n)| \leq \frac{\Delta}{n}$, $\forall t < T_D$.

Here $\Delta = \{\Delta \leq \log n\}$ and this is needed for (P2).

(P4) $f(t, x)$ is continuous and satisfies a Lipschitz condition

$$|f(t, x) - f(t', x')| \leq L\| (t, x) - (t', x') \|_{\infty}$$

where $L = 10(2c + 1)^2$.

Here $f(t, x) = -1 - \frac{4x}{1 - 2\tau}$ and we can justify L of P4 as follows:

$$|f(t, x) - f(t', x')| = \left| \frac{4x}{1 - 2\tau} - \frac{4x'}{1 - 2\tau'} \right| \leq \frac{4(x - x')}{(1 - 2\tau)(1 - 2\tau')} + \frac{8x'(t - t')}{(1 - 2\tau)(1 - 2\tau')} + \frac{8't(x - x')}{(1 - 2\tau)(1 - 2\tau')} \leq 10(2c + 1)^2.$$

Now let $\beta = n^{1/5}$ and $\lambda = n^{-1/20}$ and $\sigma = \mathcal{T}_D - 10\lambda$ and apply the theorem. This shows that w.h.p. $\mu(t) = nz(t/n) + O(n^{19/20})$ for $t \leq \sigma n$.

The result in Theorem 6.11 is taken from Dyer, Frieze and Pittel [280], where a central limit theorem is proven for the size of the matching produced by GREEDY.

The use of differential equations to approximate the trajectory of a stochastic process is quite natural and is often very useful. It is however not always best practise to try and use an “off the shelf” theorem like Theorem 23.1 in order to get a best result. It is hard to design a general theorem that can deal optimally with terms that are $o(n)$.

6.5 Random Subgraphs of Graphs with Large Minimum Degree

Here we prove an extension of Theorem 6.8. The setting is this. We have a sequence of graphs G_k with minimum degree at least k, where $k \to \infty$. We construct a random subgraph G_p of $G = G_k$ by including each edge of G, independently with probability p. Thus if $G = K_n$, G_p is $G_{n,p}$. The theorem we prove was first proved by Krivelevich, Lee and Sudakov [523]. The argument we present here is due to Riordan [674].

In the following we abbreviate $(G_k)_p$ to G_p where the parameter k is to be understood.

Theorem 6.12. Let G_k be a sequence of graphs with minimum degree at least k where $k \to \infty$. Let p be such that $pk \to \infty$ as $k \to \infty$. Then w.h.p. G_p contains a cycle of length at least $(1 - o(1))k$.

Proof. We will assume that G has n vertices. We let T denote the forest produced by depth first search. We also let D,U,A be as in the proof of Theorem 6.8. Let v be a vertex of the rooted forest T. There is a unique vertical path from v to the root of its component. We write $A(v)$ for the set of ancestors of v, i.e., vertices (excluding v) on this path. We write $D(v)$ for the set of descendants of v, again excluding v. Thus $w \in D(v)$ if and only if $v \in A(w)$. The distance $d(u,v)$ between two vertices u and v on a common vertical path is just their graph distance along this path. We write $A_i(v)$ and $D_i(v)$ for the set of ancestors/descendants of v at distance exactly i, and $A_{\leq i}(v), D_{\leq i}(v)$ for those at distance at most i. By the depth of a vertex we mean its distance from the root. The height of a vertex v is $\max\{i : D_i(v) \neq \emptyset\}$. Let R denote the set of edges of G that are not tested for inclusion in G_p during the exploration.

Lemma 6.13. Every edge e of R joins two vertices on some vertical path in T.

Proof. Let $e = \{u,v\}$ and suppose that u is placed in D before v. When u is placed in D, v cannot be in U, else $\{u,v\}$ would have been tested. Also, v cannot be in D by our choice of u. Therefore at this time $v \in A$ and there is a vertical path from v to u.

Lemma 6.14. With high probability, at most $2n/p = o(kn)$ edges are tested during the depth first search exploration.

Proof. Each time an edge is tested, the test succeeds (the edge is found to be present) with probability p. The Chernoff bound implies that the probability that
more than $2n/p$ tests are made but fewer than n succeed is $o(1)$. But every successful test contributes an edge to the forest T, so w.h.p. at most n tests are successful.

From now on let us fix an arbitrary (small) constant $0 < \varepsilon < 1/10$. We call a vertex v full if it is incident with at least $(1 - \varepsilon)k$ edges in R.

Lemma 6.15. With high probability, all but $o(n)$ vertices of T_k are full.

Proof. Since G has minimum degree at least k, each $v \in V(G) = V(T)$ that is not full is incident with at least εk tested edges. If for some constant $c > 0$ there are at least cn such vertices, then there are at least $c\varepsilon kn/2$ tested edges. But the probability of this is $o(1)$ by Lemma 6.14. \qed

Let us call a vertex v rich if $|\mathcal{D}(v)| \geq \varepsilon k$, and poor otherwise. In the next two lemmas, (T_k) is a sequence of rooted forests with n vertices. We suppress the dependence on k in notation.

Lemma 6.16. Suppose that $T = T_k$ contains $o(n)$ poor vertices. Then, for any constant C, all but $o(n)$ vertices of T are at height at least Ck.

Proof. For each rich vertex v, let $P(v)$ be a set of $\lceil \varepsilon k \rceil$ descendants of v, obtained by choosing vertices of $\mathcal{D}(v)$ one-by-one starting with those furthest from v. For every $w \in P(v)$ we have $\mathcal{D}(w) \subseteq P(v)$, so $|\mathcal{D}(w)| < \varepsilon k$, i.e., w is poor. Consider the set S_1 of ordered pairs (v, w) with v rich and $w \in P(v)$. Each of the $n - o(n)$ rich vertices appears in at least εk pairs, so $|S_1| \geq (1 - o(1))\varepsilon kn$.

For any vertex w we have $|\mathcal{A}_F(w)| \leq i$, since there is only one ancestor at each distance, until we hit the root. Since $(v, w) \in S_1$ implies that w is poor and $v \in \mathcal{A}_F(w)$, and there are only $o(n)$ poor vertices, at most $o(Ckn) = o(kn)$ pairs $(v, w) \in S_1$ satisfy $d(v, w) \leq Ck$. Thus $S'_1 = \{(v, w) \in S_1 : d(v, w) > Ck\}$ satisfies $|S'_1| \geq (1 - o(1))\varepsilon kn$. Since each vertex v is the first vertex of at most $\lceil \varepsilon k \rceil \approx \varepsilon k$ pairs in $S_1 \supseteq S'_1$, it follows that $n - o(n)$ vertices v appear in pairs $(v, w) \in S'_1$. Since any such v has height at least Ck, the proof is complete. \qed

Let us call a vertex v light if $|\mathcal{D}_{\leq (1 - 5\varepsilon)k}(v)| \leq (1 - 4\varepsilon)k$, and heavy otherwise. Let H denote the set of heavy vertices in T.

Lemma 6.17. Suppose that $T = T_k$ contains $o(n)$ poor vertices, and let $X \subseteq V(T)$ with $|X| = o(n)$. Then, for k large enough, T contains a vertical path P of length at least $\varepsilon^{-2}k$ containing at most $\varepsilon^2 k$ vertices in $X \cup H$.

Proof. Let S_2 be the set of pairs (u, v) where u is an ancestor of v and $0 < d(u, v) \leq (1 - 5\varepsilon)k$. Since a vertex has at most one ancestor at any given distance, we have $|S_2| \leq (1 - 5\varepsilon)kn$. On the other hand, by Lemma 6.16 all but $o(n)$ vertices u are at height at least k and so appear in at least $(1 - 5\varepsilon)k$ pairs $(u, v) \in S_2$. It follows that only $o(n)$ vertices u are in more than $(1 - 4\varepsilon)k$ such pairs, i.e., $|H| = o(n)$.
Let S_3 denote the set of pairs (u,v) where $v \in X \cup H$, u is an ancestor of v, and $d(u,v) \leq \varepsilon^{-2}k$. Since a given v can only appear in $\varepsilon^{-2}k$ pairs $(u,v) \in S_3$, we see that $|S_3| \leq \varepsilon^{-2}k|X \cup H| = o(kn)$. Hence only $o(n)$ vertices u appear in more than ε^2k pairs $(u,v) \in S_3$.

By Lemma 6.16, all but $o(n)$ vertices are at height at least $\varepsilon^{-2}k$. Let u be such a vertex appearing in at most ε^2k pairs $(u,v) \in S_3$, and let P be the vertical path from u to some $v \in \mathcal{D}_{\varepsilon^{-2}k}(u)$. Then P has the required properties. \hfill \Box

Proof of Theorem 6.12

Fix $\varepsilon > 0$. It suffices to show that w.h.p. G_p contains a cycle of length at least $(1-5\varepsilon)k$, say. Explore G_p by depth-first search as described above. We condition on the result of the exploration, noting that the edges of R are still present independently with probability p. By Lemma 6.13, $(u,v) \in R$ implies that u is either an ancestor or a descendant of v. By Lemma 6.15, we may assume that all but $o(n)$ vertices are full.

Suppose that

$$ |\{u : (u,v) \in R, d(u,v) \geq (1-5\varepsilon)k\}| \geq \varepsilon k. \quad (6.14) $$

for some vertex v. Then, since $\varepsilon kp \to \infty$, testing the relevant edges (u,v) one-by-one, w.h.p we find one present in G_p, forming, together with T, the required long cycle. On the other hand, suppose that (6.14) fails for every v. Suppose that some vertex v is full but poor. Since v has at most εk descendants, there are at least $(1-2\varepsilon)k$ pairs $(u,v) \in R$ with $u \in \mathcal{A}(v)$. Since v has only one ancestor at each distance, it follows that (6.14) holds for v, a contradiction.

We have shown that we can assume that no poor vertex is full. Hence there are $o(n)$ poor vertices, and we may apply Lemma 6.17, with X the set of vertices that are not full. Let P be the path whose existence is guaranteed by the lemma, and let Z be the set of vertices on P that are full and light, so $|V(P) \setminus Z| \leq \varepsilon^2k$. For any $v \in Z$, since v is full, there are at least $(1-\varepsilon)k$ vertices $u \in \mathcal{A}(v) \cup \mathcal{D}(v)$ with $(u,v) \in R$. Since (6.14) does not hold, at least $(1-2\varepsilon)k$ of these vertices satisfy $d(u,v) \leq (1-5\varepsilon)k$. Since v is light, in turn at least $2\varepsilon k$ of these u must be in $\mathcal{A}(v)$. Recalling that a vertex has at most one ancestor at each distance, we find a set $R(v)$ of at least εk vertices $u \in \mathcal{A}(v)$ with $(u,v) \in R$ and $\varepsilon k \leq d(u,v) \leq (1-5\varepsilon)k \leq k$.

It is now easy to find a (very) long cycle w.h.p. Recall that $Z \subseteq V(P)$ with $|V(P) \setminus Z| \leq \varepsilon^2k$. Thinking of P as oriented upwards towards the root, let v_0 be the lowest vertex in Z. Since $|R(v_0)| \geq \varepsilon k$ and $kp \to \infty$, w.h.p. there is an edge (u_0,v_0) in G_p with $u_0 \in R(v_0)$. Let v_1 be the first vertex below u_0 along P with $v_1 \in Z$. Note that we go up at least εk steps from v_0 to u_0 and down at most $1 + |V(P) \setminus Z| \leq 2\varepsilon^2 k$ from u_0 to v_1, so v_1 is above v_0. Again w.h.p. there is an edge (u_1,v_1) in G_p with $u_1 \in R(v_1)$, and so at least εk steps above v_1. Continue downwards from u_1 to the first $v_2 \in Z$, and so on. Since $\varepsilon^{-1} = O(1)$, w.h.p. we may continue in this way.
to find overlapping chords \(\{u_i, v_i\} \) for \(0 \leq i \leq \lfloor 2\epsilon^{-1} \rfloor \), say. (Note that we remain within \(P \) as each upwards step has length at most \(k \).) These chords combine with \(P \) to give a cycle of length at least \((1 - 2\epsilon^{-1} \times 2\epsilon^2)k = (1 - 4\epsilon)k \), as shown in Figure 6.6.

\[
\begin{align*}
&\text{Figure 6.6: The path } P, \text{ with the root off to the right. Each chord } \{v_i, u_i\} \text{ has length at least } \epsilon k \text{ (and at most } k) \text{; from } u_i \text{ to } v_{i+1} \text{ is at most } 2\epsilon^2 k \text{ steps back along } P. \text{ The chords and the thick part of } P \text{ form a cycle.}
\end{align*}
\]

6.6 Spanning Subgraphs

Consider a fixed sequence \(H(d) \) of graphs where \(n = |V(H(d))| \to \infty \). In particular, we consider a sequence \(Q_d \) of \(d \)-dimensional cubes where \(n = 2^d \) and a sequence of 2-dimensional lattices \(L_d \) of order \(n = d^2 \). We ask when \(G_{n,p} \) or \(G_{n,m} \) contains a copy of \(H = H(d) \) w.h.p.

We give a condition that can be proved in quite an elegant and easy way. This proof is from Alon and Füredi [26].

Theorem 6.18. Let \(H \) be fixed sequence of graphs with \(n = |V(H)| \to \infty \) and maximum degree \(\Delta \), where \((\Delta^2 + 1)^2 < n \). If

\[
p^\Delta > \frac{10 \log |n/(\Delta^2 + 1)|}{|n/(\Delta^2 + 1)|},
\]

then \(G_{n,p} \) contains an isomorphic copy of \(H \) w.h.p.

Proof. To prove this we first apply the Hajnal-Szemerédi Theorem to the square \(H^2 \) of our graph \(H \).

Recall that we square a graph if we add an edge between any two vertices of our original graph which are at distance at most two. The Hajnal-Szemerédi Theorem states that every graph with \(n \) vertices and maximum vertex degree at most \(d \) is \(d + 1 \)-colorable with all color classes of size \(\lfloor n/(d + 1) \rfloor \) or \(\lceil n/(d + 1) \rceil \), i.e., the \((d + 1) \)-coloring is equitable.

Since the maximum degree of \(H^2 \) is at most \(\Delta^2 \), there exists an equitable \(\Delta^2 + 1 \)-coloring of \(H^2 \) which induces a partition of the vertex set of \(H \), say \(U = U(H) \),
into $\Delta^2 + 1$ pairwise disjoint subsets $U_1, U_2, \ldots, U_{\Delta^2+1}$, so that each U_k is an independent set in H^2 and the cardinality of each subset is either $\lceil n/(\Delta^2 + 1) \rceil$ or $\lfloor n/(\Delta^2 + 1) \rfloor$.

Next, partition the set V of vertices of the random graph $\mathbb{G}_{n,p}$ into pairwise disjoint sets $V_1, V_2, \ldots, V_{\Delta^2+1}$, so that $|U_k| = |V_k|$ for $k = 1, 2, \ldots, \Delta^2 + 1$.

We define a one-to-one function $f : U \mapsto V$, which maps each U_k onto V_k resulting in a mapping of H into an isomorphic copy of H in $\mathbb{G}_{n,p}$. In the first step, choose an arbitrary mapping of U_1 onto V_1. Now U_1 is an independent subset of H and so $\mathbb{G}_{n,p}[V_1]$ trivially contains a copy of $H[U_1]$. Assume, by induction, that we have already defined

$$f : U_1 \cup U_2 \cup \ldots \cup U_k \mapsto V_1 \cup V_2 \cup \ldots \cup V_k,$$

and that f maps the induced subgraph of H on $U_1 \cup U_2 \cup \ldots \cup U_k$ into a copy of it in $V_1 \cup V_2 \cup \ldots \cup V_k$. Now, define f on U_{k+1} using the following construction. Suppose first that

$$U_{k+1} = \{u_1, u_2, \ldots, u_m\} \quad \text{and} \quad V_{k+1} = \{v_1, v_2, \ldots, v_m\} \quad \text{where} \quad m \in \{\lceil n/(\Delta^2 + 1) \rceil, \lfloor n/(\Delta^2 + 1) \rfloor\}.$$

Next, construct a random bipartite graph $G^{(k)}_{m,m,p^*}$ with a vertex set $V = (X, Y)$, where $X = \{x_1, x_2, \ldots, x_m\}$ and $Y = \{y_1, y_2, \ldots, y_m\}$ and connect x_i and y_j with an edge if and only if in $\mathbb{G}_{n,p}$ the vertex v_j is joined by an edge to all vertices $f(u)$, where u is a neighbor of u_i in H which belongs to $U_1 \cup U_2 \cup \ldots \cup U_k$. Hence, we join x_i with y_j if and only if we can define $f(u_i) = v_j$.

Note that for each i and j, the edge probability $p^* \geq p^A$ and that edges of $G^{(k)}_{m,m,p^*}$ are independent of each other, since they depend on pairwise disjoint sets of edges of $\mathbb{G}_{n,p}$. This follows from the fact that U_{k+1} is independent in H^2. Assuming that the condition (6.15) holds and that $(\Delta^2 + 1)^2 < n$, then by Theorem 6.1, the random graph $G^{(k)}_{m,m,p^*}$ has a perfect matching w.h.p. Moreover, we can conclude that the probability that there is no perfect matching in $G^{(k)}_{m,m,p^*}$ is at most $\frac{1}{(\Delta^2 + 1)^n}$. It is here that we have used the extra factor 10 in the RHS of (6.15). We use a perfect matching in $G^{(k)}(m, m, p^*)$ to define f, assuming that if x_i and y_j are matched then $f(u_i) = v_j$. To define our mapping $f : U \mapsto V$ we have to find perfect matchings in all $G^{(k)}(m, m, p^*), k = 1, 2, \ldots, \Delta^2 + 1$. The probability that we can succeed in this is at least $1 - 1/n$. This implies that $\mathbb{G}_{n,p}$ contains an isomorphic copy of H w.h.p.

Corollary 6.19. Let $n = 2^d$ and suppose that $d \to \infty$ and $p \geq \frac{1}{2} + o_d(1)$, where $o_d(1)$ is a function that tends to zero as $d \to \infty$. Then w.h.p. $\mathbb{G}_{n,p}$ contains a copy of a d-dimensional cube Q_d. \hfill \square
Corollary 6.20. Let \(n = d^2 \) and \(p = \frac{\omega(n) \log n}{n^{1/4}} \), where \(\omega(n), d \to \infty \). Then w.h.p. \(G_{n,p} \) contains a copy of the 2-dimensional lattice \(L_d \).

6.7 Exercises

6.7.1 Consider the bipartite graph process \(\Gamma_m, m = 0, 1, 2, \ldots, n^2 \) where we add the \(n^2 \) edges in \(A \times B \) in random order, one by one. Show that w.h.p. the hitting time for \(\Gamma_m \) to have a perfect matching is identical with the hitting time for minimum degree at least one.

6.7.2 Show that
\[
\lim_{n \to \infty} \mathbb{P}(G_{n,p} \text{ has a near perfect matching}) = \begin{cases}
0 & \text{if } c_n \to -\infty \\
e^{-c-e^{-c}} & \text{if } c_n \to c \\
1 & \text{if } c_n \to \infty.
\end{cases}
\]

A near perfect matching is one of size \(\lfloor n/2 \rfloor \).

6.7.3 Show that if \(p = \frac{\log n + (k-1) \log \log n + \omega}{n} \) where \(k = O(1) \) and \(\omega \to \infty \) then w.h.p. \(G_{n,n,p} \) contains a \(k \)-regular spanning subgraph.

6.7.4 Consider the random bipartite graph \(G \) with bi-partition \(A, B \) where \(|A| = |B| = n \). Each vertex \(a \in A \) independently chooses \(\lceil 2 \log n \rceil \) random neighbors in \(B \). Show that w.h.p. \(G \) contains a perfect matching.

6.7.5 Show that if \(p = \frac{\log n + (k-1) \log \log n + \omega}{n} \) where \(k = O(1) \) and \(\omega \to \infty \) then w.h.p. \(G_{n,p} \) contains \(\lfloor k/2 \rfloor \) edge disjoint Hamilton cycles. If \(k \) is odd, show that in addition there is an edge disjoint matching of size \(\lfloor n/2 \rfloor \). (Hint: Use Lemma 6.4 to argue that after “peeling off” a few Hamilton cycles, we can still use the arguments of Sections 6.1, 6.2).

6.7.6 Let \(m^* \) denote the first time that \(G_m \) has minimum degree at least \(k \). Show that w.h.p. in the graph process (i) \(G_{m^*} \) contains a perfect matching and (ii) \(G_{m^*} \) contains a Hamilton cycle.

6.7.7 Show that if \(p = \frac{\log n + \log \log n + \omega}{n} \) where \(\omega \to \infty \) then w.h.p. \(G_{n,n,p} \) contains a Hamilton cycle. (Hint: Start with a 2-regular spanning subgraph from (ii). Delete an edge from a cycle. Argue that rotations will always produce paths beginning and ending at different sides of the partition. Proceed more or less as in Section 6.2).
6.7.8 Show that if \(p = \frac{\log n + \log \log n + o(n)}{n} \) where \(n \) is even and \(o(n) \to \infty \) then w.h.p. \(G_{n,p} \) contains a pair of vertex disjoint \(n/2 \)-cycles. (Hint: Randomly partition \([n]\) into two sets of size \(n/2 \). Then move some vertices between parts to make the minimum degree at least two in both parts).

6.7.9 Show that if three divides \(n \) and \(np^2 \gg \log n \) then w.h.p. \(G_{n,p} \) contains \(n/3 \) vertex disjoint triangles. (Hint: Randomly partition \([n]\) into three sets \(A, B, C \) of size \(n/3 \). Choose a perfect matching \(M \) between \(A \) and \(B \) and then match \(C \) into \(M \)).

6.7.10 Let \(G = (X, Y, E) \) be an arbitrary bipartite graph where the bi-partition \(X, Y \) satisfies \(|X| = |Y| = n \). Suppose that \(G \) has minimum degree at least \(3n/4 \). Let \(p = \frac{K \log n}{n} \) where \(K \) is a large constant. Show that w.h.p. \(G_p \) contains a perfect matching.

6.7.11 Let \(p = (1 + \epsilon) \frac{\log n}{n} \) for some fixed \(\epsilon > 0 \). Prove that w.h.p. \(G_{n,p} \) is Hamilton connected i.e. every pair of vertices are the endpoints of a Hamilton path.

6.7.12 Show that if \(p = \frac{(1+\epsilon) \log n}{n} \) for \(\epsilon \) constant, then w.h.p. \(G_{n,p} \) contains a copy of a caterpillar on \(n \) vertices. The diagram below is the case \(n = 16 \).

6.7.13 Show that for any fixed \(\epsilon > 0 \) there exists \(c_\epsilon \) such that if \(c \geq c_\epsilon \) then \(G_{n,p} \) contains a cycle of length \((1-\epsilon)n \) with probability \(1 - e^{-\epsilon^2 n/10} \).

6.7.14 Let \(p = (1 + \epsilon) \frac{\log n}{n} \) for some fixed \(\epsilon > 0 \). Prove that w.h.p. \(G_{n,p} \) is pancyclic i.e. it contains a cycle of length \(k \) for every \(3 \leq k \leq n \). (See Cooper and Frieze [213] and Cooper [207], [209]).

6.7.15 Show that if \(p \) is constant then

\[
P(G_{n,p} \text{ is not Hamiltonian}) = O(e^{-\Omega(np)})
\]

6.7.16 Let \(T \) be a tree on \(n \) vertices and maximum degree less than \(c_1 \log n \). Suppose that \(T \) has at least \(c_2 n \) leaves. Show that there exists \(K = K(c_1, c_2) \) such that if \(p \geq \frac{K \log n}{n} \) then \(G_{n,p} \) contains a copy of \(T \) w.h.p.
6.7.17 Let \(p = \frac{1000}{n} \) and \(G = G_{n,p} \). Show that w.h.p. any red-blue coloring of the edges of \(G \) contains a mono-chromatic path of length \(\frac{n}{1000} \). (Hint: Apply the argument of Section 6.3 to both the red and blue sub-graphs of \(G \) to show that if there is no long monochromatic path then there is a pair of large sets \(S, T \) such that no edge joins \(S, T \).) This question is taken from Dudek and Pralat [270].

6.7.18 Suppose that \(p = n^{-\alpha} \) for some constant \(\alpha > 0 \). Show that if \(\alpha > \frac{1}{3} \) then w.h.p. \(G_{n,p} \) does not contain a maximal spanning planar subgraph, i.e., a planar subgraph with \(3n - 6 \) edges. Show that if \(\alpha < \frac{1}{3} \) then it contains one w.h.p. (see Bollobás and Frieze [147]).

6.7.19 Show that the hitting time for the existence of \(k \) edge-disjoint spanning trees coincides w.h.p. with the hitting time for minimum degree \(k \), for \(k = O(1) \). (See Palmer and Spencer [639]).

6.7.20 Let \(p = \frac{c}{n} \) where \(c > 1 \) is constant. Consider the greedy algorithm for constructing a large independent set \(I \): choose a random vertex \(v \) and put \(v \) into \(I \). Then delete \(v \) and all of its neighbors. Repeat until there are no vertices left. Use the differential equation method (see Section 6.4) and show that w.h.p. this algorithm chooses an independent set of size at least \(\log c \).n.

6.7.21 Consider the modified greedy matching algorithm where you first choose a random vertex \(x \) and then choose a random edge \(\{x,y\} \) incident with \(x \). Show that applied to \(G_{n,m} \), with \(m = cn \), that w.h.p. it produces a matching of size \(\left(\frac{1}{2} + o(1) \right) - \frac{\log(2-e^{-2})}{4c} \).n.

6.7.22 Let \(X_1, X_2, \ldots, N = \binom{n}{2} \) be a sequence of independent Bernouilli random variables with common probability \(p \). Let \(\varepsilon > 0 \) be sufficiently small. (See [531]).

(a) Let \(p = \frac{1-\varepsilon}{n} \) and let \(k = \frac{7 \log n}{\varepsilon^2} \). Show that w.h.p. there is no interval \(I \) of length \(kn \) in \([N] \) in which at least \(k \) of the variables take the value 1.

(b) Let \(p = \frac{1+\varepsilon}{n} \) and let \(N_0 = \frac{\varepsilon n^2}{2} \). Show that w.h.p.

\[
\sum_{i=1}^{N_0} X_i - \varepsilon \left(1 + \varepsilon \right) n \leq n^{2/3}.
\]

6.7.23 Use the result of Exercise 6.7.21(a) to show that if \(p = \frac{1-\varepsilon}{n} \) then w.h.p. the maximum component size in \(G_{n,p} \) is at most \(\frac{7 \log n}{\varepsilon^2} \).

6.7.24 Use the result of Exercise 6.7.21(b) to show that if \(p = \frac{1+\varepsilon}{n} \) then w.h.p. \(G_{n,p} \) contains a path of length at least \(\varepsilon^2 n^2 \).
6.8 Notes

Hamilton cycles

Multiple Hamilton cycles

There are several results pertaining to the number of distinct Hamilton cycles in $G_{n,m}$. Cooper and Frieze [212] showed that in the graph process G_{m^*} contains $(\log n)^{n-o(n)}$ distinct Hamilton cycles w.h.p. This number was improved by Glebov and Krivelevich [384] to $n!p^n e^{o(n)}$ for $G_{n,p}$ and $\left(\frac{\log n}{e}\right)^n e^{o(n)}$ at time m^*. McDiarmid [584] showed that for Hamilton cycles, perfect matchings, spanning trees the expected number was much higher. This comes from the fact that although there is a small probability that m^* is of order n^2, most of the expectation comes from here. (m^*_k is defined in Exercise 6.7.5).

Bollobás and Frieze [146] (see Exercise 6.7.4) showed that in the graph process, $G_{m^*_k}$ contains $\lfloor k/2 \rfloor$ edge disjoint Hamilton cycles plus another edge disjoint matching of size $\lfloor n/2 \rfloor$ if n is odd. We call this property A_k. This was the case $k = O(1)$. The more difficult case of the occurrence of A_k at m^*_k, where $k \to \infty$ was verified in two papers, Krivelevich and Samotij [528] and Knox, Kühn and Osthus [508].

Conditioning on minimum degree

Suppose that instead of taking enough edges to make the minimum degree in $G_{n,m}$ very likely, we instead condition on having minimum degree at least two. Let $G_{n,m}^{\delta \geq k}$ denote $G_{n,m}$ conditioned on having minimum degree at least $k = O(1)$. Bollobás, Fenner and Frieze [144] proved that if

$$m = \frac{n}{2} \left(\frac{\log n}{k+1} + k \log \log n + o(n) \right)$$

then $G_{n,m}^{\delta \geq k}$ has A_k w.h.p.

Bollobás, Cooper, Fenner and Frieze [141] prove that w.h.p. $G_{n,\gamma n}^{\delta \geq k}$ has property A_{k-1} w.h.p. provided $3 \leq k = O(1)$ and $c \geq (k+1)^3$. For $k = 3$, Frieze [342] showed that $G_{n,\gamma n}^{\delta \geq 3}$ is Hamiltonian w.h.p. for $c \geq 10$.

The k-core of a random graphs is distributed like $G_{v,\mu}^{\delta \geq k}$ for some (random) v, μ. Krivelevich, Lubetzky and Sudakov [527] prove that when a k-core first appears, $k \geq 15$, w.h.p. it has $[(k-3)/2]$ edge disjoint Hamilton cycles.
Algorithms for finding Hamilton cycles

Gurevich and Shelah [404] and Thomason [737] gave linear expected time algorithms for finding a Hamilton cycle in a sufficiently dense random graph i.e. $G_{n,m}$ with $m \gg n^{5/3}$ in the Thomason paper. Bollobás, Fenner and Frieze [143] gave an $O(n^{3+o(1)})$ time algorithm that w.h.p. finds a Hamilton cycle in the graph G_{m^2}. Frieze and Haber [344] gave an $O(n^{1+o(1)})$ time algorithm for finding a Hamilton cycle in $G_{\delta \geq 3} \geq \frac{cn}{\epsilon}$ for c sufficiently large.

Long cycles

A sequence of improvements, Bollobás [130]; Bollobás, Fenner and Frieze [145] to Theorem 6.8 in the sense of replacing $O(\log c/c)$ by something smaller led finally to Frieze [335]. He showed that w.h.p. there is a cycle of length $n(1 - ce^{c(1 + \epsilon c)})$ where $\epsilon c \to 0$ with c. Up to the value of ϵc this is best possible.

Glebov, Naves and Sudakov [385] prove the following generalisation of (part of) Theorem 6.5. They prove that if a graph G has minimum degree at least k and $p \geq \frac{\log k + \log \log k + o_k(1)}{k}$ then w.h.p. G_p has a cycle of length at least $k + 1$.

Spanning Subgraphs

Riordan [671] used a second moment calculation to prove the existence of a certain (sequence of) spanning subgraphs $H = H^{(i)}$ in $G_{n,p}$. Suppose that we denote the number of vertices in a graph H by $|H|$ and the number of edges by $e(H)$. Suppose that $|H| = n$. For $k \in [n]$ we let $e_H(k) = \max \{ e(F) : F \subseteq H, |F| = k \}$ and $\gamma = \max_{3 \leq k \leq n} \frac{e_H(k)}{k-2}$. Riordan proved that if the following conditions hold, then $G_{n,p}$ contains a copy of H w.h.p.: (i) $e(H) \geq n$, (ii) $Np, (1 - p)n^{1/2} \to \infty$, (iii) $np^2/\Delta(H)^4 \to \infty$.

This for example replaces the $\frac{1}{2}$ in Corollary 6.19 by $\frac{1}{4}$.

Spanning trees

Gao, Pérez-Giménez and Sato [373] considered the existence of k edge disjoint spanning trees in $G_{n,p}$. Using a characterisation of Nash-Williams [626] they were able to show that w.h.p. one can find $\min \{ \delta, \frac{m}{n-1} \}$ edge disjoint spanning trees. Here δ denotes the minimum degree and m denotes the number of edges.

When it comes to spanning trees of a fixed structure, Kahn conjectured that the threshold for the existence of any fixed bounded degree tree T, in terms of number of edges, is $O(n \log n)$. For example, a comb consists of a path P of length $n^{1/2}$ with each $v \in P$ being one endpoint of a path P_v of the same length. The paths P_v, P_w being vertex disjoint for $v \neq w$. Hefetz, Krivelevich and Szabó [420]
proved this for a restricted class of trees i.e. those with a linear number of leaves or with an induced path of length $\Omega(n)$. Kahn, Lubetzky and Wormald [472], [473] verified the conjecture for combs. Montgomery [605], [606] sharpened the result for combs, replacing $m = Cn \log n$ by $m = (1 + \epsilon)n \log n$ and proved that any tree can be found w.h.p. when $m = O(\Delta n(\log n)^5)$, where Δ is the maximum degree of T. More recently, Montgomery [608] improved the upper bound on m to the optimal, $m = O(\Delta n(\log n))$.

Large Matchings

Karp and Sipser [494] analysed a greedy algorithm for finding a large matching in the random graph $G_{n,p}$, $p = c/n$ where $c > 0$ is a constant. It has a much better performance than the algorithm described in Section 6.4. It follows from their work that if $\mu(G)$ denotes the size of the largest matching in G then w.h.p.

$$\frac{\mu(G_{n,p})}{n} \approx 1 - \frac{\gamma + \gamma + \gamma \gamma}{2c},$$

where γ is the smallest root of $x = c \exp \{-ce^{-x}\}$ and $\gamma' = ce^{-\gamma}$.

Later, Aronson, Frieze and Pittel [40] tightened their analysis. This led to the consideration of the size of the largest matching in $G_{n,m=cn}$. Frieze and Pittel [362] showed that w.h.p. this graph contains a matching of size $n/2 - Z$ where Z is a random variable with bounded expectation. Frieze [340] proved that in the bipartite analogue of this problem, a perfect matching exists w.h.p. Building on this work, Chebolu, Frieze and Melsted [182] showed how to find an exact maximum sized matching in $G_{n,m}, m = cn$ in $O(n)$ expected time.

H-factors

By an H-factor of a graph G, we mean a collection of vertex disjoint copies of a fixed graph H that together cover all the vertices of G. Some early results on the existence of H-factors in random graphs are given in Alon and Yuster [33] and Łuczak and Ruciński [687]. For the case of when H is a tree, Łuczak and Ruciński [567] found the precise threshold. For general H, there is a recent breakthrough paper of Johansson, Kahn and Vu [468] that gives the threshold for strictly balanced H and good estimates in general. See Gerke and McDowell [372] for some further results.
Chapter 7

Extreme Characteristics

This chapter is devoted to the extremes of certain graph parameters. We look first at the diameter of random graphs i.e. the extreme value of the shortest distance between a pair of vertices. Then we look at the size of the largest independent set and the related value of the chromatic number. We describe an important recent result on “interpolation” that proves certain limits exist. We end the chapter with the likely values of the first and second eigenvalues of a random graph.

7.1 Diameter

In this section we will first discuss the threshold for $G_{n,p}$ to have diameter d, when $d \geq 2$ is a constant. The diameter of a connected graph G is the maximum over distinct vertices v, w of $\text{dist}(v, w)$ where $\text{dist}(v, w)$ is the minimum number of edges in a path from v to w. The theorem below was proved independently by Burtin [171], [172] and by Bollobás [128]. The proof we give is due to Spencer [718].

Theorem 7.1. Let $d \geq 2$ be a fixed positive integer. Suppose that $c > 0$ and

$$p^d n^{d-1} = \log(n^2 / c).$$

Then

$$\lim_{n \to \infty} P(\text{diam}(G_{n,p} = k) = \begin{cases} e^{-c/2} & \text{if } k = d \\ 1 - e^{-c/2} & \text{if } k = d + 1. \end{cases}$$

Proof. (a): w.h.p. $\text{diam}(G) \geq d$.

Fix $v \in V$ and let

$$N_k(v) = \{w : \text{dist}(v, w) = k\}. \quad (7.1)$$

115
It follows from Theorem 3.4 that w.h.p. for $0 \leq k < d$,

$$|N_k(v)| \leq \Delta^k \approx (np)^k \approx (n \log n)^{k/d} = o(n). \quad (7.2)$$

(b) w.h.p. $\text{diam}(G) \leq d + 1$

Fix $v, w \in [n]$. Then for $1 \leq k < d$, define the event

$$\mathcal{F}_k = \left\{ |N_k(v)| \in I_k = \left[\left(\frac{np}{2} \right)^k, (2np)^k \right] \right\}.$$

Then for $k \leq \lceil d/2 \rceil$ we have

$$\begin{align*}
\mathbb{P}(\mathcal{F}_k | \mathcal{F}_1, \ldots, \mathcal{F}_{k-1}) &= \mathbb{P} \left(\text{Bin} \left(n - \sum_{i=0}^{k-1} |N_i(v)|, 1 - (1 - p)^{|N_{k-1}(v)|} \right) \notin I_k \right) \\
&= \mathbb{P} \left(\text{Bin} \left(n - o(n), \frac{3}{4} \left(\frac{np}{2} \right)^{k-1} p \right) \leq \left(\frac{np}{2} \right)^k \right) \\
&\quad + \mathbb{P} \left(\text{Bin} \left(n - o(n), \frac{5}{4} (2np)^{k-1} p \right) \geq (2np)^k \right) \\
&\leq \exp \left\{ -\Omega \left((np)^k \right) \right\} \\
&= O(n^{-3}).
\end{align*}$$

So with probability $1 - O(n^{-3})$,

$$|N_{\lfloor d/2 \rfloor}(v)| \geq \left(\frac{np}{2} \right)^{\lfloor d/2 \rfloor} \text{ and } |N_{\lfloor d/2 \rfloor}(w)| \geq \left(\frac{np}{2} \right)^{\lfloor d/2 \rfloor}.$$
If \(X = N_{[d/2]}(v) \) and \(Y = N_{[d/2]}(w) \) then, either
\[
X \cap Y \neq \emptyset \text{ and } \text{dist}(v, w) \leq \lfloor d/2 \rfloor + \lceil d/2 \rceil = d,
\]
or since the edges between \(X \) and \(Y \) are unconditioned by our construction,
\[
\Pr(\text{\exists an \(X \): \(Y \) edge}) \leq (1 - p)^{\binom{n}{2}} \leq \exp \left\{ - \left(\frac{np}{2} \right)^d \right\}
\leq \exp\{ -(2 - o(1))np \log n \} = o(n^{-3}).
\]
So
\[
\Pr(\exists v, w : \text{dist}(v, w) > d + 1) = o(n^{-1}).
\]
We now consider the probability that \(d \) or \(d + 1 \) is the diameter. We will use Janson’s inequality, see Section 22.6. More precisely, we will use the earlier inequality, Corollary 22.14, from Janson, Łuczak and Ruciński [448]. We will first use this to estimate the probability of the following event: Let \(v \neq w \in [n] \) and let
\[
\mathcal{A}_{v, w} = \{ v, w \text{ are not joined by a path of length } d \}.
\]
For \(x = x_1, x_2, \ldots, x_{d-1} \) let
\[
\mathcal{B}_{v, x, w} = \{ (v, x_1, x_2, \ldots, x_{d-1}, w) \text{ is a path in } G_{n, p} \}.
\]
Let
\[
Z = \sum_x Z_x,
\]
where
\[
Z_x = \begin{cases} 1 & \text{if } \mathcal{B}_{v, x, w} \text{ occurs} \\ 0 & \text{otherwise.} \end{cases}
\]
Janson’s inequality allows us to estimate the probability that \(Z = 0 \), which is precisely the probability of \(\mathcal{A}_{v, w} \).
Now
\[
\mu = \mathbb{E} Z = (n-2)(n-3) \cdots (n-d)p^d = \log \left(\frac{n^2}{c} \right) \left(1 + O \left(\frac{1}{n} \right) \right).
\]
Let \(x = x_1, x_2, \ldots, x_{d-1}, y = y_1, y_2, \ldots, y_{d-1} \) and
\[
\Delta = \sum_{x, y : x \neq y, \mathcal{B}_{v, x, w} \text{ and } \mathcal{B}_{v, y, w} \text{ share an edge}} \Pr(\mathcal{B}_x \cap \mathcal{B}_y)
\]
\[\sum_{i=1}^{d-1} \binom{d}{t} n^{2(t-1)-t} p^{2d-t}, \quad t \text{ is the number of shared edges}, \]
\[= O \left(\sum_{i=1}^{d-1} n^{2(t-1)-t-\frac{d-1}{d}(2d-t)}(\log n)^{\frac{2d-t}{d}} \right) \]
\[= O \left(\sum_{i=1}^{d-1} n^{-t/d+o(1)} \right) \]
\[= o(1). \]

Applying Corollary 22.14), \(P(Z = 0) \leq e^{-\mu + \Delta} \), we get
\[P(Z = 0) \leq \frac{c + o(1)}{n^2}. \]

On the other hand the FKG inequality (see Section 22.3) implies that
\[P(Z = 0) \geq \left(1 - p^d \right)^{(n-2)(n-3)...(n-d)} = \frac{c + o(1)}{n^2}. \]

So
\[P(\mathcal{A}_{v,w}) = P(Z = 0) = \frac{c + o(1)}{n^2}. \]

So
\[\mathbb{E}(\#v,w: \mathcal{A}_{v,w} \text{ occurs}) = \frac{c + o(1)}{2} \]

and we should expect that
\[P(\exists v,w: \mathcal{A}_{v,w} \text{ occurs}) \approx e^{-c/2}. \quad (7.3) \]

Indeed if we choose \(v_1, w_1, v_2, w_2, \ldots, v_k, w_k, k \) constant, we will find that
\[P(\mathcal{A}_{v_1,w_1}, \mathcal{A}_{v_2,w_2}, \ldots, \mathcal{A}_{v_k,w_k}) \approx \left(\frac{c}{n^2} \right)^k \quad (7.4) \]

and (7.3) follows from the method of moments.

The proof of (7.3) is just a more involved version of the proof of the special case \(k = 1 \) that we have just completed. We now let
\[\mathcal{B}_x = \bigcup_{i=1}^{k} \mathcal{B}_{v_i, w_i} \]
and re-define
\[Z = \sum_x Z_x, \]
where now

\[Z_x = \begin{cases}
1 & \text{if } \mathcal{B}_x \text{ occurs} \\
0 & \text{otherwise}.
\end{cases} \]

Then we have \(\{Z = 0\} \) is equivalent to \(\bigcap_{i=1}^{k} \mathcal{A}_{v_i,w_i} \).

Now,

\[\mathbb{E} Z = k(n-2)(n-3) \cdots (n-d)p^d = k \log \left(\frac{n^2}{c} \right) \left(1 + O \left(\frac{1}{n} \right) \right). \]

We need to show that the corresponding \(\Delta = o(1) \). But,

\[
\Delta \leq \sum_{r,s} \sum_{x,y:x \neq y} \mathbb{P}(\mathcal{B}_{v_r,x,w_r} \cap \mathcal{B}_{v_s,y,w_s}) \leq k^2 \sum_{t=1}^{d-1} \binom{d}{t} n^{2(d-1)-t} p^{2d-t} = o(1).
\]

This shows that

\[\mathbb{P}(Z = 0) \leq e^{-k \log(n^2/c + o(1))} = \left(\frac{c + o(1)}{n^2} \right)^k. \]

On the other hand, the FKG inequality (see Section 22.3) shows that

\[\mathbb{P}(\mathcal{A}_{v_1,w_1}, \mathcal{A}_{v_2,w_2}, \ldots, \mathcal{A}_{v_k,w_k}) \geq \prod_{i=1}^{k} \mathbb{P}(\mathcal{A}_{v_i,w_i}). \]

This verifies (7.4) and completes the proof of Theorem 7.1.

We turn next to a sparser case and prove a somewhat weaker result.

Theorem 7.2. Suppose that \(p = \frac{\omega \log n}{n} \) where \(\omega \to \infty \). Then

\[\text{diam}(G_{n,p}) \approx \frac{\log n}{\log np} \text{ w.h.p.} \]

Proof. Fix \(v \in [n] \) and let \(N_i = N_i(v) \) be as in (7.1). Let \(N_{\leq k} = \bigcup_{i \leq k} N_i. \) Using the proof of Theorem 3.4(b) we see that we can assume that

\[(1 - \omega^{-1/3})np \leq \text{deg}(x) \leq (1 + \omega^{-1/3})np \quad \text{for all } x \in [n]. \]

(7.5)

It follows that if \(\gamma = \omega^{-1/3} \) and

\[k_0 = \frac{\log n - \log 3}{\log np + \gamma} \approx \frac{\log n}{\log np}, \]

where now

\[Z_x = \begin{cases}
1 & \text{if } \mathcal{B}_x \text{ occurs} \\
0 & \text{otherwise}.
\end{cases} \]

Then we have \(\{Z = 0\} \) is equivalent to \(\bigcap_{i=1}^{k} \mathcal{A}_{v_i,w_i} \).

Now,

\[\mathbb{E} Z = k(n-2)(n-3) \cdots (n-d)p^d = k \log \left(\frac{n^2}{c} \right) \left(1 + O \left(\frac{1}{n} \right) \right). \]

We need to show that the corresponding \(\Delta = o(1) \). But,

\[
\Delta \leq \sum_{r,s} \sum_{x,y:x \neq y} \mathbb{P}(\mathcal{B}_{v_r,x,w_r} \cap \mathcal{B}_{v_s,y,w_s}) \leq k^2 \sum_{t=1}^{d-1} \binom{d}{t} n^{2(d-1)-t} p^{2d-t} = o(1).
\]

This shows that

\[\mathbb{P}(Z = 0) \leq e^{-k \log(n^2/c + o(1))} = \left(\frac{c + o(1)}{n^2} \right)^k. \]

On the other hand, the FKG inequality (see Section 22.3) shows that

\[\mathbb{P}(\mathcal{A}_{v_1,w_1}, \mathcal{A}_{v_2,w_2}, \ldots, \mathcal{A}_{v_k,w_k}) \geq \prod_{i=1}^{k} \mathbb{P}(\mathcal{A}_{v_i,w_i}). \]

This verifies (7.4) and completes the proof of Theorem 7.1.

We turn next to a sparser case and prove a somewhat weaker result.

Theorem 7.2. Suppose that \(p = \frac{\omega \log n}{n} \) where \(\omega \to \infty \). Then

\[\text{diam}(G_{n,p}) \approx \frac{\log n}{\log np} \text{ w.h.p.} \]

Proof. Fix \(v \in [n] \) and let \(N_i = N_i(v) \) be as in (7.1). Let \(N_{\leq k} = \bigcup_{i \leq k} N_i. \) Using the proof of Theorem 3.4(b) we see that we can assume that

\[(1 - \omega^{-1/3})np \leq \text{deg}(x) \leq (1 + \omega^{-1/3})np \quad \text{for all } x \in [n]. \]

(7.5)

It follows that if \(\gamma = \omega^{-1/3} \) and

\[k_0 = \frac{\log n - \log 3}{\log np + \gamma} \approx \frac{\log n}{\log np}, \]
then w.h.p.

\[|N_{\leq k_0}| \leq \sum_{k \leq k_0} \left((1 + \gamma)np \right)^k \leq 2((1 + \gamma)np)^{k_0} = \frac{2n}{3 + o(1)} \]

and so the diameter of $G_{n,p}$ is at least $(1 - o(1)) \frac{\log n}{\log np}$.

We can assume that $np = n^{o(1)}$ as larger p are dealt with in Theorem 7.1. Now fix $v, w \in [n]$ and let N_i be as in the previous paragraph. Now consider a Breadth First Search (BFS) that constructs $N_1, N_2, \ldots, N_{k_1}$ where

\[k_1 = \frac{3 \log n}{5 \log np} \]

It follows that if (7.5) holds then for $k \leq k_1$ we have

\[|N_{i \leq k}| \leq n^{3/4} \quad \text{and} \quad |N_k|p \leq n^{-1/5}. \]

(7.6)

Observe now that the edges from N_i to $[n] \setminus N_{\leq i}$ are unconditioned by the BFS up to layer k and so for $x \in [n] \setminus N_{\leq k}$,

\[\mathbb{P}(x \in N_{k+1} \mid N_{\leq k}) = 1 - (1 - p)^{|N_k|} \geq |N_k|p(1 - |N_k|p) \geq \rho_k = |N_k|p(1 - n^{-1/5}). \]

The events $x \in N_{k+1}$ are independent and so $|N_{k+1}|$ stochastically dominates the binomial $\text{Bin}(n - n^{3/4}, \rho_k)$. Assume inductively that $|N_k| \geq (1 - \gamma)^k (np)^k$ for some $k \geq 1$. This is true w.h.p. for $k = 1$ by (7.5). Let \mathcal{A}_k be the event that (7.6) holds. It follows that

\[\mathbb{E}(|N_{k+1}| \mid \mathcal{A}_k) \geq np|N_k|(1 - O(n^{-1/5})). \]

It then follows from the Chernoff bounds (Theorem 22.6) that

\[\mathbb{P}(|N_{k+1}| \leq (1 - \gamma)np)^{k+1} \leq \exp \left\{ -\frac{\gamma^2}{4} |N_k|np \right\} = o(n^{-\text{any constant}}). \]

There is a small point to be made about conditioning here. We can condition on (7.5) holding and then argue that this only multiplies small probabilities by $1 + o(1)$ if we use $\mathbb{P}(A \mid B) \leq \mathbb{P}(A) / \mathbb{P}(B)$.

It follows that if

\[k_2 = \frac{\log n}{2(\log np + \log(1 - \gamma))} \approx \frac{\log n}{2 \log np} \]

then w.h.p. we have

\[|N_{k_2}| \geq n^{1/2}. \]
7.2. LARGE INDEPENDENT SETS

Analogously, if we do BFS from \(w \) to create \(N'_k \), \(i = 1, 2, \ldots, k \) then \(|N'_k| \geq n^{1/2} \).

If \(N_{\leq k_2} \cap N'_{\leq k_2} \neq \emptyset \) then \(\text{dist}(v,w) \leq 2k_2 \) and we are done. Otherwise, we observe that the edges \(N_{k_2} : N'_{k_2} \) between \(N_{k_2} \) and \(N'_{k_2} \) are unconditioned (except for (7.5)) and so

\[
\Pr(N_{k_2} : N'_{k_2} = \emptyset) \leq (1 - p)^{n^{1/2}} n^{1/2} \leq n^{-\omega}.
\]

If \(N_{k_2} : N'_{k_2} \neq \emptyset \) then \(\text{dist}(v,w) \leq 2k_2 + 1 \) and we are done. Note that given (7.5), all other unlikely events have probability \(O(n^{-\text{any constant}}) \) of occurring and so we can inflate these latter probabilities by \(n^2 \) to account for all choices of \(v,w \). This completes the proof of Theorem 7.2.

\[\square\]

7.2 Largest Independent Sets

Let \(\alpha(G) \) denote the size of the largest independent set in a graph \(G \).

Dense case

The following theorem was first proved by Matula [576].

Theorem 7.3. Suppose \(0 < p < 1 \) is a constant and \(b = \frac{1}{1-p} \). Then w.h.p.

\[
\alpha(\mathbb{G}_{n,p}) \approx 2 \log_b n.
\]

Proof. Let \(X_k \) be the number of independent sets of order \(k \).

(i) Let

\[
k = \lceil 2 \log_b n \rceil
\]

Then,

\[
\mathbb{E} X_k = \binom{n}{k} (1 - p)^{\binom{k}{2}}
\]

\[
\leq \left(\frac{ne}{k(1-p)^{1/2}(1-p)^{k/2}} \right)^k
\]

\[
\leq \left(\frac{e}{k(1-p)^{1/2}} \right)^k
\]

\[
= o(1).
\]

(ii) Let now

\[
k = \lceil 2 \log_b n - 5 \log_b \log n \rceil.
\]
Let
\[\Delta = \sum_{i,j} \mathbb{P}(S_i, S_j \text{ are independent in } G_{n,p}), \]
where \(S_1, S_2, \ldots, S_{\binom{n}{k}} \) are all the \(k \)-subsets of \([n]\) and \(S_i \sim S_j \) iff \(|S_i \cap S_j| \geq 2\). By Janson’s inequality, see Theorem 22.13,
\[\mathbb{P}(X_k = 0) \leq \exp \left\{ -\frac{(\mathbb{E}X_k)^2}{2\Delta} \right\}. \]
Here we apply the inequality in the context of \(X_k \) being the number of \(k \)-cliques in the complement of \(G_{n,p} \). The set \([N]\) will be the edges of the complete graph and the sets \(D_i \) will the edges of the \(k \)-cliques. Now
\[\frac{\Delta}{(\mathbb{E}X_k)^2} = \frac{\binom{n}{j}(1-p)^{\binom{j}{2}} \sum_{j=2}^{k} \binom{n-k}{j-1} \binom{k}{j} (1-p)^{\binom{j}{2}-\binom{j}{2}}}{\left(\binom{n}{k}(1-p)^{\binom{k}{2}} \right)^2} \]
\[= \sum_{j=2}^{k} \frac{\binom{n-k}{j-1} \binom{k}{j}}{\binom{n}{k}} (1-p)^{\binom{j}{2}} \]
\[= \sum_{j=2}^{k} u_j. \]
Notice that for \(j \geq 2, \)
\[\frac{u_{j+1}}{u_j} = \frac{k-j}{n-2k+j+1} \frac{k-j}{j+1} (1-p)^{-j} \]
\[\leq \left(1 + O\left(\log \frac{b}{n} \right) \right) \frac{k^2}{n(j+1)} (1-p)^{-j} \]
Therefore,
\[\frac{u_j}{u_2} \leq (1 + o(1)) \left(\frac{k^2}{n} \right)^{j-2} \frac{2(1-p)^{-(j-2)(j+1)/2}}{j!} \]
\[\leq (1 + o(1)) \left(\frac{2k^2e}{nj} (1-p)^{-\frac{j+1}{2}} \right)^{j-2} \leq 1. \]
So
\[\frac{(\mathbb{E}X_k)^2}{\Delta} \geq \frac{1}{ku_2} \geq \frac{n^2(1-p)}{k^5}. \]
7.2. LARGEST INDEPENDENT SETS

Therefore
\[\mathbb{P}(X_k = 0) \leq e^{-\Omega(n^2/(\log n)^5)}. \] \hfill (7.7)

Matula used the Chebyshev inequality and so he was not able to prove an exponential bound like (7.7). This will be important when we come to discuss the chromatic number.

Sparse Case

We now consider the case where \(p = d/n \) and \(d \) is a large constant. Frieze [339] proved

Theorem 7.4. Let \(\varepsilon > 0 \) be a fixed constant. Then for \(d \geq d(\varepsilon) \) we have that w.h.p.
\[
\left| \alpha(G_{n,p}) - \frac{2n}{d} \left(\log d - \log \log d - \log 2 + 1 \right) \right| \leq \frac{\varepsilon n}{d}.
\]

Dani and Moore [239] have recently given an even sharper result.
In this section we will prove that if \(p = d/n \) and \(d \) is sufficiently large then w.h.p.
\[
\left| \alpha(G_{n,p}) - \frac{2\log d}{d} n \right| \leq \frac{\varepsilon \log d}{d} n. \tag{7.8}
\]
This will follow from the following. Let \(X_k \) be as defined in the previous section. Let
\[
k_0 = \frac{(2 - \varepsilon/8) \log d}{d} n \quad \text{and} \quad k_1 = \frac{(2 + \varepsilon/8) \log d}{d} n.
\]
Then,
\[
\mathbb{P} \left(\left| \alpha(G_{n,p}) - \mathbb{E}(\alpha(G_{n,p})) \right| \geq \frac{\varepsilon \log d}{8d} n \right) \leq \exp \left\{ -\Omega \left(\frac{(\log d)^2}{d^2} \right) n \right\}. \tag{7.9}
\]
\[
\mathbb{P}(X_{k_1} > 0) \leq \exp \left\{ -\Omega \left(\frac{(\log d)^2}{d} \right) n \right\}. \tag{7.10}
\]
\[
\mathbb{P}(X_{k_0} > 0) \geq \exp \left\{ -O \left(\frac{(\log d)^{3/2}}{d^2} \right) n \right\}. \tag{7.11}
\]
Let us see how (7.8) follows from these two. Indeed, (7.9) and (7.11) imply that
\[
\mathbb{E}(\alpha(G_{n,p})) \geq k_0 - \frac{\varepsilon \log d}{8d} n. \tag{7.12}
\]
Furthermore (7.9) and (7.10) imply that
\[
\mathbb{E}(\alpha(G_{n,p})) \leq k_1 + \frac{\varepsilon \log d}{8d} n. \tag{7.13}
\]
It follows from (7.12) and (7.13) that

\[|k_0 - \mathbb{E}(\alpha(G_{n,p}))| \leq \frac{\varepsilon \log d}{2d} n. \]

We obtain (7.8) by applying (7.9) once more.

Proof of (7.9): This follows directly from the Azuma-Hoeffding inequality – see Section 22.7, in particular Lemma 22.17. If \(Z = \alpha(G_{n,p}) \) then we write \(Z = Z(Y_2, Y_3, \ldots, Y_n) \) where \(Y_i \) is the set of edges between vertex \(i \) and vertices \([i-1]\) for \(i \geq 2 \). \(Y_2, Y_3, \ldots, Y_n \) are independent and changing a single \(Y_i \) can change \(Z \) by at most one. Therefore, for any \(t > 0 \) we have

\[\mathbb{P}(|Z - \mathbb{E}(Z)| \geq t) \leq \exp \left\{ -\frac{t^2}{2n - 2} \right\}. \]

Setting \(t = \frac{\varepsilon \log d}{8d} n \) yields (7.9).

Proof of (7.10): The first moment method gives

\[\Pr(X_{k_1} > 0) \leq \binom{n}{k_1} \left(1 - \frac{d}{n} \right)^{\left(k_1 - 1 \right)/2} \leq \left(\frac{ne}{k_1} \cdot \left(1 - \frac{d}{n} \right)^{(k_1-1)/2} \right)^{k_1} \leq \left(\frac{de}{2\log d} \cdot d^{-(1+\varepsilon/5)} \right)^{k_1} = \exp \left\{ -\Omega \left(\frac{(\log d)^2}{d} \right) n \right\}. \]

Proof of (7.11): Now, after using Lemma 22.1(g),

\[\frac{1}{\mathbb{P}(X_{k_1} > 0)} \leq \frac{\mathbb{E}(X_{k_1}^2)}{\mathbb{E}(X_{k_1})^2} = \sum_{j=0}^{k_0} \binom{n}{k_0} \binom{n-k_0}{k_0-j} \binom{n}{k_0} (1 - p)^{(j/2)} \]

\[\leq \sum_{j=0}^{k_0} \left(\frac{k_0 e}{j} \cdot \exp \left\{ \frac{jd}{2n} + O \left(\frac{jd^2}{n^2} \right) \right\} \right)^j \times \]

\[\left(\frac{k_0}{n} \right)^j \left(\frac{n-k_0}{n-j} \right)^{k_0-j} \]

\[\leq \sum_{j=0}^{k_0} \left(\frac{k_0 e}{j} \cdot \frac{k_0}{n} \cdot \exp \left\{ \frac{jd}{2n} + O \left(\frac{jd^2}{n^2} \right) \right\} \right)^j \times \]

\[\exp \left\{ -\frac{(k_0-j)^2}{n-j} \right\} \]

\[\leq b \sum_{j=0}^{k_0} \left(\frac{k_0 e}{j} \cdot \frac{k_0}{n} \cdot \exp \left\{ \frac{jd}{2n} + \frac{2k_0}{n} \right\} \right)^j \times \exp \left\{ -\frac{k_0^2}{n} \right\} \]

(7.14)
\[\sum_{j=0}^{k_0} v_j. \] (7.15)

(The notation \(A \leq B \) is shorthand for \(A = O(B) \) when the latter is considered to be ugly looking).

We observe first that \((A/x)^x \leq e^{A/e} \) for \(A > 0 \) implies that

\[\left(\frac{k_0 e}{j} \right)^j \frac{k_0}{n} \leq 1. \]

So,

\[j \leq j_0 = \frac{\log d}{d^{3/2} n} \Rightarrow v_j \leq \exp \left\{ \frac{j^2 d}{2n} + \frac{2jk_0}{n} \right\} \]

\[= \exp \left\{ O \left(\frac{(\log d)^{3/2}}{d} \right) n \right\}. \] (7.16)

Now put

\[j = \frac{\alpha \log d}{d} n \text{ where } \frac{1}{d^{1/2} (\log d)^{1/4}} < \alpha < 2 - \frac{\varepsilon}{4}. \]

Then

\[\frac{k_0 e}{j} \cdot \frac{k_0}{n} \cdot \exp \left\{ \frac{j^2 d}{2n} \right\} \leq 4e \frac{\log d}{\alpha d} \cdot \exp \left\{ \frac{\alpha \log d}{2} + \frac{4 \log d}{d} \right\} \]

\[= \frac{4e}{\alpha d^{1-\alpha/2}} \exp \left\{ \frac{4 \log d}{d} \right\} \]

\[< 1. \]

To see this note that if \(f(\alpha) = \alpha d^{1-\alpha/2} \) then \(f \) increases between \(d^{-1/2} \) and \(2/\log d \) after which it decreases. Then note that

\[\min \left\{ f(d^{-1/2}), f(2-\varepsilon) \right\} > 4e \exp \left\{ \frac{4 \log d}{d} \right\}. \]

Thus \(v_j < 1 \) for \(j \geq j_0 \) and (7.11) follows from (7.16).

\[\square \]

7.3 Interpolation

The following theorem is taken from Bayati, Gamarnik and Tetali [67]. Note that it is not implied by Theorem 7.4. This paper proves a number of other results of a similar flavor for other parameters. It is an important paper in that it verifies some very natural conjectures about some graph parameters, that have not been susceptible to proof until now.
Theorem 7.5. There exists a function $H(d)$ such that
\[
\lim_{n \to \infty} \frac{\mathbb{E}(\alpha(G_{n,|dn|}))}{n} = H(d).
\]

Proof. For this proof we use the model $G_{n,m}^{(A)}$ of Section 1.3. This is proper since we we know that w.h.p.
\[
|\alpha(G_{n,m}^{(A)}) - \alpha(G_{n,m})| \leq |E(G_{n,m}^{(A)}) - m| \leq \log n.
\]
We will prove that for every $1 \leq n_1, n_2 \leq n - 1$ such that $n_1 + n_2 = n$,
\[
\mathbb{E}(\alpha(G_{n,|dn|}^{(A)})) \geq \mathbb{E}(\alpha(G_{n_1,m_1}^{(A)})) + \mathbb{E}(\alpha(G_{n_2,m_2}^{(A)}))
\] (7.17)
where $m_i = \text{Bin}(|dn|, n_i/n), i = 1, 2$.

Assume (7.17). We have $\mathbb{E}(|m_j - [dn_j]|) = O(n^{1/2})$. This and (7.17) and the fact that adding/deleting one edge changes α by at most one implies that
\[
\mathbb{E}(\alpha(G_{n,|dn|}^{(A)})) \geq \mathbb{E}(\alpha(G_{n_1,|d_{n_1}|}^{(A)})) + \mathbb{E}(\alpha(G_{n_2,|d_{n_2}|}^{(A)})) - O(n^{1/2}).
\] (7.18)

Thus the sequence $u_n = \mathbb{E}(\alpha(G_{n,|dn|}^{(A)}))$ satisfies the conditions of Lemma 7.6 below and the proof of Theorem 7.5 follows.

Proof of (7.17): We begin by constructing a sequence of graphs interpolating between $G_{n,|dn|}^{(A)}$ and a disjoint union of $G_{n_1,m_1}^{(A)}$ and $G_{n_2,m_2}^{(A)}$. Given n,n_1,n_2 such that $n_1 + n_2 = n$ and any $0 \leq r \leq m = |dn|$, let $G(n,m,r)$ be the random (pseudo-)graph on vertex set $[n]$ obtained as follows. It contains precisely m edges. The first r edges e_1, e_2, \ldots, e_r are selected randomly from $[n]^2$. The remaining $m - r$ edges e_{r+1}, \ldots, e_m are generated as follows. For each $j = r+1, \ldots, m$, with probability n_j/n, e_j is selected randomly from $M_1 = [n_1]^2$ and with probability $n_2/n, e_j$ is selected randomly from $M_2 = [n_1 + 1, n]^2$. Observe that when $r = m$ we have $G(n,m,r) = G^{(A)}(n,m)$ and when $r = 0$ it is the disjoint union of $G_{n_1,m_1}^{(A)}$ and $G_{n_2,m_2}^{(A)}$ where $m_j = \text{Bin}(m,n_j/n)$ for $j = 1, 2$. We will show next that
\[
\mathbb{E}(\alpha(G(n,m,r))) \geq \mathbb{E}(\alpha(G(n,m,r-1))) \text{ for } r = 1, \ldots, m.
\] (7.19)
It will follow immediately that
\[
\mathbb{E}(\alpha(G_{n,m}^{(A)})) = \mathbb{E}(\alpha(G(n,m,m))) \geq \mathbb{E}(\alpha(G(n,m,0))) = \mathbb{E}(\alpha(G_{n_1,m_1}^{(A)})) + \mathbb{E}(\alpha(G_{n_2,m_2}^{(A)}))
\]
which is (7.17).

Proof of (7.19): Observe that $\mathcal{G}(n, m, r - 1)$ is obtained from $\mathcal{G}(n, m, r)$ by deleting the random edge e_r and then adding an edge from M_1 or M_2. Let \mathcal{G}_0 be the graph obtained after deleting e_r, but before adding its replacement. Remember that

$$\mathcal{G}(n, m, r) = \mathcal{G}_0 + e_r.$$

We will show something stronger than (7.19) viz. that

$$E(\alpha(\mathcal{G}(n, m, r)) \mid \mathcal{G}_0) \geq E(\alpha(\mathcal{G}(n, m, r - 1)) \mid \mathcal{G}_0) \text{ for } r = 1, \ldots, m. \quad (7.20)$$

Now let $O^* \subseteq [n]$ be the set of vertices that belong to every largest independent set in \mathcal{G}_0. Then for $e_r = (x, y)$, $\alpha(\mathcal{G}_0 + e) = \alpha(\mathcal{G}_0) - 1$ if $x, y \in O^*$ and $\alpha(\mathcal{G}_0 + e) = \alpha(\mathcal{G}_0)$ if $x \notin O^*$ or $y \notin O^*$. Because e_r is randomly chosen, we have

$$E(\alpha(\mathcal{G}_0 + e_r) \mid \mathcal{G}_0) - E(\alpha(\mathcal{G}_0)) = -\left(\frac{|O^*|}{n}\right)^2.$$

By a similar argument

$$E(\alpha(\mathcal{G}(n, m, r - 1) \mid \mathcal{G}_0) - \alpha(\mathcal{G}_0)$$

$$= -\frac{n_1}{n} \left(\frac{|O^* \cap M_1|}{n_1}\right)^2 - \frac{n_2}{n} \left(\frac{|O^* \cap M_2|}{n_2}\right)^2$$

$$\leq -\left(\frac{n_1}{n} \frac{|O^* \cap M_1|}{n_1} + \frac{n_2}{n} \frac{|O^* \cap M_2|}{n_2}\right)^2$$

$$= -\left(\frac{|O^*|}{n}\right)^2$$

$$= E(\alpha(\mathcal{G}_0 + e_r) \mid \mathcal{G}_0) - E(\alpha(\mathcal{G}_0)),$$

completing the proof of (7.20).

The proof of the following lemma is left as an exercise.

Lemma 7.6. Given $\gamma \in (0, 1)$, suppose that the non-negative sequence $u_n, n \geq 1$ satisfies

$$u_n \geq u_{n_1} + u_{n_2} - O(n^\gamma)$$

for every n_1, n_2 such that $n_1 + n_2 = n$. Then $\lim_{n \to \infty} \frac{u_n}{n}$ exists.

7.4 Chromatic Number

Let $\chi(G)$ denote the chromatic number of a graph G, i.e., the smallest number of colors with which one can properly color the vertices of G. A coloring is proper if no two adjacent vertices have the same color.
Dense Graphs

We will first describe the asymptotic behavior of the chromatic number of dense random graphs. The following theorem is a major result, due to Bollobás [136]. The upper bound without the 2 in the denominator follows directly from Theorem 7.3. An intermediate result giving $3/2$ instead of 2 was already proved by Matula [577].

Theorem 7.7. Suppose $0 < p < 1$ is a constant and $b = \frac{1}{1 - p}$. Then w.h.p.

$$\chi(G_{n,p}) \approx \frac{n}{2 \log_b n}.$$

Proof. (i) By Theorem 7.3

$$\chi(G_{n,p}) \geq \frac{n}{\alpha(G_{n,p})} \approx \frac{n}{2 \log_b n}.$$

(ii) Let $\nu = \frac{n}{(\log_b n)^2}$ and $k_0 = 2 \log_b n - 4 \log_b \log_b n$. It follows from (7.7) that

$$P(\exists S : |S| \geq \nu, S \text{ does not contain an independent set of order } \geq k_0)$$

$$\leq \left(\frac{n}{\nu}\right)^{\nu} \exp\left\{-\Omega\left(\frac{\nu^2}{(\log n)^5}\right)\right\}$$

$$= o(1). \quad (7.21)$$

So assume that every set of order at least ν contains an independent set of order at least k_0. We repeatedly choose an independent set of order k_0 among the set of uncolored vertices. Give each vertex in this set a new color. Repeat until the number of uncolored vertices is at most ν. Give each remaining uncolored vertex its own color. The number of colors used is at most

$$\frac{n}{k_0} + \nu \approx \frac{n}{2 \log_b n}.$$

It should be noted that Bollobás did not have the Janson inequality available to him and he had to make a clever choice of random variable for use with the Azuma-Hoeffding inequality. His choice was the maximum size of a family of edge independent independent sets. Łuczak [560] proved the corresponding result to Theorem 7.7 in the case where $np \to 0$.

7.4. CHROMATIC NUMBER

Concentration

Theorem 7.8. Suppose $0 < p < 1$ is a constant. Then

$$
P(|\chi(G_{n,p}) - E\chi(G_{n,p})| \geq t) \leq 2\exp\left\{-\frac{t^2}{2n}\right\}
$$

Proof. Write

$$\chi = Z(Y_1, Y_2, \ldots, Y_n)$$

(7.22)

where

$$Y_j = \{(i, j) \in E(G_{n,p}) : i < j\}.$$

Then

$$|Z(Y_1, Y_2, \ldots, Y_n) - Z(Y_1, Y_2, \ldots, \hat{Y}_j, \ldots, Y_n)| \leq 1$$

and the theorem follows from the Azuma-Hoeffding inequality, see Section 22.7, in particular Lemma 22.17.

Greedy Coloring Algorithm

We show below that a simple greedy algorithm performs very efficiently. It uses twice as many colors as it “should” in the light of Theorem 7.7. This algorithm is discussed in Bollobás and Erdös [142] and by Grimmett and McDiarmid [400]. It starts by greedily choosing an independent set C_1 and at the same time giving its vertices color 1. C_1 is removed and then we greedily choose an independent set C_2 and give its vertices color 2 and so on, until all vertices have been colored.

Algorithm GREEDY

- k is the current color.
- A is the current set of vertices that might get color k in the current round.
- U is the current set of uncolored vertices.

begin

$k \leftarrow 0$, $A \leftarrow [n]$, $U \leftarrow [n]$, $C_k \leftarrow \emptyset$.

while $U \neq \emptyset$ **do**

$k \leftarrow k + 1$, $A \leftarrow U$

while $A \neq \emptyset$

begin
Choose $v \in A$ and put it into C_k

\[U \leftarrow U \setminus \{v\} \]
\[A \leftarrow A \setminus (\{v\} \cup N(v)) \]
\end

Theorem 7.9. Suppose $0 < p < 1$ is a constant and $b = \frac{1}{1-p}$. Then w.h.p. algorithm GREEDY uses approximately $n / \log_b n$ colors to color the vertices of $G_{n,p}$.

Proof. At the start of an iteration the edges inside U are un-examined. Suppose that
\[|U| \geq \nu = \frac{n}{(\log_b n)^2}. \]
We show that approximately $\log_b n$ vertices get color k i.e. at the end of round k, $|C_k| \approx \log_b n$.

Each iteration chooses a *maximal* independent set from the remaining uncolored vertices. Let $k_0 = \log_b n - 5 \log_b \log_b n$. Then

\[
\mathbb{P} (\exists T : |T| \leq k_0, T \text{ is maximally independent in } U) \leq \sum_{t=1}^{k_0} \left(\begin{array}{c} n \\ t \end{array} \right) \left(1 - p \right)^{\frac{t(t-1)}{2}} (1 - (1 - p)^t)^{n_0-t} \\
\leq \sum_{t=1}^{k_0} \left(\frac{ne}{t} \left(1 - p \right)^{\frac{t-1}{2}} \right)^t e^{-(n_0-t)(1-p)^t} \\
\leq \sum_{t=1}^{k_0} \left(ne^{1+(1-p)^t} \right)^t e^{-n_0(1-p)^t} \\
\leq k_0 \left(ne^2 \right)^{k_0} e^{-\left(\log_b n \right)^3} \leq e^{-\frac{1}{2} \left(\log_b n \right)^3}.
\]
So the probability that we fail to use at least k_0 colors while $|U| \geq \nu$ is at most $\left(ne^2 \right)^{k_0} e^{-\left(\log_b n \right)^3} \leq e^{-\frac{1}{2} \left(\log_b n \right)^3}$. So w.h.p. GREEDY uses at most

\[
\frac{n}{k_0} + \nu \approx \frac{n}{\log_b n} \text{ colors.}
\]
We now put a lower bound on the number of colors used by GREEDY. Let $k_1 = \log_b n + 2 \log_b \log_b n$.

7.4. CHROMATIC NUMBER

Consider one round. Let \(U_0 = U \) and suppose \(u_1, u_2, \ldots \in C_k \) and \(U_{i+1} = U_i \setminus (\{u_i\} \cup N(u_i)) \). Then
\[
\mathbb{E}(|U_{i+1}| | U_i) \leq |U_i|(1 - p),
\]
and so, for \(i = 1, 2, \ldots \)
\[
\mathbb{E}(|U_i|) \leq n(1 - p)^i.
\]
So
\[
\mathbb{P}(k_1 \text{ vertices colored in one round}) \leq \frac{1}{(\log_b n)^2},
\]
and
\[
\mathbb{P}(2k_1 \text{ vertices colored in one round}) \leq \frac{1}{n}.
\]
So let
\[
\delta_i = \begin{cases}
1 & \text{if at most } k_1 \text{ vertices are colored in round } i \\
0 & \text{otherwise}
\end{cases}
\]
We see that
\[
\mathbb{P}(\delta_i = 1 | \delta_1, \delta_2, \ldots, \delta_{i-1}) \geq 1 - \frac{1}{(\log_b n)^2}.
\]
So the number of rounds that color more than \(k_1 \) vertices is stochastically dominated by a binomial with mean \(n/(\log_b n)^2 \). The Chernoff bounds imply that w.h.p. the number of rounds that color more than \(k_1 \) vertices is less than \(2n/(\log_b n)^2 \).

Strictly speaking we need to use Lemma 22.24 to justify the use of the Chernoff bounds. Because no round colors more than \(2k_1 \) vertices we see that w.h.p. GREEDY uses at least
\[
\frac{n - 4k_1 n/(\log_b n)^2}{k_1} \approx \frac{n}{\log_b n} \text{ colors.}
\]

\[\square\]

Sparse Graphs

We now consider the case of sparse random graphs. We first state an important conjecture about the chromatic number.

Conjecture: Let \(k \geq 3 \) be a fixed positive integer. Then there exists \(d_k > 0 \) such that if \(\varepsilon \) is an arbitrary positive constant and \(p = \frac{d}{n} \) then w.h.p. (i) \(\chi(G_{n,p}) \leq k \) for \(d \leq d_k - \varepsilon \) and (ii) \(\chi(G_{n,p}) \geq k + 1 \) for \(d \geq d_k + \varepsilon \).

In the absence of a proof of this conjecture, we present the following result due to Łuczak [561]. It should be noted that Shamir and Spencer [708] had already proved six point concentration.
Theorem 7.10. If \(p < n^{-5/6 - \delta} \), \(\delta > 0 \), then the chromatic number of \(\mathbb{G}_{n,p} \) is w.h.p. two point concentrated.

Proof. To prove this theorem we need three lemmas.

Lemma 7.11.

(a) Let \(0 < \delta < 1/10 \), \(0 \leq p < 1 \) and \(d = np \). Then w.h.p. each subgraph \(H \) of \(\mathbb{G}_{n,p} \) on less than \(nd^{-3(1+2\delta)} \) vertices has less than \((3/2 - \delta)|H| \) edges.

(b) Let \(0 < \delta < 1.0001 \) and let \(0 \leq p \leq \delta/n \). Then w.h.p. each subgraph \(H \) of \(\mathbb{G}_{n,p} \) has less than \(3|H|/2 \) edges.

The above lemma can be proved easily by the first moment method, see Exercise 7.6.6. Note also that Lemma 7.11 implies that each subgraph \(H \) satisfying the conditions of the lemma has minimum degree less than three, and thus is 3-colorable, due to the following simple observation (see Bollobás [137] Theorem V.1)

Lemma 7.12. Let \(k = \max_{H \subseteq G} \delta(H) \), where the maximum is taken over all induced subgraphs of \(G \). Then \(\chi(G) \leq k + 1 \).

Proof. This is an easy exercise in Graph Theory. We proceed by induction on \(|V(G)| \). We choose a vertex of minimum degree \(v \), color \(G - v \) inductively and then color \(v \). \(\square \)

The next lemma is an immediate consequence of the Azuma-Hoeffding inequality, see Section 22.7, in particular Lemma 22.17.

Lemma 7.13. Let \(k = k(n) \) be such that

\[
P(\chi(\mathbb{G}_{n,p}) \geq k) > \frac{1}{\log \log n}.
\]

Then w.h.p. all but at most \(n^{1/2} \log n \) vertices of \(\mathbb{G}_{n,p} \) can be properly colored using \(k \) colors.

Proof. Let \(Z \) be the maximum number of vertices in \(\mathbb{G}_{n,p} \) that can be properly colored with \(k \) colors. Write \(Z = Z(Y_1, Y_2, \ldots, Y_n) \) as in (7.22). Then we have

\[
P(Z = n) > \frac{1}{\log \log n} \quad \text{and} \quad P(|Z - \mathbb{E}Z| \geq t) \leq 2 \exp \left\{ -\frac{t^2}{2n} \right\}.
\]

(7.24)
Putting \(t = \frac{1}{2} n^{1/2} \log n \) into (7.24) shows that \(\mathbb{E} Z \geq n - t \) and the lemma follows after applying the concentration inequality in (7.24) once again.

Now we are ready to present Łuczak’s ingenious argument to prove Theorem 7.10. Note first that when \(p \) is such that \(np \to 0 \) as \(n \to \infty \), then by Theorem 2.1 \(\mathbb{G}_{n,p} \) is a forest w.h.p. and so its chromatic number is either 1 or 2. Furthermore, for \(1/\log n < d < 1.0001 \) the random graph \(\mathbb{G}_{n,p} \) w.h.p. contains at least one edge and no subgraph with minimal degree larger than two (see Lemma 7.11), which implies that \(\chi(\mathbb{G}_{n,p}) \) is equal to 2 or 3 (see Lemma 7.12). Now let us assume that the edge probability \(p \) is such that \(1.0001 < d = np < n^{1/6 - \delta} \). Observe that in this range of \(p \) the random graph \(\mathbb{G}_{n,p} \) w.h.p. contains an odd cycle, so \(\chi(\mathbb{G}_{n,p}) \geq 3 \).

Let \(k \) be as in Lemma 7.13 and let \(U_0 \) be a set of size at most \(u_0 = n^{1/2} \log n \) such that \([n] \setminus U_0 \) can be properly colored with \(k \) colors. Let us construct a nested sequence of subsets of vertices \(U_0 \subseteq U_1 \subseteq \cdots \subseteq U_m \) of \(\mathbb{G}_{n,p} \), where we define \(U_{i+1} = U_i \cup \{v, w\} \), where \(v, w \notin U_i \) are connected by an edge and both \(v \) and \(w \) have a neighbor in \(U_i \). The construction stops at \(i = m \) if such a pair \(\{v, w\} \) does not exist.

Notice that \(m \) can not exceed \(m_0 = n^{1/2} \log n \), since if \(m > m_0 \) then a subgraph of \(\mathbb{G}_{n,p} \) induced by vertices of \(U_{m_0} \) would have

\[
|U_{m_0}| = u_0 + 2m_0 \leq 3n^{1/2} \log n < nd^{-3(1+2\delta)}
\]

vertices and at least \(3m_0 \geq (3/2 - \delta)|U_{m_0}| \) edges, contradicting the statement of Lemma 7.11.

As a result, the construction produces a set \(U_m \) in \(\mathbb{G}_{n,p} \), such that its size is smaller than \(nd^{-3(1+2\delta)} \) and, moreover, all neighbors \(N(U_m) \) of \(U_m \) form an independent set, thus “isolating” \(U_m \) from the “outside world”.

Now, the coloring of the vertices of \(\mathbb{G}_{n,p} \) is an easy task. Namely, by Lemma 7.13, we can color the vertices of \(\mathbb{G}_{n,p} \) outside the set \(U_m \cup N(U_m) \) with \(k \) colors. Then we can color the vertices from \(N(U_m) \) with color \(k + 1 \), and finally, due to Lemmas 7.11 and 7.12, the subgraph induced by \(U_m \) is 3-colorable and we can color \(U_m \) with any three of the first \(k \) colors.

\[\square\]

7.5 Eigenvalues

Separation of first and remaining eigenvalues

The following theorem is a weaker version of a theorem of Füredi and Komlós [370], which was itself a strengthening of a result of Juhász [471]. See also Coja-Oghlan [198] and Vu [749]. In their papers, \(2\omega \log n \) is replaced by \(2 + o(1) \) and this is best possible.
Theorem 7.14. Suppose that $\omega \to \infty$, $\omega = o(\log n)$ and $\omega^3 (\log n)^2 \leq np \leq n - \omega^3 (\log n)^2$. Let A denote the adjacency matrix of $G_{n,p}$. Let the eigenvalues of A be $\lambda_1 \geq \lambda_2 \geq \cdots \geq \lambda_n$. Then w.h.p.

(i) $\lambda_1 \approx np$

(ii) $|\lambda_i| \leq 2\omega \log n \sqrt{np(1-p)}$ for $2 \leq i \leq n$.

The proof of the above theorem is based on the following lemma.

In the following $|x|$ denotes the Euclidean norm of $x \in \mathbb{R}$.

Lemma 7.15. Let J be the all 1’s matrix and $M = pJ - A$. Then w.h.p.

$$\|M\| \leq 2\omega \log n \sqrt{np(1-p)}$$

where

$$\|M\| = \max_{|x|=1} |Mx| = \max \{ |\lambda_1(M)|, |\lambda_n(M)| \} .$$

We first show that the lemma implies the theorem. Let e denote the all 1’s vector. Suppose that $|\xi| = 1$ and $\xi \perp e$. Then $J\xi = 0$ and

$$|A\xi| = |M\xi| \leq \|M\| \leq 2\omega \log n \sqrt{np(1-p)}.$$

Now let $|x| = 1$ and let $x = \alpha u + \beta y$ where $u = \frac{1}{\sqrt{n}} e$ and $y \perp e$ and $|y| = 1$. Then

$$|Ax| \leq |\alpha||Au| + |\beta||Ay| .$$

We have, writing $A = pJ + M$, that

$$|Au| = \frac{1}{\sqrt{n}} |Ae| \leq \frac{1}{\sqrt{n}} (np|e| + \|M||e|)$$

$$\leq np + 2\omega \log n \sqrt{np(1-p)}$$

$$|Ay| \leq 2\omega \log n \sqrt{np(1-p)}$$

Thus

$$|Ax| \leq |\alpha|np + (|\alpha| + |\beta|)2\omega \log n \sqrt{np(1-p)}$$

$$\leq np + 3\omega \log n \sqrt{np(1-p)} .$$

This implies that $\lambda_1 \leq (1 + o(1))np$.

But

$$|Au| \geq |(A + M)u| - |Mu|$$
7.5. EIGENVALUES

\[|pJu| - |Mu| \geq np - 2\omega \log n \sqrt{np(1-p)}, \]

implying \(\lambda_1 \geq (1 + o(1))np \), which completes the proof of (i).

Now

\[\lambda_2 = \min_{\eta} \max_{0 \neq \xi \perp \eta} \frac{|A\xi|}{|\xi|} \leq \max_{0 \neq \xi \perp u} \frac{|A\xi|}{|\xi|} \leq \max_{0 \neq \xi \perp u} \frac{|M\xi|}{|\xi|} \leq 2\omega \log n \sqrt{np(1-p)}\]

Therefore,

\[\lambda_n = \min_{|\xi|=1} \xi^T A\xi \geq \min_{|\xi|=1} \xi^T A\xi - p\xi^T J\xi \]

\[= \min_{|\xi|=1} -\xi^T M\xi \geq -\|M\| \geq -2\omega \log n \sqrt{np(1-p)} \]

This completes the proof of (ii).

Proof of Lemma 7.15:

As in previously mentioned papers, we use the trace method of Wigner [756]. Putting \(\hat{M} = M - pI_n \) we see that

\[\|M\| \leq \|\hat{M}\| + \|pI_n\| = \|\hat{M}\| + p \]

and so we bound \(\|\hat{M}\| \).

Letting \(m_{ij} \) denote the \((i,j)\)th entry of \(\hat{M} \) we have

(i) \(\mathbb{E} m_{ij} = 0 \)

(ii) \(\text{Var} m_{ij} \leq p(1 - p) = \sigma^2 \)

(iii) \(m_{ij}, m_{i'j'} \) are independent, unless \((i',j') = (j,i)\), in which case they are identical.

Now let \(k \geq 2 \) be an even integer.

\[\text{Trace}(\hat{M}^k) = \sum_{i=1}^{n} \lambda_i(\hat{M}^k) \geq \max \left\{ \lambda_1(\hat{M}^k), \lambda_n(\hat{M}^k) \right\} = \|\hat{M}^k\|. \]
We estimate
\[\| \hat{M} \| \leq \text{Trace}(\hat{M}^k)^{1/k}, \]
where \(k = \omega \log n \).

Now,
\[\mathbb{E}(\text{Trace}(\hat{M}^k)) = \sum_{i_0, i_1, \ldots, i_{k-1} \in [n]} \mathbb{E}(m_{i_0 i_1} m_{i_1 i_2} \cdots m_{i_{k-2} i_{k-1}} m_{i_{k-1} i_0}). \]

Recall that the \(i, j \)th entry of \(\hat{M}^k \) is the sum over all products \(m_{i_0 i_1} m_{i_1 i_2} \cdots m_{i_{k-1} i_0} \).

Continuing, we therefore have
\[\mathbb{E} \| \hat{M} \|^k \leq \sum_{\rho = 2}^{k} \mathbb{E}_{n, k, \rho} \]
where
\[\mathbb{E}_{n, k, \rho} = \sum_{i_0, i_1, \ldots, i_{k-1} \in [n]} \mathbb{E} \left(\prod_{j=0}^{k-1} m_{i_j i_{j+1}} \right) \cdot \]

Note that as \(m_{ii} = 0 \) by construction of \(\hat{M} \) we have that \(\mathbb{E}_{n, k, 1} = 0 \)
Each sequence \(\hat{i} = i_0, i_1, \ldots, i_{k-1}, i_0 \) corresponds to a walk \(W(\hat{i}) \) on the graph \(K_n \) with \(n \) loops added. Note that
\[\mathbb{E} \left(\prod_{j=0}^{k-1} m_{i_j i_{j+1}} \right) = 0 \] (7.25)
if the walk \(W(\hat{i}) \) contains an edge that is crossed exactly once, by condition (i).
On the other hand, \(|m_{ij}| \leq 1 \) and so by conditions (ii), (iii),
\[\mathbb{E} \left(\prod_{j=0}^{k-1} m_{i_j i_{j+1}} \right) \leq \sigma^2 (\rho - 1) \]
if each edge of \(W(\hat{i}) \) is crossed at least twice and if \(|\{i_0, i_1, \ldots, i_{k-1}\}| = \rho \).
Let \(R_{k, \rho} \) denote the number of \((k, \rho)\) walks i.e closed walks of length \(k \) that visit \(\rho \) distinct vertices and do not cross any edge exactly once. We use the following trivial estimates:

(i) \(\rho > \frac{k}{2} + 1 \) implies \(R_{k, \rho} = 0 \). (\(\rho \) this large will invoke (7.25)).

(ii) \(\rho \leq \frac{k}{2} + 1 \) implies \(R_{k, \rho} \leq n^\rho k^k \).
where n^p bounds from above the number of choices of ρ distinct vertices, while k^k bounds the number of walks of length k.

We have

$$\mathbb{E} \|\hat{M}\|^k \leq \sum_{\rho=2}^{\frac{1}{2}k+1} R_{k,\rho} \sigma^2(\rho-1) \leq \sum_{\rho=2}^{\frac{1}{2}k+1} n^p k^k \sigma^2(\rho-1) \leq 2n^{\frac{1}{2}k+1} k^k \sigma^k.$$

Therefore,

$$\mathbb{P}(\|\hat{M}\| \geq 2k\sigma n^{\frac{1}{2}}) = \mathbb{P}(\|\hat{M}\|^k \geq \left(2k\sigma n^{\frac{1}{2}}\right)^k) \leq \frac{\mathbb{E} \|\hat{M}\|^k}{(2k\sigma n^{\frac{1}{2}})^k} \leq \frac{2n^{\frac{1}{2}k+1} k^k \sigma^k}{(2k\sigma n^{\frac{1}{2}})^k} = \left(\frac{1}{2} + o(1)\right)^k = o(1).$$

It follows that w.h.p., $\|\hat{M}\| \leq 2\sigma \omega(\log n)n^{1/2} \leq 2\omega \log n \sqrt{np(1-p)}$ and completes the proof of Theorem 7.14.

\[\square\]

Concentration of eigenvalues

We show here how one can use Talagrand’s inequality, Theorem 22.18, to show that the eigenvalues of random matrices are highly concentrated around their median values. The result is from Alon, Krivelevich and Vu [30].

Theorem 7.16. Let A be an $n \times n$ random symmetric matrix with independent entries $a_{i,j} = a_{j,i}$, $1 \leq i \leq j \leq n$ with absolute value at most one. Let its eigenvalues be $\lambda_1(A) \geq \lambda_2(A) \geq \cdots \geq \lambda_n(A)$. Suppose that $1 \leq s \leq n$. Let μ_s denote the median value of $\lambda_s(A)$ i.e. $\mu_s = \inf_{\mu} \{\mathbb{P}(\lambda_s(A) \leq \mu) \geq 1/2\}$. Then for any $t \geq 0$ we have

$$\mathbb{P}(|\lambda_s(A) - \mu_s| \geq t) \leq 4e^{-t^2/32s^2}.$$

The same estimate holds for the probability that $\lambda_{n-s+1}(A)$ deviates from its median by more than t.

Proof. We will use Talagrand’s inequality, Theorem 22.18. We let $m = \binom{n+1}{2}$ and let $\Omega = \Omega_1 \times \Omega_2 \times \cdots \times \Omega_m$ where for each $1 \leq k \leq m$ we have $\Omega_k = \{a_{i,j}\}$ for some $i \leq j$. Fix a positive integer s and let M, t be real numbers. Let \mathcal{M} be the set of matrices A for which $\lambda_s(A) \leq M$ and let \mathcal{B} be the set of matrices for which $\lambda_s(B) \geq M + t$. When applying Theorem 22.18 it is convenient to view A as an m-vector.
Fix $B \in \mathcal{B}$ and let $v^{(1)}, v^{(2)}, \ldots, v^{(s)}$ be an orthonormal set of eigenvectors for the s largest eigenvalues of B. Let $v^{(k)} = (v^{(k)}_1, v^{(k)}_2, \ldots, v^{(k)}_n)$,

$$\alpha_{i,i} = \sum_{k=1}^{s} (v^{(k)}_i)^2 \quad \text{for } 1 \leq i \leq n$$

and

$$\alpha_{i,j} = 2 \sqrt{\sum_{k=1}^{s} (v^{(k)}_i)^2 \sum_{k=1}^{s} (v^{(k)}_j)^2} \quad \text{for } 1 \leq i < j \leq n.$$

Lemma 7.17.

$$\sum_{1 \leq i < j \leq n} \alpha_{i,j}^2 \leq 2s^2.$$

Proof.

$$\sum_{1 \leq i < j \leq n} \alpha_{i,j}^2 = \sum_{i=1}^{n} \left(\sum_{k=1}^{s} (v^{(k)}_i)^2 \right)^2 + 4 \sum_{1 \leq i < j \leq n} \left(\sum_{k=1}^{s} (v^{(k)}_i)^2 \sum_{k=1}^{s} (v^{(k)}_j)^2 \right)$$

$$\leq 2 \left(\sum_{i=1}^{n} \sum_{k=1}^{s} (v^{(k)}_i)^2 \right)^2 = 2 \left(\sum_{k=1}^{s} \sum_{i=1}^{n} (v^{(k)}_i)^2 \right)^2 = 2s^2,$$

where we have used the fact that each $v^{(k)}$ is a unit vector.

Lemma 7.18. For every $A = (a_{i,j}) \in \mathcal{A}$ and $B = (b_{i,j}) \in \mathcal{B}$,

$$\sum_{1 \leq i < j \leq n; a_{i,j} \neq b_{i,j}} \alpha_{i,j} \geq t/2.$$

Fix $A \in \mathcal{A}$. Let $u = \sum_{k=1}^{s} c_k v^{(k)}$ be a unit vector in the span S of the vectors $v^{(k)}, k = 1, 2, \ldots, s$ which is orthogonal to the eigenvectors of the $(s - 1)$ largest eigenvalues of A. Recall that $v^{(k)}, k = 1, 2, \ldots, s$ are eigenvectors of B. Then $\sum_{k=1}^{s} c_k^2 = 1$ and $u^T A u \leq \lambda_s(A) \leq M$, whereas $u^T B u \geq \min_{v \in S} v^T B v = \lambda_{s}(B) \geq M + t$. Recall that all entries of A and B are bounded in absolute value by 1, implying that $|b_{i,j} - a_{i,j}| \leq 2$ for all $1 \leq i, j \leq n$. It follows that if X is the set of ordered pairs (i, j) for which $a_{i,j} \neq b_{i,j}$ then

$$t \leq u^T (B - A) u = \sum_{(i,j) \in X} (b_{i,j} - a_{i,j}) \left(\sum_{k=1}^{s} c_k v^{(k)}_i \right)^T \left(\sum_{k=1}^{s} c_k v^{(k)}_j \right)$$

$$\leq 2 \sum_{(i,j) \in X} \left| \sum_{k=1}^{s} c_k v^{(k)}_i \right| \left| \sum_{k=1}^{s} c_k v^{(k)}_j \right|$$
\[\sum_{(i,j) \in X} \left(\sqrt{\sum_{k=1}^{s} c_k^2} \sqrt{\sum_{k=1}^{s} (v_i^{(k)})^2} \right) \left(\sqrt{\sum_{k=1}^{s} c_k^2} \sqrt{\sum_{k=1}^{s} (v_j^{(k)})^2} \right) \leq 2 \sum_{(i,j) \in X} \alpha_{i,j} \]
as claimed. (We obtained the third inequality by use of the Cauchy-Schwarz inequality).

By the above two lemmas, and by Theorem 22.18 for every \(M \) and every \(t > 0 \)
\[\Pr(\lambda_s(A) \leq M) \Pr(\lambda_s(B) \geq M + t) \leq e^{-t^2/(32s^2)}. \] (7.26)
If \(M \) is the median of \(\lambda_s(A) \) then \(\Pr(\lambda_s(A) \leq M) \geq 1/2 \), by definition, implying that
\[\Pr(\lambda_s(A) \geq M + t) \leq 2e^{-t^2/(32s^2)}. \]
Similarly, by applying (7.26) with \(M + t \) being the median of \(\lambda_s(A) \) we conclude that
\[\Pr(\lambda_s(A) \leq M - t) \leq 2e^{-t^2/(32s^2)}. \]
This completes the proof of Theorem 7.16 for \(\lambda_s(A) \). The proof for \(\lambda_{n-s+1} \) follows by applying the theorem to \(s \) and \(-A \).

7.6 Exercises

7.6.1 Let \(p = d/n \) where \(d \) is a positive constant. Let \(S \) be the set of vertices of degree at least \(\frac{2\log n}{3\log \log n} \). Show that w.h.p., \(S \) is an independent set.

7.6.2 Let \(p = d/n \) where \(d \) is a large positive constant. Use the first moment method to show that w.h.p.
\[\alpha(G_{n,p}) \leq \frac{2n}{d} (\log d - \log \log d - \log 2 + 1 + \varepsilon) \]
for any positive constant \(\varepsilon \).

7.6.3 Complete the proof of Theorem 7.4.
Let \(m = d/(\log d)^2 \) and partition \([n] \) into \(n_0 = \frac{n}{m} \) sets \(S_1, S_2, \ldots, S_{n_0} \) of size \(m \). Let \(\beta(G) \) be the maximum size of an independent set \(S \) that satisfies \(|S \cap S_i| \leq 1 \) for \(i = 1, 2, \ldots, n_0 \). Use the proof idea of Theorem 7.4 to show that w.h.p.
\[\beta(G_{n,p}) \geq k-\varepsilon = \frac{2n}{d} (\log d - \log \log d - \log 2 + 1 - \varepsilon). \]
7.6.4 Prove Theorem 7.4 using Talagrand’s inequality, Theorem 22.22.
(Hint: Let \(A = \{ \alpha(G_{n,p}) \leq k - \varepsilon - 1 \} \)).

7.6.5 Prove Lemma 7.6.

7.6.6 Prove Lemma 7.11.

7.6.7 Prove that if \(\omega = \omega(n) \to \infty \) then there exists an interval \(I \) of length \(\omega n^{1/2} / \log n \) such that w.h.p. \(\chi(G_{n,1/2}) \in I \). (See Scott [706]).

7.6.8 A topological clique of size \(s \) is a graph obtained from the complete graph \(K_s \) by subdividing edges. Let \(tc(G) \) denote the size of the largest topological clique contained in a graph \(G \). Prove that w.h.p. \(tc(G_{n,1/2}) = \Theta(n^{1/2}) \).

7.6.9 Suppose that \(H \) is obtained from \(G_{n,1/2} \) by planting a clique \(C \) of size \(m = n^{1/2}\log n \) inside it. Describe a polynomial time algorithm that w.h.p. finds \(C \). (Think that an adversary adds the clique without telling you where it is).

7.6.10 Show that if \(d > 2k \log k \) for a positive integer \(k \geq 2 \) then w.h.p. \(G(n,d/n) \) is not \(k \)-colorable. (Hint: Consider the expected number of proper \(k \)-coloring’s).

7.6.11 Let \(p = K \log n/n \) for some large constant \(K > 0 \). Show that w.h.p. the diameter of \(G_{n,p} \) is \(\Theta(\log n / \log \log n) \).

7.6.12 Suppose that \(1 + \varepsilon \leq np = o(\log n) \), where \(\varepsilon > 0 \) is constant. Show that given \(A > 0 \), there exists \(B = B(A) \) such that

\[
\mathbb{P} \left(\text{diam}(K) \geq B \frac{\log n}{\log np} \right) \leq n^{-A},
\]

where \(K \) is the giant component of \(G_{n,p} \).

7.6.13 Let \(p = d/n \) for some constant \(d > 0 \). Let \(A \) be the adjacency matrix of \(G_{n,p} \). Show that w.h.p. \(\lambda_1(A) \approx \Delta^{1/2} \) where \(\Delta \) is the maximum degree in \(G_{n,p} \). (Hint: the maximum eigenvalue of the adjacency matrix of \(K_{1,m} \) is \(m^{1/2} \)).

7.6.14 A proper 2-tone \(k \)-coloring of a graph \(G = (V,E) \) is an assignment of pairs of colors \(C_v \subseteq [k], |C_v| = 2 \) such that (i) \(|C_v \cap C_w| < d(v,w) \) where \(d(v,w) \) is the graph distance from \(v \) to \(w \). If \(\chi_2(G) \) denotes the minimum \(k \) for which there exists a 2-tone coloring of \(G \), show that w.h.p. \(\chi_2(G_{n,p}) \approx 2\chi(G_{n,p}) \). (This question is taken from [47]).
7.6.15 The set chromatic number $\chi_s(G)$ of a graph $G = (V,E)$ is defined as follows: Let C denote a set of colors. Color each $v \in V$ with a color $f(v) \in C$. Let $C_v = \{f(w) : \{v,w\} \in G\}$. The coloring is proper if $C_v \neq C_w$ whenever $\{v,w\} \in E$. χ_s is the minimum size of C in a proper coloring of G. Prove that if $0 < p < 1$ is constant then w.h.p. $\chi_s(\mathcal{G}_{n,p}) \approx r \log_2 n$ where $r = \frac{2}{\log_2 1/s}$ and $s = \min \{q^{2\ell} + (1-q^\ell)^2 : \ell = 1,2,\ldots\}$ where $q = 1 - p$. (This question is taken from Dudek, Mitsche and Pralat [269]).

7.7 Notes

Chromatic number

There has been a lot of progress in determining the chromatic number of sparse random graphs. Alon and Krivelevich [27] extended the result in [561] to the range $p \leq n^{-1/2-\delta}$. A breakthrough came when Achlioptas and Naor [6] identified the two possible values for $np = d$ where $d = O(1)$: Let k_d be the smallest integer k such that $d < 2k \log k$. Then w.h.p. $\chi(\mathcal{G}_{n,p}) \in \{k_d,k_d+1\}$. This implies that d_k, the (conjectured) threshold for a random graph to have chromatic number at most k, satisfies $d_k \geq 2k \log k - 2 \log k - 2 + o_k(1)$ where $o_k(1) \to 0$ as $k \to \infty$. Coja–Oghlan, Panagiotou and Steger [200] extended the result of [6] to $np \leq n^{1/4-\varepsilon}$, although here the guaranteed range is three values. More recently, Coja–Oghlan and Vilenchik [201] proved the following. Let $d_{k, \text{cond}} = 2k \log k - \log k - 2 \log 2$. Then w.h.p. $d_k \geq d_{k, \text{cond}} - o_k(1)$. On the other hand Coja–Oghlan [199] proved that $d_k \leq d_{k, \text{cond}} + (2 \log 2 - 1) + o_k(1)$.

It follows from Chapter 2 that the chromatic number of $\mathcal{G}_{n,p}, p \leq 1/n$ is w.h.p. at most 3. Achlioptas and Moore [4] proved that in fact $\chi(\mathcal{G}_{n,p}) \leq 3$ w.h.p. for $p \leq 4.03/n$. Now a graph G is s-colorable iff it has a homomorphism $\varphi : G \to K_s$.

(A homomorphism from G to H is a mapping $\varphi : V(G) \to V(H)$ such that if $\{u,v\} \in E(G)$ then $\varphi(u), \varphi(v) \in E(H)$.) It is therefore of interest in the context of coloring, to consider homomorphisms from $\mathcal{G}_{n,p}$ to other graphs. Frieze and Pegden [361] show that for any $\ell > 1$ there is an $\varepsilon > 0$ such that with high probability, $G_{n,p}$ either has odd-girth $< 2\ell + 1$ or has a homomorphism to the odd cycle $C_{2\ell+1}$. They also showed that w.h.p. there is no homomorphism from $\mathcal{G}_{n,p}, p = 4/n$ to C_5. Previously, Hatami [413] has shown that w.h.p. there is no homomorphism from a random cubic graph to C_7.

Alon and Sudakov [32] considered how many edges one must add to $\mathcal{G}_{n,p}$ in order to significantly increase the chromatic number. They show that if $n^{-1/3+\delta} \leq p < 1/2$ for some fixed $\delta > 0$ then w.h.p. for every set E of $\frac{2^{-12n^2}p^2}{(\log_2(np))^2}$ edges, the chromatic number of $\mathcal{G}_{n,p} \cup E$ is still at most $\frac{(1+\varepsilon)n}{2 \log_2(np)}$.

Let L_k be an arbitrary function that assigns to each vertex of G a list of k colors. We say that G is L_k-list-colorable if there exists a proper coloring of the vertices such that every vertex is colored with a color from its own list. A graph is k-choosable, if for every such function L_k, G is L_k-list-colorable. The minimum k for which a graph is k-choosable is called the list chromatic number, or the choice number, and denoted by $\chi_L(G)$. The study of the choice number of $G_{n,p}$ was initiated in [21], where Alon proved that a.a.s., the choice number of $G_{n,1/2}$ is $o(n)$. Kahn then showed (see [22]) that a.a.s. the choice number of $G_{n,1/2}$ equals $(1 + o(1))\chi(G_{n,1/2})$. In [521], Krivelevich showed that this holds for $p \gg n^{-1/4}$, and Krivelevich, Sudakov, Vu, and Wormald [533] improved this to $p \gg n^{-1/3}$. On the other hand, Alon, Krivelevich, Sudakov [28] and Vu [748] showed that for any value of p satisfying $2 < np \leq n/2$, the choice number is $\Theta(np/\log(np))$. Krivelevich and Vu [534] generalized this to hypergraphs; they also improved the leading constants and showed that the choice number for $C/n \leq p \leq 0.9$ (where C is a sufficiently large constant) is at most a multiplicative factor of $2 + o(1)$ away from the chromatic number, the best known factor for $p \leq n^{-1/3}$.

Algorithmic questions

We have seen that the Greedy algorithm applied to $G_{n,p}$ generally produces a coloring that uses roughly twice the minimum number of colors needed. Note also that the analysis of Theorem 7.9, when $k = 1$, implies that a simple greedy algorithm for finding a large independent set produces one of roughly half the maximum size. In spite of much effort neither of these two results have been significantly improved. We mention some negative results. Jerrum [465] showed that the Metropolis algorithm was unlikely to do very well in finding an independent set that was significantly larger than GREEDY. Other earlier negative results include: Chvátal [194], who showed that for a significant set of densities, a large class of algorithms will w.h.p. take exponential time to find the size of the largest independent set and McDiarmid [581] who carried out a similar analysis for the chromatic number.

Frieze, Mitsche, Pérez-Giménez and Pralat [359] study list coloring in an online setting and show that for a wide range of p, one can asymptotically match the best known constants of the off-line case. Moreover, if $pn \geq \log^6 n$, then they get the same multiplicative factor of $2 + o(1)$.

Randomly Coloring random graphs

A substantial amount of research in Theoretical Computer Science has been associated with the question of random sampling from complex distributions. Of relevance here is the following: Let G be a graph and k be a positive integer. Then
let $\Omega_k(G)$ be the set of proper k-coloring’s of the vertices of G. There has been a good deal of work on the problem of efficiently choosing a (near) random member of $\Omega_k(G)$. For example, Vigoda [746] has described an algorithm that produces a (near) random sample in polynomial time provided $k > 11\Delta(G)/6$. When it comes to $\mathbb{G}_{n,p}$, Dyer, Flaxman, Frieze and Vigoda [277] showed that if $p = d/n, d = O(1)$ then w.h.p. one can sample a random coloring if $k = O(\log \log n) = o(\Delta)$. The bound on k was reduced to $k = O(d^{O(1)})$ by Mossell and Sly [615] and then to $k = O(d)$ by Efthymiou [283].

Diameter of sparse random graphs

The diameter of the giant component of $\mathbb{G}_{n,p}$, $p = \lambda/n, \lambda > 1$ was considered by Fernholz and Ramachandran [310] and by Riordan and Wormald [676]. In particular, [676] proves that w.h.p. the diameter is $\log n \log \lambda + 2\log n \log 1/\lambda^* + W$ where $\lambda^* < 1$ and $\lambda^* e^{-\lambda^*} = \lambda e^{-\lambda}$ and $W = O_p(1)$ i.e. is bounded in probability for $\lambda = O(1)$ and $O(1)$ for $\lambda \to \infty$. In addition, when $\lambda = 1 + \epsilon$ where $\epsilon^3 n \to \infty$ i.e. the case of the emerging giant, [676] shows that w.h.p. the diameter is $\frac{\log \epsilon^3 n}{\log \lambda} + 2\frac{\log \epsilon^3 n}{\log 1/\lambda^*} + W$ where $W = O_p(1/\epsilon)$. If $\lambda = 1 - \epsilon$ where $\epsilon^3 n \to \infty$ i.e. the sub-critical case, then Łuczak [563] showed that w.h.p. the diameter is $\frac{\log (2\epsilon^3 n) + O_p(1)}{-\log \lambda}$.
Chapter 8

Extremal Properties

A typical question in extremal combinatorics can be viewed as “how many edges of the complete graph (or hypergraph) on \(n \) vertices can a graph have without having some property \(\mathcal{P} \)”. In recent years research has been carried out where the complete graph is replaced by a random graph.

8.1 Containers

Ramsey theory and the Turán problem constitute two of the most important areas in extremal graph theory. For a fixed graph \(H \) we can ask how large should \(n \) be so that in any \(r \)-coloring of the edges of \(K_n \) can we be sure of finding a monochromatic copy of \(H \) – a basic question in Ramsey theory. Or we can ask for the maximum \(\alpha > 0 \) such that we take an \(\alpha \) proportion of the edges of \(K_n \) without including a copy of \(H \) – a basic question related to the Turán problem. Both of these questions have analogues where we replace \(K_n \) by \(G_{n,p} \).

There have been recent breakthroughs in transferring extremal results to the context of random graphs and hypergraphs. Conlon and Gowers [206], Schacht [702], Balogh, Morris and Samotij [56] and Saxton and Thomason [700] have proved general theorems enabling such transfers. One of the key ideas being to bound the number of independent sets in carefully chosen hypergraphs. Our presentation will use the framework of [700] where it could just as easily have used [56]. The use of containers is a developing field and seems to have a growing number of applications.

In this section, we present a special case of Theorem 2.3 of [700] that will enable us to deal with Ramsey and Turán properties of random graphs. For a graph \(H \) with \(e(H) \geq 2 \) we let

\[
m_2(H) = \max_{H' \subseteq H, e(H') > 1} \frac{e(H') - 1}{v(H') - 2}.
\]

(8.1)
Next let
\[
\pi(H) = \lim_{n \to \infty} \frac{ex(n,H)}{n^{\frac{2}{3}}}
\]
(8.2)

where as usual, \(ex(n,H)\) is the maximum number of edges in an \(H\)-free subgraph of \(K_n\).

Theorem 8.1. Let \(H\) be a graph with \(e(H) \geq 2\) and let \(\varepsilon\) be a positive constant. For some constant \(h = h(H, \varepsilon) > 0\) and \(n\) sufficiently large, there exists a collection \(\mathcal{C}\) of graphs on vertex set \([n]\) such that the following holds. The graphs \(\mathcal{C}\) are the containers:

1. For every \(H\)-free graph \(\Gamma\) there exists \(T \subseteq \Gamma \subseteq \mathcal{C}(T) \in \mathcal{C}\) such that \(e(T) \leq hn^{2-1/m_2(H)}\). (\(C\) depends only on \(T\) and not on \(\Gamma\).)

2. \(\mathcal{C}\) contains at most \(\varepsilon n^{\nu(H)}\) copies of \(H\) and \(e(C) \leq (\pi(H) + \varepsilon)\binom{n}{2}\) for every \(C \in \mathcal{C}\).

We prove Theorem 8.1 in Section 8.4. We have extracted just enough from Saxton and Thomason [700] and [701] to give a complete proof. But first we give a couple of examples of the use of this theorem.

8.2 Ramsey Properties

The investigation of the Ramsey properties of \(G_{n,p}\) was initiated by Łuczak, Ruciński and Voigt [568]. Later, Rödl and Ruciński [678], [681] proved that the following holds w.h.p. for some constants \(0 < c < C\). Here \(H\) is some fixed graph containing at least one cycle. Suppose that the edges of \(G_{n,m}\) are colored with \(r\) colors. If \(m < cn^{2-1/m_2(H)}\) then w.h.p. there exists an \(r\)-coloring without a mono-chromatic copy of \(H\), while if \(m > Cn^{2-1/m_2(H)}\) then w.h.p. in every \(r\)-coloring there is a monochromatic copy of \(H\).

We will give a proof of the 1-statement based on Theorem 8.1. We will closely follow the argument in a recent paper of Nenadov and Steger [628]. The notation \(G \rightarrow (H)_{r}^{c}\) means that in every \(r\)-coloring of the edges of \(G\) there is a copy of \(H\) with all edges the same color. Rödl and Ruciński [681] proved the following

Theorem 8.2. For any graph \(H\) with \(e(H) \geq v(H)\) and \(r \geq 2\), there exist \(c_0, c_1 > 0\) such that

\[
\Pr(G_{n,p} \rightarrow (H)_{r}^{c}) = \begin{cases}
\theta(1) & p \leq c_0 n^{-1/m_2(H)} \\
1 - \theta(1) & p \geq c_1 n^{-1/m_2(H)}
\end{cases}
\]
The density \(p_0 = n^{-1/m_2(H)} \) is the threshold for every edge of \(\mathbb{G}_{n,p} \) to be contained in a copy of \(H \). When \(p \leq cp_0 \) for small \(c \), the copies of \(H \) in \(\mathbb{G}_{n,p} \) will be spread out and the associated 0-statement is not so surprising. We will use Theorem 8.1 to prove the 1-statement for \(p \geq c_1p_0 \). The proof of the 0-statement follows [628] and is given in Exercises 8.5.1 to 8.5.6.

We begin with a couple of lemmas:

Lemma 8.3. For every graph \(H \) and every positive integer \(r \) there exist constants \(\alpha > 0 \) and \(n_0 \) such that for all \(n \geq n_0 \) every \(r \)-coloring of the edges of \(K_n \) contains at least \(\alpha n^{r} \) monochromatic copies of \(H \).

Proof. From Ramsey’s theorem we know that there exists \(N = N(H, r) \) such that every \(r \)-coloring of the edges of \(K_N \) contains a monochromatic copy of \(H \). Thus, in any \(r \)-coloring of \(K_n \), every \(N \)-subset of the vertices of \(K_n \) contains at least one monochromatic copy of \(H \). As every copy of \(H \) is contained in at most \(\binom{n - \delta(H)}{N - \delta(H)} \) \(N \)-subsets, the theorem follows with \(\alpha = 1/N^{r} \).

From this we get

Corollary 8.4. For every graph \(H \) and every positive integer \(r \) there exist constants \(n_0 \) and \(\delta, \varepsilon > 0 \) such that the following is true: If \(n \geq n_0 \), then for any \(E_1, E_2, \ldots, E_r \subseteq E(K_n) \) such that for all \(1 \leq i \leq r \) the set \(E_i \) contains at most \(\varepsilon n^{r} \) copies of \(H \), we have

\[
|E(K_n) \setminus (E_1 \cup E_2 \cup \cdots \cup E_r)| \geq \delta n^2.
\]

Proof. Let \(\alpha \) and \(n_0 \) be as given in Lemma 8.3 for \(H \) and \(r + 1 \). Further, let \(E_{r+1} = E(K_n) \setminus (E_1 \cup E_2 \cup \cdots \cup E_r) \), and consider the coloring \(f: E(K_n) \to [r + 1] \) given by \(f(e) = \min_{i \in [r + 1]} \{ e \in E_i \} \). By Lemma 8.3 there exist at least \(\alpha n^r \) monochromatic copies of \(H \) under coloring \(f \), and so by our assumption on the sets \(E_i, 1 \leq i \leq r \), \(E_{r+1} \) must contain at least \(\alpha n^r \) copies. As every edge is contained in at most \(e(H)n^{r(H)-2} \) copies and \(E_1 \cup E_2 \cup \cdots \cup E_r \) contains at most \(r\varepsilon n^r \) copies of \(H \), we see that \(E_{r+1} \) contains at least \((\alpha - r\varepsilon e(H))n^{r} \) copies of \(H \). It follows that \(|E_{r+1}| \geq \frac{(\alpha - r\varepsilon e(H))n^{r}}{e(H)n^{r(H)-2}} \) and so the corollary follows with

\[
\delta = \frac{\alpha - re(H)e}{e(H)n^{r(H)-2}}. \quad \text{Here we take } \varepsilon \leq \frac{\alpha}{2re(H)}. \]

Proof. We can now proceed to the proof of the 1-statement of Theorem 8.2. If \(\mathbb{G}_{n,p} \not\to (H)^r \) then there must exist a coloring \(f: E(\mathbb{G}_{n,p}) \to [r] \) such that for all \(1 \leq i \leq r \) the set \(E_i = f^{-1}(i) \) does not contain a copy of \(H \). By Theorem 8.1 we have that for every such \(E_i \) there exists \(T_i \) and a container \(C_i \) such that \(T_i \subseteq E_i \subseteq C_i \). The crucial observation is that \(\mathbb{G}_{n,p} \) completely avoids \(E_0 = E(K_n) \setminus (C_1 \cup C_2 \cup \cdots \cup C_r) \), which by Corollary 8.4 and a choice of \(\varepsilon \) has size at least \(\delta n^2 \).
Therefore, we can bound $\mathbb{P}(G_{n,p} \not\rightarrow (H)_r^c)$ by the probability that there exist $\mathcal{T} = \{T_1, \ldots, T_r\}$ and $\mathcal{C} = \{C_i = C(T_i) : i = 1, 2, \ldots, r\}$ such that E_0 is edge-disjoint from $G_{n,p}$. Thus,

\[
\mathbb{P}(G_{n,p} \not\rightarrow (H)_r^c) \leq \sum_{T_i, 1 \leq i \leq r} \mathbb{P}(T_i \subseteq G_{n,p}, 1 \leq i \leq r \land E(G_{n,p}) \cap E_0 = \emptyset).
\]

Note that the two events in the above probability are independent and can thus be bounded by $p^a(1 - p)^b$ where $a = |\bigcup_i T_i|$ and $b = \delta n^2$. The sum can be bounded by first deciding on $a \leq r h n^{-1/m_2(H)}$ (h from Theorem 8.1) and then choosing a edges ($\binom{\binom{\binom{\delta}{a}}{2}}{a}$ choices) and then deciding for every edge in which T_i it appears (r^a choices). Thus,

\[
\mathbb{P}(G_{n,p} \not\rightarrow (H)_r^c) \leq e^{-\delta n^2 p} \sum_{a=0}^{r h n^{-1/m_2(H)}} \binom{n}{2} (r p)^a \\
\leq e^{-\delta n^2 p} r h n^{-1/m_2(H)} \sum_{a=0}^{en^2 r p / 2a} (en^2 r p / 2a)^a.
\]

Recall that $p = c_1 n^{-1/m_2(H)}$. By choosing c_1 sufficiently large with respect to h we get

\[
\sum_{a=0}^{r h n^{-1/m_2(H)}} \left(\frac{en^2 r p}{2a} \right)^a \leq n^2 \left(\frac{ec_1}{2h} \right) ^{(rh/c_1) n^2 p} \\
\leq n^2 \left(\frac{ec_1}{2h} \right) ^{2r h / c_1} \delta n^2 p / 2 \leq e^{\delta n^2 p / 2},
\]

and thus $\mathbb{P}(G_{n,p} \not\rightarrow (H)_r^c) = o(1)$ as desired. Recall that $(eA/x)^x$ is unimodal with a maximum at $x = A$ and that c_1 is large. This implies that $n^2 r p / 2 > r h n^{-1/m_2(H)}$, giving the first inequality and $(ec_1)^{2r h / c_1} < e$, giving the second inequality.

\section{8.3 Turán Properties}

Early success on the Turán problem for random graphs was achieved by Haxell, Kohayakawa and Łuczak [415], [416], Kohayakawa, Kreuter and Steger [510], Kohayakawa, Łuczak and Rödl [511], Gerke, Prömel, Schickinger and Steger [377], Gerke, Schickinger and Steger [378], Łuczak [564]. It is only recently that Turán’s theorem in its full generality has been transferred to $G_{n,p}$.

From its definition, every H-free graph with n vertices will have $(\pi(H) + o(1)) \binom{n}{2}$ edges. In this section we prove a corresponding result for random graphs. Our proof is taken from [700], although Conlon and Gowers [206] gave a proof for 2-balanced H and Schacht [702] gave a proof for general H.

Theorem 8.5. Suppose that \(0 < \gamma < 1\) and \(H\) is not a matching. Then there exists \(A > 0\) such that if \(p \geq An^{-1/m_2(H)}\) and \(n\) is sufficiently large then the following event occurs with probability at least \(1 - e^{-\gamma(\tfrac{3}{2})p/384}\):

\[
\text{Every } H\text{-free subgraph of } \mathbb{G}_{n,p} \text{ has at most } \left(\pi(H) + \gamma\right)\left(\frac{n}{2}\right) p \text{ edges.}
\]

If \(H\) is a matching then \(m_2(H) = 1/2\) and then the lower bound on \(p\) in the theorem is \(O(n^{-2})\) we would not be claiming a high probability result.

To prove the theorem, we first prove the following lemma:

Lemma 8.6. Given \(0 < \eta < 1\) and \(h \geq 1\), there is a constant \(\varphi = \varphi(\eta, h)\) such that the following holds: Let \(M\) be a set, \(|M| = N\) and let \(\mathcal{J} \subseteq 2^M\). Let \(t \geq 1\), \(\varphi t/N \leq p \leq 1\) and let \(\eta N/2 \leq d \leq N\). Suppose there exists \(C : 2^M \to 2^M\) and \(\mathcal{J} \subseteq (\binom{M}{t})\) such that for each \(I \in \mathcal{J}\) there exists \(T_I \in \mathcal{J}\) such that \(T_I \subseteq I\) and \(C_T = C(T_I) \subseteq M\), where \(|C_I| \leq d\). Let \(X \subseteq M\) be a random subset where each element is chosen independently with probability \(p\). Then

\[
\mathbb{P}(\exists I \in \mathcal{J} : |C_I \cap X| > (1 + \eta)pd \text{ and } I \subseteq X) \leq e^{-\eta^2dp/24}. \tag{8.3}
\]

Proof. For \(T \in \mathcal{J}\) let \(E_T\) be the event that \(T \subseteq X\) and \(|C(T) \cap X| \geq (1 + \eta)pd\).

The event \(E_T\) is contained in \(F_T \cap G_T\) where \(F_T\) is the event that \(T \subseteq X\) and \(G_T\) is the event that \(|(C(T) \setminus T) \cap X| \geq (1 + \eta)dp - |T|\). Since \(F_T\) and \(G_T\) are independent, \(\mathbb{P}(E_T) \leq \mathbb{P}(F_T) \mathbb{P}(G_T)\). Now \(|T| \leq t \leq Np/\varphi \leq 2dp/\varphi \eta \leq \eta dp/2\) if \(\varphi\) is large. So by the Chernoff bound, see Lemma 22.6,

\[
\mathbb{P}(G_T) \leq \mathbb{P}((\text{Bin}(d, p)) \geq (1 + \eta/2)dp) \leq e^{-\eta^2dp/12}.
\]

Note that \(\mathbb{P}(F_T) = p^{|T|}\). Let \(x = Np/t \geq \varphi\), so that \(t \leq Np/x \leq 2dp/\eta x\). If \(\varphi\) is large we may assume that \(p(N-t) > t\). So

\[
\sum_T \mathbb{P}(F_T) \leq \sum_{i=0}^{t} \binom{N}{i} p^i \leq 2 \left(\frac{eNp}{t}\right)^t = 2(xe)^t \leq 2(xe)^{2dp/\eta x} \leq e^{\eta^2dp/24},
\]

if \(\varphi\), and therefore \(x\), is large. If there exists \(I \subseteq X, I \in \mathcal{J}\) with \(|C(T_I) \cap X| \geq (1 + \eta)dp\) then the event \(E_T\) holds. Hence the probability in (8.3) is bounded by

\[
\sum_T \mathbb{P}(F_T) \mathbb{P}(G_T) \leq e^{\eta^2dp/24}e^{-\eta^2dp/12} = e^{-\eta^2dp/24}.
\]

\qed
CHAPTER 8. EXTREMAL PROPERTIES

With this lemma in hand, we can complete the proof of Theorem 8.5.

Let \mathcal{S} be the set of H-free graphs on vertex set $[n]$. We take $M = \binom{[n]}{2}$ and $X = E(G_{n,p})$ and $N = \binom{n}{2}$. For $I \in \mathcal{S}$, let T_I and $h = h(H, \varepsilon)$ be given by Theorem 8.1. Each H-free graph $I \in \mathcal{S}$ is contained in C_I and so if $G_{n,p}$ contains an H-free subgraph with $(\pi(H) + \gamma)Np$ edges then there exists I such that $|X \cap C_I| \geq (\pi(H) + \gamma)Np$. Our aim is to apply Lemma 8.6 with $\eta = \gamma/2$, $d = \left(\pi(H) + \frac{\gamma}{4}\right)N$, $t = hn^{2-1/m_2(H)}$.

The conditions of Lemma 8.6 then hold after noting that $d \geq \eta N/2$ and that $p \geq An^{-1/m_2(H)} \geq \varphi t/N$ if A is large enough. Note also that $|C_I| \leq d$. Now $(1 + \eta)dNp \leq (\pi(H) + \gamma)Np$, and so the probability that the event in the statement of the theorem fails to occur is bounded by

$$e^{-\eta^2dNp/24} \leq \exp\left\{-\frac{\gamma^2Np}{384}\right\}$$

completing the proof.

\section{8.4 Containers and the proof of Theorem 8.1}

An ℓ-graph or ℓ-uniform hypergraph $G = (V, E)$ has a set of vertices V and a collection of edges $E \subseteq \binom{V}{\ell}$, the set of ℓ-element subsets of V. The following theorem generalises Theorem 8.1 to ℓ-graphs.

Theorem 8.7. Let H be an ℓ-graph with $e(H) \geq 2$ and let $\varepsilon > 0$. For some $h > 0$ and for every $N \geq h$, there exists a collection \mathcal{C} of ℓ-graphs on vertex set $[N]$ such that

(a) for every H-free ℓ-graph I on vertex set $[N]$, there exists $C \in \mathcal{C}$ with $I \subseteq C$,

(b) for every ℓ-graph $C \in \mathcal{C}$, the number of copies of H in C is at most $\varepsilon N^{v(H)}$, and $e(C) \leq (\pi(H) + \varepsilon)\binom{N}{\ell}$,

(c) moreover, for every I in (a), there exists $T \subseteq I$, $e(T) \leq hN^{\ell-1/m(H)}$, such that $C = C(T)$.

The degree $d(\sigma)$ of a subset σ, where $|\sigma| \leq r$, is the number of edges of G that contain σ and $d^{(j)}(\sigma) = \max\{d(\sigma') : \sigma' \subseteq \sigma \in [n]^{(j)}\}$. We write $d^{(j)}(\{v\})$ instead of $d^{(j)}(\{v\})$.
Definition 8.8. Let G be an r-graph of order n and average degree d. Let $S \subseteq V(G)$. The degree measure $\mu(S)$ of S is defined by

$$\mu(S) = \frac{1}{nd} \sum_{u \in S} d(u).$$

Thus μ is a probability measure on $V(G)$. We note the following inequality, in which G is an r-graph of order n and average degree d:

$$e(G[S]) \leq \frac{1}{r} \sum_{v \in S} d(v) = \mu(S)n = \mu(S)e(G).$$ \hspace{1cm} (8.4)

We now state the main theorem. An independent set of an ℓ-graph is a set I such that $e \in E(G)$ implies $e \not\subseteq I$.

Theorem 8.9. Let $r \in \mathbb{N}$. Let G be an r-graph with average degree d and vertex set $[n]$. Suppose that we can choose $0 < c, \tau < 1$ such that

$$d(\sigma) \leq c d|\sigma|^{-1} \quad \text{holds for all } \sigma, |\sigma| \geq 2. \quad (8.5)$$

Then there is a function $C : \mathcal{P}[n] \to \mathcal{P}[n]$, such that, for every independent set $I \subseteq [n]$ there exists $T \subseteq I$ with

(a) $I \subseteq C(T)$,

(b) $\mu(T) \leq \tau$,

(c) $|T| \leq \tau n$, and

(d) $\mu(C(T)) \leq 1 - c$.

Corollary 8.10. Let $r \in \mathbb{N}$ and let $\varepsilon > 0$. Let G be an r-graph of average degree d on vertex set $[n]$. Suppose that we can choose $0 < c, \tau < 1$ such that (8.5) holds. Then there is a function $C : \mathcal{P}[n] \to \mathcal{P}[n]$, such that, for every independent set $I \subseteq [n]$ there exists $T \subseteq I$ with

(a) $I \subseteq C(T)$,

(b) $|T| \leq \tau n$, and

(c) $e(G[C]) \leq \varepsilon e(G)$.
The algorithm

We now describe an algorithm which given independent set I, constructs the quantities in Theorem 8.9 and Corollary 8.10. It runs in two modes, prune mode, builds $T \subseteq I$ and build mode, which constructs $C \supseteq I$.

The algorithm builds multigraphs $P_s, s \in [r]$ and then we define the degree of σ in the multigraph P_s to be

$$d_s(\sigma) = |\{e \in E(P_s) : \sigma \subseteq e\}|,$$

where we are counting edges with multiplicity in the multiset $E(P_s)$. (Naturally we may write $d_s(v)$ instead of $d_s(\{v\})$ if $v \in [n]$.)

The algorithm uses a threshold function which makes use of a real number δ.

Definition 8.11. For $s = 2, \ldots, r$ and $\sigma \in [n]^{(\leq s)}$, the threshold functions θ_s are given as follows, where δ is the minimum real number such that $d(\sigma) \leq \delta d(\sigma) - 1$ holds for all $\sigma, |\sigma| \geq 2$.

$$\theta_s(\sigma) = \tau^{r-s}d(\sigma) \quad \text{for } |\sigma| = 1$$

$$\theta_s(\sigma) = \delta d(\sigma) - s + 1 \quad \text{for } |\sigma| \geq 2$$

The container algorithm is set out in Table 8.1.

Note that $C = C(T)$ here, as opposed to $C = C(I)$. Then observe that

P_s consists of sets $\{u_1, u_2, \ldots, u_s\}$ such that there exist

$$v_1, v_2, \ldots, v_{r-s} \in T \text{ where } \{v_1, \ldots, v_{r-s}, u_1, \ldots, u_s\} \in E(G). \quad (8.6)$$

This is clearly true for $s = r$ via line A. If we add $f = \{u_1, u_2, \ldots, u_s\} \in F_{\chi,s}$ to P_s then we can inductively assert that $\{v_1, \ldots, v_{r-s-1}, v, u_1, \ldots, u_s\} \in E(G)$ for some v_1, \ldots, v_{r-s-1}.

Note also that $T \cap \Gamma_1 = \emptyset$ else (8.6) implies that T and hence I contains an edge.

We keep the degree in P_s of each set σ close to its target degree $\theta_s(\sigma)$ and Γ_s comprises those σ that have reached their target degree in P_s. After which, we add no more to $d_s(u)$. This keeps P_s small. The multiset $F_{\chi,s}$ is the potential contribution of v to P_s; it is the edges of P_{s+1} that contain v (with v then removed), but which don’t contain anything from Γ_s. If $F_{\chi,s}$ is large for some s then v makes a substantial contribution to that P_s, and we place v in T, updating all P_s and Γ_s accordingly. Because P_s is small, this tends to keep T small.
8.4. CONTAINERS AND THE PROOF OF THEOREM 8.1

Analysis of the algorithm

Proof of Theorem 8.9

Lemma 8.12. For $1 \leq s \leq r$, we have

\[
\begin{align*}
 d_s(u) &\leq \tau^{r-s}(d(u) + r\delta d) \\
 d_s(\sigma) &\leq \tau^{s-|\sigma|-1}
\end{align*}
\]

for all $u \in [n]$, and $\sigma \subseteq [n]$, $2 \leq |\sigma| \leq r$.

Proof. We prove the bounds by induction on $r-s$; in fact we show $d_s(\sigma) \leq (r-s+1)\delta d \tau^{r-s+|\sigma|-1}$ for $|\sigma| \geq 2$. For $s = r$ the bounds hold by the definition of δ in Definition 8.11. If $\sigma \in \Gamma_s$ then σ entered Γ_s after some vertex v was inspected and the set $F_{v,s}$ was added to P_s. Before this addition, $d_s(\sigma) < \theta_s(\sigma)$ was true. The increase in $d_s(\sigma)$ resulting from the addition is the number of s-sets in $F_{v,s}$ that contain σ. By definition of $F_{v,s}$, these come from edges of P_{s+1} that contain both v and σ; the number of these is at most $d_{s+1}(\{v\} \cup \sigma)$. The value of $d_s(\sigma)$ remains unchanged after the addition, and so at the end we have $d_s(\sigma) \leq \theta_s(\sigma) + d_{s+1}(\{v\} \cup \sigma)$ (for some v depending on σ). This inequality trivially holds if $\sigma \notin \Gamma_s$, and so it holds for all $\sigma \in [n]^{\leq s}$. So for $|\sigma| \geq 2$ we have, by applying the induction hypothesis to $\{v\} \cup \sigma$,

\[
d_s(\sigma) \leq \delta d \tau^{s+|\sigma|-1} + (r-s)\delta d \tau^{r-s-1}|\sigma| = (r-s+1)\delta d \tau^{r-s+|\sigma|-1}
\]

as claimed. For $\sigma = \{u\}$ we apply the induction hypothesis to $\sigma = \{v, u\}$ to obtain

\[
d_s(u) \leq \tau^{r-s}d(u) + (r-s)\delta d \tau^{r-s-1+2-1} \leq \tau^{r-s}(d(u) + r\delta d)
\]

again as claimed. This completes the proof.

Lemma 8.13. Let G be an r-graph on vertex set $[n]$ with average degree d. Let $P_r = E(G)$ and let P_{r-1}, \ldots, P_1 be the multisets constructed during the algorithm, either in build mode or in prune mode. Then

\[
\sum_{u \in U} d_s(u) \leq (\mu(U) + r\delta) \tau^{r-s}nd
\]

holds for all subsets $U \subseteq [n]$ and for $1 \leq s \leq r$.

Proof. The inequalities

\[
\sum_{u \in U} d_s(u) \leq \sum_{u \in U} \tau^{r-s}(d(u) + r\delta d) \leq (\mu(U) + r\delta) \tau^{r-s}nd
\]

follow immediately from Lemma 8.12 and the definition of μ.

\qed
Lemma 8.14. Let T be produced by the algorithm in prune mode. Then

$$
\mu(T) \leq (r - 1)(\tau/\zeta)(1 + r\delta).
$$

Proof. For $1 \leq s \leq r - 1$, let $T_s = \{v \in T : |F_{v,s}| \geq \zeta \tau^{r-s}d(v)\}$. From the operation of the algorithm we see that $T \subseteq T_1 \cup \cdots \cup T_{r-1}$ (the sets here need not be disjoint). For each s, the sets $F_{v,s}$ for $v \in T_s$ are added to P_s and, because P_s is a multiset, we obtain

$$
\zeta \tau^{r-s-1}nd \mu(T_s) = \zeta \tau^{r-s-1} \sum_{v \in T_s} d(v) \leq |P_s| = \frac{1}{s} \sum_{u \in [n]} d_s(u) \leq \frac{1}{s} \tau^{r-s}nd(1 + r\delta)
$$

by Lemma 8.13 with $U = [n]$. Thus $\mu(T_s) \leq (\tau/\zeta)(1 + r\delta)$, and $\mu(T) \leq \mu(T_1) + \cdots + \mu(T_{r-1}) \leq (r - 1)(\tau/\zeta)(1 + r\delta)$. \hfill \Box

Lemma 8.15. Let C be the set produced by the algorithm in build mode. Let $D = ([n] \setminus C) \cup T \cup B$. Define e_s by the equation $|P_s| = e_s \tau^{r-s}nd$ for $1 \leq s \leq r$. Then

$$
e_{s+1} \leq r^s e_s + \mu(D) + \zeta + 2r\delta, \quad \text{for } r - 1 \geq s \geq 1.
$$

Proof. The way the algorithm builds C means that $T \cup B \subseteq C$. Let $C' = C \setminus (T \cup B)$, so $D = [n] \setminus C'$. For $v \in [n]$ let $f_{s+1}(v)$ be the number of sets in P_{s+1} for which v is the first vertex in the vertex ordering. Then

$$
|P_{s+1}| = \sum_{v \in [n]} f_{s+1}(v) = \sum_{v \in C'} f_{s+1}(v) + \sum_{v \in D} f_{s+1}(v) \quad \text{for } 1 \leq s < r. \quad (8.7)
$$

By definition of $|F_{v,s}|$, of the $f_{s+1}(v)$ sets in P_{s+1} beginning with v, $f_{s+1}(v) - |F_{v,s}|$ of them contain some $\sigma \in \Gamma_s$. If $v \in C'$ then $v \notin B$ and $v \notin T$ and so, since $v \in C$, we have $|F_{v,s}| < \zeta \tau^{r-s-1}d(v)$. Therefore, writing PT for the multiset of edges in P_{s+1} that contain some $\sigma \in \Gamma_s$, we have

$$
\sum_{v \in C'} (f_{s+1}(v) - \zeta \tau^{r-s-1}d(v)) < |PT| \leq \sum_{\sigma \in \Gamma_s} d_{s+1}(\sigma). \quad (8.8)
$$

By definition, if $\sigma \in \Gamma_s$ and $|\sigma| \geq 2$, then $d_s(\sigma) \geq \theta_s(\sigma) = \delta d\tau^{s-|\sigma|-1}$. Using Lemma 8.12, we then see that $d_{s+1}(\sigma) \leq r\delta d\tau^{s-|\sigma|-1} \leq (r/\tau)d_s(\sigma)$. Similarly, if $\sigma = \{u\} \in \Gamma_s$, then $d_s(\sigma) \geq \tau^{r-s}d(u)$ and $d_{s+1}(\sigma) \leq \tau^{r-s-1}(d(u) + r\delta d) \leq (1/\tau)d_s(\sigma) + r\delta d \tau^{r-s-1}$. Therefore, for $s \geq 1$, we obtain

$$
\sum_{\sigma \in \Gamma_s} d_{s+1}(\sigma) \leq \frac{r}{\tau} \sum_{\sigma \in \Gamma_s} d_s(\sigma) + \sum_{\{u\} \in \Gamma_s} r\delta d \tau^{r-s-1} \leq \frac{r}{\tau} 2^s |P_s| + r\delta nd \tau^{r-s-1}. \quad (8.9)
$$
Finally, making use of (8.7) and (8.8) together with Lemma 8.13, we have
\[e_{s+1} \tau^{r-s-1} nd = |P_{s+1}| = \sum_{v \in C'} f_{s+1}(v) + \sum_{v \in D} f_{s+1}(v) \leq \sum_{v \in C'} \zeta \tau^{r-s-1} d(v) + \sum_{\sigma \in \Gamma_s} d_{s+1}(\sigma) + \sum_{v \in D} d_{s+1}(v) \leq \zeta \tau^{r-s-1} nd + \sum_{\sigma \in \Gamma_s} d_{s+1}(\sigma) + \tau^{r-s-1} nd(\mu(D) + r\delta), \]

The bound (8.9) for \(\sum_{\sigma \in \Gamma_s} d_{s+1}(\sigma) \) now gives the result claimed. \(\square \)

Proof of Theorem 8.9. We begin by choosing the constant \(c \). Let \(\gamma = \frac{1}{25r^22^{2r}} \) and \(c = \gamma' \). Let \(G \) be as in the theorem and let \(\tau \) be chosen so that (8.5) is satisfied. Let \(\zeta = \sqrt{2r\gamma} \). For later use, we note \(c \leq \gamma \leq \zeta / 2r \leq 2r \zeta < 1 \).

As might be expected, we prove the theorem by using the containers \(C \) and the sets \(T \) supplied by the algorithm. However, the input parameters we supply to the algorithm are not \(\tau \) and \(\zeta \) as just defined, but instead \(\tau_0 = \gamma \tau \) and \(\zeta \).

We therefore remind the reader that the values of \(\tau \) and \(\zeta \) appearing in the lemmas above are those values input to the algorithm. Hence in the present case, where we are using inputs \(\tau^* \) and \(\zeta \), the conclusions of the lemmas hold with \(\tau^* \) in place of \(\tau \). Again, as highlighted earlier, the value of \(\delta \) in the lemmas is that supplied by Definition 8.11 with \(\tau^* \) in place of \(\tau \). Explicitly, \(\delta \) is (by definition) minimal such that \(d(\sigma) \leq \delta d(\tau^{(|\sigma|-1)}) \) for all \(\sigma \). Now \(\tau \) was chosen to satisfy (8.5), so we know that \(d(\sigma) \leq c d(\tau^{(|\sigma|-1)}) \). Since \(h = \gamma' \) this implies we know, for all \(\sigma \), that \(d(\sigma) \leq \gamma' d(\tau^{(|\sigma|-1)}) \leq \gamma d(\tau^{(|\sigma|-1)}) \), because \(\gamma \leq 1 \) and \(|\sigma| \leq r \). Consequently, by the minimality of \(\delta \), we have \(\delta \leq \gamma \).

What remains is to verify the claims of the theorem. Condition (a) follows from the general properties of the algorithm.

Now \(c \tau^{r-s-1} = \gamma \tau^{r-s-1} \leq (\zeta / r) \tau^{r-s-1} \), and \(c \tau^* = \tau^* \leq (r / \zeta) \tau^* \). So, by Lemma 8.14, \(\mu(T) \leq (r \tau^* / \zeta)(1 + r \delta) \leq 2r \tau^* / \zeta = 2r \gamma \tau / \zeta = \zeta \tau \), easily establishing condition (b). Moreover \(T \cap B = \emptyset \), so \(|T| \leq \sum_{d(v) = nd(\mu(T)) \leq nd \zeta \tau, \text{ giving condition (c).} \) To show that condition (d) holds, note that \(2r \delta \leq 2r \gamma \leq \zeta \), and so by Lemma 8.15 we comfortably have \(e_{s+1} \leq r^2 e_s + \mu(D) + 2 \zeta \) for \(r - 1 \geq s \geq 1 \). Dividing the bound for \(e_{s+1} \) by \(r^{s+1/2} \) and adding over \(s = 1, \ldots, r - 1 \), we obtain
\[
\frac{e_r}{r^{2}\left(\frac{r}{2}\right)} \leq \left(\mu(D) + 2 \zeta \right) \left\{ \frac{1}{r^2} + \frac{1}{r^3} \frac{1}{2^3} + \frac{1}{r^4} \frac{1}{2^6} + \cdots \right\} \leq \left(\mu(D) + 2 \zeta \right) \frac{2}{r^{2}}.
\]
Recall that \(e_r nd = |P_r| = e(G) = nd / r \) so \(e_r = 1 / r \). Hence \(\mu(D) + 2 \zeta \geq r^{-r - 2 - \left(\frac{r}{2}\right)} = 5r^{1/2} 2^{r/2} \geq 5 \zeta \). So \(\mu(D) \geq 3 \zeta \). By definition, \(D = [n]-(C-(T \cup B)) \). Thus \(\mu(C) \leq 1 - \mu(D) + \mu(T) + \mu(B) \). We showed previously that \(\mu(T) \leq \zeta \tau \leq \zeta \).
Moreover $\mu(B) \leq \zeta$ by definition of B. Therefore $\mu(C) \leq 1 - 3\zeta + \zeta + \zeta = 1 - \zeta \leq 1 - c$, completing the proof. \qed

We finish with a proof of Corollary 8.10.

Proof of Corollary 8.10. Write c_* for the constant c from Theorem 8.9. We prove the corollary with $c = \varepsilon \ell^{-r} c_*$, where $\ell = \lceil (\log \varepsilon) / \log(1 - c_*) \rceil$. Let G, I and τ be as stated in the corollary. We shall apply Theorem 8.9 several times. Each time we apply the theorem, we do so with $\tau_* = \tau / \ell$ in place of τ, with the same I, but with different graphs G, as follows (we leave it till later to check that the necessary conditions always hold). Given I, apply the theorem to find $T_1 \subseteq I$ and $I \subseteq C_1 = C(T_1)$, where $|T_1| \leq \tau_* n$ and $\mu(C_1) \leq 1 - c_*$. It is easily shown that $e(G[C]) \leq \mu(C)e(G) \leq (1 - c_*)e(G)$ see (8.4). Now I is independent in the graph $G[C]$ so apply the theorem again, to the r-graph $G[C]$, to find $T_2 \subseteq I$ and a container $I \subseteq C_2$. We have $|T_2| \leq \tau_* |C_1|$, and $e(G[C_2]) \leq (1 - c_*)e(G[C]) \leq (1 - c_*)^2 e(G)$. We note that, in the first application, the algorithm in build mode would have constructed C_1 from input $T_1 \cup T_2$, and would likewise have constructed C_2 from input $T_1 \cup T_2$ in the second application. Thus C_2 is a function of $T_1 \cup T_2$. We repeat this process k times until we obtain the desired container $C = C_k$ with $e(G[C]) \leq \varepsilon e(G)$. Since $e(G[C]) \leq (1 - c_*)^k e(G)$ this occurs with $k \leq \ell$. Put $T = T_1 \cup \cdots \cup T_k$. Then C is a function of $T \subseteq I$.

We must check that the requirements of Theorem 8.9 are fulfilled at each application. Observe that, if d_j is the average degree of $G[C_j]$ for $j < k$, then $|C_j|d_j = re(G[C_j]) > ree(G) = \varepsilon nd$, and since $|C_j| \leq n$ we have $d_j \geq \varepsilon d$. The conditions of Corollary 8.10 mean that $d(\sigma) \leq cd\tau|\sigma|^{-1} = \varepsilon \ell^{-r} c_* d\tau|\sigma|^{-1} < c_* d_j \tau|\sigma|^{-1}$; since the degree of σ in $G[C_j]$ is at most $d(\sigma)$, this means that (8.5) is satisfied every time Theorem 8.9 is applied.

Finally condition (c) of the theorem implies $|T_j| \leq \tau_* |C_j| \leq \tau_* n = \tau n / \ell$, and so $|T| \leq k\tau n / \ell \leq \tau n$, giving condition (b) of the corollary and completing the proof. \qed

H-free graphs

In this section we prove Theorem 8.7. We will apply the container theorem given by Corollary 8.10 to the following hypergraph, whose independent sets correspond to H-free ℓ-graphs on vertex set $[N]$.

Definition 8.16. Let H be an ℓ-graph. Let $r = e(H)$. The r-graph \mathbb{G}_H has vertex set $V(\mathbb{G}_H) = \binom{[N]}{\ell}$, where $B = \{v_1, \ldots, v_r\} \in \binom{V(\mathbb{G}_H)}{r}$ is an edge whenever B, considered as an ℓ-graph with vertices in $[N]$ and with r edges, is isomorphic to H. So $B \in \binom{[N]}{r}$ where $M = \binom{[N]}{\ell}$.

8.4. CONTAINERS AND THE PROOF OF THEOREM 8.1

All that remains before applying the container theorem to G_H is to verify (8.5).

Lemma 8.17. Let H be an ℓ-graph with $r = e(H) \geq 2$ and let $\tau = 2\ell!v(H)!N^{-1/m(H)}$. Let N be sufficiently large. Suppose that $e(G_H) = \alpha_H\left(\frac{N}{v(H)}\right)$ where $\alpha_H \geq 1$ depends only on H. The average degree d in G_H satisfies $d = \frac{r e(G_H)}{v(G_H)} = \frac{r \alpha_H N^v(H)}{(N)}$. Then,

$$d(\sigma) \leq \frac{1}{\alpha_H} \frac{d|\sigma|^{\tau}}{\ell}, \quad \text{holds for all } \sigma, |\sigma| \geq 2.$$

Proof. Consider $\sigma \subseteq [N]^\ell$ (so σ is both a set of vertices of G_H and an ℓ-graph on vertex set $[N]$). The degree of σ in G_H is at most the number of ways of extending σ to an ℓ-graph isomorphic to H. If σ as an ℓ-graph is not isomorphic to any subgraph of H, then clearly $d(\sigma) = 0$. Otherwise, let $v(\sigma)$ be the number of vertices in σ considered as an ℓ-graph, so there exists $V \subseteq [N], |V| = v(\sigma)$ with $\sigma \subseteq V^\ell$. Edges of G_H containing σ correspond to copies of H in $[N]^\ell$ containing σ, each such copy given by a choice of $v(H) - v(\sigma)$ vertices in $[N] - V$ and a permutation of the vertices of H. Hence for N sufficiently large,

$$d(\sigma) \leq v(H)! \left(\frac{N - v(\sigma)}{v(H) - v(\sigma)}\right) \leq v(H)!N^{v(H) - v(\sigma)}$$

Now for $\sigma \geq 2$ we have

$$\frac{d(\sigma)}{d|\sigma|^{\tau}} \leq \frac{N^{v(H) - v(\sigma)}}{\alpha_H r N^{v(H) - \ell - (|\sigma| - 1)/m(H)}} = \frac{1}{\alpha_H r} N^{-v(\sigma) + \ell + \frac{|\sigma|-1}{m(H)}} \leq \frac{1}{\alpha_H r}.$$

A well-known supersaturation theorem bounds the number of edges in containers.

Proposition 8.18 (Erdős and Simonovits [292]). Let H be an ℓ-graph and let $\varepsilon > 0$. There exists N_0 and $\eta > 0$ such that if C is an ℓ-graph on $N \geq N_0$ vertices containing at most $\eta N^{v(H)}$ copies of H then $e(C) \leq (\pi(H) + \varepsilon)\left(\frac{N}{\ell}\right)$.

Proof of Theorem 8.7. Let $\eta = \eta(e, H)$ be given by Proposition 8.18, and let $\beta = \min\{\varepsilon, \eta\}$. Recall that $r = e(H)$. Apply Corollary 8.10 to G_H with $c = \frac{1}{\alpha_H r}$ and $\tau = 2\ell!v(H)!N^{-1/m(H)}$ and with β playing the role of ε in the corollary. The conditions of Corollary 8.10 are satisfied; denote by \tilde{c} the constant c appearing in the corollary. The collection of containers \mathcal{C} satisfies the following.

- For every independent set I there exists some $C \in \mathcal{C}$ with $I \subseteq C$. This implies condition (a) of the theorem,
For each $C \in \mathcal{C}$, we have $e(G[H[C]]) \leq \beta N_v(H)$. Proposition 8.18 implies $e(C) \leq (\pi(H) + \varepsilon) \binom{N}{\ell}$, because we chose $\beta \leq \eta$. This gives condition (b).

Finally, for every set I as above, there exists $T \subseteq I$ such that $C = C(T)$, $|T| \leq \bar{c} \tau(N, \ell)$. This implies condition (c).

\[\square\]

8.5 Exercises

8.5.1 An edge e of G is H-open if it is contained in at most one copy of H and H-closed otherwise. The H-core \hat{G}_H of G is obtained by repeatedly deleting H-open edges. Show that $G \to (H)^{\frac{\varepsilon}{\ell}}$ implies that $\hat{G}_H \to (H')^{\frac{\varepsilon}{\ell}}$ for every $H' \subseteq H$. (Thus one only needs to prove the 0-statement of Theorem 8.2 for strictly 2-balanced H. A graph H is strictly 2-balanced if $H' = H$ is the unique maximiser in (8.1)).

8.5.2 A subgraph G' of the H-core is H-closed if it contains at least one copy of H and every copy of H in \hat{G}_H is contained in G' or is edge disjoint from G'. Show that the edges of \hat{G}_H can be partitioned into inclusion minimal H-closed subgraphs.

8.5.3 Show that there exists a sufficiently small $c > 0$ and a constant $L = L(H, c)$ such that if H is 2-balanced and $p \leq cn^{-1/m_2(H)}$ then w.h.p. every inclusion minimal H-closed subgraph of $G_{n,p}$ has size at most L. (Try $c = o(1)$ first here).

8.5.4 Show that if $e(G)/v(G) \leq m_2(H)$ and $m_2(H) > 1$ then $G \not\to (H)^{\frac{\varepsilon}{2}}$.

8.5.5 Show that if H is 2-balanced and $p = cn^{-1/m_2(H)}$ then w.h.p. every subgraph G of $G_{n,p}$ with $v(G) \leq L = O(1)$ satisfies $e(G)/v(G) \leq m_2(H)$.

8.5.6 Prove the 0-statement of Theorem 8.2 for $m_2(H) > 1$.

8.6 Notes

The largest triangle-free subgraph of a random graph

Babai, Simonovits and Spencer [45] proved that if $p \geq 1/2$ then w.h.p. the largest triangle-free subgraph of $G_{n,p}$ is bipartite. They used Szemerédi’s regularity
lemma in the proof. Using the sparse version of this lemma, Brightwell, Panagiotou and Steger [164] improved the lower bound on p to n^{-c} for some (unspecified) positive constant c. DeMarco and Kahn [244] improved the lower bound to $p \geq Cn^{-1/2}(\log n)^{1/2}$, which is best possible up to the value of the constant C. And in [245] they extended their result to K_r-free graphs.

Anti-Ramsey Property

Let H be a fixed graph. A copy of H in an edge colored graph G is said to be rainbow colored if all of its edges have a different color. The study of rainbow copies of H was initiated by Erdős, Simonovits and Sós [291]. An edge-coloring of a graph G is said to be b-bounded if no color is used more than b times. A graph is G said to have property $\mathcal{A}(b,H)$ if there is a rainbow copy of H in every b-bounded coloring. Bohman, Frieze, Pikhurko and Smyth [121] studied the threshold for $G_{n,p}$ to have property $\mathcal{A}(b,H)$. For graphs H containing at least one cycle they prove that there exists b_0 such that if $b \geq b_0$ then there exist $c_1, c_2 > 0$ such that

$$\lim_{n \to \infty} \mathbb{P}(G_{n,p} \in \mathcal{A}(b,H)) = \begin{cases} 0 & p \leq c_1 n^{-1/m_2(H)} \\ 1 & p \geq c_2 n^{-1/m_2(H)} \end{cases}.$$

A reviewer of this paper pointed out a simple proof of the 1-statement. Given a b-bounded coloring of G, let the edges colored i be denoted $e_{i,1}, e_{i,2}, \ldots, e_{i,b_i}$ where $b_i \leq b$ for all i. Now consider the auxiliary coloring in which edge $e_{i,j}$ is colored with j. At most b_i colors are used and so in the auxiliary coloring there will be a monochromatic copy of H. The definition of the auxiliary coloring implies that this copy of H is rainbow in the original coloring. So the 1-statement follows directly from the results of Rödl and Ruciński [681], i.e. Theorem 8.2.

Nenadov, Person, Škorić and Steger [627] gave further threshold results on both Ramsey and Anti-Ramsey theory of random graphs. In particular they proved that in many cases $b_0 = 2$ in (8.10).
Input

an r-graph G on vertex set $[n]$, with average degree d
parameters $\tau, \zeta > 0$

in prune mode a subset $I \subseteq [n]$
in build mode a subset $T \subseteq [n]$

Output

in prune mode a subset $T \subseteq [n]$
in build mode a subset $C \subseteq [n]$

Initialisation

put $B = \{ v \in [n] : d(v) < \zeta d \}$
evaluate the thresholds $\theta_s(\sigma), \sigma \in [n]^{(\leq s)}, 1 \leq i \leq r$

A:

put $P_r = E(G), P_s = \emptyset, \Gamma_s = \emptyset, s = 1, 2, \ldots, r-1$
in prune mode put $T = \emptyset$
in build mode put $C = [n]$

for $v = 1, 2, \ldots, n$ do:

for $s = 1, 2, \ldots, r-1$ do:

let $F_{v,s} = \{ f \in [v+1,n]^{(s)} : \{v\} \cup f \in P_{s+1}, \text{ and } \not\exists \sigma \in \Gamma_s, \sigma \subseteq f \}$
[here $F_{v,s}$ is a multiset with multiplicities inherited from P_{s+1}]

if $v \notin B$, and $|F_{v,s}| \geq \zeta \tau^{r-s-1}d(v)$ for some s
in prune mode if $v \in I$, add v to T
in build mode if $v \notin T$, remove v from C
if $v \in T$ then for $s = 1, 2, \ldots, r-1$ do:

add $F_{v,s}$ to P_s

for each $\sigma \in [v+1,n]^{(\leq s)}$, if $d_s(\sigma) \geq \theta_s(\sigma)$, add σ to Γ_s

Table 8.1: The container algorithm
Chapter 9
Resilience

Sudakov and Vu [729] introduced the idea of the local resilience of a monotone increasing graph property \(\mathcal{P} \). Suppose we delete the edges of some graph \(H \) on vertex set \([n]\) from \(G_{n,p} \). Suppose that \(p \) is above the threshold for \(G_{n,p} \) to have the property. What can we say about the value \(\Delta \) so that w.h.p. the graph \(G = ([n], E(G_{n,p}) \setminus E(H)) \) has property \(\mathcal{P} \) for all \(H \) with maximum degree at most \(\Delta \)? We will denote the maximum \(\Delta \) by \(\Delta_\mathcal{P} \).

In this chapter we discuss the resilience of various properties. In Section 9.1 we discuss the resilience of having a perfect matching. In Section 9.2 we discuss the resilience of having a Hamilton cycle. In Section 9.3 we discuss the resilience of the chromatic number.

9.1 Perfect Matchings

Sudakov and Vu [729] proved that if \(\mathcal{M} \) denotes the property of having a perfect matching then

\[
\text{Theorem 9.1. Suppose that } n = 2m \text{ is even and that } np \gg \log n. \text{ Then w.h.p. in } G_{n,p}, \left(\frac{1}{2} - \epsilon \right) np \leq \Delta_\mathcal{M} \leq \left(\frac{1}{2} + \epsilon \right) np \text{ for any positive constant } \epsilon.
\]

\textbf{Proof.} The upper bound \(\Delta_\mathcal{M} \leq \left(\frac{1}{2} + \epsilon \right) np \) is easy to prove. Randomly partition \([n]\) into two subsets \(X, Y \) of sizes \(m + 1 \) and \(m - 1 \) respectively. Now delete all edges inside \(X \) so that \(X \) becomes an independent set. Clearly, the remaining graph contains no perfect matching. The Chernoff bounds, Corollary 22.7, imply that we have deleted \(\approx np/2 \) edges incident with each vertex.

The lower bound requires a little more work. Theorem 3.4 implies that w.h.p. the minimum degree in \(G \) is at least \((1 - o(1)) \left(\frac{1}{2} + \epsilon \right) np \). We randomly partition \([n]\) into two sets \(X, Y \) of size \(m \). We have that w.h.p.

\(\text{PM1 } d_\mathcal{Y}(x) \gtrsim \left(\frac{1}{4} + \frac{\epsilon}{2} \right) np \) for all \(x \in X \) and \(d_\mathcal{X}(y) \gtrsim \left(\frac{1}{4} + \frac{\epsilon}{2} \right) np \) for all \(y \in Y \).
CHAPTER 9. RESILIENCE

PM2 \(e(S, T) \leq (1 + \frac{\varepsilon}{3}) \frac{np}{4}|S| \) for all \(S \subseteq X, T \subseteq Y, |S| = |T| \leq n/4 \).

Property **PM1** follows immediately from the Chernoff bounds, Corollary 22.7, and the fact that \(d_G(v) \gtrsim (\frac{1}{2} + \varepsilon) np \gg \log n \).

Property **PM2** is derived as follows:

\[
\Pr \left(\exists S, T : e(S, T) \geq |S| \left(1 + \frac{\varepsilon}{3} \right) \frac{np}{4} \right) \leq \sum_{s=1}^{n/4} \left(\frac{n}{s} \right)^2 e^{-4e^2snp/27} \leq \sum_{s=1}^{n/4} \left(\frac{n^2e^{2-4e^2np/27}}{s^2} \right)^s = o(1).
\]

Given, **PM1, PM2**, we see that if there exists \(S \subseteq X, |S| \leq n/4 \) such that \(|N_X(S)| \leq |S| \) then for \(T = N_X(S) \),

\[
\left(\frac{1}{4} + \frac{\varepsilon}{2} \right) np|S| \lessapprox e(S, T) \leq \left(1 + \frac{\varepsilon}{3} \right) \frac{np}{4}|S|,
\]

contradiction. We finish the proof that Hall’s condition holds, i.e. deal with \(|S| > n/4\) just as we did for \(|S| > n/2\) in Theorem 6.1.

9.2 Hamilton Cycles

Sudakov and Vu [729] proved that if \(np \gg \log^4 n \) and \(\mathcal{H} \) denotes the Hamiltonicity property, then w.h.p. \(\Delta_{\mathcal{H}} = (\frac{1}{4} - o(1)) np \). This is the optimal value for \(\Delta_{\mathcal{H}} \) but a series of papers culminating in the following theorem due to Lee and Sudakov.

Theorem 9.2. If \(np \gg \log n \), then w.h.p. \(\Delta_{\mathcal{H}} = (\frac{1}{2} - o(1)) np \).

Going even further, Montgomery [607] and Nenadov, Steger and Trujić [631] have given tight hitting time versions. The proofs in these papers rely on the use of Pósa rotations, as in Chapter 6. Some recent papers have introduced the use of the absorbing method from extremal combinatorics to related problems. The method was initiated by Rödl, Ruciński and Szemerédi [679]. Our purpose in this section is to give an example of this important technique. Our exposition closely follows the paper of Ferber, Nenadov, Noever, Peter and Trujić [308]. They consider the resilience of Hamiltonicity in the context of random digraphs, but their proof can be adapted and simplified when considering graphs. Their proof in turn utilises ideas from Montgomery [607].
We say that a graph \(G = (V, E) \) with \(|V| = n\) is \((n, \alpha, p)\)-pseudo-random if

1. \(d_G(v) \geq (\frac{1}{2} + \alpha) np \) for all \(v \in V(G) \).

2. \(e_G(S) \leq |S| \log^3 n \) for all \(S \subseteq V, |S| \leq \frac{10 \log^2 n}{p} \).

3. \(e_G(S, T) \leq (1 + \frac{\alpha}{4}) |S||T|p \) for all disjoint \(S, T \subseteq V, |S|, |T| \geq \frac{\log^2 n}{p} \).

Lemma 9.4. Let \(\alpha \) be an arbitrary small positive constant. Suppose that \(p \geq \frac{\log^10 n}{n} \). Let \(H \) be a subgraph of \(\mathbb{G} = \mathbb{G}_{n,p} \) with maximum degree \((\frac{1}{2} - 3\alpha) np \) and let \(G = \mathbb{G} - H \). Then w.h.p. \(G \) is \((n, \alpha, p)\)-pseudo-random.

Proof. Q1: This follows from the fact that w.h.p. every vertex of \(\mathbb{G}_{n,p} \) has degree \((1 + o(1)) np \), see Theorem 3.4(ii).

Q2: We show that this is true w.h.p. in \(\mathbb{G} \) and hence in \(G \). Indeed,

\[
\mathbb{P} \left(\exists S : e_G(S) \geq |S| \log^3 n \text{ and } |S| \leq \frac{10 \log^2 n}{p} \right) \leq \\
\sum_{s=\log n}^{10^{-1} \log^2 n} \binom{n}{s} \left(\frac{s}{2 \log^3 n} \right)^p \log^3 n \leq \\
\sum_{s=\log n}^{10^{-1} \log^2 n} \left(\frac{ne}{s} \left(\frac{5e}{\log n} \right)^{\log^3 n} \right)^s = o(1).
\]
Q3: We show that this is true w.h.p. in \mathbb{G} and hence in G. We first note that the Chernoff bounds, Corollary 22.7, imply that

$$\mathbb{P}(e_G(S, T) \geq (1 + \frac{\alpha}{4}) |S||T|p) \leq e^{-\alpha^2 |S||T|p/50}.$$

So,

$$\mathbb{P}\left(\exists S, T : |S|, |T| \geq \frac{\log^2 n}{p} \text{ and } e_G(S, T) \geq (1 + \alpha)|S||T|p \right) \leq \sum_{s,t=p^{-1}\log^2 n}^{n} \binom{n}{s} \binom{n}{t} e^{-\alpha^2 stp/50} \leq \sum_{s,t=p^{-1}\log^2 n}^{n} \left(\frac{ne^{1-\alpha^2 t p/100}}{s} \right)^s \left(\frac{ne^{1-\alpha^2 s p/100}}{t} \right)^t \leq \sum_{s=p^{-1}\log^2 n}^{n} \left(\frac{ne^{1-\alpha^2\log^2 n/100}}{s} \right)^s \leq \left(\sum_{s=p^{-1}\log^2 n}^{n} \left(\frac{ne^{1-\alpha^2\log^2 n/100}}{s} \right)^{s/2} \right)^2 = o(1).$$

\[Q3\]

Pseudo-random implies Hamiltonian

The rest of this section is devoted to the proof that if $G = ([n], E)$ is (n, α, p)-pseudo-random then G is Hamiltonian.

We randomly partition $[n]$ into sets let $V_i, i = 1, 2, \ldots, 5$ such that

$$|V_1| = \left\lfloor \frac{4\log^3 n}{p} \right\rfloor, |V_i| = \frac{\alpha n}{5(1 + 2\alpha)}, i = 2, 3, 4$$

so that

$$|V_5| = \frac{5 + 7\alpha}{5 + 10\alpha} n - O\left(\frac{n}{\log^7 n} \right) \approx \frac{5 + 7\alpha}{5 + 10\alpha} n.$$

The number of neighbors of v in V_i is distributed as the binomial $\text{Bin}(d_G(v), |V_i|/n)$. Thus for all $v \in [n]$ we have, using our assumption that $np \geq \log^{10} n$,

$$\mathbb{E}(d_{V_i}(v)) = \frac{|V_i|}{n} d_G(v) \geq \left(\frac{1}{2} + \alpha \right) |V_i|p \geq \left(\frac{1}{2} + \alpha \right) \frac{np}{\log^5 n} \gg \log n$$

and so the Chernoff bounds imply that w.h.p.

$$d_{V_i}(v) \gtrsim \left(\frac{1}{2} + \alpha \right) |V_i|p \text{ for all } v \in [n] \quad (9.1)$$
9.2. HAMILTON CYCLES

The proof now rests on two lemmas: the following quantities are fixed for the remainder of the proof:

\[\ell = 12 \log n + 3 \quad \text{and} \quad t = \left\lceil \frac{4 \log^3 n}{p} \right\rceil \quad (9.2) \]

Lemma 9.5. [Connecting Lemma] Let \(\{a_i, b_i\}, i = 1, 2, \ldots, t \) be a family of pairs of vertices from \([n] \) with \(a_i \neq a_j \) and \(b_i \neq b_j \) for every distinct \(i, j \in [t] \), \(a_i = b_i \) is allowed. Let \(L = \bigcup_{i=1}^{t} \{a_i, b_i\} \). Assume that \(K \subseteq [n] \setminus L \) is such that

\[C_1 \quad |K| \gg \ell t \log t. \]

\[C_2 \quad \text{For every } v \in K \cup L \text{ we have } |d_K(v)| \gtrsim (\frac{1}{2} + \alpha) |V_5| p \]

Then there exist \(t \) internally disjoint paths \(P_1, P_2, \ldots, P_t \) such that \(P_i \) connects \(a_i \) to \(b_i \) and \(V(P_i) \setminus \{a_i, b_i\} \subseteq K \). Furthermore, each path is of length \(\ell \).

Lemma 9.6. [Absorbing Lemma] There is a path \(P^* \) with \(V(P^*) \subseteq V_2 \cup V_3 \cup V_4 \) such that for every \(W \subseteq V_1 \) there is a path \(P^*_W \) such that \(V(P^*_W) = V(P^*) \cup W \) and such that \(P^* \) and \(P^*_W \) have the same endpoints.

With these two lemmas in hand, we can show that \(G \) is Hamiltonian. Let \(P^* \) be as in Lemma 9.6 and let \(U = (V_2 \cup V_3 \cup V_4 \cup V_5) \setminus V(P^*) \). If \(v \in U \) then

\[d_U(v) \geq d_5(v) \gtrsim \left(\frac{1}{2} + \alpha \right) |V_5| p \]

\[\gtrsim \left(\frac{1}{2} + \alpha \right) \frac{5 + 7\alpha}{5 + 10\alpha} np \geq \left(\frac{1}{2} + \frac{3\alpha}{4} \right) |U| p. \quad (9.3) \]

Next let \(k = \left\lceil \frac{|U| \log^3 n}{n} \right\rceil \) and \(s = \left\lfloor \frac{n}{\log^2 n} \right\rfloor \). Randomly choose disjoint sets \(S_1, S_2, \ldots, S_k \subseteq U \) of size \(s \) and let \(S = \bigcup_{i=1}^{k} S_i \) and \(S' = U \setminus S \). It follows from (9.3) and the Chernoff bounds and the fact that

\[\mathbb{E}(d_{S_i}(v)) = \frac{|S_i| d_U(v)}{|U|} \gtrsim \left(\frac{1}{2} + \frac{3\alpha}{4} \right) |S_i| p \gg \log n \]

that w.h.p.

\[d_{S_i}(v) \geq \left(\frac{1}{2} + \frac{\alpha}{2} \right) |S_i| p \quad \text{for all } i \in [k], v \in U. \quad (9.4) \]

Claim 6. Assuming (9.4), we see that there is a perfect matching \(M_i \) between \(S_i, S_{i+1} \) for \(1 \leq i < k \).
We prove the claim below. The matchings $M_1, M_2, \ldots, M_{k-1}$ combine to give us s vertex disjoint paths Q_i from S_1 to S_k for $i = 1, 2, \ldots, s$. Together with a 0-length path for each $v \in S'$ we have $t' = s + |S'| \leq 2s$ internally disjoint paths Q_i from x_i to $y_i, i = 1, 2, \ldots, t'$ that cover U. Now let $t = t' + 1$ and suppose that x_i, y_i are the endpoints of P^*. Applying Lemma 9.5 with $K = V_1$ and $a_i = y_i, b_i = x_{i+1}$ for $i \in [t]$, we obtain a cycle $C = (Q_1, P_1, Q_2, P_2, \ldots, Q_t, P_t, P^*)$ (here $x_{t+1} = x_1$) that covers $V_2 \cup V_3 \cup V_4 \cup V_5$, see Figure 9.1. Putting $W = V_1 \setminus V(C)$ and using the fact that $P^* \subseteq C$, we can use Lemma 9.6 to extend C to a Hamilton cycle of G.

Proof of Claim 6

Fix i and now consider Hall’s theorem. We have to show that $|N(X, S_{i+1})| \geq |X|$ for $X \subseteq S_i$.

Case 1: $|X| \leq 10p^{-1}\log^2 n$. Let $Y = N(X, S_{i+1})$ and suppose that $|Y| < |X|$. We now have

$$e_G(X \cup Y) \geq \left(\frac{1}{2} + \frac{\alpha}{2}\right)|X||S_i|p \geq \frac{|X \cup Y|\log^5 n}{4},$$

which contradicts Q_2.

Case 2: $10p^{-1}\log^2 n \leq |X| \leq s/2$. In this case we have

$$e_G(X, Y) \geq \left(\frac{1}{2} + \frac{\alpha}{2}\right)|S_i||X|p \geq \left(\frac{1}{2} + \frac{\alpha}{2}\right)|X||Y|p,$$

which contradicts Q_3. (If $|Y| < p^{-1}\log^2 n$ then we can add arbitrary vertices from $S_{i+1} \setminus Y$ to Y so that we can apply Q_3.)

The case $|X| > s/2$ is dealt with just as we did for $|S| > n/2$ in Theorem 6.1. This completes the proof of Claim 6.

End of proof of Claim 6

Proof of Lemma 9.5

We begin with some lemmas on expansion. For sets X, Y and integer ℓ, let $N^\ell_G(X, Y)$ be the set of vertices $y \in Y$ for which there exists $x \in X$ and a path P of length ℓ from x to y such that $V(P) \setminus \{x\} \subseteq Y$. We let $N_G(X, Y) = N^1_G(X, Y)$ denote the set of neighbors of X in Y. The sets X, Y need not be disjoint in this definition.

Lemma 9.7. Suppose that $X, Y \subseteq [n]$ are (not necessarily disjoint) sets such that $|X| = \lfloor \log^2 n \rfloor p$, $|Y| \geq \frac{3\log^3 n}{\alpha p}$ and that $|N_G(x, Y)| \geq \left(\frac{1}{2} + \frac{\alpha}{2}\right)p|Y|$ for all $x \in X$. Then

$$|N_G(X, Y)| \geq \left(\frac{1}{2} + \frac{\alpha}{3}\right)|Y|.$$ \hspace{1cm} (9.5)
Figure 9.1: Cycle $C = (Q_1, P_1, Q_2, P_2, \ldots, Q_{t'}, P^*, P_t)$
Proof. Let $Z = X \cup N_G(X, Y)$. We have

$$e_G(Z) \geq \sum_{x \in Z} N_G(x, Y) - e_G(X) \geq \left(\frac{1}{2} + \frac{\alpha}{2}\right) p|X||Y| - |X| \log^3 n \geq$$

$$\left(\frac{3}{2\alpha} + \frac{3}{2}\right) |X| \log^3 n = \left(\frac{3}{2\alpha} + \frac{3}{2}\right) \frac{|X|}{|Z|} \log^3 n \cdot |Z|$$

If $|Z| < \frac{10 \log^3 n}{p}$ then we see that $e_G(Z) \geq \frac{3}{20 \alpha} \log^3 n$. This contradicts Q2 for small α and so we can assume that $|Z| \geq \frac{10 \log^3 n}{p}$ and therefore $|N_G(X, Y)| \geq \frac{9 \log^3 n}{p}$. On the other hand, if (9.5) fails then from Q3 we have

$$\left(\frac{1}{2} + \frac{\alpha}{2}\right) p|X||Y| \leq e_G(X, Y \setminus X) + 2e_G(X) \leq$$

$$e_G(X, Y \setminus X) + 2|X| \log^3 n \leq \left(1 + \frac{\alpha}{4}\right)|X| \left(\frac{1}{2} + \frac{\alpha}{3}\right)|Y|p + 2|X| \log^3 n,$$

contradiction. \qed

Lemma 9.8. Suppose that $X, Y \subseteq [n]$ are disjoint sets such that

D1 $|Y| \geq \frac{3 \log^3 n}{2\alpha p}$.

D2 $|N_G(X, Y)| \geq \frac{2 \log^3 n}{p}$.

D3 $|N_G(S, Y)| \geq (\frac{1}{2} + \frac{\alpha}{4}) |Y|$ for all $S \subseteq Y, |S| \geq \frac{\log^3 n}{p}$.

Then there exists $x \in X$ such that $|N_G(x, Y)| \geq (\frac{1}{2} + \frac{\alpha}{8})|Y|$.

Proof. We first show that there exists $x \in X$ such that $|N_G^{\ell-1}(x, Y)| \geq \frac{2 \log^3 n}{p}$. For this we use the following claim:

Claim 7. Let $i \leq \ell$ and $A \subseteq X$ be such that $|N_G^i(A, Y)| \geq \frac{2 \log^3 n}{p}$. Then there exists $A' \subseteq A$ such that $|A'| \leq \left\lfloor |A|/2 \right\rfloor$ and $|N_G^{i+1}(A', Y)| \geq \frac{2 \log^3 n}{p}$.

We prove the claim below. Using D2 and the claim $\ell - 2$ times, we obtain a set $X' \subseteq X$ such that $|X'| \leq \left\lfloor |X|/2^{\ell-2} \right\rfloor$ and $|N_G^{\ell-1}(X', Y)| \geq \frac{2 \log^3 n}{p}$. But $\ell - 2 \geq \log_2 n$ and so we have $|X'| = 1$. Let $X' = \{x\}$ and $M \subseteq N_G(x, Y)$ be of size $\left\lfloor \frac{\log^3 n}{p} \right\rfloor$.

By definition, there is a path P_0 of length $\ell - 1$ from x to each $w \in M$. Let $V^* = (\bigcup_{w \in M} V(P_w)) \setminus \{x\}$. Then D2 and D3 imply

$$|N_G^\ell(x, Y)| \geq |N_G(M, Y \setminus V^*)| \geq \left(\frac{1}{2} + \frac{\alpha}{4}\right) |Y| - \ell |M| \geq \left(\frac{1}{2} + \frac{\alpha}{8}\right) |Y|.$$

\qed
9.2. **HAMILTON CYCLES**

Proof of Claim 7

First note that if A_1, A_2 is a partition of A with $|A_1| = \lceil |A|/2 \rceil$ then we have

$$|N_G^i(A_1, Y)| + |N_G^i(A_2, Y)| \geq |N_G^i(A, Y)| \geq \frac{2\log^2 n}{p}.$$

We can assume therefore that there exists $A' \subseteq A$, $|A'| \leq \lceil |A|/2 \rceil$ such that $|N_G^i(A', Y)| \geq \frac{\log^2 n}{p}$.

Choose $B \subseteq N_G^i(A', Y), |B| = \lceil \frac{\log^2 n}{p} \rceil$. Then D3 implies that $|N_G(B, Y)| \geq (\frac{1}{2} + \frac{\alpha}{4}) |Y|$. Each $v \in B$ is the endpoint of a path P_v of length i from a vertex in A'. Let $V^* = \bigcup_{v \in B} V(P_v)$. Then,

$$|N_G^{i+1}(A', Y)| \geq |N_G(B, Y)| - |V^*| \geq \left(\frac{1}{2} + \frac{\alpha}{4} \right) |Y| - \ell |B| \geq \frac{2\log^2 n}{p}.$$

End of proof of Claim 7

We are now ready to prove an approximate version of Lemma 9.5. Let t, ℓ be as in (9.2).

Lemma 9.9. Let $\{a_i, b_i\}, i = 1, 2, \ldots, t$ be a family of pairs of vertices from $[n]$ with $a_i \neq a_j$ and $b_i \neq b_j$ for every distinct $i, j \in [t]$. Furthermore, let $R_A, R_B \subseteq [n] \setminus \bigcup_{i=1}^{t} \{a_i, b_i\}$ be disjoint and such that

E1 $|R_A|, |R_B| \geq \frac{48t \ell}{\alpha}$.

E2 For $Z = A, B$, $|N_G(S, R_Z)| \geq (\frac{1}{2} + \frac{\alpha}{4}) |R_Z|$ for all $S \subseteq R_A \cup R_B \cup \bigcup_{i=1}^{t} \{a_i, b_i\}$ such that $|S| \geq \frac{\log^2 n}{p}$.

Then there exists a set $I \subseteq [t], |I| = \lfloor t/2 \rfloor$ and internally disjoint paths $P_i, i \in I$ such that P_i connects a_i to b_i and $V(P_i) \setminus \{a_i, b_i\} \subseteq R_A \cup R_B$.

Proof. We prove this by induction. Assume that we have found $s < \lfloor t/2 \rfloor$ paths P_i from a_i to b_i for $i \in J \subseteq I, |J| = s$. Then let

$$R'_A = R_A \setminus \bigcup_{i \in J} V(P_i), R'_B = R_B \setminus \bigcup_{i \in J} V(P_i).$$

Choose $h_A, h_B \geq 2 \log n$ so that $h_A + h_B + 1 = \ell$.

Claim 8. There exists $i \in K = [t] \setminus J$ such that

$$|N_G^{h_A}(a_i, R'_A)| \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R'_A| \text{ and } |N_G^{h_B}(b_i, R'_B)| \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R'_B|.$$
We verify Claim 8 below. Assume its truth for now. Let \(S = N^b_G(a_i,R'_A) \). Then
\[
|S| \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) (R_A - s\ell) \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) \frac{47\ell}{\alpha} \geq \frac{\log^2 n}{p}.
\]

Now from E2 we obtain
\[
|N^b_G(a_i,R'_A)| \geq |N_G(S,R'_B)| - \ell \geq |N_G(S,R_B)| - \ell \geq \left(\frac{1}{2} + \frac{\alpha}{4} \right) |R_B| - \ell \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R_B| \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R'_B|.
\]

Now from Claim 8 we have that \(|N^b_G(b_i,R'_B)| \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R'_B| \) and so \(N^b_G(a_i,R'_A) \cap N^b_G(b_i,R'_B) \neq \emptyset \) and there is a path as claimed.

It only remains to prove Claim 8. Assume inductively that we have found \(v_1, v_2, \ldots, v_k \in \{ a_i : i \in K \} \) such that \(|N^b_G(v_i,R'_A)| \geq \left(\frac{1}{2} + \frac{\alpha}{16} \right) |R'_A| \) for \(i \in [k] \). The base case is \(k = 0 \). We apply Lemma 9.8 with \(Y = R'_A \) and \(X = \{ a_i : i \in K \} \setminus \{ v_1, v_2, \ldots, v_k \} \).

We check that the lemma’s conditions are satisfied. \(|R'_A| \geq \frac{48\ell}{\alpha^2} - \ell \geq \frac{47\ell}{\alpha p} \log^2 n \) and so D1 is satisfied. On the other hand E2 implies that if \(S \subseteq R'_A \cup \{ a_i : i \in K \} \) is of size at least \(\frac{\log^2 n}{p} \), then
\[
|N_G(S,R'_A)| \geq |N_G(S,R_A)| - \ell \geq \left(\frac{1}{2} + \frac{\alpha}{4} \right) |R_A| - \ell \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R_A| \gg \frac{\log^2 n}{p}.
\]

So, D3 is satisfied and also D2 if \(|X| \geq \frac{\log^2 n}{p} \) i.e. if \(k \leq t/2 \), completing the induction. So, we obtain \(I_A \subseteq [t] \), \(|I_A| = \lceil t/2 \rceil + 1 \) such that
\[
|N^b_G(a_i,R'_A)| \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R'_A| \text{ for } i \in I_A.
\]

A similar argument proves the existence of \(I_B \subseteq [t] \), \(|I_B| = \lceil t/2 \rceil + 1 \) such that \(|N^b_G(b_i,R'_B)| \geq \left(\frac{1}{2} + \frac{\alpha}{8} \right) |R'_B| \) for \(i \in I_B \) and the claim follows, since \(I_A \cap I_B = \emptyset \) and we can therefore choose \(i \in I_A \cap I_B \).

Completing the proof of Lemma 9.5

We now define some parameters that will be used for the remainder of the proof:
\[
m = \lceil \log_2 t \rceil + 1, \quad s_i = 2t, i \in [2m], \quad s_{2m+1} = s_{2m+2} = \frac{|K|}{4}, \quad k = 2m + 2.
\]
We randomly choose disjoint sets $S_i \subseteq K, |S_i| = s_i, i \in [k]$. The Chernoff bounds and C2 imply that w.h.p.

$$|N_G(v, S_i)| \geq \left(\frac{1}{2} + \frac{\alpha}{2} \right) ps_i \text{ for } v \in K \cup L, i \in [k]. \quad (9.6)$$

We prove the following lemma at the end of this section:

Lemma 9.10. Given sets $[t] = I_1 \supseteq I_2 \supseteq \cdots \supseteq I_m$ such that $|I_j| = \lceil |I_{j-1}|/2 \rceil$, G contains complete binary trees $T_A(i), T_B(i), i \in [t]$ such that

F1 The depth of $T_A(i), T_B(i), i \in I_s$ is $s-1$.

F2 $T_A(i)$ is rooted at a_i and $T_B(i)$ is rooted at b_i for $i \in [t]$.

F3 The vertices $T_A(i, j)$ at depth $j \in [0, m]$ in $T_A(i)$ are contained in S_j.

F4 The vertices $T_B(i, j)$ at depth $j \in [0, m]$ in $T_B(i)$ are contained in S_{m+j}.

F5 The trees are vertex disjoint.

Assuming the truth of the lemma, we proceed as follows. We repeatedly use Lemma 9.9 to find vertex disjoint paths. We first find $\lceil t/2 \rceil$ paths P_1 of length ℓ from a_i to b_i for $i \in J_1$. We then let $I_2 = I_1 \setminus J_1$ and construct the trees $T_A(i), T_B(i)$ for $i \in I_2$ and then use Lemma 9.9 once more to find $|I_2|$ vertex disjoint paths P_2 of length $\ell-2$ from $T_A(i, 1)$ to $T_B(i, 1)$ for $i \in I_2$. We can now select at least half of the P_2 to make $\lceil |I_2|/2 \rceil$ paths P_3 from a_i to b_i for $i \in J_2$ and then let $I_3 = I_2 \setminus J_2$. We repeat this process until we have constructed the required set of paths.

We now check that Lemma 9.9 can be applied as claimed. To simplify notation we use the convention that

$$T_A(i, j) = T_B(i, j) = \emptyset \text{ for } i \in \bigcup_{l=1}^{s-1} I_l.$$

With this convention, we let

$$M_x = K \setminus \left(\bigcup_{i=1}^{s-1} (T_A(i, j) \cup T_B(i, j)) \bigcup \bigcup_{i=1}^{s-1} \bigcup_{Q \in S_i} V(Q) \right)$$

and then in round s we apply Lemma 9.9 with $a_i, b_j, i = 1, 2, \ldots, t$ replaced by $x_j, y_j, j = 1, 2, \ldots, t$ where the x_j are made up of the $T_A(i, s)$ for $i \in I_s$ and the y_j are made up of the $T_B(i, s)$ for $i \in I_s$ and

$$R_A = S_{2m+1} \setminus M_s \text{ and } R_B = S_{2m+2} \setminus M_s.$$
Thus
\[|R_A| \geq \frac{|K|}{4} - O\left(\sum_{i=1}^{t} \sum_{j=1}^{t-1} \frac{t}{2j} \cdot 2^j \ell \right) = \frac{|K|}{4} - O(\ell t \log t) \geq \frac{|K|}{5} \gg \ell t \log t, \]
and similarly for \(|S_B|\) and so \(E1\) holds.

Now suppose that \(S \subseteq R_A \cup R_B \cup \bigcup_{i=1}^{t} \{ x_j, y_j \} \) with \(|S| \geq \frac{\log^2 n}{p}\). We can apply Lemma 9.7 with \(X = S\) and \(Y = R_A\) because \(E1\) holds and because of Assumption \(C2\) and (9.6). It follows that
\[|N_{\Gamma}(S, R_A)| \geq \left(\frac{1}{2} + \frac{\alpha}{3} \right) |R_A| \]
and similarly for \(R_B\) and so \(E2\) holds. It now follows from Lemma 9.9 that there are \(\lfloor t/2 \rfloor\) indices \(i\) for which there is a path from \(x_{i_j}\) to \(y_{i_j}\) and these yield at least \(\lceil t/2 \rceil\) indices \(I_s\) and a path from \(a_{i_l}\) to \(b_{i_j}\) for \(i \in I_s\).

It remains only to prove Lemma 9.10.

Proof. Let \(V_A(s)\) denote the endpoints of \(\partial_s\) in \(S_s\). Because of (9.6), we can reduce this to the following: given a bipartite graph \(\Gamma\) with bipartition \(X = \{ x_1, x_2, \ldots, x_{\lfloor t/2 \rfloor} \} \subseteq S_s \setminus V_A(s), B = S_{s+1} = \{ y_1, y_2, \ldots, y_{2t} \}\) and minimum degree at least \((\frac{1}{2} + \frac{\alpha}{2}) ps_{i+1} \geq 4\log^3 n\) and such that \(Q2, Q3\) hold, there exists a partition of \(B\) into \(t\) pairs \(\{ z_{i,1}, z_{i,2} \}, i \in [t]\) such that both edges \(x_{i_l}, z_{i_l}\) exist in \(\Gamma\). (The reader can check that after each round, there are \(t/2\) vertices that are leaves of the current active trees, and need two neighbors to grow the tree. We say that a tree is active if its root is not the endpoint of a path in \(\partial_s\).)

We need to verify the following condition:
\[S \subseteq A \implies |N_{\Gamma}(S, B)| \geq 2|S|. \] \quad (9.7)

Case 1: \(|S| \leq \frac{2\log^2 n}{3p}\).

Let \(T = N_{\Gamma}(S, B)\). If (9.7) fails then \(|S \cup T| \leq \frac{2\log^2 n}{p}\) and \(e_{\Gamma}(S \cup T) > |S| \log^3 n\), violating \(Q2\).

Case 2: \(|S| > \frac{2\log^2 n}{3p}\).

If (9.7) fails then
\[\left(\frac{1}{2} + \frac{\alpha}{2} \right) s_i|S|p \leq e_{\Gamma}(S, T) \leq 2 \left(1 + \frac{\alpha}{4} \right) |S|^2 p. \] \quad (9.8)

The lower bound is from (9.6) and the upper bound in (9.8) is from \(Q3\). Equation (9.8) is a contradiction, because \(s_i = 2t \geq 4|S|\).
9.2. HAMILTON CYCLES

Figure 9.2: The absorber for \(k_1 = 3 \). The cycle \(C_\times \) is drawn with solid lines. The dashed lines represent paths. The part inside the rectangle can be repeated to make larger absorbers.

Proof of Lemma 9.6

Let \(\ell_\times \) be an integer and \(A_\times \) a graph with \(|V(A_\times)| = \ell_\times + 1 \). \(A_\times \) is called an **absorber** if there are vertices \(x, s_\times, t_\times \) such that \(A_\times \) contains paths \(P_\times, P'_\times \) of lengths \(\ell_\times, \ell_\times - 1 \) from \(s_\times \) to \(t_\times \) such that \(x \notin V(P'_\times) \).

Let \(k, \ell \) be integers and consider the graph \(A_\times \) with \(3 + 2k(\ell + 1) \) vertices constructed as follows:

- **S1** \(A_\times \) contains a cycle \(C_\times \) of length \(4k + 3 \), the solid lines in Figure 9.2.
- **S2** \(A_\times \) contains \(2k \) pairwise disjoint \(s_\times^i, t_\times^i \) paths, \(P_1, P_2, \ldots, P_{2k} \), each of which is of length \(\ell \), the dashed lines in Figure 9.2.

Lemma 9.11. \(A_\times \) is an absorber for vertex \(x \).

Proof. We take

\[
P_\times = s_\times, x, s_\times^1, P_1, t_\times^1, s_\times^2, P_2, \ldots, t_\times^{2k}, t_\times.
\]

\[
P'_\times = s_\times, s_\times^2, P_2, t_\times^2, s_\times^4, P_4, \ldots, s_\times^{2k}, P_{2k}, t_\times^{2k}, s_\times^1, P_1, t_\times^1, s_\times^3, P_3, \ldots, t_\times^{2k-1}, t_\times.
\]

We first apply Lemma 9.5 to find \(C_\times, x \in V_1 \). We let \(L = V_1 \) and let \(a_i = b_i = x, x \in V_1 \). We let \(K = V_2 \) and \(k = 3 \lceil \log n \rceil \) so that \(\ell = 4k + 3 \). The lemma is applicable as \(|K| = \frac{\alpha n}{5(1+2\alpha)} \gg \ell \log \ell \) and (9.1) implies that \(C2 \) holds.

We next apply Lemma 9.5 to connect \(a_i = s_\times^i \) to \(b_i = t_\times^i \) by a path of length \(\ell \) for \(i \in [2k], x \in V_1 \). We let \(K = V_3 \) and note that \(|K| = \frac{\alpha n}{5(1+2\alpha)} \gg \ell \log \ell \) and that (9.1) implies that \(C2 \) holds, once more.
At this point we have paths P_x, P'_x for $x \in V_1$. We finally construct P^*, using Lemma 9.5 to connect the paths $P'_x, x \in V_1$. We let $t = h - 1$ where $V_1 = \{x_1, x_2, \ldots, x_h\}$. We take $a_i = t_i$ and $b_i = s_{i+1}$ for $i \in [h-1]$ and $K = V_4$.

It is easy to see that this construction has the desired property. Where necessary, we can absorb $x \in V_1$ by replacing P'_x by P_x.

9.3 The chromatic number

In this section we consider adding the edges of a fixed graph H to $G_{n,p}$. We examine the case where p is constant and where $\Delta = \Delta(H)$ is sufficiently small.

We will see that under some circumstances, we can add quite a few edges without increasing the chromatic number by very much.

Theorem 9.12. Suppose that H is a graph on vertex set $[n]$ with maximum degree $\Delta = n^{o(1)}$. Let p be constant and let $G = G_{n,p} + H$. Then w.h.p. $\chi(G) \approx \chi(G_{n,p})$, for all choices of H.

Proof. We first observe that

W.h.p. every set of $t \le n/10 \log^2 n$ vertices, span fewer than

$$\frac{2np}{\log^2 n}$$

edges of $G_{n,p}$. (9.9)

Indeed,

$$\Pr(\exists \text{ a set negating (9.9)}) \le \sum_{t=2np/\log^2 n}^{n/10 \log^2 n} \binom{n}{t} \left(\frac{1}{2}\right)^{\frac{2np}{\log^2 n}} \frac{2np}{\log^2 n} \le \sum_{t=2np/\log^2 n}^{n/10 \log^2 n} \left(\frac{ne}{t} \left(\frac{2np}{4npt}\right)^{2np/\log^2 n}\right)^t = o(1).$$

We let $s = 20\Delta \log^2 n$ and randomly partition $[n]$ into s sets V_1, V_2, \ldots, V_s of size n/s. Let Y denote the number of edges of H that have endpoints in the same set of the partition. Then $E(Y) \le \frac{|E(H)|}{s} \le \frac{\Delta n}{2s}$. It follows from the Markov inequality that $\Pr(Y \ge \frac{\Delta n}{s}) \le \frac{1}{2}$ and so there exists a partition for which $Y \le \frac{\Delta n}{s} = \frac{n}{20 \log^2 n}$.

Furthermore, it follows from (7.21), that w.h.p. the subgraphs G_i of $\mathbb{G}_{n,p}$ induced by each V_i have chromatic number $\approx \frac{n}{s} \log \frac{n}{s}$. Given V_1, V_2, \ldots, V_s, we color G as follows: we color the edges of G_i with $\approx \frac{n}{s} \log \frac{n}{s}$ colors, using different colors for each set and $\approx \frac{n}{s} \log \frac{n}{s} \approx n \log n$ colors overall. We must of course deal with the at most Y edges that could be improperly colored. Let W denote the endpoints of these edges. Then $|W| \leq \frac{n}{10\log^* n}$. It follows from (9.9) that we can write $W = \{w_1, w_2, \ldots, w_m\}$ such that w_i has at most $2np \log \frac{n}{s} + \Delta$ neighbors in $\{w_1, w_2, \ldots, w_{i-1}\}$ i.e. the coloring number of the subgraph of $\mathbb{G}_{n,p}$ induced by W is at most $\frac{2np}{\log^* n} + \Delta$. It follows that we can re-color the Y badly colored edges using at most $\frac{2np}{\log^* n} + \Delta + 1 = o(\chi(\mathbb{G}_{n,p}))$ new colors.

9.4 Exercises

9.4.1 Prove that if $p \geq \frac{(1+\eta) \log n}{n}$ for a positive constant η then $\Delta_{C} \geq \left(\frac{1}{2} - \varepsilon\right) np$, where C denotes connectivity. (See Haller and Trujic [407].)

9.4.2 Show that for every $\varepsilon > 0$ there exists $c_{\varepsilon} > 0$ such that the following is true w.h.p. If $c \geq c_{\varepsilon}$ and $p = c/n$ and we remove any set of at most $(1-\varepsilon)cn/2$ edges from $\mathbb{G}_{n,p}$, then the remaining graph contains a component of size at least $\varepsilon n/2$.

9.5 Notes

Sudakov and Vu [729] were the first to discuss local resilience in the context of random graphs. Our examples are taken from this paper except that we have given a proof of hamiltonicity that introduces the absorbing method.

Hamiltonicity

Sudakov and Vu proved local resilience for $p \geq \frac{\log^* n}{n}$ and $\Delta_{C} = \frac{(1-o(1))np}{2}$. The expression for Δ_{C} is best possible, but the needed value for p has been lowered. Frieze and Krivelevich [349] showed that there exist constants K, α such that w.h.p. $\Delta_{C} \geq \alpha np$ for $p \geq \frac{K \log n}{n}$. Ben-Shimon, Krivelevich and Sudakov [79] improved this to $\alpha \geq \frac{1-\varepsilon}{6}$ holds w.h.p. and then in [80] they obtained a result on resilience for $np - (\log n + \log \log n) \to \infty$, but with K close to $\frac{1}{2}$. (Vertices of degree less than $\frac{np}{100}$ can lose all but two incident edges.) Lee and Sudakov
[541] proved the sought after result that for every positive ε there exists $C = C(\varepsilon)$ such that w.h.p. $\Delta_{\mathcal{G}} \geq \frac{(1-\varepsilon)np}{2}$ holds for $p \geq \frac{C \log n}{n}$. Condon, Espuny Díaz, Kim, Kühn and Osthus [204] refined [541]. Let H be a graph with degree sequence $d_1 \geq d_2 \geq \cdots \geq d_n$ where $d_i \leq (n-i)p - \varepsilon np$ for $i < n/2$. They say that G is ε-Pósa-resilient if $G - H$ is Hamiltonian for all such H. Given $\varepsilon > 0$ there is a constant $C = C(\varepsilon)$ such that if $p \geq \frac{C \log n}{n}$ then $G_{n,p}$ is ε-Pósa-resilient w.h.p. The result in [541] has now been improved to give a hitting time result, see Montgomery [607] and Nenadov, Steger and Trujić [631]. The latter paper also proves the optimal resilience of the 2-core when $p = \frac{(1+\varepsilon) \log n}{3n}$.

Fischer, Škorić, Steger and Trujić [312] have shown that there exists $C > 0$ such that if $p \geq \frac{C \log^3 n}{n^{1/2}}$ then not only is there the square of a Hamilton cycle w.h.p., but containing a square is resilient to the deletion of not too many triangles incident with each vertex.

Krivelevich, Lee and Sudakov [522] proved that $G = G_{n,p}, p \gg n^{-1/2}$ remains pancyclic w.h.p. if a subgraph H of maximum degree $(\frac{1}{2} - \varepsilon)np$ is deleted, i.e. pancyclicity is locally resilient. The same is true for random regular graphs when $r \gg n^{1/2}$.

Hefetz, Steger and Sudakov [421] began the study of the resilience of Hamiltonicity for random digraphs. They showed that if $p \gg \frac{\log n}{n^{1/2}}$ then w.h.p. the Hamiltonicity of $D_{n,p}$ is resilient to the deletion of up to $(\frac{1}{2} - o(1))np$ edges incident with each vertex. The value of p was reduced to $p \gg \frac{\log^8 n}{n}$ by Ferber, Nenadov, Noever, Peter and Škorić [308]. Finally, Montgomery [609] proved that in the random digraph process, at the hitting time for Hamiltonicity, the property is resilient w.h.p.
Part II

Basic Model Extensions
Chapter 10

Inhomogeneous Graphs

Thus far we have concentrated on the properties of the random graphs \(G_{n,m} \) and \(G_{n,p} \). We first consider a generalisation of \(G_{n,p} \) where the probability of edge \((i,j)\) is \(p_{ij} \) is not the same for all pairs \(i, j \). We call this the **generalized binomial graph**. Our main result on this model concerns the probability that it is connected. For this model we concentrate on its degree sequence and the existence of a giant component. After this we move onto a special case of this model, viz. the **expected degree model**. Here \(p_{ij} \) is proportional to \(w_i w_j \) for weights \(w_i \). In this model, we prove results about the size of the largest components. We finally consider another special case of the generalized binomial graph, viz. the **Kronecker random graph**.

10.1 Generalized Binomial Graph

Consider the following natural generalisation of the binomial random graph \(G_{n,p} \), first considered by Kovalenko [519].

Let \(V = \{1, 2, \ldots, n\} \) be the vertex set. The random graph \(G_{n,P} \) has vertex set \(V \) and two vertices \(i \) and \(j \) from \(V \), \(i \neq j \), are joined by an edge with probability \(p_{ij} = p_{ij}(n) \), independently of all other edges. Denote by

\[
P = [p_{ij}]
\]

the symmetric \(n \times n \) matrix of edge probabilities, where \(p_{ii} = 0 \). Put \(q_{ij} = 1 - p_{ij} \) and for \(i, k \in \{1, 2, \ldots, n\} \) define

\[
Q_i = \prod_{j=1}^{n} q_{ij}, \quad \lambda_n = \sum_{i=1}^{n} Q_i.
\]

Note that \(Q_i \) is the probability that vertex \(i \) is isolated and \(\lambda_n \) is the expected number of isolated vertices. Next let

\[
R_{ik} = \min_{1 \leq j_1 < j_2 < \cdots < j_k \leq n} q_{ij_1} \cdots q_{ij_k}.
\]
Suppose that the edge probabilities p_{ij} are chosen in such a way that the following conditions are simultaneously satisfied as $n \to \infty$:

$$\max_{1 \leq i \leq n} Q_i \to 0, \quad (10.1)$$

$$\lim_{n \to \infty} \lambda_n = \lambda = \text{constant}, \quad (10.2)$$

and

$$\lim_{n \to \infty} \frac{n}{2} \sum_{k=1}^{n/2} \frac{1}{k!} \left(\sum_{i=1}^{n} Q_i R_{ik} \right)^k = e^{\lambda} - 1. \quad (10.3)$$

The next two theorems are due to Kovalenko [519].

We will first give the asymptotic distribution of the number of isolated vertices in $G_{n,p}$, assuming that the above three conditions are satisfied. The next theorem is a generalisation of the corresponding result for the classical model $G_{n,p}$ (see Theorem 3.1(ii)).

Theorem 10.1. Let X_0 denote the number of isolated vertices in the random graph $G_{n,p}$. If conditions (10.1) (10.2) and (10.3) hold, then

$$\lim_{n \to \infty} \mathbb{P}(X_0 = k) = \frac{\lambda^k}{k!} e^{-\lambda}$$

for $k = 0, 1, \ldots$, i.e., the number of isolated vertices is asymptotically Poisson distributed with mean λ.

Proof. Let

$$X_{ij} = \begin{cases} 1 & \text{with prob. } p_{ij} \\ 0 & \text{with prob. } q_{ij} = 1 - p_{ij} \end{cases}$$

Denote by X_i for $i = 1, 2, \ldots n$, the indicator of the event that vertex i is isolated in $G_{n,p}$. To show that X_0 converges in distribution to the Poisson random variable with mean λ, one has to show (see Corollary 21.11) that for any natural number k

$$\mathbb{E} \left(\sum_{1 \leq i_1 < i_2 < \ldots < i_k \leq n} X_{i_1} X_{i_2} \cdots X_{i_k} \right) \to \frac{\lambda^k}{k!} \quad (10.4)$$

as $n \to \infty$. But

$$\mathbb{E} (X_{i_1} X_{i_2} \cdots X_{i_k}) = \prod_{r=1}^{k} \mathbb{P} (X_{i_r} = 1 | X_{i_1} = \ldots = X_{i_{r-1}} = 1), \quad (10.5)$$
10.1. GENERALIZED BINOMIAL GRAPH

where in the case of \(r = 1 \) we condition on the sure event.

Since the LHS of (10.4) is the sum of \(\mathbb{E}(X_{i_1}X_{i_2} \cdots X_{i_k}) \) over all \(i_1 < \cdots < i_k \), we need to find matching upper and lower bounds for this expectation. Now \(\mathbb{P}(X_{i_r} = 1|X_{i_1} = \ldots = X_{i_{r-1}} = 1) \) is the unconditional probability that \(i_r \) is not adjacent to any vertex \(j \neq i_1, \ldots, i_{r-1} \) and so

\[
\mathbb{P}(X_{i_r} = 1|X_{i_1} = \ldots = X_{i_{r-1}} = 1) = \frac{\prod_{j=1}^{r} q_{i_r,j}}{\prod_{s=1}^{r-1} q_{i_r,s}}.
\]

Hence

\[
Q_{i_r} \leq \mathbb{P}(X_{i_r} = 1|X_{i_1} = \ldots = X_{i_{r-1}} = 1) \leq \frac{Q_{i_r}}{R_{i_r,r-1}} \leq Q_{i_r} R_{i_r,k},
\]

It follows from (10.5) that

\[
Q_{i_1} \cdots Q_{i_k} \leq \mathbb{E}(X_{i_1} \cdots X_{i_k}) \leq \frac{Q_{i_1}}{R_{i_1,k}} \cdots \frac{Q_{i_k}}{R_{i_k,k}}. \tag{10.6}
\]

Applying conditions (10.1) and (10.2) we get that

\[
\sum_{1 \leq i_1 < \cdots < i_k \leq n} Q_{i_1} \cdots Q_{i_k} = \frac{1}{k!} \sum_{1 \leq i_1 < \cdots < i_k \leq n} Q_{i_1} \cdots Q_{i_k} \geq
\]

\[
\frac{1}{k!} \sum_{1 \leq i_1, \ldots, i_k \leq n} Q_{i_1} \cdots Q_{i_k} - \frac{k}{k!} \sum_{i=1}^{n} Q_{i}^2 \left(\sum_{1 \leq i_1, \ldots, i_{k-2} \leq n} Q_{i_1} \cdots Q_{i_{k-2}} \right)
\]

\[
\geq \frac{\lambda_n}{k!} - (\max_i Q_i) \lambda_n^{k-1} = \frac{\lambda_n}{k!} - (\max_i Q_i) \lambda_n^{k-1} \to \frac{\lambda^k}{k!}, \tag{10.7}
\]

as \(n \to \infty \).

Now,

\[
\sum_{i=1}^{n} \frac{Q_i}{R_{i,k}} \geq \lambda_n = \sum_{i=1}^{n} Q_i,
\]

and if \(\limsup_{n \to \infty} \frac{Q_i}{R_{i,k}} > \lambda \) then \(\limsup_{n \to \infty} \left(\sum_{k=1}^{n} \frac{Q_i}{R_{i,k}} \right)^{n/2} > e^\lambda - 1 \), which contradicts (10.3). It follows that

\[
\lim_{n \to \infty} \sum_{i=1}^{n} \frac{Q_i}{R_{i,k}} = \lambda.
\]

Therefore

\[
\sum_{1 \leq i_1 < \cdots < i_k \leq n} Q_{i_1} \cdots Q_{i_k} \leq \frac{1}{k!} \left(\sum_{i=1}^{n} \frac{Q_i}{R_{i,k}} \right)^{k} \to \frac{\lambda^k}{k!}.
\]
Combining this with (10.7) gives us (10.4) and completes the proof of Theorem 10.1.

One can check that the conditions of the theorem are satisfied when

\[p_{ij} = \frac{\log n + x_{ij}}{n}, \]

where \(x_{ij} \)'s are uniformly bounded by a constant.

The next theorem shows that under certain circumstances, the random graph \(G_{n,p} \) behaves in a similar way to \(G_{n,p} \) at the connectivity threshold.

Theorem 10.2. If the conditions (10.1), (10.2) and (10.3) hold, then

\[\lim_{n \to \infty} \mathbb{P}(G_{n,p} \text{ is connected}) = e^{-\lambda}. \]

Proof. To prove this we will show that if (10.1), (10.2) and (10.3) are satisfied then w.h.p. \(G_{n,p} \) consists of a single giant component plus components that are isolated vertices only. This, together with Theorem 10.1, implies the conclusion of Theorem 10.2.

Let \(U \subseteq V \) be a subset of the vertex set \(V \). We say that \(U \) is closed if \(X_{ij} = 0 \) for every \(i \) and \(j \), where \(i \in U \) and \(j \in V \setminus U \). Furthermore, a closed set \(U \) is called simple if either \(U \) or \(V \setminus U \) consists of isolated vertices only. Denote the number of non-empty closed sets in \(G_{n,p} \) by \(Y_1 \) and the number of non-empty simple sets by \(Y \). Clearly \(Y_1 \geq Y \).

We will prove first that

\[\liminf_{n \to \infty} \mathbb{E} Y \geq 2e^\lambda - 1. \] (10.8)

Denote the set of isolated vertices in \(G_{n,p} \) by \(J \). If \(V \setminus J \) is not empty then \(Y = 2^{X_0+1} - 1 \) (the number of non-empty subsets of \(J \) plus the number of their complements, plus \(V \) itself). If \(V \setminus J = \emptyset \) then \(Y = 2^n - 1 \). Now, by Theorem 10.1, for every fixed \(k = 0, 1, \ldots \),

\[\lim_{n \to \infty} \mathbb{P}(Y = 2^{k+1} - 1) = e^{-\lambda} \frac{\lambda^k}{k!}. \]

Observe that for any \(\ell \geq 0 \),

\[\mathbb{E} Y \geq \sum_{k=0}^{\ell} (2^{k+1} - 1) \mathbb{P}(Y = 2^{k+1} - 1) \]
and hence
\[
\liminf_{n \to \infty} \mathbb{E} Y \geq \sum_{k=0}^{\ell} (2^{k+1} - 1) \frac{\lambda^k e^{-\lambda}}{k!}.
\]
So,
\[
\liminf_{n \to \infty} \mathbb{E} Y \geq \lim_{\ell \to \infty} \sum_{k=0}^{\ell} (2^{k+1} - 1) \frac{\lambda^k e^{-\lambda}}{k!} = 2e^\lambda - 1
\]
which completes the proof of (10.8).

We will show next that
\[
\limsup_{n \to \infty} \mathbb{E} Y_1 \leq 2e^\lambda - 1.
\]
(10.9)

To prove (10.9) denote by \(Z_k \) the number of closed sets of order \(k \) in \(G_{n,p} \) so that \(Y_1 = \sum_{k=1}^{n} Z_k \). Note that
\[
Z_k = \sum_{i_1 < \ldots < i_k} Z_{i_1 \ldots i_k},
\]
where \(Z_{i_1 \ldots i_k} \) indicates whether set \(I_k = \{i_1 \ldots i_k\} \) is closed. Then
\[
\mathbb{E} Z_{i_1 \ldots i_k} = \mathbb{P}(X_{ij} = 0, i \in I_k, j \not\in I_k) = \prod_{i \in I_k, j \not\in I_k} q_{ij}.
\]
Consider first the case when \(k \leq n/2 \). Then
\[
\prod_{i \in I_k, j \not\in I_k} q_{ij} = \frac{\prod_{i \in I_k, 1 \leq j \leq n} q_{ij}}{\prod_{i \in I_k, j \in I_k} q_{ij}} \leq \prod_{i \in I_k} \frac{Q_i}{R_{ik}}.
\]
Hence
\[
\mathbb{E} Z_k \leq \sum_{i_1 < \ldots < i_k \in I_k} \prod_{i \in I_k} \frac{Q_i}{R_{ik}} \leq \frac{1}{k!} \left(\sum_{i=1}^{n} \frac{Q_i}{R_{ik}} \right)^k.
\]
Now, (10.3) implies that
\[
\limsup_{n \to \infty} \sum_{k=1}^{n/2} \mathbb{E} Z_k \leq e^\lambda - 1.
\]
To complete the estimation of \(\mathbb{E} Z_k \) (and thus for \(\mathbb{E} Y_1 \)) consider the case when \(k > n/2 \). For convenience let us switch \(k \) with \(n-k \), i.e, consider \(\mathbb{E} Z_{n-k} \), when \(0 \leq k < n/2 \). Notice that \(\mathbb{E} Z_n = 1 \) since \(V \) is closed. So for \(1 \leq k < n/2 \)
\[
\mathbb{E} Z_{n-k} = \sum_{i_1 < \ldots < i_k} \prod_{i \in I_k, j \not\in I_k} q_{ij}.
\]
But $q_{ij} = q_{ji}$ so, for such k, $E_{n-k} = E_k$. This gives
\[\limsup_{n \to \infty} E Y_1 \leq 2(e^\lambda - 1) + 1, \]
where the +1 comes from $Z_n = 1$. This completes the proof of (10.9).

Now,
\[P(Y_1 > Y) = P(Y_1 - Y \geq 1) \leq E(Y_1 - Y). \]

Estimates (10.8) and (10.9) imply that
\[\limsup_{n \to \infty} E(Y_1 - Y) \leq 0, \]
which in turn leads to the conclusion that
\[\lim_{n \to \infty} P(Y_1 > Y) = 0. \]

i.e., asymptotically, the probability that there is a closed set that is not simple, tends to zero as $n \to \infty$. It is easy to check that $X_0 < n$ w.h.p. and therefore $Y = 2^{X_0 + 1} - 1$ w.h.p. and so w.h.p. $Y_1 = 2^{X_0 + 1} - 1$. If G_n, p has more than $X_0 + 1$ connected components then the graph after removal of all isolated vertices would contain at least one closed set, i.e., the number of closed sets would be at least $2^{X_0 + 1}$. But the probability of such an event tends to zero and the theorem follows.

We finish this section by presenting a sufficient condition for $G_{n, p}$ to be connected w.h.p. as proven by Alon [23].

Theorem 10.3. For every positive constant b there exists a constant $c = c(b) > 0$ so that if, for every non-trivial $S \subset V$,
\[\sum_{i \in S, j \in V \setminus S} p_{ij} \geq c \log n, \]
then probability that $G_{n, p}$ is connected is at least $1 - n^{-b}$.

Proof. In fact Alon’s result is much stronger. He considers a random subgraph $G_{p, e}$ of a multi-graph G on n vertices, obtained by deleting each edge e independently with probability $1 - p_e$. The random graph $G_{n, p}$ is a special case of $G_{p, e}$ when G is the complete graph K_n. Therefore, following in his footsteps, we will prove that Theorem 10.3 holds for $G_{p, e}$ and thus for $G_{n, p}$.

So, let $G = (V, E)$ be a loopless undirected multigraph on n vertices, with probability p_e, $0 \leq p_e \leq 1$ assigned to every edge $e \in E$ and suppose that for any
non-trivial $S \subset V$ the expectation of the number E_S of edges in a cut $(S, V \setminus S)$ of G_{p_e} satisfies
\[E E_S = \sum_{e \in (S, V \setminus S)} p_e \geq c \log n. \] (10.10)

Create a new graph $G' = (V, E')$ from G by replacing each edge e by $k = c \log n$ parallel copies with the same endpoints and giving each copy e' of e a probability $p_{e'} = p_e/k$.

Observe that for $S \subset V$
\[E E'_S = \sum_{e' \in (S, V \setminus S)} p'_{e'} = E E_S. \]

Moreover, for every edge e of G, the probability that no copy e' of e survives in a random subgraph G'_{p_e} is $(1 - p_e/k)^k \geq 1 - p_e$ and hence the probability that G_{p_e} is connected exceeds the probability of G'_{p_e} being connected, and so in order to prove the theorem it suffice to prove that
\[P(G'_{p_e} \text{ is connected}) \geq 1 - n^{-b}. \] (10.11)

To prove this, let $E'_1 \cup E'_2 \cup \ldots \cup E'_k$ be a partition of the set E' of the edges of G', such that each E'_i consists of a single copy of each edge of G. For $i = 0, 1, \ldots, k$ define G'_i as follows. G'_0 is the subgraph of G' that has no edges, and for all $i \geq 1$, G'_i is the random subgraph of G' obtained from G'_{i-1} by adding to it each edge $e' \in E'_i$ independently, with probability $p'_{e'}$.

Let C_i be the number of connected components of G'_i. Then we have $C_0 = n$ and we have $G'_k \equiv G'_{p_e}$. Let us call the stage i, $1 \leq i \leq k$, successful if either $C_{i-1} = 1$ (i.e., G'_{i-1} is connected) or if $C_i < 0.9C_{i-1}$. We will prove that
\[P(C_{i-1} = 1 \text{ or } C_i < 0.9C_{i-1}|G'_{i-1}) \geq \frac{1}{2}. \] (10.12)

To see that (10.12) holds, note first that if G'_{i-1} is connected then there is nothing to prove. Otherwise let $\mathbb{H}_i = (U, F)$ be the graph obtained from G'_{i-1} by (i) contracting every connected component of G'_{i-1} to a single vertex and (ii) adding to it each edge $e' \in E'_i$ independently, with probability $p'_{e'}$ and throwing away loops. Note that since for every nontrivial S, $E E'_S \geq k$, we have that for every vertex $u \in U$ (connected component of G'_{i-1}),
\[\sum_{u \in e' \in F} p'_{e'} = \sum_{e \in U: U_e} p_e/k \geq 1. \]

Moreover, the probability that a fixed vertex $u \in U$ is isolated in \mathbb{H}_i is
\[\prod_{u \in e' \in F} (1 - p'_{e'}) \leq \exp \left\{ - \sum_{u \in e' \in F} p'_{e'} \right\} \leq e^{-1}. \]
Hence the expected number of isolated vertices of H_i does not exceed $|U|e^{-1}$. Therefore, by the Markov inequality, it is at most $2|U|e^{-1}$ with probability at least $1/2$. But in this case the number of connected components of H_i is at most

$$2|U|e^{-1} + \frac{1}{2}(|U| - 2|U|e^{-1}) = \left(\frac{1}{2} + e^{-1}\right)|U| < 0.9|U|,$$

and so (10.12) follows. Observe that if $C_k > 1$ then the total number of successful stages is strictly less than $\log n / \log 0.9 < 10 \log n$. However, by (10.12), the probability of this event is at most the probability that a Binomial random variable with parameters k and $1/2$ will attain a value at most $10 \log n$. It follows from (22.22) that if $k = c \log n = (20 + t) \log n$ then the probability that $C_k > 1$ (i.e., that $G_{p'c}$ is disconnected) is at most $n^{-t^2/4c}$. This completes the proof of (10.11) and the theorem follows.

\[\square\]

10.2 Expected Degree Model

In this section we will consider a special case of Kovalenko’s generalized binomial model, introduced by Chung and Lu in [187], where edge probabilities p_{ij} depend on weights assigned to vertices. This was also meant as a model for “Real World networks”, see Chapter 18.

Let $V = \{1, 2, \ldots, n\}$ and let w_i be the weight of vertex i. Now insert edges between vertices $i, j \in V$ independently with probability p_{ij} defined as

$$p_{ij} = \frac{w_i w_j}{W} \text{ where } W = \sum_{k=1}^{n} w_k.$$

We assume that $\max_i w_i^2 < W$ so that $p_{ij} \leq 1$. The resulting graph is denoted as $G_{n,pw}$. Note that putting $w_i = np$ for $i \in [n]$ yields the random graph $G_{n,p}$.

Notice that loops are allowed here but we will ignore them in what follows. Moreover, for vertex $i \in V$ its expected degree is

$$\sum_j \frac{w_i w_j}{W} = w_i.$$

Denote the average vertex weight by \bar{w} (average expected vertex degree) i.e.,

$$\bar{w} = \frac{W}{n},$$

while, for any subset U of a vertex set V define the volume of U as

$$w(U) = \sum_{k \in U} w_k.$$
10.2. EXPECTED DEGREE MODEL

Chung and Lu in [187] and [189] proved the following results summarized in the next theorem.

Theorem 10.4. The random graph G_{n, P^w} with a given expected degree sequence has a unique giant component w.h.p. if the average expected degree is strictly greater than one (i.e., $\bar{w} > 1$). Moreover, if $\bar{w} > 1$ then w.h.p. the giant component has volume

$$\lambda_0 W + O\left(\sqrt{n}(\log n)^{3.5}\right),$$

where λ_0 is the unique nonzero root of the following equation

$$\sum_{i=1}^{n} w_i e^{-w_i \lambda} = (1 - \lambda) \sum_{i=1}^{n} w_i,$$

Furthermore w.h.p., the second-largest component has size at most

$$(1 + o(1)\mu(\bar{w}) \log n,$$

where

$$\mu(\bar{w}) = \begin{cases} 1/(\bar{w} - 1 - \log \bar{w}) & \text{if } 1 < \bar{w} < 2, \\ 1/(1 + \log \bar{w} - \log 4) & \text{if } \bar{w} > 4/e. \end{cases}$$

Here we will prove a weaker and restricted version of the above theorem. In the current context, a giant component is one with volume $\Omega(W)$.

Theorem 10.5. If the average expected degree $\bar{w} > 4$, then a random graph G_{n, P^w} w.h.p. has a unique giant component and its volume is at least

$$\left(1 - \frac{2}{\sqrt{e \bar{w}}}\right) W$$

while the second-largest component w.h.p. has the size at most

$$(1 + o(1))\frac{\log n}{1 + \log \bar{w} - \log 4}.$$

The proof is based on a key lemma given below, proved under stronger conditions on \bar{w} than in fact Theorem 10.5 requires.

Lemma 10.6. For any positive $\varepsilon < 1$ and $\bar{w} > \frac{4}{\varepsilon(1-\varepsilon)^2}$ w.h.p. every connected component in the random graph G_{n, P^w} either has volume at least εW or has at most $\frac{\log n}{1 + \log \bar{w} - \log 4 + 2 \log (1 - \varepsilon)}$ vertices.
CHAPTER 10. INHOMOGENEOUS GRAPHS

Proof. We first estimate the probability of the existence of a connected component with \(k \) vertices (component of size \(k \)) in the random graph \(\mathbb{G}_{n,p} \). Let \(S \subseteq V \) and suppose that vertices from \(S = \{v_{i_1}, v_{i_2}, \ldots, v_{i_k}\} \) have respective weights \(w_{i_1}, w_{i_2}, \ldots, w_{i_k} \). If the set \(S \) induces a connected subgraph of \(\mathbb{G}_{n,p} \) than it contains at least one spanning tree \(T \). The probability of such event equals \(P(T) = \prod_{\{v_{ij}, v_{il}\} \in E(T)} w_{ij} w_{il} \rho \), where

\[
\rho := \frac{1}{W} = \frac{1}{nW}.
\]

So, the probability that \(S \) induces a connected subgraph of our random graph can be bounded from above by

\[
\sum_T P(T) = \sum_T \prod_{\{v_{ij}, v_{il}\} \in E(T)} w_{ij} w_{il} \rho,
\]

where \(T \) ranges over all spanning trees on \(S \).

By the matrix-tree theorem (see West [755]) the above sum equals the determinant of any \(k - 1 \) by \(k - 1 \) principal sub-matrix of \((D - A) \rho \), where

\[
A = \begin{pmatrix}
0 & w_{i_1}w_{i_2} & \cdots & w_{i_1}w_{i_k} \\
w_{i_2}w_{i_1} & 0 & \cdots & w_{i_2}w_{i_k} \\
\vdots & \vdots & \ddots & \vdots \\
w_{i_k}w_{i_1} & w_{i_k}w_{i_2} & \cdots & 0
\end{pmatrix},
\]

while \(D \) is the diagonal matrix

\[
D = \text{diag}(w_{i_1}(W - w_{i_1}), \ldots, w_{i_k}(W - w_{i_k})).
\]

(To evaluate the determinant of the first principal co-factor of \(D - A \), delete row and column \(k \) of \(D - A \); Take out a factor \(w_{i_1}w_{i_2} \cdots w_{i_{k-1}} \); Add the last \(k - 2 \) rows to row 1; Row 1 is now \((w_{i_k}, w_{i_1}, \ldots, w_{i_k}) \), so we can take out a factor \(w_{i_k} \); Now subtract column 1 from the remaining columns to get a \((k - 1) \times (k - 1) \) upper triangular matrix with diagonal equal to \(\text{diag}(1, w(S), w(S), \ldots, w(S)) \)).

It follows that

\[
\sum_T P(T) = w_{i_1}w_{i_2} \cdots w_{i_k}w(S)^{k-2} \rho^{k-1}.
\]

(10.13)

To show that this subgraph is in fact a component one has to multiply by the probability that there is no edge leaving \(S \) in \(\mathbb{G}_{n,p} \). Obviously, this probability equals \(\prod_{v_{ij} \in S, v_{il} \notin S}(1 - w_{ij}w_{il} \rho) \) and can be bounded from above

\[
\prod_{v_{ij} \in S, v_{il} \in V \setminus S} (1 - w_{ij}w_{il} \rho) \leq e^{-\rho w(S)(W - w(S))}.
\]

(10.14)
Let X_k be the number of components of size k in $\mathbb{G}_{n,\mathbf{p}}$. Then, using bounds from (10.13) and (10.14) we get

$$\mathbb{E}X_k \leq \sum_S w(S)^{k-2} \rho^{k-1} e^{-\rho w(S)(W-w(S))} \prod_{i \in S} w_i,$$

where the sum ranges over all $S \subseteq V, |S| = k$. Now, we focus our attention on k-vertex components whose volume is at most εW. We call such components small or ε-small. So, if Y_k is the number of small components of size k in $\mathbb{G}_{n,\mathbf{p}}$ then

$$\mathbb{E}Y_k \leq \sum_{\text{small } S} w(S)^{k-2} \rho^{k-1} e^{-w(S)(1-\varepsilon)} \prod_{i \in S} w_i = f(k). \quad (10.15)$$

Now, using the arithmetic-geometric mean inequality, we have

$$f(k) \leq \sum_{\text{small } S} \left(\frac{w(S)}{k} \right)^k w(S)^{k-2} \rho^{k-1} e^{-w(S)(1-\varepsilon)}.$$

The function $x^{2k-2} e^{-x(1-\varepsilon)}$ achieves its maximum at $x = (2k-2)/(1-\varepsilon)$. Therefore

$$f(k) \leq \left(\frac{n}{k} \right)^{k-1} \frac{2k-2}{2k-1} \rho^{k-1} e^{-2k-2} \leq \frac{n^k}{k^k} \rho^{k-1} \left(\frac{2k-2}{2k-1} \right)^{2k-2} e^{-(2k-2)} \leq \frac{(n \rho)^k}{4 \rho (k-1)^2} \left(\frac{2}{1-\varepsilon} \right)^{2k} e^{-k} \leq \frac{1}{4 \rho (k-1)^2} \left(\frac{4}{e w(1-\varepsilon)} \right)^k e^{-ak},$$

where

$$a = 1 + \log \frac{w}{\log 4} + 2 \log (1-\varepsilon) > 0$$

under the assumption of Lemma 10.6.

Let $k_0 = \frac{\log n}{a}$. When k satisfies $k_0 < k < 2k_0$ we have

$$f(k) \leq \frac{1}{4n \rho (k-1)^2} = o\left(\frac{1}{\log n} \right),$$
while, when \(\frac{2 \log n}{a} \leq k \leq n \), we have
\[
f(k) \leq \frac{1}{4n^2 \rho (k - 1)^2} = o \left(\frac{1}{n \log n} \right).
\]
So, the probability that there exists an \(\varepsilon \)-small component of size exceeding \(k_0 \) is at most
\[
\sum_{k > k_0} f(k) \leq \frac{\log n}{a} \times o \left(\frac{1}{\log n} \right) + n \times o \left(\frac{1}{n \log n} \right) = o(1).
\]
This completes the proof of Lemma 10.6. \(\square \)

To prove Theorem 10.5 assume that for some fixed \(\delta > 0 \) we have
\[
\overline{w} = 4 + \delta = \frac{4}{e(1 - \varepsilon)^2} \text{ where } \varepsilon = 1 - \frac{2}{(e\overline{w})^{1/2}} \quad (10.16)
\]
and suppose that \(w_1 \geq w_2 \geq \cdots \geq w_n \). We show next that there exists \(i_0 \geq n^{1/3} \) such that
\[
w_{i_0} \geq \sqrt{\left(1 + \frac{\delta}{8} \right) W_{i_0}}. \quad (10.17)
\]
Suppose the contrary, i.e., for all \(i \geq n^{1/3} \),
\[
w_i \leq \sqrt{\left(1 + \frac{\delta}{8} \right) W_{i_0}}.
\]
Then
\[
W \leq n^{1/3} W_{1/2} + \sum_{i = n^{1/3}}^{n} \sqrt{\left(1 + \frac{\delta}{8} \right) W_{i}}
\leq n^{1/3} W_{1/2} + 2 \sqrt{\left(1 + \frac{\delta}{8} \right) W n}.
\]
Hence
\[
W^{1/2} \leq n^{1/3} + 2 \left(1 + \frac{\delta}{8} \right) n^{1/2}.
\]
This is a contradiction since for our choice of \(\overline{w} \)
\[
W = n\overline{w} \geq 4(1 + \delta)n.
\]
10.2. EXPECTED DEGREE MODEL

We have therefore verified the existence of \(i_0 \) satisfying (10.17).

Now consider the subgraph \(G \) of \(\mathbb{G}_{n,p} \) on the first \(i_0 \) vertices. The probability that there is an edge between vertices \(v_i \) and \(v_j \), for any \(i, j \leq i_0 \), is at least

\[
 w_i w_j \rho \geq w^2_{i_0} \rho \geq \frac{1 + \delta}{i_0}.
\]

So the asymptotic behavior of \(G \) can be approximated by a random graph \(\mathbb{G}_{n,p} \) with \(n = i_0 \) and \(p > 1/i_0 \). So, w.h.p. \(G \) has a component of size \(\Theta(i_0) = \Omega(n^{1/3}) \).

Applying Lemma 10.6 with \(\varepsilon \) as in (10.16) we see that any component with size \(\gg \log n \) has volume at least \(\varepsilon W \).

Finally, consider the volume of a giant component. Suppose first that there exists a giant component of volume \(cW \) which is \(\varepsilon \)-small i.e. \(c \leq \varepsilon \). By Lemma 10.6, the size of the giant component is then at most \(\frac{\log n}{2 \log 2} \). Hence, there must be at least one vertex with weight \(w \) greater than or equal to the average

\[
 w \geq \frac{2cW \log 2}{\log n}.
\]

But it implies that \(w^2 \gg W \), which contradicts the general assumption that all \(p_{ij} < 1 \).

We now prove uniqueness in the same way that we proved the uniqueness of the giant component in \(G_{n,p} \). Choose \(\eta > 0 \) such that \(\varepsilon(1 - \eta) > 1 \). Then define \(w'_{ij} = (1 - \eta)w_i \) and decompose

\[
 \mathbb{G}_{n,p} = G_1 \cup G_2
\]

where the edge probability in \(G_1 \) is \(p'_{ij} = \frac{w'_{ij}}{(1-\eta)W} \) and the edge probability in \(G_2 \) is \(p''_{ij} \) where \(1 - \frac{w'_{ij}}{W} = (1 - p'_{ij})(1 - p''_{ij}) \). Simple algebra gives \(p''_{ij} \geq \frac{\eta w_{ij}}{W} \). It follows from the previous analysis that \(G_1 \) contains between one and \(1/\varepsilon \) giant components. Let \(C_1, C_2 \) be two such components. The probability that there is no \(G_2 \) edge between them is at most

\[
 \prod_{i \in C_1} \prod_{j \in C_2} \left(1 - \frac{\eta w_{ij}}{W} \right) \leq \exp \left\{ -\frac{\eta w(C_1)w(C_2)}{W} \right\} \leq e^{-\eta W} = o(1).
\]

As \(1/\varepsilon < 4 \), this completes the proof of Theorem 10.5.

To add to the picture of the asymptotic behavior of the random graph \(\mathbb{G}_{n,p} \) we will present one more result from [187]. Denote by \(\overline{w^2} \) the expected second-order average degree, i.e.,

\[
 \overline{w^2} = \sum_j \frac{w^2_j}{W}.
\]
Notice that
\[\overline{w^2} = \frac{\sum_j w_j^2}{W} \geq \frac{W}{n} = \overline{w}. \]

Chung and Lu [187] proved the following.

Theorem 10.7. If the average expected square degree \(\overline{w^2} < 1 \) then, with probability at least \(1 - \frac{\overline{w^2}}{C^2(1-\overline{w^2})} \), all components of \(G_{n,p} \) have volume at most \(C \sqrt{n} \).

Proof. Let
\[x = \mathbb{P}(\exists S : w(S) \geq Cn^{1/2} \text{ and } S \text{ is a component}). \]

Randomly choose two vertices \(u \) and \(v \) from \(V \), each with probability proportional to its weight. Then, for each vertex, the probability that it is in a set \(S \) with \(w(S) \geq C \sqrt{n} \) is at least \(C \sqrt{n} \rho \). Hence the probability that both vertices are in the same component is at least
\[x(C \sqrt{n} \rho)^2 = C^2 xn^2. \quad (10.18) \]

On the other hand, for any two fixed vertices, say \(u \) and \(v \), the probability \(P_k(u,v) \) of \(u \) and \(v \) being connected via a path of length \(k + 1 \) can be bounded from above as follows
\[P_k(u,v) \leq \sum_{i_1,i_2,...,i_k} (w_i w_{i_1} \rho) (w_{i_1} w_{i_2} \rho) \cdots (w_{i_k} w_v \rho) \leq w_u w_v (\overline{w^2})^k. \]

So the probability that \(u \) and \(v \) belong to the same component is at most
\[\sum_{k=0}^{n} P_k(u,v) \leq \sum_{k=0}^{\infty} w_u w_v \rho (\overline{w^2})^k = \frac{w_u w_v \rho}{1 - \overline{w^2}}. \]

Recall that the probabilities of \(u \) and \(v \) being chosen from \(V \) are \(w_u \rho \) and \(w_v \rho \), respectively. so the probability that a random pair of vertices are in the same component is at most
\[\sum_{u,v} w_u \rho w_v \rho \frac{w_u w_v \rho}{1 - \overline{w^2}} = \left(\frac{\overline{w^2}}{1 - \overline{w^2}} \right)^2 \rho. \]

Combining this with (10.18) we have
\[C^2 xn^2 \rho^2 \leq \frac{\overline{w^2}}{1 - \overline{w^2}}, \]
which implies
\[x \leq \frac{w(w^2)^2}{C^2(1-w^2)}, \]
and Theorem 10.7 follows.

10.3 Kronecker Graphs

Kronecker random graphs were introduced by Leskovec, Chakrabarti, Kleinberg and Faloutsos [545] (see also [544]). It is meant as a model of “Real World networks”, see Chapter 18. Here we consider a special case of this model of an inhomogeneous random graph. To construct it we begin with a seed matrix

\[P = \begin{bmatrix} \alpha & \beta \\ \beta & \gamma \end{bmatrix}, \]

where \(0 < \alpha, \beta, \gamma < 1 \), and let \(P^{[k]} \) be the \(k \)th Kronecker power of \(P \). Here \(P^{[k]} \) is obtained from \(P^{[k-1]} \) as in the diagram below:

\[
 P^{[k]} = \begin{bmatrix} \alpha P^{[k-1]} & \beta P^{[k-1]} \\ \beta P^{[k-1]} & \gamma P^{[k-1]} \end{bmatrix}
\]

and so for example

\[P^{[2]} = \begin{bmatrix} \alpha^2 & \alpha \beta & \beta \alpha & \beta^2 \\ \alpha \beta & \alpha \gamma & \beta^2 & \beta \gamma \\ \beta \alpha & \beta^2 & \gamma \alpha & \gamma \beta \\ \beta^2 & \beta \gamma & \gamma \beta & \gamma^2 \end{bmatrix}. \]

Note that \(P^{[k]} \) is symmetric and has size \(2^k \times 2^k \).

We define a Kronecker random graph as a copy of \(\mathbb{G}_{n,P^{[k]}} \) for some \(k \geq 1 \) and \(n = 2^k \). Thus each vertex is a binary string of length \(k \), and between any two such vertices (strings) \(u, v \) we put an edge independently with probability

\[p_{u,v} = \alpha^{u \cdot v} \gamma^{(1-u) \cdot (1-v)} \beta^{k-\text{uv}-(1-u)(1-v)}, \]

or equivalently

\[p_{uv} = \alpha^i \beta^j \gamma^{k-i-j}, \]

where \(i \) is the number of positions \(t \) such that \(u_t = v_t = 1 \), \(j \) is the number of \(t \) where \(u_t \neq v_t \), and hence \(k - i - j \) is the number of \(t \) that \(u_t = v_t = 0 \). We observe that when \(\alpha = \beta = \gamma \) then \(\mathbb{G}_{n,P^{[k]}} \) becomes \(\mathbb{G}_{n,p} \) with \(n = 2^k \) and \(p = \alpha^k \).
CHAPTER 10. INHOMOGENEOUS GRAPHS

Connectivity

We will first examine, following Mahdian and Xu [570], conditions under which is $G_{n,pk}$ connected w.h.p.

Theorem 10.8. Suppose that $\alpha \geq \beta \geq \gamma$. The random graph $G_{n,pk}$ is connected w.h.p. (for $k \to \infty$) if and only if either (i) $\beta + \gamma > 1$ or (ii) $\alpha = \beta = 1, \gamma = 0$.

Proof. We show first that $\beta + \gamma \geq 1$ is a necessary condition. Denote by 0 the vertex with all 0’s. Then the expected degree of vertex 0 is

$$\sum_v p_{0v} = \sum_{j=0}^k \binom{k}{j} \beta^j \gamma^{k-j} = (\beta + \gamma)^k = o(1), \quad \text{when } \beta + \gamma < 1.$$

Thus in this case vertex 0 is isolated w.h.p.

Moreover, if $\beta + \gamma = 1$ and $0 < \beta < 1$ then $G_{n,pk}$ cannot be connected w.h.p. since the probability that vertex 0 is isolated is bounded away from 0. Indeed, $0 < \beta < 1$ implies that $\beta^j \gamma^{k-j} \leq \zeta < 1, 0 \leq j \leq k$ for some absolute constant ζ. Thus, using Lemma 22.1(b),

$$P(0 \text{ is isolated}) = \prod_v (1 - p_{0v}) \geq \prod_{j=0}^k \left(1 - \beta^j \gamma^{k-j}\right)^{\binom{k}{j}} \geq \exp \left\{ - \sum_{j=0}^k \frac{\binom{k}{j} \beta^j \gamma^{k-j}}{1 - \zeta} \right\} = e^{-1/\zeta}.$$

Now when $\alpha = \beta = 1, \gamma = 0$, the vertex with all 1’s has degree $n - 1$ with probability one and so $G_{n,pk}$ will be connected w.h.p. in this case.

It remains to show that the condition $\beta + \gamma > 1$ is also sufficient. To show that $\beta + \gamma > 1$ implies connectivity we will apply Theorem 10.3. Notice that the expected degree of vertex 0, excluding its self-loop, given that β and γ are constants independent of k and $\beta + \gamma > 1$, is

$$(\beta + \gamma)^k - \gamma^k \geq 2c \log n,$$

for some constant $c > 0$, which can be as large as needed.

Therefore the cut $(0, V \setminus \{0\})$ has weight at least $2c \log n$. Remove vertex 0 and consider any cut $(S, V \setminus S)$. Then at least one side of the cut gets at least half of the weight of vertex 0. Without loss of generality assume that it is S, i.e.,

$$\sum_{u \in S} p_{0u} \geq c \log n.$$
10.3. KRONECKER GRAPHS

Take any vertices \(u, v \) and note that \(p_{uv} \geq p_{u0} \) because we have assumed that \(\alpha \geq \beta \geq \gamma \). Therefore

\[
\sum_{u \in S} \sum_{v \in V \setminus S} p_{uv} \geq \sum_{u \in S} p_{u0} > c \log n,
\]

and so the claim follows by Theorem 10.3.

To add to the picture of the structure of \(\mathcal{G}_{n, p[k]} \) when \(\beta + \gamma > 1 \) we state (without proof) the following result on the diameter of \(\mathcal{G}_{n, p[k]} \).

Theorem 10.9. If \(\beta + \gamma > 1 \) then w.h.p. \(\mathcal{G}_{n, p[k]} \) has constant diameter.

Giant Component

We now consider when \(\mathcal{G}_{n, p[k]} \) has a giant component (see Horn and Radcliffe [429]).

Theorem 10.10. \(\mathcal{G}_{n, p[k]} \) has a giant component of order \(\Theta(n) \) w.h.p., if and only if \((\alpha + \beta)(\beta + \gamma) > 1\).

Proof. We prove a weaker version of the Theorem 10.10, assuming that for \(\alpha \geq \beta \geq \gamma \) as in [570]. For the proof of the more general case, see [429].

We will show first that the above condition is necessary. We prove that if

\[
(\alpha + \beta)(\beta + \gamma) \leq 1,
\]

then w.h.p. \(\mathcal{G}_{n, p[k]} \) has \(n - o(n) \) isolated vertices. First let

\[
(\alpha + \beta)(\beta + \gamma) = 1 - \varepsilon, \quad \varepsilon > 0.
\]

First consider those vertices with weight (counted as the number of 1’s in their label) less than \(k/2 + k^{2/3} \) and let \(X_u \) be the degree of a vertex \(u \) with weight \(l \) where \(l = 0, \ldots, k \). It is easily observed that

\[
\mathbb{E}X_u = (\alpha + \beta)^l(\beta + \gamma)^{k-l}. \quad (10.19)
\]

Indeed, if for vertex \(v, i = i(v) \) is the number of bits that \(u_r = v_r = 1, r = 1, \ldots, k \) and \(j = j(v) \) is the number of bits where \(u_r = 0 \) and \(v_r = 1 \), then the probability of an edge between \(u \) and \(v \) equals

\[
p_{uv} = \alpha^i \beta^{l-i} \gamma^{k-l-j}.
\]
CHAPTER 10. INHOMOGENEOUS GRAPHS

Hence,

$$\mathbb{E}X_u = \sum_{v \in V} p_{uv} = \sum_{i=0}^{l} \sum_{j=0}^{k-l} \binom{l}{i} \binom{k-l}{j} \alpha^i \beta^{j+i} \gamma^{k-l-j}$$

$$= \sum_{i=0}^{l} \binom{l}{i} \alpha^i \beta^{k-l-i} \sum_{j=0}^{k-l} \beta^j \gamma^{k-l-j}$$

and (10.19) follows. So, if \(l < k/2 + k^2/3 \), then assuming that \(\alpha \geq \beta \geq \gamma \),

$$\mathbb{E}X_u \leq (\alpha + \beta)^{k/2 + k^2/3} (\beta + \gamma)^{k/2 + k^2/3}$$

$$= (\alpha + \beta) (\beta + \gamma)^{k/2} \left(\frac{\alpha + \beta}{\beta + \gamma} \right)^{k^2/3}$$

$$= (1 - \epsilon)^{k/2} \left(\frac{\alpha + \beta}{\beta + \gamma} \right)^{k^2/3}$$

$$= o(1). \quad (10.20)$$

Suppose now that \(l \geq k/2 + k^2/3 \) and let \(Y \) be the number of 1’s in the label of a randomly chosen vertex of \(G_n, P[k] \). Since \(\mathbb{E}Y = k/2 \), the Chernoff bound (see (22.26)) implies that

$$\mathbb{P} \left(Y \geq \frac{k}{2} + k^2/3 \right) \leq e^{-k^2/3(3k/2)} \leq e^{-k^{1/2}} = o(1).$$

Therefore, there are \(o(n) \) vertices with \(l \geq k/2 + k^2/3 \). It then follows from (10.20) that the expected number of non-isolated vertices in \(G_n, p \) is \(o(n) \) and the Markov inequality then implies that this number is \(o(n) \) w.h.p.

Next, when \(\alpha + \beta = \beta + \gamma = 1 \), which implies that \(\alpha = \beta = \gamma = 1/2 \), then random graph \(G_n, p[k] \) is equivalent to \(G_n, p \) with \(p = 1/n \) and so by Theorem 2.21 it does not have a component of order \(n \), w.h.p.

To prove that the condition \((\alpha + \beta)(\beta + \gamma) > 1 \) is sufficient we show that the subgraph of \(G_n, p[k] \) induced by the vertices of \(H \) of weight \(l \geq k/2 \) is connected w.h.p. This will suffice as there are at least \(n/2 \) such vertices. Notice that for any vertex \(u \in H \) its expected degree, by (10.19), is at least

$$((\alpha + \beta)(\beta + \gamma))^{k/2} \gg \log n. \quad (10.21)$$

We first show that for \(u \in V \),

$$\sum_{v \in H} p_{uv} \geq \frac{1}{4} \sum_{v \in V} p_{uv}. \quad (10.22)$$
For the given vertex u let l be the weight of u. For a vertex v let $i(v)$ be the number of bits where $u_r = v_r = 1$, $r = 1, \ldots, k$, while $j(v)$ stands for the number of bits where $u_r = 0$ and $v_r = 1$. Consider the partition

$$V \setminus H = S_1 \cup S_2 \cup S_3,$$

where

$$S_1 = \{v : i(v) \geq l/2, j(v) < (k-l)/2\},$$

$$S_2 = \{v : i(v) < l/2, j(v) \geq (k-l)/2\},$$

$$S_3 = \{v : i(v) < l/2, j(v) < (k-l)/2\}.$$

Next, take a vertex $v \in S_1$ and turn it into v' by flipping the bits of v which correspond to 0's of u. Surely, $i(v') = i(v)$ and

$$j(v') \geq (k-l)/2 > j(v).$$

Notice that the weight of v' is at least $k/2$ and so $v' \in H$. Notice also that $\alpha \geq \beta \geq \gamma$ implies that $p_{uv} \geq p_{uv'}$. Different vertices $v \in S_1$ map to different v'. Hence

$$\sum_{v \in H} p_{uv} \geq \sum_{v \in S_1} p_{uv}.$$ \hfill (10.23)

The same bound (10.23) holds for S_2 and S_3 in place of S_1. To prove the same relationship for S_2 one has to flip the bits of v corresponding to 1’s in u, while for S_3 one has to flip all the bits of v. Adding up these bounds over the partition of $V \setminus H$ we get

$$\sum_{v \in \overline{V} \setminus H} p_{uv} \leq 3 \sum_{v \in H} p_{uv},$$

and so the bound (10.22) follows.

Notice that combining (10.22) with the bound given in (10.21) we get that for $u \in H$ we have

$$\sum_{v \in H} p_{uv} > 2c \log n,$$ \hfill (10.24)

where c can be a large as needed.

We finish the proof by showing that a subgraph of $G_{n, p^{\lfloor k \rfloor}}$ induced by vertex set H is connected w.h.p. For that we make use of Theorem 10.3. So, we will show that for any cut $(S, H \setminus S)$

$$\sum_{u \in S} \sum_{v \in H \setminus S} p_{uv} \geq 10 \log n.$$
Without loss of generality assume that vertex $1 \in S$. Equation (10.24) implies that for any vertex $u \in H$ either
\[\sum_{v \in S} p_{uv} \geq c \log n, \] (10.25)
or
\[\sum_{v \in H \setminus S} p_{uv} \geq c \log n. \] (10.26)

If there is a vertex u such that (10.26) holds then since $u \leq 1$ and $\alpha \geq \beta \geq \gamma$,
\[\sum_{u \in S} \sum_{v \in H \setminus S} p_{uv} \geq \sum_{v \in S'} p_{1v} \geq \sum_{v \in H \setminus S} p_{uv} > c \log n. \]

Otherwise, (10.25) is true for every vertex $u \in H$. Since at least one such vertex is in $H \setminus S$, we have
\[\sum_{u \in S} \sum_{v \in H \setminus S} p_{uv} \geq c \log n, \]
and the Theorem follows. \qed

10.4 Exercises

10.4.1 Prove Theorem 10.3 (with $c = 10$) using the result of Karger and Stein [482] that in any weighted graph on n vertices the number of r-minimal cuts is $O \left(\left(\frac{2n}{r} \right)^2 \right)$. (A cut $(S, V \setminus S), S \subseteq V$, in a weighted graph G is called r-minimal if its weight, i.e., the sum of weights of the edges connecting S with $V \setminus S$, is at most r times the weight of minimal weighted cut of G).

10.4.2 Suppose that the entries of an $n \times n$ symmetric matrix A are all non-negative. Show that for any positive constants c_1, c_2, \ldots, c_n, the largest eigenvalue $\lambda(A)$ satisfies
\[\lambda(A) \leq \max_{1 \leq i \leq n} \left(\frac{1}{c_i} \sum_{j=1}^{n} c_j a_{i,j} \right). \]

10.4.3 Let A be the adjacency matrix of $G_{n,p}$ and for a fixed value of x let
\[c_i = \begin{cases} w_i & w_i > x \\ x & w_i \leq x. \end{cases} \]
Let $m = \max \{ w_i : i \in [n] \}$. Let $X_i = \frac{1}{c_i} \sum_{j=1}^{n} c_j a_{i,j}$. Show that
\[\mathbb{E}X_i \leq \frac{m}{x} w_2 + x \] and $\text{Var}X_i \leq \frac{m}{x} w_2 + x$.
10.4.4 Apply Theorem 22.11 with a suitable value of \(x\) to show that w.h.p.

\[
\lambda(A) \leq \overline{w^2} + (6m\log n)^{1/2}(\overline{w^2} + \log n)^{1/2} + 3(m \log n)^{1/2}.
\]

10.4.5 Show that if \(\overline{w^2} > m^{1/2} \log n\) then w.h.p. \(\lambda(A) = (1 + o(1))\overline{w^2}\).

10.4.6 Suppose that \(1 \leq w_i \ll W^{1/2}\) for \(1 \leq i \leq n\) and that \(w_iw_jw^2 \gg W\log n\). Show that w.h.p. \(\text{diameter}(G_{n,p}) \leq 2\).

10.4.7 Prove, by the Second Moment Method, that if \(\alpha + \beta = \beta + \gamma = 1\) then w.h.p. the number \(Z_d\) of the vertices of degree \(d\) in the random graph \(G_{n,pw}\), is concentrated around its mean, i.e., \(Z_d = (1 + o(1))\mathbb{E}Z_d\).

10.4.8 Fix \(d \in \mathbb{N}\) and let \(Z_d\) denote the number of vertices of degree \(d\) in the Kronecker random graph \(G_{n,pw}\). Show that

\[
\mathbb{E}Z_d = (1 + o(1)) \sum_{w=0}^{k} \binom{k}{w} \frac{(\alpha + \beta)^{dw}(\beta + \gamma)^{d(k-w)}}{d!} \times \\
\times \exp \left(- (\alpha + \beta)^w(\beta + \gamma)^{k-w} \right) + o(1).
\]

10.4.9 Depending on the configuration of the parameters \(0 < \alpha, \beta, \gamma < 1\), show that we have either

\[
\mathbb{E}Z_d = \Theta \left((\alpha + \beta)^d + (\beta + \gamma)^d \right)^k,
\]

or

\[
\mathbb{E}Z_d = o(2^k).
\]

10.5 Notes

General model of inhomogeneous random graph

The most general model of inhomogeneous random graph was introduced by Bollobás, Janson and Riordan in their seminal paper [148]. They concentrate on the study of the phase transition phenomenon of their random graphs, which includes as special cases the models presented in this chapter as well as, among others, Dubins’ model (see Kalikow and Weiss [477] and Durrett [272]), the mean-field scale-free model (see Riordan [673]), the CHKNS model (see Callaway, Hopcroft, Kleinberg, Newman and Strogatz [175]) and Turova’s model (see [739], [740] and [741]).
CHAPTER 10. INHOMOGENEOUS GRAPHS

The model of Bollobás, Janson and Riordan is an extension of one defined by Söderberg [717]. The formal description of their model goes as follows. Consider a ground space being a pair \((\mathcal{S}, \mu)\), where \(\mathcal{S}\) is a separable metric space and \(\mu\) is a Borel probability measure on \(\mathcal{S}\). Let \(V = (\mathcal{S}, \mu, (x_n)_{n \geq 1})\) be the vertex space, where \((\mathcal{S}, \mu)\) is a ground space and \((x_n)_{n \geq 1}\) is a random sequence \((x_1, x_2, \ldots, x_n)\) of \(n\) points of \(\mathcal{S}\) satisfying the condition that for every \(\mu\)-continuity set \(A\), \(A \subseteq \mathcal{S}\), \(|\{i : x_i \in A\}|/n\) converges in probability to \(\mu(A)\). Finally, let \(\kappa\) be a kernel on the vertex space \(V\) (understood here as a kernel on a ground space \((\mathcal{S}, \mu)\)), i.e., a symmetric non-negative (Borel) measurable function on \(\mathcal{S} \times \mathcal{S}\). Given the (random) sequence \((x_1, x_2, \ldots, x_n)\) we let \(G_V(n, \kappa)\) be the random graph \(G_V(n, (p_{ij}))\) with \(p_{ij} := \min\{\kappa(x_i, x_j)/n, 1\}\). In other words, \(G_V(n, \kappa)\) has \(n\) vertices and, given \(x_1, x_2, \ldots, x_n\), an edge \(\{i, j\}\) (with \(i \neq j\)) exists with probability \(p_{ij}\), independently for all other unordered pairs \(\{i, j\}\).

Bollobás, Janson and Riordan present in [148] a wide range of results describing various properties of the random graph \(G_V(n, \kappa)\). They give a necessary and sufficient condition for the existence of a giant component, show its uniqueness and determine the asymptotic number of edges in the giant component. They also study the stability of the component, i.e., they show that its size does not change much if we add or delete a few edges. They also establish bounds on the size of small components, the asymptotic distribution of the number of vertices of given degree and study the distances between vertices (diameter). Finally they turn their attention to the phase transition of \(G_V(n, \kappa)\) where the giant component first emerges.

Janson and Riordan [451] study the susceptibility, i.e., the mean size of the component containing a random vertex, in a general model of inhomogeneous random graphs. They relate the susceptibility to a quantity associated to a corresponding branching process, and study both quantities in various examples.

Devroye and Fraiman [248] find conditions for the connectivity of inhomogeneous random graphs with intermediate density. They draw \(n\) independent points \(X_i\) from a general distribution on a separable metric space, and let their indices form the vertex set of a graph. An edge \(ij\) is added with probability \(\min\{1, \kappa(X_i, X_j) \log n/n\}\), where \(\kappa > 0\) is a fixed kernel. They show that, under reasonably weak assumptions, the connectivity threshold of the model can be determined.

Lin and Reinert [548] show via a multivariate normal and a Poisson process approximation that, for graphs which have independent edges, with a possibly inhomogeneous distribution, only when the degrees are large can we reasonably approximate the joint counts for the number of vertices with given degrees as independent (note that in a random graph, such counts will typically be dependent). The proofs are based on Stein’s method and the Stein–Chen method (see Chapter 21.3) with a new size-biased coupling for such inhomogeneous random graphs.
10.5. NOTES

Rank one model

An important special case of the general model of Bollobás, Janson and Riordan is the so called rank one model, where the kernel κ has the form $\kappa(x,y) = \psi(x)\psi(y)$, for some function $\psi > 0$ on \mathcal{S}. In particular, this model includes the Chung-Lu model (expected degree model) discussed earlier in this Chapter. Recall that in their approach we attach edges (independently) with probabilities

$$p_{ij} = \min\left\{ \frac{w_iw_j}{W}, 1 \right\} \text{ where } W = \sum_{k=1}^{n} w_k.$$

Similarly, Britton, Deijfen and Martin-Löf [166] define edge probabilities as

$$p_{ij} = \frac{w_iw_j}{W+w_iw_j},$$

while Norros and Reittu [635] attach edges with probabilities

$$p_{ij} = \exp\left(-\frac{w_iw_j}{W} \right).$$

For those models several characteristics are studied, such as the size of the giant component ([188], [189] and [635]) and its volume ([188]) as well as spectral properties ([192] and [193]). It should be also mentioned here that Janson [444] established conditions under which all those models are asymptotically equivalent.

Recently, van der Hofstad [425], Bhamidi, van der Hofstad and Hooghiemstra[91], van der Hofstad, Kliem and van Leeuwaarden [427] and Bhamidi, Sen and Wang [92] undertake systematic and detailed studies of various aspects of the rank one model in its general setting.

Finally, consider random dot product graphs (see Young and Scheinerman [766]) where to each vertex a vector in \mathbb{R}^d is assigned and we allow each edge to be present with probability proportional to the inner product of the vectors assigned to its endpoints. The paper [766] treats these as models of social networks.

Kronecker Random Graph

Radcliffe and Young [668] analysed the connectivity and the size of the giant component in a generalized version of the Kronecker random graph. Their results imply that the threshold for connectivity in G_{n,p^k} is $\beta + \gamma = 1$. Tabor [733] proved that it is also the threshold for a k-factor. Kang, Karoński, Koch and Makai [479] studied the asymptotic distribution of small subgraphs (trees and cycles) in G_{n,p^k}.

Leskovec, Chakrabarti, Kleinberg and Faloutsos [546] and [547] have shown empirically that Kronecker random graphs resemble several real world networks.
Later, Leskovec, Chakrabarti, Kleinberg, Faloutsos and Ghahramani [547] fitted the model to several real world networks such as the Internet, citation graphs and online social networks.

The R-MAT model, introduced by Chakrabarti, Zhan and Faloutsos [179], is closely related to the Kronecker random graph. The vertex set of this model is also \mathbb{Z}_2^n and one also has parameters α, β, γ. However, in this case one needs the additional condition that $\alpha + 2\beta + \gamma = 1$.

The process of generating a random graph in the R-MAT model creates a multigraph with m edges and then merges the multiple edges. The advantage of the R-MAT model over the random Kronecker graph is that it can be generated significantly faster when m is small. The degree sequence of this model has been studied by Groër, Sullivan and Poole [401] and by Seshadhri, Pinar and Kolda [707] when $m = \Theta(2^n)$, i.e. the number of edges is linear in the number of vertices. They have shown, as in Kang, Karoński, Koch and Makai [479] for $G_{n,pk}$, that the degree sequence of the model does not follow a power law distribution. However, no rigorous proof exists for the equivalence of the two models and in the Kronecker random graph there is no restriction on the sum of the values of α, β, γ.

Further extensions of Kronecker random graphs can be found [112] and [113].
Chapter 11

Fixed Degree Sequence

The graph $G_{n,m}$ is chosen uniformly at random from the set of graphs with vertex set $[n]$ and m edges. It is of great interest to refine this model so that all the graphs chosen have a fixed degree sequence $d = (d_1, d_2, \ldots, d_n)$. Of particular interest is the case where $d_1 = d_2 = \cdots = d_n = r$, i.e., the graph chosen is a uniformly random r-regular graph. It is not obvious how to do this and this is the subject of the current chapter. We discuss the configuration model in the next section and show its usefulness in (i) estimating the number of graphs with a given degree sequence and (ii) showing that w.h.p. random d-regular graphs are connected w.h.p., for $3 \leq d = O(1)$.

We finish by showing in Section 11.5 how for large r, $G_{n,m}$ can be embedded in a random r-regular graph. This allows one to extend some results for $G_{n,m}$ to the regular case.

11.1 Configuration Model

Let $d = (d_1, d_2, \ldots, d_n)$ where $d_1 + d_2 + \cdots + d_n = 2m$ is even. Let

$$G_{n,d} = \{\text{simple graphs with vertex set } [n] \text{ s.t. degree } d(i) = d_i, \ i \in [n]\}$$

and let $G_{n,d}$ be chosen randomly from $G_{n,d}$. We assume that

$$d_1, d_2, \ldots, d_n \geq 1 \text{ and } \sum_{i=1}^{n} d_i(d_i - 1) = \Omega(n).$$

We describe a generative model of $G_{n,d}$ due to Bollobás [126]. It is referred to as the configuration model. Let W_1, W_2, \ldots, W_n be a partition of a set of points W, where $|W_i| = d_i$ for $1 \leq i \leq n$ and call the W_i’s cells. We will assume some total order $<$ on W and that $x < y$ if $x \in W_i, y \in W_j$ where $i < j$. For $x \in W$ define $\varphi(x)$
by \(x \in W_{\varphi(x)} \). Let \(F \) be a partition of \(W \) into \(m \) pairs (a configuration). Given \(F \) we define the (multi)graph \(\gamma(F) \) as

\[
\gamma(F) = ([n], \{(\varphi(x), \varphi(y)) : (x, y) \in F\}).
\]

Let us consider the following example of \(\gamma(F) \). Let \(n = 8 \) and \(d_1 = 4, d_2 = 3, d_3 = 4, d_4 = 2, d_5 = 1, d_6 = 4, d_7 = 4, d_8 = 2 \). The accompanying diagrams, Figures 11.1, 11.2, 11.3 show a partition of \(W \) into \(W_1, \ldots, W_8 \), a configuration and its corresponding multi-graph.

Denote by \(\Omega \) the set of all configurations defined above for \(d_1 + \cdots + d_n = 2m \) and notice that

\[
|\Omega| = \frac{(2m)!}{m!2^m} = (2m)!!.
\]

(11.1)
Figure 11.3: Graph $\gamma(F)$

To see this, take d_i “distinct” copies of i for $i = 1, 2, \ldots, n$ and take a permutation $\sigma_1, \sigma_2, \ldots, \sigma_{2m}$ of these $2m$ symbols. Read off F, pair by pair $\{\sigma_{2i-1}, \sigma_{2i}\}$ for $i = 1, 2, \ldots, m$. Each distinct F arises in $m!2^m$ ways.

We can also give an algorithmic, construction of a random element F of the family Ω.

Algorithm F-GENERATOR

begin
$U \leftarrow W$, $F \leftarrow \emptyset$
for $t = 1, 2, \ldots, m$ do
begin
Choose x arbitrarily from U;
Choose y randomly from $U \setminus \{x\}$;
$F \leftarrow F \cup \{(x, y)\}$;
$U \leftarrow U \setminus \{(x, y)\}$
end
end

Note that F arises with probability $1/[(2m-1)(2m-3)\cdots 1] = |\Omega|^{-1}$.

Observe that the following relationship between a simple graph $G \in \mathbb{G}_{n,d}$ and the number of configurations F for which $\gamma(F) = G$.

Lemma 11.1. If $G \in \mathbb{G}_{n,d}$, then

$$|\gamma^{-1}(G)| = \prod_{i=1}^{n} d_i!.$$
Proof. Arrange the edges of G in lexicographic order. Now go through the sequence of $2m$ symbols, replacing each i by a new member of W_i. We obtain all F for which $\gamma(F) = G$. □

The above lemma implies that we can use random configurations to “approximate” random graphs with a given degree sequence.

Corollary 11.2. If F is chosen uniformly at random from the set of all configurations Ω and $G_1, G_2 \in \mathcal{G}_{n, \mathbf{d}}$ then

$$\mathbb{P}(\gamma(F) = G_1) = \mathbb{P}(\gamma(F) = G_2).$$

So instead of sampling from the family $\mathcal{G}_{n, \mathbf{d}}$ and counting graphs with a given property, we can choose a random F and accept $\gamma(F)$ iff there are no loops or multiple edges, i.e. iff $\gamma(F)$ is a simple graph.

This is only a useful exercise if $\gamma(F)$ is simple with sufficiently high probability. We will assume for the remainder of this section that

$$\Delta = \max\{d_1, d_2, \ldots, d_n\} \leq n^\alpha, \alpha < 1/7.$$

We will prove later (see Lemma 11.7 and Corollary 11.8) that if F is chosen uniformly (at random) from \mathcal{G},

$$\mathbb{P}(\gamma(F) \text{ is simple}) = (1 + o(1))e^{-\lambda(\lambda+1)},$$

where

$$\lambda = \frac{\sum d_i(d_i - 1)}{2\sum d_i}. \tag{11.2}$$

Hence, (11.1) and (11.2) will tell us not only how large is $\mathcal{G}_{n, \mathbf{d}}$ (Theorem 11.5) but also lead to the following conclusion.

Theorem 11.3. Suppose that $\Delta \leq n^\alpha, \alpha < 1/7$. For any (multi)graph property \mathcal{P}

$$\mathbb{P}(\mathcal{G}_{n, \mathbf{d}} \in \mathcal{P}) \leq (1 + o(1))e^{\lambda(\lambda+1)} \mathbb{P}(\gamma(F) \in \mathcal{P}),$$

The above statement is particularly useful if $\lambda = O(1)$, e.g., for random r-regular graphs, where r is a constant, since then $\lambda = \frac{r-1}{2}$. In the next section we will apply the above result to establish the connectedness of random regular graphs.

Before proving (11.2) for $\Delta \leq n^\alpha$, we feel it useful to give a simpler proof for the case of $\Delta = O(1)$.

Lemma 11.4. If Δ = O(1) then (11.2) holds.

Proof. Let L denote the number of loops and let D denote the number of non-adjacent double edges in γ(F). Lemma 11.6 below shows that w.h.p. there are no adjacent double edges. We first estimate that for \(k = O(1) \),

\[
E\left(\binom{L}{k} \right) = \sum_{S \subseteq [n], |S| = k} \prod_{i \in S} \frac{d_i(d_i - 1)}{4m - O(1)}
\]

(11.3)

\[
= \frac{1}{k!} \left(\sum_{i=1}^{n} \frac{d_i(d_i - 1)}{4m} \right)^k + O \left(\frac{\Delta^4}{m} \right)
\]

\[
\approx \frac{\lambda^k}{k!}.
\]

Explanation for (11.3): We assume that F-Generator begins with pairing up points in \(S \). Therefore the random choice here is always from a set of size \(2m - O(1) \).

It follows from Theorem 21.11 that \(L \) is asymptotically Poisson and hence that

\[
Pr(L = 0) \approx e^{-\lambda}.
\]

(11.4)

We now show that \(D \) is also asymptotically Poisson and asymptotically independent of \(L \). So, let \(k = O(1) \). If \(\mathcal{D}_k \) denotes the set of collections of \(2k \) configuration points making up \(k \) double edges, then

\[
E\left(\binom{D}{k} \bigg| L = 0 \right) = \sum_{\mathcal{D}_k} Pr(\mathcal{D}_k \subseteq F \big| L = 0)
\]

\[
= \sum_{\mathcal{D}_k} \frac{Pr(L = 0 \big| \mathcal{D}_k \subseteq F) Pr(\mathcal{D}_k \subseteq F)}{Pr(L = 0)}.
\]

Now because \(k = O(1) \), we see that the calculations that give us (11.4) will give us \(Pr(L = 0 \big| \mathcal{D}_k \subseteq F) \approx Pr(L = 0) \). So,

\[
E\left(\binom{D}{k} \bigg| L = 0 \right) \approx \sum_{\mathcal{D}_k} Pr(\mathcal{D}_k \subseteq F)
\]

\[
= \frac{1}{2} \sum_{S,T \subseteq [n], |S| = |T| = k} \prod_{i \in S} \frac{2(d_i/2)(d_{\varphi(i)}/2)}{(2m - O(1))^2}
\]

\[
= \frac{1}{k!} \left(\sum_{i=1}^{n} \frac{d_i(d_i - 1)}{4m} \right)^{2k} + O \left(\frac{\Delta^8}{m} \right)
\]
It follows from Theorem 21.11 that
\[\Pr(D = 0 \mid L = 0) \approx e^{-\lambda^2} \quad (11.5) \]
and the lemma follows from (11.4) and (11.5).

Bender and Canfield [74] gave an asymptotic formula for \(|G_{n,d}|\) when \(\Delta = O(1)\). The paper [126] by Bollobás gives the same asymptotic formula when \(\Delta < (2 \log n)^{1/2}\). The following theorem allows for some more growth in \(\Delta\). Its proof uses the notion of switching. Switchings were introduced by McKay [589] and McKay and Wormald [590] and independently by Frieze [338], The bound \(\alpha < 1/7\) is not optimal. For example, \(\alpha < 1/2\) in [590].

Theorem 11.5. Suppose that \(\Delta \leq n^\alpha, \alpha < 1/7\).

\[|G_{n,d}| \approx e^{-\lambda(\lambda+1)} \frac{(2m)!}{\prod_{i=1}^{n} d_i!}. \]

In preparation we first prove

Lemma 11.6. Suppose that \(\Delta \leq n^\alpha\) where \(\alpha < 1/7\). Let \(F\) be chosen uniformly (at random) from \(\Omega\). Then w.h.p. \(\gamma(F)\) has

(a) No double loops.

(b) At most \(\Delta \log n\) loops.

(c) No adjacent double edges.

(d) No triple edges.

(e) At most \(\Delta^2 \log n\) double edges.

(f) No vertex incident to a loop and a double edge.

(g) There are at most \(\Delta^3 \log n\) triangles.

(h) No vertex is adjacent to two distinct vertices that have loops.

Proof. We will use the following inequality repeatedly.
Let \(f_i = \{x_i, y_i\}, i = 1, 2, \ldots, k\) be \(k\) pairwise disjoint pairs of points. Then,
\[\Pr(f_i \in F, i = 1, 2, \ldots, k) \leq \frac{1}{(2m - 2k)^k}. \quad (11.6) \]
This follows immediately from
\[P(f_i \in F \mid f_1, f_2, \ldots, f_{i-1} \in F) = \frac{1}{2m-2i+1}. \]

This follows from considering Algorithm F-GENERATOR with \(x = x_i \) and \(y = y_i \) in the main loop.

(a) Using (11.6) we obtain
\[P(F \text{ contains a pair of double loops}) \leq \sum_{i=1}^{n} \left(\frac{d_i}{2} \right)^2 \left(\frac{1}{2m-8} \right)^2 \leq \frac{\Delta^4 n}{(2m-8)^2} = o(1). \]

(b) Let \(k_1 = \Delta \log n \).
\[P(F \text{ has at least } k_1 \text{ loops}) \leq o(1) + \sum_{x_1+\cdots+x_n=k_1} \prod_{i=1}^{n} \left(\frac{d_i}{2} \cdot \frac{1}{2m-2k_1} \right)^{x_i} \]
\[\leq o(1) + \left(\frac{\Delta}{2m} \right)^{k_1} \sum_{x_i=0,1} \prod_{i=1}^{n} d_i^{x_i} \]
\[\leq o(1) + \left(\frac{\Delta}{2m} \right)^{k_1} \frac{(d_1 + \cdots + d_n)^{k_1}}{k_1!} \]
\[\leq o(1) + \left(\frac{\Delta e}{k_1} \right)^{k_1} \]
\[= o(1). \]

The \(o(1) \) term in (11.7) accounts for the probability of having a double loop.

(c)
\[P(F \text{ contains two adjacent double edges}) \leq \sum_{i=1}^{n} \left(\frac{d_i}{2} \right)^2 \left(\frac{\Delta}{2m-8} \right)^2 \leq \frac{\Delta^5 m}{(2m-8)^2} = o(1). \]

(d)
\[P(F \text{ contains a triple edge}) \leq \sum_{1 \leq i < j \leq n} 6 \left(\frac{d_i}{3} \right) \left(\frac{d_j}{3} \right) \left(\frac{1}{2m-6} \right)^3 \leq \]
\[\frac{\Delta^5 m}{(2m - 6)^3} = o(1). \]

(e) Let \(k_2 = \Delta^2 \log n \).

\[
\Pr(F \text{ has at least } k_2 \text{ double edges}) \\
\leq o(1) + \sum_{x_1 + \cdots + x_n = k_2, i=1}^{n} \prod_{x_i=0,1} \left(\binom{d_i}{2} \cdot \frac{\Delta}{2m - 4k_2} \right)^{x_i} \\
\leq o(1) + \left(\frac{\Delta^2}{m} \right)^{k_2} \sum_{x_1 + \cdots + x_n = k_2, i=1}^{n} \prod_{x_i=0,1} d_i^{x_i} \\
\leq o(1) + \left(\frac{\Delta^2}{m} \right)^{k_2} \frac{(d_1 + \cdots + d_n)^{k_2}}{k_2!} \\
\leq o(1) + \left(\frac{2\Delta^2 e}{k_2} \right)^{k_2} \\
= o(1). \tag{11.8}
\]

The \(o(1) \) term in (11.8) accounts for adjacent multiple edges and triple edges. The \(\Delta/(2m - 4k_2) \) term can be justified as follows: We have chosen two points \(x_1, x_2 \) in \(W_a \) in \(\binom{d_i}{2} \) ways and this term bounds the probability that \(x_2 \) chooses a partner in the same cell as \(x_1 \).

(f) \[
\Pr(\exists \text{ vertex } v \text{ incident to a loop and a multiple edge}) \\
\leq \sum_{i=1}^{n} \binom{d_i}{2}^2 \frac{1}{2m - 1} \frac{\Delta}{2m - 5} \\
\leq \frac{\Delta^4 m}{(2m - 1)(2m - 5)} \\
= o(1).
\]

(g) Let \(X \) denote the number of triangles in \(F \). Then

\[
\mathbb{E}(F) \leq \sum_{i=1}^{n} \binom{d_i}{2} \frac{\Delta^2}{2m - 4} \leq \frac{\Delta^3 m}{2m - 4} \leq \Delta^3.
\]

Now use the Markov inequality.

(h) The probability that there is a vertex adjacent to two loops is at most

\[
\sum_{i=1}^{n} d_i \left(\frac{1}{2} \sum_{i=1}^{n} d_i(d_i - 1) \right)^2 \left(\frac{\Delta}{M_1 - O(1)} \right)^4 \leq \frac{M(\Delta M)^2 \Delta^4}{(M - O(1))^4} = o(1).
\]
Let now $\Omega_{i,j}$ be the set of all $F \in \Omega$ such that F has i loops; j double edges, at most $3\Delta^3 \log n$ triangles and no double loops or triple edges and no vertex incident with two double edges or with a loop and a multiple edge.

Lemma 11.7 (Switching Lemma). Suppose that $\Delta \leq n^\alpha$, $\alpha < 1/7$. Let $M_1 = 2m$ and $M_2 = \sum_i d_i (d_i - 1)$. For $i \leq k_1 + 2k_2$ and $j \leq k_2$, where $k_1 = \Delta \log n$ and $k_2 = \Delta^2 \log n$,

$$\frac{|\Omega_{i+2,j-1}|}{|\Omega_{i,j}|} = \frac{j}{(i+2)(i+1)},$$

and

$$\frac{|\Omega_{i-1,0}|}{|\Omega_{i,0}|} = \frac{2iM_1}{M_2} \left(1 + O\left(\frac{\Delta^5 \log n}{M_1}\right)\right).$$

The corollary that follows is an immediate consequence of the Switching Lemma. It immediately implies Theorem 11.5.

Corollary 11.8. Suppose that $\Delta \leq n^\alpha$ where $\alpha < 1/7$. Then,

$$\frac{|\Omega_{0,0}|}{|\Omega|} = (1 + o(1))e^{-\lambda(\lambda+1)},$$

where

$$\lambda = \frac{M_2}{2M_1}.$$

Proof. It follows from the Switching Lemma that $i \leq k_1$ and $j \leq k_2$ implies

$$\frac{|\Omega_{i,j}|}{|\Omega_{0,0}|} = \left(1 + \tilde{O}\left(\frac{\Delta^3 k_2}{n}\right)\right) \frac{\lambda^{i+2j}}{i! j!} = (1 + o(1)) \frac{\lambda^{i+2j}}{i! j!}.$$

Lemma 11.6 implies that

$$(1 - o(1))|\Omega| = (1 + o(1))|\Omega_{0,0}| \sum_{i=0}^{k_1} \sum_{j=0}^{k_2} \frac{\lambda^{i+2j}}{i! j!}$$

$$= (1 + o(1))|\Omega_{0,0}| e^{\lambda(\lambda+1)}.$$
CHAPTER 11. FIXED DEGREE SEQUENCE

To prove the Switching Lemma we need to introduce two specific operations on configurations, called a “d-switch” and an “ℓ-switch”.

Figure 11.4 illustrates the “double edge removal switch” (“d-switch”) operation. Here we have four points \(x_1, x_2, x_3, x_4 \) and a double edge associated with the pairs \(\{x_1, x_3\}, \{x_2, x_4\} \in F \) where \(x_1, x_2 \) are in cell \(W_a \) and \(x_3, x_4 \) are in cell \(W_b \). The d-switch operation replaces these pairs by a new set of pairs: \(\{x_1, x_2\}, \{x_3, x_4\} \). This replaces a multiple edge by two loops and no other multiple edges are created.

In general, a forward d-switch operation takes \(F \), a member of \(\Omega_{i,j} \), to \(F' \), a member of \(\Omega_{i+2,j-1} \), see Figure 11.4. A reverse d-switch operation takes \(F' \), a member of \(\Omega_{i+2,j-1} \), to \(F' \), a member of \(\Omega_{i,j} \). The number of choices \(\eta_f \) for a forward d-switch is \(j \) and the number of choices \(\eta_r \) for a reverse d-switch is \((i+2)(i+1) \).

Now for \(F \in \Omega_{i,j} \) let \(d_L(F) = j \) denote the number of \(F' \in \Omega_{i+2,j-1} \) that can be obtained from \(F \) by an d-switch. Similarly, for \(F' \in \Omega_{i+2,j-1} \) let \(d_R(F') = (i+1)(i+2) \) denote the number of \(F \in \Omega_{i,j} \) that can be transformed into \(F' \) by an d-switch. Then,

\[
\sum_{F \in \Omega_{i,j}} d_L(F) = \sum_{F' \in \Omega_{i+2,j-1}} d_R(F').
\]

So,

\[
\frac{|\Omega_{i+2,j-1}|}{|\Omega_{i,j}|} = \frac{j}{(i+1)(i+2)},
\]

which shows that the first statement of the Switching Lemma holds.

Now consider the second operation on configurations, described as a “loop removal switch” (“ℓ-switch”), Figure 11.5. Here we have four points \(x_1, x_2, x_3, x_4 \) from three different cells, where \(x_1 \) and \(x_2 \) are in cell \(W_a \), \(x_3 \) is in cell \(W_b \) and \(x_4 \) is in cell \(W_c \). \(\{x_1, x_2\} \in F \) forms a loop and \(\{x_3, x_4\} \in F \). The ℓ-switch operation replaces these pairs by new pairs: \(\{x_1, x_3\}, \{x_2, x_4\} \) or \(\{x_1, x_4\}, \{x_2, x_3\} \) if in these operations no double edge is created.
We estimate the number of choices η during an ℓ-switch of $F \in \Omega_{i,0}$. For a forward switching operation

$$i(M_1 - 2\Delta^2 - 2i) \leq \eta \leq iM_1,$$

while, for the reverse procedure,

$$\frac{M_2}{2} - 3\Delta^3 \log n - i\Delta^2 - i\Delta^3 \leq \eta \leq \frac{M_2}{2}.$$

Proof of (11.9):

To see why the above bounds hold, note that in the case of the forward loop removal switch, we have i choices for $\{x_1, x_2\}$ and at most M_1 choices for $\{x_3, x_4\}$ and there are two choices given these points. This explains the upper bound in (11.9). To get the lower bound we subtract the number of “bad” choices. We can enumerate these bad choices as follows: We consider a fixed loop $\{x_1, x_2\}$ contained in cell W_a and we choose a pair $x_3 \in W_b$ and $x_4 \in W_c$. The transformation is bad only if there is $x \in W_a \setminus \{x_1, x_2\}$ (at most Δ choices) that is paired in F with $y \in (W_b \setminus \{x_3\}) \cup (W_c \setminus \{x_4\})$ (at most Δ choices and two ways of pairing x, y). We also subtract $2i$ to account for avoiding the other $i - 1$ loops in the choice of x_3, x_4.

Proof of (11.10):

In the reverse procedure, we choose a pair $\{x_1, x_2\} \subseteq W_a$ in $M_2/2$ ways to arrive at the upper bound. The points $x_3 \in W_b, x_4 \in W_c$ are those paired with x_1, x_2 in F'. For the lower bound, a choice is bad only if (a, b, c) is a triangle. In this case, we create a double edge. There are at most $\Delta^3 \log n$ choices for the triangle and then three choices for a. We subtract a further $i\Delta^2$ to avoid creating another loop. Finally, we subtract $i\Delta^3$ in order to avoid increasing the number of triangles by
choosing an edge that is within distance two of the loop. We also note here that forward d-switches do not increase the number of triangles.

Now for \(F \in \Omega_{i,j} \), let \(d_L(F) \) denote the number of \(F' \in \Omega_{i-1,0} \) that can be obtained from \(F \) by an \(\ell \)-switch. Similarly, for \(F' \in \Omega_{i-1,0} \) let \(d_R(F') \) denote the number of \(F \in \Omega_{i,0} \) that can be transformed into \(F' \) by an \(\ell \)-switch. Then,

\[
\sum_{F \in \Omega_{i,0}} d_L(F) = \sum_{F' \in \Omega_{i-1,0}} d_R(F').
\]

But, Lemma 11.6 implies that \(i \leq 2\Delta^2 \log n \) and so

\[
iM_1 |\Omega_{i,0}| \left(1 - \frac{2\Delta^2 + 2\Delta^2 \log n}{M_1}\right) \leq \sum_{F \in \Omega_{i,0}} d_L(F) \leq iM_1 |\Omega_{i,0}|,
\]

while

\[
\left(\frac{M_2}{2} - 3\Delta^3 \log n - 2\Delta^2 \log n(\Delta^2 + \Delta^3)\right) \leq |\Omega_{i-1,0}| \leq \sum_{F' \in \Omega_{i-1,0}} d_R(F') \leq \frac{M_2}{2} |\Omega_{i-1,0}|.
\]

So

\[
\frac{|\Omega_{i-1,0}|}{|\Omega_{i,0}|} \leq 2iM_1 \left(1 + O\left(\frac{\Delta^5 \log n}{M_1}\right)\right).
\]

\[\square\]

11.2 Connectivity of Regular Graphs

For an excellent survey of results on random regular graphs, see Wormald [761].

Bollobás [126] used the configuration model to prove the following: Let \(\mathbb{G}_{n,r} \) denote a random \(r \)-regular graph with vertex set \([n]\) and \(r \geq 3 \) constant.

Theorem 11.9. \(\mathbb{G}_{n,r} \) is \(r \)-connected, w.h.p.

Since an \(r \)-regular, \(r \)-connected graph, with \(n \) even, has a perfect matching, the above theorem immediately implies the following Corollary.

Corollary 11.10. Let \(\mathbb{G}_{n,r} \) be a random \(r \)-regular graph, \(r \geq 3 \) constant, with vertex set \([n]\) even. Then w.h.p. \(\mathbb{G}_{n,r} \) has a perfect matching.
11.2. CONNECTIVITY OF REGULAR GRAPHS

Proof. (of Theorem 11.9)
Partition the vertex set \(V = [n] \) of \(G_{n,r} \) into three parts, \(K, L \) and \(V \setminus (K \cup L) \), such that \(L = N(K) \), i.e., such that \(L \) separates \(K \) from \(V \setminus (K \cup L) \) and \(|L| = l \leq r - 1 \). We will show that w.h.p there are no such \(K, L \) for \(k \) ranging from 2 to \(n/2 \). We will use the configuration model and the relationship stated in Theorem 11.3. We will divide the whole range of \(k \) into three parts.

(i) \(2 \leq k \leq 3 \).

Put \(S := K \cup L \), \(s = |S| = k + l \leq r + 2 \). The set \(S \) contains at least \(2r - 1 \) edges \((k = 2)\) or at least \(3r - 3 \) edges \((k = 3)\). In both cases this is at least \(s + 1 \) edges.

\[
\mathbb{P}(\exists S, s = |S| \leq r + 2 : S \text{ contains } s + 1 \text{ edges}) \\
\leq \sum_{s=4}^{r+2} \binom{n}{s} \left(\frac{rs}{s+1} \right) \left(\frac{rs}{rn} \right)^{s+1}
\]

(11.11)

Explanation for (11.11): Having chosen a set of \(s \) vertices, spanning \(rs \) points \(R \), we choose \(s + 1 \) of these points \(T \). \(\frac{rs}{rn} \) bounds the probability that one of these points in \(T \) is paired with something in a cell associated with \(S \). This bound holds conditional on other points of \(R \) being so paired.

(ii) \(4 \leq k \leq ne^{-10} \).

The number of edges incident with the set \(K \), \(|K| = k \), is at least \((rk + l)/2 \). Indeed let \(a \) be the number of edges contained in \(K \) and \(b \) be the number of \(K : L \) edges. Then \(2a + b = rk \) and \(b \geq l \). This gives \(a + b \geq (rk + l)/2 \). So,

\[
\mathbb{P}(\exists K, L) \leq \sum_{k=4}^{ne^{-10}} \sum_{l=0}^{r-1} \binom{n}{k} \binom{n}{l} \left(\frac{rk}{2} \right) \left(\frac{r(k+l)}{rn} \right)^{(rk+l)/2}
\]

\[
\leq \sum_{k=4}^{ne^{-10}} \sum_{l=0}^{r-1} n^{-((2-1)k + \frac{l+l}{k})} \frac{e^{k+l}}{k^{k+l}} 2^{rk} (k+l)^{(rk+l)/2}
\]

Now

\[
\left(\frac{k+l}{l} \right)^{l/2} \leq e^{k/2} \quad \text{and} \quad \left(\frac{k+l}{k} \right)^{k/2} \leq e^{l/2},
\]

and so

\[
(k+l)^{(rk+l)/2} \leq l^{l/2} k^{r/2} e^{(l+k)/2}.
\]
Therefore, with C_r a constant,

$$\mathbb{P}(\exists K, L) \leq C_r \sum_{k=4}^{n-10} \sum_{l=0}^{r-1} n^{-1-\frac{k}{2}} e^{\frac{3k}{2}} 2^{rk} k(r-2k/2)$$

$$= C_r \sum_{k=4}^{n-10} \sum_{l=0}^{r-1} n^{-1-\frac{k}{2}} e^{\frac{3k}{2}} 2^{r} k^{(r-1)}$$

$$= o(1).$$

(iii) $ne^{-10} < k \leq n/2$

Assume that there are a edges between sets L and $V \setminus (K \cup L)$. Denote also

$$\phi(2m) = \frac{(2m)!}{m! 2^m} \approx 2^{1/2} \left(\frac{2m}{e} \right)^m.$$

Then, remembering that $r, l, a = O(1)$ we can estimate that

$$\mathbb{P}(\exists K, L) \leq \sum_{k,l,a} \binom{n}{k} \binom{n}{l} \binom{rl}{a} \frac{\phi(rk + rl - a) \phi(r(n - k - l) + a)}{\phi(rn)} \leq C_r \sum_{k,l,a} \left(\frac{ne}{k} \right)^k \left(\frac{ne}{l} \right)^l \times$$

$$\frac{(rk + rl - a)^{rk + rl - a} (r(n - k - l) + a)^{r(n - k - l) + a}}{(rn)^{rn}} \leq C_r' \sum_{k,l,a} \left(\frac{ne}{k} \right)^k \left(\frac{ne}{l} \right)^l \frac{(rk)^{rk} (r(n - k))^r}{(rn)^{rn}} \leq C_r'' \sum_{k,l,a} \left(\frac{k}{n} \right)^{r-1} e^{1-r/2} n^{r/k} \leq C_r'' \sum_{k,l,a} \left(\frac{k}{n} \right)^{r-1} e^{1-r/2} n^{r/k}$$

$$= o(1).$$

Explanation of (11.12): Having chosen K, L we choose a points in $W_{K \cup L} = \bigcup_{i \in K \cup L} W_i$ that will be paired outside $W_{K \cup L}$. This leaves $rk + rl - a$ points in $W_{K \cup L}$ to be paired up in $\phi(rk + rl - a)$ ways and then the remaining points can be paired up in $\phi(r(n - k - l) + a)$ ways. We then multiply by the probability $1/\phi(rn)$ of the final pairing. \qed
11.3 Existence of a giant component

Molloy and Reed [603] provide an elegant and very useful criterion for when $G_{n,d}$ has a giant component. Suppose that there are $\lambda_i n + o(n^{3/4})$ vertices of degree $i = 1, 2, \ldots, L$. We will assume that $L = O(1)$ and that the $\lambda_i, i \in [L]$ are constants independent of n. The paper [603] allows for $L = O(n^{1/4 - \varepsilon})$. We will assume that $\lambda_1 + \lambda_2 + \cdots + \lambda_L = 1$.

Theorem 11.11. Let $\Lambda = \sum_{i=1}^{L} \lambda_i i(i - 2)$. Let $\varepsilon > 0$ be arbitrary.

(a) If $\Lambda < -\varepsilon$ then w.h.p. the size of the largest component in $G_{n,d}$ is $O(\log n)$.

(b) If $\Lambda > \varepsilon$ then w.h.p. there is a unique giant component of linear size $\approx \Theta n$ where Θ is defined as follows: let $K = \sum_{i=1}^{L} i\lambda_i$ and

$$f(\alpha) = K - 2\alpha - \sum_{i=1}^{L} i\lambda_i \left(1 - \frac{2\alpha}{K}\right)^{i/2}.$$ \hspace{1cm} (11.13)

Let ψ be the smallest positive solution to $f(\alpha) = 0$. Then

$$\Theta = 1 - \sum_{i=1}^{L} \lambda_i \left(1 - \frac{2\psi}{K}\right)^{i/2}.$$

If $\lambda_1 = 0$ then $\Theta = 1$, otherwise $0 < \Theta < 1$.

(c) In Case (b), the degree sequence of the graph obtained by deleting the giant component satisfies the conditions of (a).

Proof. We consider the execution of F-GENERATOR. We keep a sequence of partitions $U_t, A_t, E_t, t = 1, 2, \ldots, m$ of W. Initially $U_0 = W$ and $A_0 = E_0 = \emptyset$. The $(t+1)$th iteration of F-GENERATOR is now executed as follows: it is designed so that we construct $\gamma(F)$ component by component. A_t is the set of points associated with the partially exposed vertices of the current component. These are vertices in the current component, not all of whose points have been paired. U_t is the set of unpaired points associated with the entirely unexposed vertices that have not been added to any component so far. E_t is the set of paired points. Whenever possible, we choose to make a pairing that involves the current component.

(i) If $A_t = \emptyset$ then choose x from U_t. Go to (iii).

We begin the exploration of a new component of $\gamma(F)$.

(ii) if $A_t \neq \emptyset$ choose x from A_t. Go to (iii).

Choose a point associated with a partially exposed vertex of the current component.
(iii) Choose y randomly from $(A_t \cup U_t) \setminus \{x\}$.

(iv) $F \leftarrow F \cup \{(x,y)\}; E_{t+1} \leftarrow E_t \cup \{x,y\}; A_{t+1} \leftarrow A_t \setminus \{x\}$.

(v) If $y \in A_t$ then $A_{t+1} \leftarrow A_{t+1} \setminus \{y\}; U_{t+1} \leftarrow U_t$.

y is associated with a vertex in the current component.

(vi) If $y \in U_t$ then $A_{t+1} \leftarrow A_t \cup (W_{\varphi(y)} \setminus y); U_{t+1} \leftarrow U_t \setminus W_{\varphi(y)}$.

y is associated with a vertex $v = \varphi(y)$ not in the current component. Add all the points in $W_v \setminus \{y\}$ to the active set.

(vii) Goto (i).

(a) We fix a vertex v and estimate the size of the component containing v. We keep track of the size of A_t for $t = O(\log n)$ steps. Observe that

$$
\mathbb{E}(|A_{t+1}|-|A_t| \mid |A_t|>0) \leq \sum_{i=1}^{L_t} i \lambda_n (i-2) = \frac{\Lambda n}{M_1-2t-1} \leq -\frac{\varepsilon}{\lambda_n}. \tag{11.14}
$$

Here $M_1 = \sum_{i=1}^{L} i \lambda_n$ as before. The explanation for (11.14) is that $|A|$ increases only in Step (vi) and there it increases by $i-2$ with probability $\leq \frac{i \lambda_n}{M_1-2t}$. The two points x,y are missing from A_{t+1} and this explains the -2.

Let $\varepsilon_1 = \varepsilon / L$ and let

$$
Y_t = \begin{cases}
|A_t| + \varepsilon_1 t & |A_1|, |A_2|, \ldots, |A_t| > 0. \\
0 & \text{Otherwise.}
\end{cases}
$$

It follows from (11.14) that if $t = O(\log n)$ and $Y_1, Y_2, \ldots, Y_t > 0$ then

$$
\mathbb{E}(Y_{t+1} \mid Y_1, Y_2, \ldots, Y_t) = \mathbb{E}(|A_{t+1}| + \varepsilon_1 (t+1) \mid Y_1, Y_2, \ldots, Y_t) \leq |A_t| + \varepsilon_1 t = Y_t.
$$

Otherwise, $\mathbb{E}(Y_{t+1} \mid \cdot) = 0 = Y_t$. It follows that the sequence (Y_t) is a supermartingale. Next let $Z_1 = 0$ and $Z_t = Y_t - Y_{t-1}$ for $t \geq 1$. Then we have (i) $-2 \leq Z_t \leq L$ and (ii) $\mathbb{E}(Z_t) \leq -\varepsilon_1$ for $i = 1, 2, \ldots, t$. Now,

$$
\mathbb{P}(A_\tau \neq \emptyset, 1 \leq \tau \leq t) \leq \mathbb{P}(Y_t = Z_1 + Z_2 + \cdots + Z_t > 0),
$$

It follows from Lemma 22.16 that if $Z = Z_1 + Z_2 + \cdots + Z_t$ then

$$
\mathbb{P}(Z > 0) \leq P(Z - \mathbb{E}(Z) \geq t \varepsilon_1) \leq \exp \left\{ -\frac{\varepsilon_1^2 t^2}{8t} \right\}.
$$

It follows that with probability $1 - O(n^{-2})$ that A_t will become empty after at most $16\varepsilon_1^{-2} \log n$ rounds. Thus for any fixed vertex v, with probability $1 - O(n^{-2})$ the
11.3. EXISTENCE OF A GIANT COMPONENT

component contains v has size at most $4\epsilon_1^{-2}\log n$. (We can expose the component containing v through our choice of x in Step (i).) Thus the probability there is a component of size greater than $16\epsilon_1^{-2}\log n$ is $O(n^{-1})$. This completes the proof of (a).

(b) If $t \leq \delta n$ for a small positive constant δ then
\[
\mathbb{E}(|A_{t+1} - |A_t|) \geq \frac{-2|A_t| + (1 + o(1)) \sum_{i=1}^L i(\lambda_i n - 2t)(i - 2)}{M_1 - 2\delta n} \geq \frac{(\Lambda - 4\delta)n}{M_1 - 2\delta n} \geq \frac{\epsilon}{2L},
\]
(11.15)

Let $\epsilon_2 = \epsilon/2L$ and let
\[
Y_t = \begin{cases} |A_t| - \epsilon_2 t & |A_1|, |A_2|, \ldots, |A_t| > 0, \\ 0 & \text{Otherwise}. \end{cases}
\]
It follows from (11.14) that if $t \leq \delta n$ and $Y_1, Y_2, \ldots, Y_t > 0$ then
\[
\mathbb{E}(Y_{t+1} | Y_1, Y_2, \ldots, Y_t) = \mathbb{E}(|A_{t+1}| - \epsilon_2 (t + 1) | Y_1, Y_2, \ldots, Y_t) \geq |A_t| - \epsilon_2 t = Y_t.
\]
Otherwise, $\mathbb{E}(Y_{t+1} | \cdot) = 0 = Y_t$. It follows that the sequence (Y_t) is a sub-martingale.

Next let $Z_1 = 0$ and $Z_t = Y_t - Y_{t-1}$ for $t \geq 2$. Then we have (i) $-2 \leq Z_t \leq L$ and (ii) $\mathbb{E}(Z_t) \geq \epsilon_2$ for $i = 1, 2, \ldots, t$. Now,
\[
P(A_t \neq \emptyset) \geq P(Y_t = Z_1 + Z_2 + \cdots + Z_t > 0),
\]
It follows from Lemma 22.16 that if $Z = Z_1 + Z_2 + \cdots + Z_t$ then
\[
P(Z \leq 0) \leq P(Z - \mathbb{E}(Z) \geq t\epsilon_2) \leq \exp \left\{ -\frac{\epsilon_2^2 t^2}{2t} \right\}.
\]
It follows that if $L_0 = 100\epsilon_2^{-2}$ then
\[
P \left(\exists L_0 \log n \leq t \leq \delta n : Z \leq \frac{\epsilon_2 t}{2} \right) \leq \exp \left\{ -\frac{\epsilon_2^2 L_0 \log n}{8} \right\} = O(n^{-2}).
\]
It follows that if $t_0 = \delta n$ then w.h.p. $|A_{t_0}| = \Omega(n)$ and there is a giant component and that the edges exposed between time $L_0 \log n$ and time t_0 are part of exactly one giant.
CHAPTER 11. FIXED DEGREE SEQUENCE

We now deal with the special case where \(\lambda_1 = 0 \). There are two cases. If in addition we have \(\lambda_2 = 1 \) then w.h.p. \(G_d \) is the union of \(O(\log n) \) vertex disjoint cycles, see Exercise 10.5.1. If \(\lambda_1 = 0 \) and \(\lambda_2 < 1 \) then the only solutions to \(f(\alpha) = 0 \) are \(\alpha = 0, K/2 \). For then \(0 < \alpha < K/2 \) implies

\[
\sum_{i=2}^{L} i\lambda_i \left(1 - \frac{2\alpha}{K} \right)^{i/2} < \sum_{i=2}^{L} i\lambda_i \left(1 - \frac{2\alpha}{K} \right) = K - 2\alpha.
\]

This gives \(\Theta = 1 \). Exercise 10.5.2 asks for a proof that w.h.p. in this case, \(G_{n,d} \) consists of a giant component plus a collection of small components that are cycles of size \(O(\log n) \).

Assume now then that \(\lambda_1 > 0 \). We show that w.h.p. there are \(\Omega(n) \) isolated edges. This together with the rest of the proof implies that \(\Psi < K/2 \) and hence that \(\Theta < 1 \). Indeed, if \(Z \) denotes the number components that are isolated edges, then

\[
\mathbb{E}(Z) = \left(\frac{\lambda_1 n}{2} \right) \frac{1}{2M_1 - 1} \quad \text{and} \quad \mathbb{E}(Z(Z - 1)) = \left(\frac{\lambda_1 n}{4} \right) \frac{6}{(2M_1 - 1)(2M_1 - 3)}
\]

and so the Chebyshev inequality (21.3) implies that \(Z = \Omega(n) \) w.h.p.

Now for \(i \) such that \(\lambda_i > 0 \), we let \(X_{i,t} \) denote the number of entirely unexposed vertices of degree \(i \). We focus on the number of unexposed vertices of a given degree. Then,

\[
\mathbb{E}(X_{i,t+1} - X_{i,t}) = -\frac{iX_{i,t}}{M_1 - 2t - 1}.
\]

This suggests that we employ the differential equation approach of Section 23 in order to keep track of the \(X_{i,t} \). We would expect the trajectory of \((t/n, X_{i,t}/n) \) to follow the solution to the differential equation

\[
\frac{dx}{d\tau} = -\frac{ix}{K - 2\tau}
\]

\(x(0) = \lambda_i \). Note that \(K = M/n \).

The solution to (11.17) is

\[
x = \lambda_i \left(1 - \frac{2\tau}{K} \right)^{i/2}.
\]

In what follows, we use the notation of Section 23, except that we replace \(\lambda_0 \) by \(\xi_0 = n^{-1/4} \) to avoid confusion with \(\lambda_i \).

P0 \(D = \{ (\tau, x) : 0 < \tau < \frac{\Theta - \varepsilon}{2}, 2\xi_0 < x < 1 \} \) where \(\varepsilon \) is small and positive.

P1 \(C_0 = 1 \).
11.3. EXISTENCE OF A GIANT COMPONENT

(P2) $\beta = L$.

(P3) $f(\tau, x) = -\frac{ix}{K-2\tau}$ and $\gamma = 0$.

(P4) The Lipschitz constant $L_1 = 2K/(K - 2\Theta)^2$. This needs justification and follows from

$$x \frac{K}{K-2\tau} - \frac{x'}{K-2\tau'} = \frac{K(x-x') + 2\tau(x-x') + 2x(\tau - \tau')}{(K-2\tau)(K-2\tau')}.$$

Theorem 23.1 then implies that with probability $1 - O(n^{1/4}e^{-\Omega(n^{1/4})})$,

$$\left| X_{i,t} - ni\lambda_i \left(1 - \frac{2t}{K}\right)^{i/2}\right| = O(n^{3/4}), \quad (11.19)$$

up a point where $X_{i,t} = O(\xi_0 n)$. (The $o(n^{3/4})$ term for the number of vertices of degree i is absorbed into the RHS of (11.19).)

Now because

$$|A_t| = M_1 - 2t - \sum_{i=1}^{L} iX_{i,t} = Kn - 2t - \sum_{i=1}^{L} iX_{i,t},$$

we see that w.h.p.

$$|A_t| = n \left(K - \frac{2t}{n} - \sum_{i=1}^{L} i\lambda_i \left(1 - \frac{2t}{Kn}\right)^{i/2}\right) + O(n^{3/4})$$

$$= nf \left(\frac{t}{n}\right) + O(n^{3/4}), \quad (11.20)$$

so that w.h.p. the first time after time $t_0 = \delta n$ that $|A_t| = O(n^{3/4})$ is as at time $t_1 = \Psi n + O(n^{3/4})$. This shows that w.h.p. there is a component of size at least $\Theta n + O(n^{3/4})$. Indeed, we simply subtract the number of entirely unexposed vertices from n to obtain this.

To finish, we must show that this component is unique and no larger than $\Theta n + O(n^{3/4})$. We can do this by proving (c), i.e. showing that the degree sequence of the graph G_U induced by the unexposed vertices satisfies the condition of Case (a). For then by Case (a), the giant component can only add $O(n^{3/4} \times \log n) = o(n)$ vertices from t_1 onwards.

We observe first that the above analysis shows that w.h.p. the degree sequence of G_U is asymptotically equal to $n\lambda_i', i = 1, 2, \ldots, L$, where

$$\lambda_i' = \lambda_i \left(1 - \frac{2\Psi}{K}\right)^{i/2}.$$
(The important thing here is that the number of vertices of degree i is asymptotically proportional to λ'_i.) Next choose $\varepsilon_1 > 0$ sufficiently small and let $t_{\varepsilon_1} = \max \{ t : |A_t| \geq \varepsilon_1 n \}$. There must exist $\varepsilon_2 < \varepsilon_1$ such that $t_{\varepsilon_1} \leq (\Psi - \varepsilon_2)n$ and $f'(\Psi - \varepsilon_2) \leq -\varepsilon_1$, else f cannot reach zero. Recall that $\Psi < K/2$ here and then,

$$-\varepsilon_1 \geq f'(\Psi - \varepsilon_2) = -2 + \frac{1}{K - 2(\Psi - \varepsilon_2)} \sum_{i \geq 1} i^2 \lambda_i \left(1 - \frac{2(\Psi - \varepsilon_2)}{K} \right)^{i/2}$$

$$= -2 + \frac{1 + O(\varepsilon_2)}{K - 2\Psi} \sum_{i \geq 1} i^2 \lambda_i \left(1 - \frac{2\Psi}{K} \right)^{i/2}$$

$$= \frac{1 + O(\varepsilon_2)}{K - 2\Psi} \left(-2 \sum_{i \geq 1} i \lambda_i \left(1 - \frac{2\Psi}{K} \right)^{i/2} + \sum_{i \geq 1} i^2 \lambda_i \left(1 - \frac{2\Psi}{K} \right)^{i/2} \right)$$

$$= \frac{1 + O(\varepsilon_2)}{K - 2\Psi} \sum_{i \geq 1} i(i - 2) \lambda_i \left(1 - \frac{2\Psi}{K} \right)^{i/2}$$

$$= \frac{1 + O(\varepsilon_2)}{K - 2\Psi} \sum_{i \geq 1} i(i - 2) \lambda'_i. \tag{11.21}$$

This completes the proofs of (b), (c).

\square

11.4 $G_{n,r}$ is asymmetric

In this section, we prove that w.h.p. $G_{n,r}, r \geq 3$ only has one isomorphism, viz. the identity isomorphism. This was proved by Bollobás [132]. For a vertex v we let $d_k(v)$ denote the number of vertices at graph distance k from v in $G_{n,r}$. We show that if $k_0 = \left\lceil \frac{3}{2} \log_{r-1} n \right\rceil$ then w.h.p. no two vertices have the same sequence $(d_k(v), k = 1, 2, \ldots, k_0)$. In the following $G = G_{n,r}$.

Lemma 11.12.

Let $\ell_0 = \left\lceil 100 \log_{r-1} \log n \right\rceil$. Then w.h.p., $e_G(S) \leq |S|$ for all $S \subseteq [n], |S| \leq 2\ell_0$.

Proof. Arguing as for (11.11), we have that

$$\mathbb{P}(\exists S : |S| \leq 2\ell_0, e_G(S) \geq |S| + 1) \leq \sum_{s=4}^{2\ell_0} \binom{n}{s} \left(\frac{sr}{s+1} \right)^{s+1} \left(\frac{sr}{2m-4\ell_0} \right)^{s+1}$$

$$\leq \sum_{s=4}^{2\ell_0} \left(\frac{n \ell_0}{s} \right)^s (er)^{s+1} \left(\frac{s}{n - o(n)} \right)^{s+1}$$

$$\leq \frac{1}{n} \sum_{s=4}^{2\ell_0} se^{2s+1+o(1)} = o(1).$$
11.4. $G_{N,R}$ IS ASYMMETRIC

Let \mathcal{E} denote the high probability event in Lemma 11.12. We will condition on the occurrence of \mathcal{E}.

Now for $v \in [n]$ let $S_k(v)$ denote the set of vertices at distance k from v and let $S_{\leq k}(v) = \bigcup_{j \leq k} S_j(v)$. We note that

$$|S_k(v)| \leq r(r-1)^{k-1} \text{ for all } v \in [n], k \geq 1. \quad (11.22)$$

Furthermore, Lemma 11.12 implies that w.h.p. we have that for all $v, w \in [n], 1 \leq k \leq \ell_0$,

$$|S_k(v)| \geq (r-2)(r+1)(r-1)^{k-2}. \quad (11.23)$$

$$|S_k(v) \setminus S_k(w)| \geq (r-2)(r-1)^{k-1}. \quad (11.24)$$

This is because there can be at most one cycle in $S_{\leq \ell_0}(v)$ and the sizes of the relevant sets are reduced by having the cycle as close to v, w as possible.

Now consider $k > \ell_0$. Consider doing breadth first search from v or v, w exposing the configuration pairing as we go. Let an edge be dispensable if exposing it joins two vertices already known to be in $S_{\leq k}$. Lemma 11.12 implies that w.h.p. there is at most one dispensable edge in $S_{\leq \ell_0}$.

Lemma 11.13. With probability $1 - o(n^{-2})$, (i) at most 20 of the first $n^{2/5}$ exposed edges are dispensable and (ii) at most $n^{1/4}$ of the first $n^{3/5}$ exposed edges are dispensable.

Proof. The probability that the kth edge is dispensable is at most $\frac{(k-1)r}{rn-2k}$, independent of the history of the process. Hence,

$$\mathbb{P}(\exists \text{ 20 dispensable edges in first } n^{2/5}) \leq \left(\frac{n^{2/5}}{20} \right) \left(\frac{rn^{2/5}}{rn-o(n)} \right)^{20} = o(n^{-2}).$$

$$\mathbb{P}(\exists \text{ n}^{1/4} \text{ dispensable edges in first } n^{3/5}) \leq \left(\frac{n^{3/5}}{n^{1/4}} \right) \left(\frac{rn^{3/5}}{rn-o(n)} \right)^{n^{1/4}} = o(n^{-2}).$$

Now let $\ell_1 = \left\lceil \log_{r-1} n^{2/5} \right\rceil$ and $\ell_2 = \left\lceil \log_{r-1} n^{3/5} \right\rceil$. Then we have that, conditional on \mathcal{E}, with probability $1 - o(n^{-2})$,

$$|S_k(v)| \geq ((r-2)(r+1)(r-1)^{\ell_0-2}-40)(r-1)^{k-\ell_0} : \ell_0 < k \leq \ell_1.$$

$$|S_k(v)| \geq ((r-2)(r+1)(r-1)^{\ell_1-1}-40(r-1)^{\ell_1-\ell_0}-2n^{1/4})(r-1)^{k-\ell_1} : \ell_1 < k \leq \ell_2.$$
So the lemma will follow if we prove that for every

\[|S_k(w) \setminus S_k(v)| \geq ((r - 2)(r - 1)^{\ell_0} - 40)(r - 1)^{k - \ell_0} : \ell_0 < k \leq \ell_1. \]

\[|S_k(w) \setminus S_k(v)| \geq ((r - 2)(r - 1)^{\ell_1} - 40)(r - 1)^{k - \ell_0} - 2n^{1/4})(r - 1)^{k - \ell_1} : \ell_1 < k \leq \ell_2. \]

We deduce from this that if \(\ell_3 = \lceil \log_{r - 1} n^{4/7} \rceil \) and \(k = \ell_3 + a, a = O(1) \) then with probability \(1 - o(n^{-2}) \),

\[|S_k(w)| \geq ((r - 2)(r - 1) - o(1))(r - 1)^{k - 2} \approx (r - 2)(r + 1)(r - 1)^{a - 2}n^{4/7}. \]

\[|S_k(w) \setminus S_k(v)| \geq (r - 2 - o(1))(r - 1)^{k - 1} \approx (r - 2)(r - 1)^{a - 1}n^{4/7}. \]

Suppose now that we consider the execution of breadth first search up until we have exposed \(S_k(v) \). Then in order to have \(d_k(v) = d_k(w) \), conditional on the history of the search, there has to be an exact outcome for \(|S_k(w) \setminus S_k(v)| \). Now consider the pairings of the \(W_s, x \in S_k(w) \setminus S_k(v) \). Now at most \(n^{1/4} \) of these pairings are with vertices in \(S_{<k}(v) \cup S_{<k}(w) \). Condition on these. There must now be \(s = \Theta(n^{4/7}) \) pairings between \(W_s, x \in S_k(w) \setminus S_k(v) \) and \(W_s, y \notin S_k(v) \cup S_k(w) \). Furthermore, to have \(d_k(v) = d_k(w) \) these \(s \) pairings must involve exactly \(t \) of the sets \(W_s, y \notin S_k(v) \cup S_k(w) \), where \(t \) is determined before the choice of these \(s \) pairings. The following lemma will easily show that \(G \) is asymmetric w.h.p.

Lemma 11.14. Let \(R = \bigcup_{j=1}^m R_j \) be a partitioning of an \(rm \) set \(R \) into \(m \) subsets of size \(r \). Suppose that \(S \) is a random \(s \)-subset of \(R \), where \(m^{5/9} < s < m^{3/5} \). Let \(X_S \) denote the number of sets \(R_i \) intersected by \(S \). Then

\[\max_j \mathbb{P}(X_S = j) \leq \frac{c_0 m^{1/2}}{s}, \]

for some constant \(c_0 \).

Proof. We may assume that \(s \geq m^{1/2} \). The probability that \(S \) has at least 3 elements in some set \(R_i \) is at most

\[\frac{m(r)^3 \left(\frac{r m - 3}{r m_s} \right)^3}{\binom{r m_s}{r m}} \leq \frac{r^3 s^3}{6m^2} \leq \frac{r^3 m^{1/2}}{6s}. \]

But

\[\mathbb{P}(X_S = j) \leq \mathbb{P}\left(\max_i |S \cap R_i| \geq 3 \right) + \mathbb{P}\left(X_S = j \text{ and } \max_i |S \cap R_i| \leq 2 \right). \]

So the lemma will follow if we prove that for every \(j \),

\[P_j = \mathbb{P}\left(X_S = j \text{ and } \max_i |S \cap R_i| \leq 2 \right) \leq \frac{c_1 m^{1/2}}{s}, \quad (11.25) \]
for some constant c_1. Clearly, $P_j = 0$ if $j < s/2$ and otherwise

$$P_j = \frac{(m_j^j)(s-j)r^{2j-s}(s/2)^{s-j}}{(\frac{m}{s})^{r}}. \quad (11.26)$$

Now for $s/2 \leq j < s$ we have

$$\frac{P_{j+1}}{P_j} = \frac{(m-j)(s-j)}{(2j+2-s)(2j+1-s)} \frac{2r}{r-1}. \quad (11.27)$$

We note that if $s-j \geq \frac{10r^2}{m}$ then $\frac{P_{j+1}}{P_j} \geq \frac{10(r-1)}{3r} \geq 2$ and so the j maximising P_j is of the form $s - \frac{\alpha s^2}{m}$ where $\alpha \leq 10$. If we substitute $j = s - \frac{\alpha s^2}{m}$ into (11.27) then we see that

$$\frac{P_{j+1}}{P_j} \in \frac{2\alpha r}{r-1} \left[1 + c_2 \frac{s}{m} \right]$$

for some absolute constant $c_2 > 0$.

It follows that if j_0 is the index maximising P_j then

$$\left| j_0 - \left(s - \frac{(r-1)s^2}{2rm} \right) \right| \leq 1.$$

Furthermore, if $j_1 = j_0 - \frac{s}{m^{1/2}}$ then

$$\frac{P_{j+1}}{P_j} \leq 1 + c_3 \frac{m^{1/2}}{s}$$

for some absolute constant $c_3 > 0$.

This implies that

$$P_j \geq P_{j_0} \left(1 + c_3 \frac{m^{1/2}}{s} \right)^{-(j_0-j_1)} = P_{j_0} \exp\left\{ -(j_0-j_1) \left(c_3 \frac{m^{1/2}}{s} + O\left(\frac{m}{s^2} \right) \right) \right\} \geq P_{j_0} e^{-2c_3}.$$

It follows from this that

$$P_{j_0} \leq \frac{e^{2c_3}m^{1/2}}{s}. \quad \Box$$
We apply Lemma 11.14 with $m = n, s = \rho = \Theta(n^{4/7})$ to show that
\[
\Pr(d_k(v) = d_k(w), k \in [\ell_3, \ell_3 + 14]) \leq \left(\frac{c_0 n^{1/2}}{n^{3/7}}\right)^{15} = o(n^{-2}).
\]
This proves

Theorem 11.15. W.h.p. $G_{n,r}$ has a unique trivial automorphism.

11.5 $G_{n,r}$ versus $G_{n,p}$

The configuration model is most useful when the maximum degree is bounded. When r is large, one can learn a lot about random r-regular graphs from the following theorem of Kim and Vu [501]. They proved that if $\log n \ll r \ll n^{1/3}/(\log n)^2$ then there is a joint distribution $G_0, G = G_{n,r}, G_1$ such that w.h.p. (i) $G_0 \subseteq G$, (ii) the maximum degree $\Delta(G_1 \setminus G) \leq \frac{(1+o(1))\log n}{\log(\varphi(r)/\log n)}$ where $\varphi(r)$ is any function satisfying $(r\log n)^{1/2} \leq \varphi(r) \ll r$. Here $G_i = G_{n,p_i}, i = 0, 1$ where $p_0 = (1 - o(1))\frac{r}{n}$ and $p_1 = (1 + o(1))\frac{r}{n}$. In this way we can deduce properties of $G_{n,r}$ from $G_{n,r/n}$. For example, G_0 is Hamiltonian w.h.p. implies that $G_{n,r}$ is Hamiltonian w.h.p.

Recently, Dudek, Frieze, Ruciński and Šileikis [267] have increased the range of r for which (i) holds. The cited paper deals with random hypergraphs and here we describe the simpler case of random graphs.

Theorem 11.16. There is a positive constant C such that if
\[
C \left(\frac{r}{n} + \frac{\log n}{r}\right)^{1/3} \leq \gamma = \gamma(n) < 1,
\]
and $m = \lfloor (1 - \gamma)nr/2 \rfloor$, then there is a joint distribution of $\mathcal{G}(n,m)$ and $G_{n,r}$ such that
\[
\Pr(G_{n,m} \subset G_{n,r}) \rightarrow 1.
\]

Corollary 11.17. Let \mathcal{D} be an increasing property of graphs such that $\mathcal{G}_{n,m}$ satisfies \mathcal{D} w.h.p. for some $m = m(n), n \log n \ll m \ll n^2$. Then $G_{n,r}$ satisfies \mathcal{D} w.h.p. for $r = r(n) \approx \frac{2m}{n}$.

Our approach to proving Theorem 11.16 is to represent $G_{n,m}$ and $G_{n,r}$ as the outcomes of two graph processes which behave similarly enough to permit a good coupling. For this let $M = nr/2$ and define
\[
\mathcal{G}_M = (\varepsilon_1, \ldots, \varepsilon_M)
\]
to be an ordered random uniform graph on the vertex set \([n]\), that is, \(G_{n,M}\) with a random uniform ordering of edges. Similarly, let

\[
G_r = (\eta_1, \ldots, \eta_M)
\]

be an ordered random \(r\)-regular graph on \([n]\), that is, \(G_{n,r}\) with a random uniform ordering of edges. Further, write \(G_M(t) = (\varepsilon_1, \ldots, \varepsilon_t)\) and \(G_r(t) = (\eta_1, \ldots, \eta_t)\), \(t = 0, \ldots, M\).

For every ordered graph \(G\) of size \(t\) and every edge \(e \in K_n \setminus G\) we have

\[
\Pr(\varepsilon_{t+1} = e \mid G_M(t) = G) = \frac{1}{\binom{n}{2} - t}.
\]

This is not true if we replace \(G_M\) by \(G_r\), except for the very first step \(t = 0\). However, it turns out that for most of time the conditional distribution of the next edge in the process \(G_r(t)\) is approximately uniform, which is made precise in the lemma below. For \(0 < \varepsilon < 1\), and \(t = 0, \ldots, M\) consider the inequalities

\[
\Pr(\eta_{t+1} = e \mid G_r(t)) \geq \frac{1 - \varepsilon}{\binom{n}{2} - t} \text{ for every } e \in K_n \setminus G_r(t),
\]

and define a stopping time

\[
T_\varepsilon = \max \{u : \forall t \leq u \text{ condition (11.28) holds} \}.
\]

Lemma 11.18. There is a positive constant \(C'\) such that if

\[
C' \left(\frac{r \log n}{n} \right)^{1/3} \leq \varepsilon = \varepsilon(n) < 1,
\]

then

\[
T_\varepsilon \geq (1 - \varepsilon)M \quad \text{w.h.p.}
\]

From Lemma 11.18, which is proved in Section 11.5, we deduce Theorem 11.16 using a coupling.

Proof of Theorem 11.16. Let \(C = 3C'\), where \(C'\) is the constant from Lemma 11.18. Let \(\varepsilon = \gamma/3\). The distribution of \(G_r\) is uniquely determined by the conditional probabilities

\[
p_{t+1}(e \mid G) := \Pr(\eta_{t+1} = e \mid G_r(t) = G), \quad t = 0, \ldots, M - 1.
\]

Our aim is to couple \(G_M\) and \(G_r\) up to the time \(T_\varepsilon\). For this we will define a graph process \(G'_r := (\eta'_t), t = 1, \ldots, M\) such that the conditional distribution of \((\eta'_t)\) coincides with that of \((\eta_t)\) and w.h.p. \((\eta'_t)\) shares many edges with \(G_M\).
Suppose that \(G_r = G'_r(t) \) and \(G_M = G_M(t) \) have been exposed and for every \(e \notin G_r \), the inequality
\[
p_{t+1}(e|G_r) \geq \frac{1 - \epsilon}{\binom{n}{2} - t}
\] (11.31)
holds (we have such a situation, in particular, if \(t \leq T_\epsilon \)). Generate a Bernoulli \((1 - \epsilon)\) random variable \(\xi_{t+1} \) independently of everything that has been revealed so far; expose the edge \(e_{t+1} \). Moreover, generate a random edge \(\zeta_{t+1} \in K_n \setminus G_r \) according to the distribution
\[
\mathbb{P}(\zeta_{t+1} = e|G'_r(t) = G_r, \mathbb{G}_M(t) = G_M) = \frac{p_{t+1}(e|G_r) - \frac{1 - \epsilon}{\binom{n}{2} - t}}{\epsilon} \geq 0,
\]
where the inequality holds because of the assumption (11.31). Observe also that
\[
\sum_{e \in G_r} \mathbb{P}(\zeta_{t+1} = e|G'_r(t) = G_r, \mathbb{G}_M(t) = G_M) = 1,
\]
so \(\zeta_{t+1} \) has a well-defined distribution. Finally, fix a bijection \(f_{G_r, G_M} : G_r \setminus G_M \to G_M \setminus G_r \) between the sets of edges and define
\[
\eta'_{t+1} = \begin{cases}
\varepsilon_{t+1}, & \text{if } \xi_{t+1} = 1, \varepsilon_{t+1} \notin G_r, \\
G_{r,t+1}(e_{t+1}), & \text{if } \xi_{t+1} = 1, \varepsilon_{t+1} \in G_r, \\
\zeta_{t+1}, & \text{if } \xi_{t+1} = 0.
\end{cases}
\]
Note that
\[
\xi_{t+1} = 1 \implies \varepsilon_{t+1} \in G'_r(t+1). \tag{11.32}
\]
We keep generating \(\zeta_t' \)'s even after the stopping time has passed, that is, for \(t > T_\epsilon \), whereas \(\eta'_{t+1} \) is then sampled according to probabilities (11.30), without coupling. Note that \(\xi_t' \)'s are i.i.d. and independent of \(\mathbb{G}_M \). We check that
\[
\mathbb{P}(\eta'_{t+1} = e | G'_r(t) = G_r, \mathbb{G}_M(t) = G_M) = \mathbb{P}(\varepsilon_{t+1} = e) \mathbb{P}(\xi_{t+1} = 1) + \mathbb{P}(\xi_{t+1} = 1) \mathbb{P}(\varepsilon_{t+1} = e) \mathbb{P}(\xi_{t+1} = 0)
\]
\[
= \frac{1 - \epsilon}{\binom{n}{2} - t} + \frac{1}{\epsilon} \left(p_{t+1}(e|G_r) - \frac{1 - \epsilon}{\binom{n}{2} - t} \right)
\]
\[
= p_{t+1}(e|G_r)
\]
for all admissible \(\mathbb{G}_r, \mathbb{G}_M \), i.e., such that \(\mathbb{P}(G'_r(t) = G_r, G_M(t) = G_M) > 0 \), and for all \(e \notin G_r \).

Further, define a set of edges which are potentially shared by \(\mathbb{G}_M \) and \(\mathbb{G}_r \):
\[
S := \{ e_i : \xi_i = 1, 1 \leq i \leq (1 - \epsilon)M \}.
\]
Note that
\[|S| = \sum_{i=1}^{\lfloor (1-\varepsilon)M \rfloor} \xi_i \]
is distributed as \(\text{Bin}(\lfloor (1-\varepsilon)M \rfloor, 1-\varepsilon) \).

Since \((\xi_i)\) and \((\epsilon_i)\) are independent, conditioning on \(|S| \geq m\), the first \(m\) edges in the set \(S\) comprise a graph which is distributed as \(G_{n,m}\). Moreover, if \(T_\varepsilon \geq (1-\varepsilon)M\), then by (11.32) we have \(S \subseteq G_r\), therefore
\[P(G_{n,m} \subseteq G_{n,r}) \geq P(|S| \geq m, T_\varepsilon \geq (1-\varepsilon)M) . \]

We have \(E|S| \geq (1-2\varepsilon)M\). Recall that \(\varepsilon = \gamma/3\) and therefore \(m = \lfloor (1-\gamma)M \rfloor = \lfloor (1-3\varepsilon)M \rfloor\). Applying the Chernoff bounds and our assumption on \(\varepsilon\), we get
\[P(|S| < m) \leq e^{-\Omega(\gamma^2 m)} = o(1). \]

Finally, by Lemma 11.18 we have \(T_\varepsilon \geq (1-\varepsilon)M\) w.h.p., which completes the proof of the theorem. \(\square\)

Proof of Lemma 11.18

In all proofs of this section we will assume the condition (11.29). To prove Lemma 11.18 we will start with a fact which allows one to control the degrees of the evolving graph \(G_r(t)\).

For a vertex \(v \in [n]\) and \(t = 0, \ldots, M\), let
\[\deg_t(v) = |\{i \leq t : v \in \eta_i\}|. \]

Lemma 11.19. Let \(\tau = 1-t/M\). We have that w.h.p.
\[\forall t \leq (1-\varepsilon)M, \quad \forall v \in [n], \quad |\deg_t(v) - tr/M| \leq 6\sqrt{r}\tau \log n. \]
(11.33)

In particular w.h.p.
\[\forall t \leq (1-\varepsilon)M, \quad \forall v \in [n], \quad \deg_t(v) \leq (1-\varepsilon/2)r. \]
(11.34)

Proof. Observe that if we fix an \(r\)-regular graph \(H\) and condition \(G_r\) to be a permutation of the edges of \(H\), then \(X := \deg_t(v)\) is a hypergeometric random variable with expected value \(tr/M = (1-\tau)r\). Using the result of Section 22.5 and Theorem 22.11, and checking that the variance of \(X\) is at most \(\tau r\), we get
\[\mathbb{P}(|X - tr/M| \geq x) \leq 2 \exp\left\{ -\frac{x^2}{2(\tau r + x/3)} \right\}. \]
Let \(x = 6\sqrt{\tau r \log n} \). From (11.29), assuming \(C' \geq 1 \), we get

\[
\frac{x}{\tau r} = 6 \sqrt{\frac{\log n}{\tau r}} \leq 6 \sqrt{\frac{\log n}{\varepsilon r}} \leq 6 \varepsilon,
\]

and so \(x \leq 6 \tau r \). Using this, we obtain

\[
\frac{1}{2} \mathbb{P}(|X - tr/M| \geq x) \leq \exp \left\{ -\frac{36 \tau r \log n}{2 (\tau r + 2 \tau r)} \right\} = n^{-6}.
\]

Inequality (11.33) now follows by taking a union bound over \(nM \leq n^3 \) choices of \(t \) and \(v \).

To get (11.34), it is enough to prove the inequality for \(t = (1 - \varepsilon)M \). Inequality (11.33) implies

\[
\text{deg}_{(1-\varepsilon)M}(v) \leq (1 - \varepsilon) r + 6 \sqrt{\varepsilon r \log n}.
\]

Thus it suffices to show that

\[
6 \sqrt{\varepsilon r \log n} \leq \varepsilon r / 2,
\]

or, equivalently, \(\varepsilon \geq 144 \log n / r \), which is implied by (11.29) with \(C' \geq 144 \).

Lemma 11.20. Let graph \(G \) with \(t \leq (1 - \varepsilon)M \) edges be such that \(\mathcal{G}_G(n,r) \) is nonempty. For each \(e \notin G \) we have

\[
\mathbb{P}(e \in \mathcal{G}_G) \leq \frac{4r}{\varepsilon n}.
\]

(11.35)

Moreover, if \(l \geq l_0 := \frac{4r^2}{(\varepsilon n)} \), then for every \(u, v \in [n] \) we have

\[
\mathbb{P}\left(\text{deg}_{\mathcal{G}_G}(u, v) > l \right) \leq 2^{-(l-l_0)}.
\]

(11.36)
11.5. \(G_{N,R} \) VERSUS \(G_{N,P} \)

Proof. To prove (11.35) define the families

\[
G_{e \in} = \{H \in G(n,r) : e \in H\} \quad \text{and} \quad G_{e \notin} = \{H' \in G(n,r) : e \notin H'\}.
\]

Let us define an auxiliary bipartite graph \(B \) between \(G_{e \in} \) and \(G_{e \notin} \) in which \(H \in G_{e \in} \) is connected to \(H' \in G_{e \notin} \) whenever \(H' \) can be obtained from \(H \) by the following switching operation. Fix an ordered edge \(\{w,x\} \) in \(H \setminus G \) which is disjoint from \(e = \{u,v\} \) and such that there are no edges between \(\{u,v\} \) and \(\{w,x\} \) and replace the edges \(\{u,v\} \) and \(\{w,x\} \) by \(\{u,w\} \) and \(\{v,x\} \) to obtain \(H' \). Writing \(f(H) \) for the number of graphs \(H' \in G_{e \notin} \) which can be obtained from \(H \) by a switching, and \(b(H') \) for the number of graphs \(H \in G_{e \in} \) such that \(H' \) can be obtained \(H \) by a switching, we get that

\[
|G_{e \in}| \min_H f(H) \leq |E(B)| \leq |G_{e \notin}| \max_{H'} b(H'). \quad (11.37)
\]

We have \(b(H') \leq \deg_{H'}(u) \deg_{H'}(v) \leq r^2 \). On the other hand, recalling that \(t \leq (1 - \varepsilon)M \), for every \(H \in G_{e \in} \) we get

\[
f(H) \geq M - t - 2r^2 \geq \varepsilon M \left(1 - \frac{2r^2}{\varepsilon M}\right) \geq \frac{\varepsilon M}{2},
\]

because, assuming \(C' \geq 8 \), we have

\[
\frac{2r^2}{\varepsilon M} \leq \frac{4r}{C'n} \leq \frac{4}{C'} \leq \frac{1}{2}.
\]

Therefore (11.37) implies that

\[
P(e \in G_G) \leq \frac{|G_{e \in}|}{|G_{e \notin}|} \leq \frac{2r^2}{\varepsilon M} = \frac{4r}{\varepsilon n};
\]

which concludes the proof of (11.35).

To prove (11.36), fix \(u,v \in [n] \) and define the families

\[
\mathcal{G}(l) = \left\{H \in G_G(n,r) : \deg_{H[G]}(u,v) = l\right\}, \quad l = 0,1,\ldots.
\]

We compare sizes of \(\mathcal{G}(l) \) and \(\mathcal{G}(l-1) \) in a similar way as above. For this we define the following switching which maps a graph \(H \in \mathcal{G}(l) \) to a graph \(H' \in \mathcal{G}(l-1) \). Select a vertex \(w \) contributing to \(\deg_{H[G]} \), that is, such that \(\{u,w\} \in H \setminus G \) and \(\{v,w\} \in H \); pick an ordered pair \(u',w' \in [n] \setminus \{u,v,w\} \) such that \(\{u',w'\} \in H \setminus G \) and there are no edges of \(H \) between \(\{u,v,w\} \) and \(\{u',w'\} \); replace edges \(\{u,w\} \) and \(\{u',w'\} \) by \(\{u,u'\} \) and \(\{w,w'\} \) (see Figure 11.6).
Figure 11.6: Switching between \(G(l) \) and \(G(l-1) \): Before and after.

The number of ways to apply a forward switching to \(H \) is

\[
f(H) \geq 2l(M - t - 3r^2) \geq 2l\epsilon M \left(1 - \frac{3r^2}{\epsilon M}\right) \geq l\epsilon M,
\]
since, assuming \(C' \geq 12 \) we have

\[
\frac{3r^2}{\epsilon M} = \frac{6r}{\epsilon n} \leq \frac{6}{C'} \left(\frac{r}{n} \right)^{2/3} \leq \frac{1}{2},
\]
and the number of ways to apply a backward switching is \(b(H) \leq r^3 \). So,

\[
\frac{|G(l)|}{|G(l-1)|} \leq \frac{\max_{H \in G(l-1)} b(H)}{\min_{H \in G(l)} f(H)} \leq \frac{2r^2}{\epsilon ln} \leq \frac{1}{2},
\]
by the assumption \(l \geq l_0 := 4r^2/(\epsilon n) \). Then

\[
\mathbb{P}\left(\deg_{G_G|G}(u, v) > l \right) \leq \sum_{i \geq 1} \frac{|G(i)|}{|G_G(n, r)|} \leq \sum_{i \geq 1} \frac{|G(i)|}{|G(l_0)|} \leq \sum_{i \geq 1} \prod_{j = l_0+1}^i \frac{|G(j)|}{|G(j-1)|} \leq \sum_{i \geq l} 2^{-i-l_0} = 2^{-i-l_0},
\]
which completes the proof of (11.36).

For the last lemma, which will be directly used in Lemma 11.18, we need to provide a few more definitions regarding random \(r \)-regular multigraphs.

Let \(G \) be an ordered graph with \(t \) edges. Let \(M_G(n, r) \) be a random multigraph extension of \(G \) to an ordered \(r \)-regular multigraph. Namely, \(M_G(n, r) \) is a sequence of \(M \) edges (some of which may be loops), the first \(t \) of which comprise \(G \), while the remaining ones are generated by taking a uniform random permutation \(\Pi \) of the multiset \(\{1, \ldots, 1, \ldots, n, \ldots, n\} \) with multiplicities \(r - \deg_G(v), v \in [n] \), and splitting it into consecutive pairs.

Recall that the number of such permutations is

\[
N_G := \frac{(2(M-t))!}{\prod_{v \in [n]} (r - \deg_G(v))!},
\]
and note that if a multigraph extension H of G has l loops, then
\[\mathbb{P}(M_G(n, r) = H) = 2^{M - l}/N_G. \] (11.38)
Thus, $M_G(n, r)$ is not uniformly distributed over all multigraph extensions of G, but it is uniform over $\mathcal{G}_G(n, r)$. Thus, $M_G(n, r)$, conditioned on being simple, has the same distribution as $G_G(n, r)$. Further, for every edge $e \notin G$, let us write
\[M_e = M_{G,e}(n, r) \quad \text{and} \quad G_e = G_{G,e}(n, r). \] (11.39)
The next claim shows that the probabilities of simplicity $\mathbb{P}(M_e \in G_e)$ are asymptotically the same for all $e \notin G$.

Lemma 11.21. Let G be a graph with $t \leq (1 - \epsilon)M$ edges such that $\mathcal{G}_G(n, r)$ is nonempty. If $\Delta_G \leq (1 - \epsilon/2)r$, then for every $e', e'' \notin G$ we have
\[\mathbb{P}(M_{e'} \in G_{e'}) \geq 1 - \frac{\epsilon}{2}. \]

Proof. Set
\[M' = M_{e'}, \quad M'' = M_{e''}, \quad G' = G_{e'}, \quad \text{and} \quad G'' = G_{e''}, \] (11.40)
for convenience. We start by constructing a coupling of M' and M'' in which they differ in at most three positions (counting in the replacement of e' by e'' at the $(t + 1)$st position).

Let $e' = \{u', v'\}$ and $e'' = \{u'', v''\}$. Suppose first that e' and e'' are disjoint. Let Π' be the permutation underlying the multigraph M'. Let Π'' be obtained from Π' by replacing a uniform random copy of u'' by u' and a uniform random copy of v'' by v'. If e' and e'' share a vertex, then assume, without loss of generality, that $v' = v''$, and define Π'' by replacing only a random u'' in Π' by u'. Then define M'' by splitting Π'' into consecutive pairs and appending them to $G \cup e''$.

It is easy to see that Π'' is uniform over permutations of the multiset $\{1, \ldots, 1, \ldots, n, \ldots, n\}$ with multiplicities $d - \deg_{G_G,e''}(v), v \in [n]$, and therefore M'' has the same distribution as M''. Thus, we will further identify M' and M''.

Observe that if we condition M' on being a simple graph H, then $M'' = M''$ can be equivalently obtained by choosing an edge incident to u'' in $H \setminus (G \cup e')$ uniformly at random, say, $\{u'', w\}$, and replacing it by $\{u', w\}$, and then repeating this operation for v'' and v'. The crucial idea is that such a switching of edges is unlikely to create loops or multiple edges.

It is, however, possible, that for certain H this is not true. For example, if $e'' \in H \setminus (G \cup e')$, then the random choice of two edges described above is unlikely to destroy this e'', but e' in the non-random part will be replaced by e'', thus creating a double edge e''. Moreover, if almost every neighbor of u'' in $H \setminus (G \cup e')$ is also a neighbor of u', then most likely the replacement of u'' by u' will create a double edge. To avoid such instances, we want to assume that
CHAPTER 11. FIXED DEGREE SEQUENCE

(i) $e'' \not\in H$

(ii) $\max \left(\deg_{H\setminus G}(u', u''), \deg_{H\setminus G}(v', v'') \right) \leq l_0 + \log_2 n,$

where $l_0 = 4r^2/\varepsilon n$ is as in Lemma 11.20. Define the following subfamily of simple extensions of $G \cup e'$:

$$\G_{\text{nice}}' = \{ H \in \G : H \text{ satisfies (i) and (ii)} \}.$$

Since M', conditioned on $M' \in \G'$, is distributed as $G_{G', G} \cup e' \binom{n}{r}$, by Lemma 11.20 and the assumption (11.29) with $C' \geq 20$,

$$\Pr(M' \not\in \G_{\text{nice}}' \mid M' \in \G') = \Pr(G_{G', G}(n, r) \not\in \G_{\text{nice}}') \leq \frac{4r}{\varepsilon n} + 2 \cdot 2^{-\log_2 n} \leq \frac{\varepsilon}{4}. \quad (11.41)$$

We have

$$\Pr(M'' \in \G'' \mid M' \in \G_{\text{nice}}') \Pr(M' \in \G_{\text{nice}}' \mid M' \in \G') = \frac{\Pr(M'' \in \G'', M' \in \G_{\text{nice}}', M' \in \G')}{\Pr(M' \in \G_{\text{nice}}')} \cdot \frac{\Pr(M' \in \G_{\text{nice}}', M' \in \G')}{\Pr(M' \in \G')} \leq \frac{\Pr(M'' \in \G'')}{\Pr(M' \in \G')} \cdot \frac{\Pr(M' \in \G_{\text{nice}}')}{\Pr(M' \in \G')}. \quad (11.42)$$

To complete the proof of the claim, it suffices to show that

$$\Pr(M'' \in \G'' \mid M' \in \G_{\text{nice}}') \geq 1 - \frac{\varepsilon}{4}, \quad (11.43)$$

since plugging (11.41) and (11.43) into (11.42) will complete the proof of the statement.

To prove (11.43), fix $H \in \G_{\text{nice}}'$ and condition on $M' = H$. A loop can only be created in M'' when u'' is incident to u' in $H \setminus (G \cup e')$ and the randomly chosen edge is $\{u', u''\}$, or, provided $v' \neq v''$, when v'' is incident to v' in $H \setminus (G \cup e')$ and we randomly choose $\{v', v''\}$. Therefore, recalling that $\Delta \leq (1 - \varepsilon/2)r$, we get

$$\Pr(M'' \text{ has a loop} \mid M' = H) \leq \frac{1}{\deg_{H\setminus (G \cup e')}(u'')} + \frac{1}{\deg_{H\setminus (G \cup e')}(v'')} \leq \frac{4}{\varepsilon r} \leq \frac{\varepsilon}{8}, \quad (11.44)$$

where the second term is present only if $e' \cap e'' = \emptyset$, and the last inequality is implied by (11.29).
11.5. $\mathbb{G}_{N,R}$ VERSUS $\mathbb{G}_{N,P}$

A multiple edge can be created in three ways: (i) by choosing, among the edges incident to u'', an edge $\{u'', w\} \in H \setminus (G \cup e')$ such that $\{u', w\} \in H$; (ii) similarly for v'' (if $v' \neq v''$); (iii) choosing both edges $\{u'', v'\}$ and $\{v'', u'\}$ (provided they exist in $H \setminus (G \cup e')$). Therefore, by (ii) and assumption $\Delta_G \leq (1 - \varepsilon/2)r$,

$$\Pr(\mathcal{M}'' \text{ has a multiple edge } | \mathcal{M}' = H) \leq \frac{\deg_{H\setminus(G \cup e')}(u'', u')}{\deg_{H\setminus(G \cup e')}(u'')} + \frac{\deg_{H\setminus(G \cup e')}(v'', v')}{\deg_{H\setminus(G \cup e')}(v'')} + \frac{1}{\deg_{H\setminus(G \cup e')}(u'')} \deg_{H\setminus(G \cup e')}(v'') \leq 2\left(\frac{8r}{\varepsilon^2 n} + \frac{2\log_2 n}{\varepsilon r} + \frac{4}{\varepsilon^2 r^2}\right) \leq \frac{\varepsilon}{8}, \quad (11.45)$$

because (11.29) implies $\varepsilon > C' (r/n)^{1/3}$ and

$$\varepsilon > C' (\log n/r)^{1/3} > C' (\log n/r)^{1/2}$$

and we can choose arbitrarily large C'. (Again, in case when $|e' \cap e''| = 1$, the R-H-S of (11.45) reduces to only the first summand.)

Combining (11.44) and (11.45), we have shown (11.43). \hfill \Box

Proof of Lemma 11.18. In view of Lemma 11.19 it suffices to show that

$$\Pr(\eta_{t+1} = e | \mathcal{G}_r(t) = G) \geq \frac{1 - \varepsilon}{(n/2) - t}, \quad e \notin G,$$

for every $t \leq (1 - \varepsilon)M$ and G such that

$$r(\tau + \delta) \geq r - \deg_G(v) \geq r(\tau - \delta) \geq \frac{\varepsilon r}{2}, \quad v \in [n], \quad (11.46)$$

where

$$\tau = 1 - t/M, \quad \delta = 6\sqrt{\tau \log n/r}.$$

For every $e', e'' \notin G$ we have (recall the definitions (11.39) and (11.40))

$$\frac{\Pr(\eta_{t+1} = e'' | \mathcal{G}_r(t) = G)}{\Pr(\eta_{t+1} = e' | \mathcal{G}_r(t) = G)} = \frac{|\mathcal{G}_{G, \omega''}(n, r)|}{|\mathcal{G}_{G, \omega'}(n, r)|} = \frac{|\mathcal{G}''|}{|\mathcal{G}'|}, \quad (11.47)$$

By (11.38) we have

$$\Pr(\mathcal{M}' \in \mathcal{G}') = \frac{|\mathcal{G}'| 2^{M-t}}{N_G} = \frac{|\mathcal{G}'| 2^{M-t} \prod_{v \in [n]} (r - \deg_{G \cup e'}(v))!}{(2(M-t))!},$$
and similarly for the family \mathcal{G}''. This yields, after a few cancellations, that

$$\frac{|\mathcal{G}''|}{|\mathcal{G}|} = \prod_{v \in e'' \setminus e'} (r - \deg_G(v)) \prod_{v \in e' \setminus e''} (r - \deg_G(v)) \cdot \frac{\mathbb{P}(M'' \in \mathcal{G}'')}{\mathbb{P}(M' \in \mathcal{G})} \tag{11.48}$$

By (11.46), the ratio of products in (11.48) is at least

$$\left(\frac{\tau - \delta}{\tau + \delta}\right)^2 \geq \left(1 - \frac{2\delta}{\tau}\right)^2 \geq 1 - 24\sqrt{\frac{\log n}{\tau r}} \geq 1 - 24\sqrt{\frac{\log n}{\varepsilon r}} \geq 1 - \frac{\varepsilon}{2},$$

where the last inequality holds by the assumption (11.29). Since by Lemma 11.21 the ratio of probabilities in (11.48) is

$$\frac{\mathbb{P}(M'' \in \mathcal{G}'')}{\mathbb{P}(M' \in \mathcal{G})} \geq 1 - \frac{\varepsilon}{2},$$

we have obtained that

$$\frac{\Pr(\eta_{t+1} = e'' \mid \mathcal{G}_r(t) = G)}{\Pr(\eta_{t+1} = e' \mid \mathcal{G}_r(t) = G)} \geq 1 - \varepsilon.$$

Finally, noting that

$$\max_{e' \notin \mathcal{G}} \Pr(\eta_{t+1} = e' \mid \mathcal{G}_r(t) = G)$$

is at least as large as the average over all $e' \notin G$, which is $\frac{1}{\binom{n}{2}-t}$, we conclude that for every $e \notin G$

$$\Pr(\eta_{t+1} = e \mid \mathcal{G}_r(t) = G) \geq (1 - \varepsilon) \max_{e' \notin \mathcal{G}} \Pr(\eta_{t+1} = e' \mid \mathcal{G}_r(t) = G) \geq \frac{1 - \varepsilon}{\binom{n}{2}-t},$$

which finishes the proof.

\[\square \]

11.6 Exercises

11.6.1 Show that w.h.p. a random 2-regular graph on n vertices consists of $O(\log n)$ vertex disjoint cycles.

11.6.2 Suppose that in the notation of Theorem 11.11, $\lambda_1 = 0, \lambda_2 < 1$. Show that w.h.p. $\mathcal{G}_{n,d}$ consists of a giant component plus a collection of small components of size $O(\log n)$.
11.6. EXERCISES

11.6.3 Let H be a subgraph of $G_{n,r}$, $r \geq 3$ obtained by independently including each vertex with probability $\frac{1+\epsilon}{r-1}$, where $\epsilon > 0$ is small and positive. Show that w.h.p. H contains a component of size $\Omega(n)$.

11.6.4 Let $x = (x_1, x_2, \ldots, x_{2m})$ be chosen uniformly at random from $[n]^{2m}$. Let G_x be the multigraph with vertex set $[n]$ and edges $(x_{2i-1}, x_{2i}), i = 1, 2, \ldots, m$. Let $d_x(i)$ be the number of times that i appears in x. Show that conditional on $d_x(i) = d_i$, $i \in [n]$, G_x has the same distribution as the multigraph $\gamma(F)$ of Section 11.1.

11.6.5 Suppose that we condition on $d_x(i) \geq k$ for some non-negative integer k. For $r \geq 0$, let

$$f_r(x) = e^x - 1 - \cdots - \frac{x^{k-1}}{(k-1)!}.$$

Let Z be a random variable taking values in $\{k, k+1, \ldots\}$ such that

$$\mathbb{P}(Z = i) = \frac{\lambda^i e^{-\lambda}}{i! f_k(\lambda)}$$ for $i \geq k,$

where λ is arbitrary and positive.

Show that the degree sequence of G_x is distributed as independent copies Z_1, Z_2, \ldots, Z_n of Z, subject to $Z_1 + Z_2 + \cdots + Z_n = 2m$.

11.6.6 Show that

$$\mathbb{E}(Z) = \frac{\lambda f_{k-1}(\lambda)}{f_k(\lambda)}.$$

Show using the Local Central Limit Theorem (see e.g. Durrett [274]) that if $\mathbb{E}(Z) = \frac{2m}{n}$ then

$$\mathbb{P} \left(\sum_{j=1}^{n} Z_j = 2m - k \right) = \frac{1}{\sigma \sqrt{2\pi n}} \left(1 + O\left((k^2 + 1)\nu^{-1}\sigma^{-2}\right) \right)$$

where $\sigma^2 = \mathbb{E}(Z^2) - \mathbb{E}(Z)^2$ is the variance of Z.

11.6.7 Use the model of (i)–(iii) to show that if $c = 1 + \epsilon$ and ϵ is sufficiently small and $\omega \to \infty$ then w.h.p. the 2-core of $G_{n,p}, p = c/n$ does not contain a cycle C, $|C| = \omega$ in which more than 10% of the vertices are of degree three or more.
11.6.8 Let $G = G_{n,r}, r \geq 3$ be the random r-regular configuration multigraph of Section 11.2. Let X denote the number of Hamilton cycles in G. Show that
$$E(X) \approx \sqrt{\frac{\pi}{2n}} \left((r-1) \left(\frac{r-2}{r} \right)^{(r-2)/2} \right)^n.$$

11.6.9 Show that if graph $G = G_1 \cup G_2$ then its rainbow connection satisfies $rc(G) \leq rc(G_1) + rc(G_2) + |E(G_1) \cap E(G_2)|$. Using the contiguity of $G_{n,r}$ to the union of r independent matchings, (see Chapter 20), show that $rc(G_{n,r}) = O(\log r n)$ for $r \geq 6$.

11.6.10 Show that w.h.p. $G_{n,3}$ is not planar.

11.7 Notes

Giant Components and Cores

Hatami and Molloy [414] discuss the size of the largest component in the scaling window for a random graph with a fixed degree sequence.

Cooper [210] and Janson and Łuczak [446] discuss the sizes of the cores of random graphs with a given degree sequence.

Hamilton cycles

Robinson and Wormald [677], [680] showed that random r-regular graphs are Hamiltonian for $3 \leq r = O(1)$. In doing this, they introduced the important new method of small subgraph conditioning. It is a refinement on the Chebyshev inequality. Somewhat later Cooper, Frieze and Reed [235] and Krivelevich, Sudakov, Vu Wormald [532] removed the restriction $r = O(1)$. Frieze, Jerrum, Molloy, Robinson and Wormald [346] gave a polynomial time algorithm that w.h.p. finds a Hamilton cycle in a random regular graph. Cooper, Frieze and Krivelevich [229] considered the existence of Hamilton cycles in $G_{n,d}$ for certain classes of degree sequence.

Chromatic number

Frieze and Łuczak [355] proved that w.h.p. $\chi(G_{n,r}) = (1 + o_r(1)) \frac{r}{2\log r}$ for $r = O(1)$. Here $o_r(1) \to 0$ as $r \to \infty$. Achlioptas and Moore [5] determined the chromatic number of a random r-regular graph to within three values, w.h.p. Kemkes, Pérez-Giménez and Wormald [498] reduced the range to two values. Shi and
11.7. NOTES

Wormald [713], [714] consider the chromatic number of $G_{n,r}$ for small r. In particular they show that w.h.p. $\chi(G_{n,4}) = 3$. Frieze, Krivelevich and Smyth [350] gave estimates for the chromatic number of $G_{n,d}$ for certain classes of degree sequence.

Eigenvalues

The largest eigenvalue of the adjacency matrix of $G_{n,r}$ is always r. Kahn and Szemerédi [475] showed that w.h.p. the second eigenvalue is of order $O(r^{1/2})$. Friedman [331] proved that w.h.p. the second eigenvalue is at most $2(r-1)^{1/2} + o(1)$. Broder, Frieze, Suen and Upfal [169] considered $G_{n,d}$ where $C^{-1}d \leq d_i \leq Cd$ for some constant $C > 0$ and $d \leq n^{1/10}$. They show that w.h.p. the second eigenvalue of the adjacency matrix is $O(d^{1/2})$.

First Order Logic

Haber and Krivelevich [406] studied the first order language on random d-regular graphs. They show that if $r = \Omega(n)$ or $r = n^\alpha$ where α is irrational, then $G_{n,r}$ obeys a 0-1 law.

Rainbow Connection

Dudek, Frieze and Tsourakakis [268] studied the rainbow connection of random regular graphs. They showed that if $4 \leq r = O(1)$ then $rc(G_{n,r}) = O(\log n)$. This is best possible up to constants, since $rc(G_{n,r}) \geq diam(G_{n,r}) = \Omega(\log n)$. Kamčev, Krivelevich and Sudakov [478] gave a simpler proof when $r \geq 5$, with a better hidden constant.
Chapter 12

Intersection Graphs

Let G be a (finite, simple) graph. We say that G is an intersection graph if we can assign to each vertex $v \in V(G)$ a set S_v, so that $\{v,w\} \in E(G)$ exactly when $S_v \cap S_w \neq \emptyset$. In this case, we say G is the intersection graph of the family of sets $\mathcal{S} = \{S_v : v \in V(G)\}$.

Although all graphs are intersection graphs (see Marczewski [575]) some classes of intersection graphs are of special interest. Depending on the choice of family \mathcal{S}, often reflecting some geometric configuration, one can consider, for example, interval graphs defined as the intersection graphs of intervals on the real line, unit disc graphs defined as the intersection graphs of unit discs on the plane etc. In this chapter we will discuss properties of random intersection graphs, where the family \mathcal{S} is generated in a random manner.

12.1 Binomial Random Intersection Graphs

Binomial random intersection graphs were introduced by Karoński, Scheinerman and Singer-Cohen in [490] as a generalisation of the classical model of the binomial random graph $G_{n,p}$.

Let n,m be positive integers and let $0 \leq p \leq 1$. Let $V = \{1,2,\ldots,n\}$ be the set of vertices and for every $1 \leq k \leq n$, let S_k be a random subset of the set $M = \{1,2,\ldots,m\}$ formed by selecting each element of M independently with probability p. We define a binomial random intersection graph $G(n,m,p)$ as the intersection graph of sets S_k, $k = 1,2,\ldots,n$. Here S_1,S_2,\ldots,S_n are generated independently. Hence two vertices i and j are adjacent in $G(n,m,p)$ if and only if $S_i \cap S_j \neq \emptyset$.

There are other ways to generate binomial random intersection graphs. For example, we may start with a classical bipartite random graph $G_{n,m,p}$, with vertex
set bipartition

\[(V, M), V = \{1, 2, \ldots, n\}, M = \{1, 2, \ldots, m\},\]

where each edge between \(V\) and \(M\) is drawn independently with probability \(p\). Next, one can generate a graph \(G(n, m, p)\) with vertex set \(V\) and vertices \(i\) and \(j\) of \(G(n, m, p)\) connected if and only if they share a common neighbor (in \(M\)) in the random graph \(G_{n,m,p}\). Here the graph \(G_{n,m,p}\) is treated as a generator of \(G(n, m, p)\).

One observes that the probability that there is an edge \(\{i, j\}\) in \(G(n, m, p)\) equals \(1 - (1 - p^2)^m\), since the probability that sets \(S_i\) and \(S_j\) are disjoint is \((1 - p^2)^m\), however, in contrast with \(G_{n,p}\), the edges do not occur independently of each other.

Another simple observation leads to some natural restrictions on the choice of probability \(p\). Note that the expected number of edges of \(G(n, m, p)\) is,

\[
\left(\binom{n}{2}\right)(1 - (1 - p^2)^m) \approx n^2 mp^2,
\]

provided \(mp^2 \to 0\) as \(n \to \infty\). Therefore, if we take \(p = o((n \sqrt{m})^{-1})\) then the expected number of edges of \(G(n, m, p)\) tends to 0 as \(n \to \infty\) and therefore w.h.p. \(G(n, m, p)\) is empty.

On the other hand the expected number of non-edges in \(G(n, m, p)\) is

\[
\left(\binom{n}{2}\right)(1 - p^2)^m \leq n^2 e^{-mp^2}.
\]

Thus if we take \(p = (2\log n + \omega(n))/m^{1/2}\), where \(\omega(n) \to \infty\) as \(n \to \infty\), then the random graph \(G(n, m, p)\) is complete w.h.p. One can also easily show that when \(\omega(n) \to -\infty\) then \(G(n, m, p)\) is w.h.p. not complete. So, when studying the evolution of \(G(n, m, p)\) we may restrict ourselves to values of \(p\) in the range between \(\omega(n)/(n \sqrt{m})\) and \(((2\log n - \omega(n))/m)^{1/2}\), where \(\omega(n) \to \infty\).

Equivalence

One of the first interesting problems to be considered is the question as to when the random graphs \(G(n, m, p)\) and \(G_{n,p}\) have asymptotically the same properties. Intuitively, it should be the case when the edges of \(G(n, m, p)\) occur “almost independently”, i.e., when there are no vertices of degree greater than two in \(M\) in the generator \(G_{n,m,p}\) of \(G(n, m, p)\). Then each of its edges is induced by a vertex of degree two in \(M\), “almost” independently of other edges. One can show that this happens w.h.p. when \(p = o\left(1/(nm^{1/3})\right)\), which in turn implies that both random
graphs are asymptotically equivalent for all graph properties \mathcal{P}. Recall that a graph property \mathcal{P} is defined as a subset of the family of all labeled graphs on vertex set $[n]$, i.e., $\mathcal{P} \subseteq 2^{[n]}$. The following equivalence result is due to Rybarczyk [692] and Fill, Scheinerman and Singer-Cohen [311].

Theorem 12.1. Let $0 \leq a \leq 1$, \mathcal{P} be any graph property, $p = o\left(1/(nm^{1/3})\right)$ and

$$\hat{p} = 1 - \exp\left(-mp^2(1 - p)^{n-2}\right).$$

(12.1)

Then

$$\mathbb{P}(G_{n,\hat{p}} \in \mathcal{P}) \rightarrow a$$

if and only if

$$\mathbb{P}(G(n, m, p) \in \mathcal{P}) \rightarrow a$$

as $n \rightarrow \infty$.

Proof. Let X and Y be random variables taking values in a common finite (or countable) set S. Consider the probability measures $\mathcal{L}(X)$ and $\mathcal{L}(Y)$ on S whose values at $A \subseteq S$ are $\mathbb{P}(X \in A)$ and $\mathbb{P}(Y \in A)$. Define the total variation distance between $\mathcal{L}(X)$ and $\mathcal{L}(Y)$ as

$$d_{TV}(\mathcal{L}(X), \mathcal{L}(Y)) = \sup_{A \subseteq S} |\mathbb{P}(X \in A) - \mathbb{P}(Y \in A)|,$$

which is equivalent to

$$d_{TV}(\mathcal{L}(X), \mathcal{L}(Y)) = \frac{1}{2} \sum_{s \in S} |\mathbb{P}(X = s) - \mathbb{P}(Y = s)|.$$

Notice (see Fact 4 of [311]) that if there exists a probability space on which random variables X' and Y' are both defined, with $\mathcal{L}(X) = \mathcal{L}(X')$ and $\mathcal{L}(Y) = \mathcal{L}(Y')$, then

$$d_{TV}(\mathcal{L}(X), \mathcal{L}(Y)) \leq \mathbb{P}(X' \neq Y').$$

(12.2)

Furthermore (see Fact 3 in [311]) if there exist random variables Z and Z' such that $\mathcal{L}(X|Z = z) = \mathcal{L}(Y|Z' = z)$, for all z, then

$$d_{TV}(\mathcal{L}(X), \mathcal{L}(Y)) \leq 2d_{TV}(\mathcal{L}(Z), \mathcal{L}(Z')).$$

(12.3)

We will need one more observation. Suppose that a random variable X has distribution the Bin(n, p), while a random variable Y has the Poisson distribution, and $\mathbb{E}X = \mathbb{E}Y$. Then

$$d_{TV}(X, Y) = O(p).$$

(12.4)
We leave the proofs of (12.2), (12.3) and (12.4) as exercises.

To prove Theorem 12.1 we also need some auxiliary results on a special coupon collector scheme.

Let \(Z \) be a non-negative integer valued random variable, \(r \) a non-negative integer and \(\gamma \) a real, such that \(r\gamma \leq 1 \). Assume we have \(r \) coupons \(Q_1, Q_2, \ldots, Q_r \) and one blank coupon \(B \). We make \(Z \) independent draws (with replacement), such that in each draw,

\[\mathbb{P}(Q_i \text{ is chosen}) = \gamma, \quad \text{for } i = 1, 2, \ldots, r, \]

and

\[\mathbb{P}(B \text{ is chosen}) = 1 - r\gamma. \]

Let \(N_i(Z), i = 1, 2, \ldots, r \) be a random variable counting the number of times that coupon \(Q_i \) was chosen. Furthermore, let

\[X_i(Z) = \begin{cases} 1 & \text{if } N_i(Z) \geq 1, \\ 0 & \text{otherwise}. \end{cases} \]

The number of different coupons selected is given by

\[X(Z) = \sum_{i=1}^{r} X_i(Z). \] (12.5)

With the above definitions we observe that the following holds.

Lemma 12.2. If a random variable \(Z \) has the Poisson distribution with expectation \(\lambda \), then \(N_i(Z), i = 1, 2, \ldots, r, \) are independent and identically Poisson distributed random variables, with expectation \(\lambda\gamma \). Moreover the random variable \(X(Z) \) has the distribution \(\text{Bin}(r, 1 - e^{-\lambda\gamma}) \).

Let us consider the following special case of the scheme defined above, assuming that \(r = \binom{n}{2} \) and \(\gamma = 1/\binom{n}{2} \). Here each coupon represents a distinct edge of \(K_n \).

Lemma 12.3. Suppose \(p = o(1/n) \) and let a random variable \(Z \) be the \(\text{Bin}\left(m, \binom{n}{2} p^2 (1-p)^{n-2}\right) \) distributed, while a random variable \(Y \) be the \(\text{Bin}\left(\binom{n}{2}, 1 - e^{-mp^2(1-p)^{n-2}}\right) \) distributed. Then

\[d_{TV}(\mathcal{L}(X(Z)), \mathcal{L}(Y)) = o(1). \]

Proof. Let \(Z' \) be a Poisson random variable with the same expectation as \(Z \), i.e.,

\[\mathbb{E} Z' = m \binom{n}{2} p^2 (1-p)^{n-2}. \]
By Lemma 12.2, \(X(Z') \) has the binomial distribution

\[
\text{Bin}\left(\binom{n}{2}, 1 - e^{-mp^2(1-p)^n-2} \right),
\]

and so, by (12.3) and (12.4), we have

\[
d_{TV}(\mathcal{L}(Y), \mathcal{L}(X(Z)))
\]

\[
= d_{TV}(\mathcal{L}(X(Z')), \mathcal{L}(X(Z))) \leq 2d_{TV}(\mathcal{L}(Z'), \mathcal{L}(Z)) \leq O\left(\binom{n}{2} p^2 (1 - p)^n \right) = O\left(n^2 p^2 \right) = o(1).
\]

Now define a random intersection graph \(G_2(n, m, p) \) as follows. Its vertex set is \(V = \{1, 2, \ldots, n\} \), while \(e = \{i, j\} \) is an edge in \(G_2(n, m, p) \) iff in a (generator) bipartite random graph \(\mathbb{G}_{n, m, p} \), there is a vertex \(w \in M \) of degree two such that both \(i \) and \(j \) are connected by an edge with \(w \).

To complete the proof of our theorem, notice that,

\[
d_{TV}(\mathcal{L}(G(n, m, p)), \mathcal{L}(\mathbb{G}_{n, \hat{p}})) \leq d_{TV}(\mathcal{L}(G(n, m, p)), \mathcal{L}(G_2(n, m, p))) + d_{TV}(\mathcal{L}(G_2(n, m, p)), \mathcal{L}(\mathbb{G}_{n, \hat{p}}))\]

where \(\hat{p} \) is defined in (12.1). Now, by (12.2)

\[
d_{TV}(\mathcal{L}(G(n, m, p)), \mathcal{L}(G_2(n, m, p)))
\]

\[
\leq \mathbb{P}(\mathcal{L}(G(n, m, p)) \neq \mathcal{L}(G_2(n, m, p)))
\]

\[
\leq \mathbb{P}(\exists w \in M \text{ of } \mathbb{G}_{n, m, p} \text{ s.t. } \deg(w) > 2) \leq m\binom{n}{3} p^3 = o(1),
\]

for \(p = o\left(1/\left(nm^{1/3}\right)\right) \).

Hence it remains to show that

\[
d_{TV}(\mathcal{L}(G_2(n, m, p)), \mathcal{L}(\mathbb{G}_{n, \hat{p}})) = o(1). \tag{12.6}
\]

Let \(Z \) be distributed as \(\text{Bin}\left(m, \binom{n}{2} p^2 (1 - p)^n \right) \). \(X(Z) \) is defined as in (12.5) and let \(Y \) be distributed as \(\text{Bin}\left(\binom{n}{2}, 1 - e^{-mp^2(1-p)^n-2} \right) \). Then the number of edges \(|E(G_2(n, m, p))| = X(Z) \) and \(|E(\mathbb{G}_{n, \hat{p}})| = Y \). Moreover for any two graphs \(G \) and \(G' \) with the same number of edges

\[
\mathbb{P}(G_2(n, m, p) = G) = \mathbb{P}(G_2(n, m, p) = G').
\]
CHAPTER 12. INTERSECTION GRAPHS

and
\[\mathbb{P}(G_{n,\hat{p}} = G) = \mathbb{P}(G_{n,\hat{p}} = G'). \]

Equation (12.6) now follows from Lemma 12.3. The theorem follows immediately. \qed

For monotone properties (see Chapter 1) the relationship between the classical binomial random graph and the respective intersection graph is more precise and was established by Rybarczyk [692].

Theorem 12.4. Let \(0 \leq a \leq 1, \ m = n^\alpha, \alpha \geq 3 \). Let \(\mathcal{P} \) be any monotone graph property. For \(\alpha > 3 \), assume
\[\Omega(1/(nm^{1/3})) = p = O(\sqrt{\log n/m}) \]
while for \(\alpha = 3 \) assume \(\left(1/(nm^{1/3}) \right) = o(p). \) Let
\[\hat{p} = 1 - \exp \left(-mp^2 (1 - p)^{n-2} \right). \]

If for all \(\varepsilon = \varepsilon(n) \to 0 \)
\[\mathbb{P}(G_{n,(1+\varepsilon)\hat{p}} \in \mathcal{P}) \to a, \]
then
\[\mathbb{P}(G(n,m,p) \in \mathcal{P}) \to a \]
as \(n \to \infty. \)

Small subgraphs

Let \(H \) be any fixed graph. A *clique cover* \(\mathcal{C} \) is a collection of subsets of vertex set \(V(H) \) such that, each induces a complete subgraph (clique) of \(H \), and for every edge \(\{u,v\} \in E(H) \), there exists \(C \in \mathcal{C} \), such that \(u,v \in C \). Hence, the cliques induced by sets from \(\mathcal{C} \) exactly cover the edges of \(H \). A clique cover is allowed to have more than one copy of a given set. We say that \(\mathcal{C} \) is *reducible* if for some \(C \in \mathcal{C} \), the edges of \(H \) induced by \(C \) are contained in the union of the edges induced by \(\mathcal{C} \setminus C \), otherwise \(\mathcal{C} \) is *irreducible*. Note that if \(C \in \mathcal{C} \) and \(\mathcal{C} \) is irreducible, then \(|C| \geq 2. \)

In this section, \(|\mathcal{C}| \) stands for the number of cliques in \(\mathcal{C} \), while \(\sum \mathcal{C} \) denotes the sum of clique sizes in \(\mathcal{C} \), and we put \(\sum \mathcal{C} = 0 \) if \(\mathcal{C} = \emptyset \).

Let \(\mathcal{C} = \{C_1,C_2,\ldots,C_k\} \) be a clique cover of \(H \). For \(S \subseteq V(H) \) define the following two *restricted clique covers*

\[\mathcal{C}_t[S] := \{C_t \cap S : |C_t \cap S| \geq t, \ i = 1,2,\ldots,k\}, \]
where \(t = 1, 2 \). For a given \(S \) and \(t = 1, 2 \), let
\[
\tau_t = \tau_t(H, \mathcal{C}, S) = \left(n^{|S|}/\sum_{\mathcal{C}}[S]/m^{|\mathcal{C}||S|}/\sum_{\mathcal{C}}|S| \right)^{-1}.
\]
Finally, let
\[
\tau(H) = \min_{\mathcal{C}} \max_{S \subseteq V(H)} \{ \tau_1, \tau_2 \},
\]
where the minimum is taken over all clique covers \(\mathcal{C} \) of \(H \). We can in this calculation restrict our attention to irreducible covers.

Karoński, Scheinerman and Singer-Cohen [490] proved the following theorem.

Theorem 12.5. Let \(H \) be a fixed graph and \(mp^2 \to 0 \). Then
\[
\lim_{n \to \infty} P(H \subseteq G(n, m, p)) = \begin{cases} 0 & \text{if } p/\tau(H) \to 0 \\ 1 & \text{if } p/\tau(H) \to \infty. \end{cases}
\]

As an illustration, we will use this theorem to show the threshold for complete graphs in \(G(n, m, p) \), when \(m = n^\alpha \), for different ranges of \(\alpha > 0 \).

Corollary 12.6. For a complete graph \(K_h \) with \(h \geq 3 \) vertices and \(m = n^\alpha \), we have
\[
\tau(K_h) = \begin{cases} n^{-1}m^{-1/h} & \text{for } \alpha \leq 2h/(h-1) \\ n^{-1/(h-1)}m^{-1/2} & \text{for } \alpha \geq 2h/(h-1). \end{cases}
\]

Proof. There are many possibilities for clique covers to generate a copy of a complete graph \(K_h \) in \(G(n, m, p) \). However in the case of \(K_h \) only two play a dominating role. Indeed, we will show that for \(\alpha \leq \alpha_0 \), \(\alpha_0 = 2h/(h-1) \) the clique cover \(\mathcal{C} = \{ V(K_h) \} \) composed of one set containing all \(h \) vertices of \(K_h \) only matters, while for \(\alpha \geq \alpha_0 \) the clique cover \(\mathcal{C} = \binom{K_h}{2} \), consisting of \(\binom{h}{2} \) pairs of endpoints of the edges of \(K_h \), takes the leading role.

Let \(V = V(K_h) \) and denote those two clique covers by \(\{ V \} \) and \(\{ E \} \), respectively. Observe that for the cover \(\{ V \} \) the following equality holds.
\[
\max_{S \subseteq V} \{ \tau_1(K_h, \{ V \}, S), \tau_2(K_h, \{ V \}, S) \} = \tau_1(K_h, \{ V \}, V). \tag{12.7}
\]

To see this, check first that for \(|S| = h \),
\[
\tau_1(K_h, \{ V \}, V) = \tau_2(K_h, \{ V \}, V) = n^{-1}m^{-1/h}.
\]
For S of size $|S| = s$, $2 \leq s \leq h - 1$ restricting the clique cover $\{V\}$ to S, gives a single s-clique, so for $t = 1, 2$

$$\tau_t(K_h, \{V\}, S) = n^{-1}m^{-1/s} < n^{-1}m^{-1/h}. $$

Finally, when $|S| = 1$, then $\tau_1 = (nm)^{-1}$, while $\tau_2 = 0$, both smaller than $n^{-1}m^{-1/h}$, and so equation (12.7) follows.

For the edge-clique cover $\{E\}$ we have a similar expression, viz.

$$\max_{S \subseteq V} \{ \tau_1(K_h, \{E\}, S), \tau_2(K_h, \{E\}, S) \} = \tau_1(K_h, \{E\}, V). $$ (12.8)

To see this, check first that for $|S| = h$,

$$\tau_1(K_h, \{E\}, V) = n^{-1/(h-1)}m^{-1/2}. $$

Let $S \subseteq V$, with $s = |S| \leq h - 1$, and consider restricted clique covers with cliques of size at most two, and exactly two.

For τ_1, the clique cover restricted to S is the edge-clique cover of K_s, plus a 1-clique for each of the $h - s$ external edges for each vertex of K_s, so

$$\tau_1(K_h, \{E\}, S) = \left(n^{s/[s(s-1)+s(h-s)]}m^{s(s-1)/[s(s-1)+s(h-s)]}/[s(s-1)+s(h-s)] \right)^{-1} $$

$$= \left(n^{1/(h-1)}m^{h-(s+1)/(h-1)} \right)^{-1} $$

$$\leq \left(n^{1/(h-1)}m^{h/2(h-1)} \right)^{-1} $$

while for τ_2 we have

$$\tau_2(K_h, \{E\}, S) = \left(n^{1/(s-1)m^{1/2}} \right)^{-1} < \left(n^{1/(h-1)m^{1/2}} \right)^{-1},$$

thus verifying equation (12.8).

Let \mathcal{C} be any irreducible clique cover of K_h (hence each clique has size at least two). We will show that for any fixed α

$$\tau_1(K_h, \mathcal{C}, V) \geq \begin{cases} \tau_1(K_h, \{V\}, V) & \text{for } \alpha \leq 2h/(h-1) \\ \tau_1(K_h, \{E\}, V) & \text{for } \alpha \geq 2h/(h-1). \end{cases}$$

Thus,

$$\tau_1(K_h, \mathcal{C}, V) \geq \min \{ \tau_1(K_h, \{V\}, V), \tau_1(K_h, \{E\}, V) \}. $$ (12.9)
Because $m = n^\alpha$ we see that
\[
\tau_1(K_h, C, V) = n^{-x_c(\alpha)},
\]
where
\[
x_c(\alpha) = \frac{h}{\sum C} + \frac{|C|}{\sum C} \alpha, \quad x_{\{V\}}(\alpha) = 1 + \frac{\alpha}{h}, \quad x_{\{E\}}(\alpha) = \frac{1}{h-1} + \frac{\alpha}{2}.
\]
(To simplify notation, below we have replaced $x_{\{V\}}, x_{\{E\}}$ by x_V, x_E, respectively).

Notice, that for $\alpha_0 = 2h/(h - 1)$ exponents
\[
x_V(\alpha_0) = x_E(\alpha_0) = 1 + \frac{2}{h - 1}.
\]
Moreover, for all values of $\alpha < \alpha_0$ the function $x_V(\alpha) > x_E(\alpha)$, while for $\alpha > \alpha_0$ the function $x_V(\alpha) < x_E(\alpha)$.

Now, observe that $x_c(0) = \frac{h}{\sum C} \leq 1$ since each vertex is in at least one clique of C. Hence $x_c(0) \leq x_c(0) = 1$. We will show also that $x_c(\alpha) \leq x_c(\alpha)$ for $\alpha > 0$. To see this we need to bound $|C|/\sum C$.

Suppose that $u \in V(K_h)$ appears in the fewest number of cliques of C, and let r be the number of cliques $C_i \in C$ to which u belongs. Then
\[
\sum C = \sum_{i : C_i \ni u} |C_i| + \sum_{i : C_i \not\ni u} |C_i| \geq ((h - 1) + r) + 2(|C| - r),
\]
where $h - 1$ counts all other vertices aside from u since they must appear in some clique with u.

For any $v \in V(K_h)$ we have
\[
\sum C + |\{i : C_i \ni v\}| - (h - 1) \geq \sum C + r - (h - 1) \\
\geq (h - 1) + r + 2(|C| - r) + r - (h - 1) \\
= 2|C|.
\]
Summing the above inequality over all $v \in V(K_h)$,
\[
h \sum C + \sum C - h(h - 1) \geq 2h|C|,
\]
and dividing both sides by $2h\sum C$, we finally get
\[
|C| \leq \frac{h + 1}{2h} - \frac{h - 1}{2\sum C}.
\]
Now, using the above bound,
\[
x_c(\alpha_0) = \frac{h}{\sum C} + \frac{|C|}{\sum C} \left(\frac{2h}{h - 1}\right).
\]
CHAPTER 12. INTERSECTION GRAPHS

\[\leq \frac{h}{\sum \mathcal{C}} + \left(\frac{h + 1}{2h} - \frac{h - 1}{2 \sum \mathcal{C}} \right) \left(\frac{2h}{h - 1} \right) \]

\[= 1 + \frac{2h - 1}{h - 1} \]

\[= x_V(\alpha_0). \]

Now, since \(x_C(\alpha) \leq x_V(\alpha) \) at both \(\alpha = 0 \) and \(\alpha = \alpha_0 \), and both functions are linear, \(x_C(\alpha) \leq x_V(\alpha) \) throughout the interval \((0, \alpha_0)\).

Since \(x_E(\alpha_0) = x_V(\alpha_0) \) we also have \(x_C(\alpha_0) \leq x_E(\alpha_0) \). The slope of \(x_C(\alpha) \) is \(\frac{|\mathcal{C}|}{\sum \mathcal{C}} \), and by the assumption that \(\mathcal{C} \) consists of cliques of size at least 2, this is at most 1/2. But the slope of \(x_E(\alpha) \) is exactly 1/2. Thus for all \(\alpha \geq \alpha_0 \), \(x_C(\alpha) \leq x_E(\alpha) \). Hence the bounds given by formula (12.9) hold.

One can show (see [690]) that for any irreducible clique-cover \(\mathcal{C} \) that is not \(\{V\} \) nor \(\{E\} \),

\[\max_S \{ \tau_1(K_h, \mathcal{C}, S), \tau_2(K_h, \mathcal{C}, S) \} \geq \tau_1(K_h, \mathcal{C}, V). \]

Hence, by (12.9),

\[\max_S \{ \tau_1(K_h, \mathcal{C}, S), \tau_2(K_h, \mathcal{C}, S) \} \geq \min \{ \tau_1(K_h, \{V\}, V), \tau_1(K_h, \{E\}, V) \}. \]

This implies that

\[\tau(K_h) = \begin{cases} n^{-1}m^{-1/h} & \text{for } \alpha \leq \alpha_0 \\ n^{-1/(h-1)}m^{-1/2} & \text{for } \alpha \geq \alpha_0, \end{cases} \]

which completes the proof of Corollary 12.6.

To add to the picture of asymptotic behavior of small cliques in \(G(n, m, p) \) we will quote the result of Rybarczyk and Stark [690], who with use of Stein’s method (see Chapter 21.3) obtained an upper bound on the total variation distance between the distribution of the number of \(h \)-cliques and a respective Poisson distribution for any fixed \(h \).

Theorem 12.7. Let \(G(n, m, p) \) be a random intersection graph, where \(m = n^\alpha \). Let \(c > 0 \) be a constant and \(h \geq 3 \) a fixed integer, and \(X_n \) be the random variable counting the number of copies of a complete graph \(K_h \) in \(G(n, m, p) \).

(i) If \(\alpha < \frac{2h}{h-1} \), \(p \approx cn^{-1}m^{-1/h} \) then

\[\lambda_n = \mathbb{E}X_n \approx c^h/h! \]

and

\[d_{TV}(\mathcal{L}(X_n), \text{Po}(\lambda_n)) = O\left(n^{-\alpha/h}\right); \]
12.2. RANDOM GEOMETRIC GRAPHS

(ii) If \(\alpha = \frac{2h}{n-1} \), \(p \approx cn^{-(h+1)/(h-1)} \) then

\[
\lambda_n = \mathbb{E}X_n \approx \left(e^h + c^{h(h-1)} \right) / h!
\]

and

\[
d_{TV}(\mathcal{L}(X_n), \text{Po}(\lambda_n)) = O \left(n^{-2/(h-1)} \right);
\]

(iii) If \(\alpha > \frac{2h}{n-1} \), \(p \approx cn^{-(h-1)/m-1/2} \) then

\[
\lambda_n = \mathbb{E}X_n \approx c^{h(h-1)} / h!
\]

and

\[
d_{TV}(\mathcal{L}(X_n), \text{Po}(\lambda_n)) = O \left(n^{(h-n(h-1)/2) - \frac{2}{m+1}} + n^{-1} \right).
\]

12.2 Random Geometric Graphs

The graphs we consider in this section are the intersection graphs that we obtain from the intersections of balls in the \(d \)-dimensional unit cube, \(D = [0, 1]^d \) where \(d \geq 2 \). For simplicity we will only consider \(d = 2 \) in the text.

We let \(X = \{X_1, X_2, \ldots, X_n\} \) be independently and uniformly chosen from \(D = [0, 1]^2 \). For \(r = r(n) \) let \(G_X, r \) be the graph with vertex set \(X \). We join \(X_i, X_j \) by an edge iff \(X_j \) lies in the disk

\[
B(X_i, r) = \{ X \in [0, 1]^2 : |X - X_i| \leq r \}.
\]

Here \(| | \) denotes Euclidean distance.

For a given set \(X \) we see that increasing \(r \) can only add edges and so thresholds are usually expressed in terms of upper/lower bounds on the size of \(r \).

The book by Penrose [646] gives a detailed exposition of this model. Our aim here is to prove some simple results that are not intended to be best possible.

Connectivity

The threshold (in terms of \(r \)) for connectivity was shown to be identical with that for minimum degree one, by Gupta and Kumar [403]. This was extended to \(k \)-connectivity by Penrose [645]. We do not aim for tremendous accuracy. The simple proof of connectivity was provided to us by Tobias Müller [617].
CHAPTER 12. INTERSECTION GRAPHS

Theorem 12.8. Let \(\varepsilon > 0 \) be arbitrarily small and let \(r_0 = r_0(n) = \sqrt{\frac{\log n}{\pi n}} \). Then w.h.p.

\[
\begin{align*}
G_{\mathcal{X}, r} & \text{ contains isolated vertices if } r \leq (1 - \varepsilon)r_0 \\
G_{\mathcal{X}, r} & \text{ is connected if } r \geq (1 + \varepsilon)r_0
\end{align*}
\]

(12.10) (12.11)

Proof. First consider (12.10) and the degree of \(X_1 \). Then

\[
\mathbb{P}(X_1 \text{ is isolated}) \geq (1 - \pi r^2)^{n-1}.
\]

The factor \((1 - \pi r^2)^{n-1}\) bounds the probability that none of \(X_2, X_3, \ldots, X_n \) lie in \(B(X_1, r) \), given that \(B(X_1, r) \subseteq D \). It is exact for points far enough from the boundary of \(D \).

Now

\[
(1 - \pi r^2)^{n-1} \geq \left(1 - \frac{(1 - \varepsilon) \log n}{n} \right)^n = n^{\varepsilon-1+o(1)}.
\]

So if \(I \) is the set of isolated vertices then \(\mathbb{E}(|I|) \geq n^{\varepsilon-1+o(1)} \rightarrow \infty \). Now

\[
\mathbb{P}(X_1 \in I \mid X_2 \in I) \leq \left(1 - \frac{\pi r^2}{1 - \pi r^2} \right)^{n-2} \leq (1 + o(1)) \mathbb{P}(X_1 \in I).
\]

The expression \(\left(1 - \frac{\pi r^2}{1 - \pi r^2} \right) \) is the probability that a random point does not lie in \(B(X_1, r) \), given that it does not lie in \(B(X_2, r) \), and that \(|X_2 - X_1| \geq 2r\). Equation (12.10) now follows from the Chebyshev inequality (21.3).

Now consider (12.11). Let \(\eta \ll \varepsilon \) be a sufficiently small constant and divide \(D \) into \(\ell_0^2 \) sub-squares of side length \(\eta r \), where \(\ell_0 = 1/\eta r \). We refer to these sub-squares as cells. We can assume that \(\eta \) is chosen so that \(\ell_0 \) is an integer. We say that a cell is *good* if contains at least \(i_0 = \eta^3 \log n \) members of \(\mathcal{X} \) and *bad* otherwise. We next let \(K = 100/\eta^2 \) and consider the number of bad cells in a \(K \times K \) square block of cells.

Lemma 12.9. Let \(B \) be a \(K \times K \) square block of cells. The following hold w.h.p.:

(a) If \(B \) is further than \(100r \) from the closest boundary edge of \(D \) then \(B \) contains at most \(k_0 = (1 - \varepsilon/10) \pi/\eta^2 \) bad cells.

(b) If \(B \) is within distance \(100r \) of exactly one boundary edge of \(D \) then \(B \) contains at most \(k_0/2 \) bad cells.
(c) If B is within distance $100r$ of two boundary edges of D then B contains no bad cells.

Proof. (a) There are less than $\ell^2_0 < n$ such blocks. Furthermore, the probability that a fixed block contains k_0 or more bad cells is at most

$$\left(\frac{K^2}{k_0}\right)^{k_0} \left(\sum_{i=0}^{k_0} \binom{n}{i} (\eta^2 r^2)^i (1 - \eta^2 r^2)^{n-i}\right)^{k_0} \leq \left(\frac{K^2 e}{k_0}\right)^{k_0} \left(2 \left(\frac{ne}{i_0}\right)^{i_0} (\eta^2 r^2)^{i_0} e^{-\eta^2 r^2 (n-i_0)}\right)^{k_0}.$$ \hspace{1cm} (12.12)

Here we have used Corollary 22.4 to obtain the LHS of (12.12).

Now

$$\left(\frac{ne}{i_0}\right)^{i_0} (\eta^2 r^2)^{i_0} e^{-\eta^2 r^2 (n-i_0)} \leq n^{O(\eta^3 \log(1/\eta) - \eta^2 (1+\varepsilon - o(1))/\pi)} \leq n^{-\eta^2(1+\varepsilon/2)/\pi},$$ \hspace{1cm} (12.13)

for η sufficiently small. So we can bound the RHS of (12.12) by

$$\left(\frac{2K^2 e n^{-\eta^2(1+\varepsilon/2)/\pi}}{(1-\varepsilon/10)^\pi/\eta^2}\right)^{(1-\varepsilon/10)\pi/\eta^2} \leq n^{-1-\varepsilon/3}. \hspace{1cm} (12.14)$$

Part (a) follows after inflating the RHS of (12.14) by n to account for the number of choices of block.

(b) Replacing k_0 by $k_0/2$ replaces the LHS of (12.14) by

$$\left(\frac{4K^2 e n^{-\eta^2(1+\varepsilon/2)/\pi}}{(1-\varepsilon/10)^\pi/2\eta^2}\right)^{(1-\varepsilon/10)\pi/2\eta^2} \leq n^{-1/2-\varepsilon/6}. \hspace{1cm} (12.15)$$

Observe now that the number of choices of block is $O(\ell_0) = o(n^{1/2})$ and then Part (b) follows after inflating the RHS of (12.15) by $o(n^{1/2})$ to account for the number of choices of block.

(c) Equation (12.13) bounds the probability that a single cell is bad. The number of cells in question in this case is $O(1)$ and (c) follows. \hfill \Box

We now do a simple geometric computation in order to place a lower bound on the number of cells within a ball $B(X, r)$.

12.2. RANDOM GEOMETRIC GRAPHS

253
Lemma 12.10. A half-disk of radius \(r_1 = r(1 - \eta \sqrt{2}) \) with diameter part of the grid of cells contains at least \((1 - 2\eta^2)\pi/2\eta^2\) cells.

Proof. We place the half-disk in a \(2r_1 \times r_1 \) rectangle. Then we partition the rectangle into \(\zeta_1 = r_1/r \eta \) rows of \(2\zeta_1 \) cells. The circumference of the circle will cut the \(i \)th row at a point which is \(r_1(1 - i^2 \eta^2)^{1/2} \) from the centre of the row. Thus the \(i \)th row will contain at least \(2 \left\lfloor r_1(1 - i^2 \eta^2)^{1/2}/r \eta \right\rfloor \) complete cells. So the half-disk contains at least

\[
2r_1 \frac{1}{r \eta} \sum_{i=1}^{1/\eta} ((1 - i^2 \eta^2)^{1/2} - \eta) \geq \frac{2r_1}{r \eta} \int_{x=1}^{1/\eta-1} ((1 - x^2 \eta^2)^{1/2} - \eta) dx = \frac{2r_1}{r \eta^2} \int_{\theta = \arcsin(1-\eta)}^{\arcsin(1-\eta)} (\cos^2(\theta) - \eta \cos(\theta)) d\theta \geq \frac{2r_1}{r \eta^2} \left[\frac{\theta}{2} - \frac{\sin(2\theta)}{4} - \eta \right]_{\theta = \arcsin(1-\eta)}^{\arcsin(1-\eta)}.
\]

Now

\[
\arcsin(1 - \eta) \geq \frac{\pi}{2} - 2\eta^{1/2} \text{ and } \arcsin(\eta) \leq 2\eta.
\]

So the number of cells is at least

\[
\frac{2r_1}{r \eta^2} \left(\frac{\pi}{4} - \eta^{1/2} - \eta \right).
\]

This completes the proof of Lemma 12.10. \(\square \)

We deduce from Lemmas 12.9 and 12.10 that

\[
X \in \mathcal{X} \text{ implies that } B(X, r_1) \cap D \text{ contains at least one good cell.} \quad (12.16)
\]

Now let \(\Gamma \) be the graph whose vertex set consists of the good cells and where cells \(c_1, c_2 \) are adjacent iff their centres are within distance \(r_1 \). Note that if \(c_1, c_2 \) are adjacent in \(\Gamma \) then any point in \(\mathcal{X} \cap c_1 \) is adjacent in \(G_{\mathcal{X}, r} \) to any point in \(\mathcal{X} \cap c_2 \).

It follows from (12.16) that all we need to do now is show that \(\Gamma \) is connected.

It follows from Lemma 12.9 that at most \(\pi/\eta^2 \) rows of a \(K \times K \) block contain a bad cell. Thus more than 95% of the rows and of the columns of such a block are free of bad cells. Call such a row or column good. The cells in a good row or column of some \(K \times K \) block form part of the same component of \(\Gamma \). Two neighboring blocks must have two touching good rows or columns so the cells in a good row or column of some block form part of a single component of \(\Gamma \). Any other component \(C \) must be in a block bounded by good rows and columns. But the existence of such a component means that it is surrounded by bad cells and then by Lemma...
12.2. RANDOM GEOMETRIC GRAPHS

12.10 that there is a block B with at least $(1 - 3\eta^{1/2})\pi/\eta^2$ bad cells if it is far from the boundary and at least half of this if it is close to the boundary. But this contradicts Lemma 12.9. To see this, consider a cell in C whose center c has the largest second component i.e. is highest in C. Now consider the half disk H of radius r_1 that is centered at c. We can assume (i) H is contained entirely in B and (ii) at least $(1 - 2\eta^{1/2})\pi/2\eta^2 - (1 - \eta\sqrt{2})/\eta \geq (1 - 3\eta^{1/2})\pi/2\eta^2$ cells in H are bad. Property (i) arises because cells above c whose centers are at distance at most r_1 are all bad and for (ii) we have discounted any bad cells on the diameter through c that might be in C. This provides half the claimed bad cells. We obtain the rest by considering a lowest cell of C. Near the boundary, we only need to consider one half disk with diameter parallel to the closest boundary. Finally observe that there are no bad cells close to a corner.

\section*{Hamiltonicity}

The first inroads on the Hamilton cycle problem were made by Diaz, Mitsche and Pérez-Giménez [252]. Best possible results were later given by Balogh, Bollobás, Krivelevich, Müller and Walters [51] and by Müller, Pérez-Giménez and Wormald [618]. As one might expect Hamiltonicity has a threshold at r close to r_0. We now have enough to prove the result from [252].

We start with a simple lemma, taken from [51].

\begin{lemma}
\textbf{Lemma 12.11.} The subgraph Γ contains a spanning tree of maximum degree at most six.
\end{lemma}

\begin{proof}
Consider a spanning tree T of γ that minimises the sum of the lengths of the edges joining the centres of the cells. Then T does not have any vertex of degree greater than 6. This is because, if centre v were to have degree at least 7, then there are two neighboring centres u, w of v such that the angle between the line segments $[v, u]$ and $[v, w]$ is strictly less than 60 degrees. We can assume without loss of generality that $[v, u]$ is shorter than $[v, w]$. Note that if we remove the edge $\{v, w\}$ and add the edge $\{u, w\}$ then we obtain another spanning tree but with strictly smaller total edge-length, a contradiction. Hence T has maximum degree at most 6.
\end{proof}

\begin{theorem}
\textbf{Theorem 12.12.} Suppose that $r \geq (1 + \varepsilon)r_0$. Then w.h.p. $G_{\mathcal{X}, r}$ is Hamiltonian.
\end{theorem}

\begin{proof}
We begin with the tree T promised by Lemma 12.11. Let c be a good cell. We partition the points of $\mathcal{X} \cap c$ into $2d$ roughly equal size sets P_1, P_2, \ldots, P_{2d}
where \(d \leq 6 \) is the degree of \(c \) in \(T \). Since, the points of \(\mathcal{X} \cap c \) form a clique in \(G = G_{\mathcal{X},r} \) we can form \(2d \) paths in \(G \) from this partition. We next do a walk \(W \) through \(T \) e.g. by Breadth First Search that goes through each edge of \(T \) twice and passes through each node of \(\Gamma \) a number of times equal to twice its degree in \(\Gamma \). Each time we pass through a node we traverse the vertices of a new path described in the previous paragraph. In this way we create a cycle \(H \) that goes through all the points in \(\mathcal{X} \) that lie in good cells.

Now consider the points \(P \) in a bad cell \(c \) with centre \(x \). We create a path in \(G \) through \(P \) with endpoints \(x, y \), say. Now choose a good cell \(c' \) contained in the ball \(B(x, r_1) \) and then choose an edge \(\{u, v\} \) of \(H \) in the cell \(c' \). We merge the points in \(P \) into \(H \) by deleting \(\{u, v\} \) and adding \(\{x, u\}, \{y, v\} \). To make this work, we must be careful to ensure that we only use an edge of \(H \) at most once. But there are \(\Omega(\log n) \) edges of \(H \) in each good cell and there are \(O(1) \) bad cells within distance 2\(r \) say of any good cell and so this is easily done.

Chromatic number

We look at the chromatic number of \(G_{\mathcal{X},r} \) in a limited range. Suppose that \(n\pi r^2 = \frac{\log n}{\omega_r} \) where \(\omega_r \to \infty \), \(\omega_r = O(\log n) \). We are below the threshold for connectivity here. We will show that w.h.p.

\[
\chi(G_{\mathcal{X},r}) \approx \Delta(G_{\mathcal{X},r}) \approx cl(G_{\mathcal{X},r})
\]

where will use \(cl \) to denote the size of the largest clique. This is a special case of a result of McDiarmid [585].

We first bound the maximum degree.

Lemma 12.13.

\[
\Delta(G_{\mathcal{X},r}) \approx \frac{\log n}{\log \omega_r} \text{ w.h.p.}
\]

Proof. Let \(Z_k \) denote the number of vertices of degree \(k \) and let \(Z_{\geq k} \) denote the number of vertices of degree at least \(k \). Let \(k_0 = \frac{\log n}{\omega_d} \) where \(\omega_d \to \infty \) and \(\omega_d = o(\omega_r) \). Then

\[
\mathbb{E}(Z_{\geq k_0}) \leq \binom{n}{k_0} (\pi r^2)^{k_0} \leq n \left(\frac{ne\omega_d \log n}{n\omega_r \log n} \right)^{\frac{\log n}{\omega_r}} = n \left(\frac{e\omega_d}{\omega_r} \right)^{\frac{\log n}{\omega_r}}.
\]

So,

\[
\log(\mathbb{E}(Z_{\geq k_0})) \leq \frac{\log n}{\omega_d} (\omega_d + 1 + \log \omega_d - \log \omega_r).
\]
Now let $\epsilon_0 = \omega_r^{-1/2}$. Then if
\[
\omega_d + \log \omega_d + 1 \leq (1 - \epsilon_0) \log \omega_r
\]
then (12.17) implies that $\mathbb{E}(Z_k) \to 0$. This verifies the upper bound on Δ claimed in the lemma.

Now let $k_1 = \log \omega_{\hat{\omega}_d} / \omega_{\hat{\omega}}$ where $\hat{\omega}_d$ is the solution to
\[
\hat{\omega}_d + \log \hat{\omega}_d + 1 = (1 + \epsilon_0) \log \omega_r.
\]

Next let M denote the set of vertices that are at distance greater than r from any edge of D. Let M_k be the set of vertices of degree k in M. If $\hat{Z}_k = |M_k|$ then
\[
\mathbb{E}(\hat{Z}_k) \geq n \mathbb{P}(X_1 \in M) \times \left(\frac{n-1}{k_1} \right)^{k_1} (\pi r^2)^{k_1} (1 - \pi r^2)^{n-1-k_1},
\]
\[
\mathbb{P}(X_1 \in M) \geq 1 - 4r. \text{ Using Lemma 22.1 we get}
\]
\[
\mathbb{E}(\hat{Z}_k) \geq (1 - 4r) \frac{n}{3^{k_1/2}} \left(\frac{n-1}{k_1} \right)^{k_1} (\pi r^2)^{k_1} e^{-n\pi r^2/(1-\pi^2)}
\]
\[
\geq (1 - o(1)) \frac{n^{1-1/\omega_\hat{d}}}{3^{k_1/2}} \left(\frac{e \hat{\omega}_d}{\omega_r} \right)^{\log n / \hat{\omega}_d}.
\]
So,
\[
\log(\mathbb{E}(\hat{Z}_k)) \geq
\]
\[
- o(1) - O(\log \log n) + \frac{\log n}{\omega_{\hat{\omega}_d}} \left(\hat{\omega}_d + 1 + \log \hat{\omega}_d - \log \omega_r - \hat{\omega}_d \right)
\]
\[
= \Omega \left(\frac{\epsilon_0 \log n \log \omega_r}{\omega_{\hat{\omega}_d}} \right) = \Omega \left(\frac{\log n}{\omega_r^{1/2}} \right) \to \infty.
\]
An application of the Chebyshev inequality finishes the proof of the lemma. Indeed,
\[
\mathbb{P}(X_1, X_2 \in M_k) \leq \mathbb{P}(X_1 \in M) \mathbb{P}(X_2 \in M) \times
\]
\[
\left(\mathbb{P}(X_2 \in B(X_1, r)) + \left(\frac{n-1}{k_1} \right)^{k_1} (\pi r^2)^{k_1} (1 - \pi r^2)^{n-2k_1-2} \right)^2
\]
\[
\leq (1 + o(1)) \mathbb{P}(X_1 \in M_k) \mathbb{P}(X_2 \in M_k).
\]
Now $\text{cl}(G_{X,r}) \leq \Delta(G_{X,r}) + 1$ and so we now lower bound $\text{cl}(G_{X,r})$ w.h.p. But this is easy. It follows from Lemma 12.13 that w.h.p. there is a vertex X_j with at least $(1 - o(1))\frac{\log n}{\log(4\omega r)}$ vertices in its $r/2$ ball $B(X_j, r/2)$. But such a ball provides a clique of size $(1 - o(1))\frac{\log n}{\log(4\omega r)}$. We have therefore proved

Theorem 12.14. Suppose that $n\pi r^2 = \frac{\log n}{\omega r}$ where $\omega r \to \infty$, $\omega r = O(\log n)$. Then w.h.p.

$$\chi(G_{X,r}) \approx \Delta(G_{X,r}) \approx \text{cl}(G_{X,r}) \approx \frac{\log n}{\log \omega r}.$$

We now consider larger r.

Theorem 12.15. Suppose that $n\pi r^2 = \omega r \log n$ where $\omega r \to \infty$, $\omega r = o(n/\log n)$. Then w.h.p.

$$\chi(G_{X,r}) \approx \frac{\omega r \sqrt{\log n}}{2\pi}.$$

Proof. First consider the triangular lattice in the plane. This is the set of points $T = \{m_1a + m_2b : m_1, m_2 \in \mathbb{Z}\}$ where $a = (0,1), b = (1/2, \sqrt{3}/2)$, see Figure 12.1.

![Figure 12.1: The small hexagon is an example of a C_v.](image)

As in the diagram, each $v \in T$ can be placed at the centre of a hexagon C_v. The C_v’s intersect on a set of measure zero and each C_v has area $\sqrt{3}/2$ and is contained in $B(v, 1/\sqrt{3})$. Let $\Gamma(T, d)$ be the graph with vertex set T where two vertices $x, y \in T$ are joined by an edge if their Euclidean distance $|x - y| < d$.

Lemma 12.16. [McDiarmid and Reed [587]]

\[\chi(\Gamma(T, d)) \leq (d + 1)^2. \]

Proof. Let \(\delta = \lceil d \rceil \). Let \(R \) denote a \(\delta \times \delta \) rhombus made up of triangles of \(T \) with one vertex at the origin. This rhombus has \(\delta^2 \) vertices, if we exclude those at the top and right hand end. We give each of these vertices a distinct color and then tile the plane with copies of \(R \). This is a proper coloring, by construction. □

Armed with this lemma we can easily get an upper bound on \(\chi(G_{X, r}) \). Let \(\delta = 1/\omega_r^{1/3} \) and let \(s = \delta r \). Let \(sT \) be the contraction of the lattice \(T \) by a factor \(s \) i.e. \(sT = \{ sx : x \in T \} \). Then if \(v \in sT \) let \(sC_v \) be the hexagon with centre \(v \), sides parallel to the sides of \(C_v \) but reduced by a factor \(s \).

\[|X \cap sC_v| \text{ is distributed as } \text{Bin}(n, s^2 \sqrt{3}/2). \]

So the Chernoff bounds imply that with probability \(1 - o(n^{-1}) \),

\[sC_v \text{ contains } \leq \theta = \left((1 + \omega_r^{-1/8})ns^2 \sqrt{3}/2 \right) \text{ members of } \mathcal{X}. \] (12.18)

Let \(\rho = r + 2s/\sqrt{3} \). We note that if \(x \in C_v \) and \(y \in C_w \) and \(|x - y| \leq r \) then \(|v - w| \leq \rho \). Thus, given a proper coloring \(\varphi \) of \(\Gamma(sT, \rho) \) with colors \([q]\) we can w.h.p. extend it to a coloring \(\psi \) of \(G_{X, r} \) with color’s \([q] \times [\theta]\) if \(x \in sC_v \) and \(\varphi(x) = a \) then we let \(\psi(x) = (a, b) \) where \(b \) ranges over \([\theta]\) as \(x \) ranges over \(sC_v \cap \mathcal{X} \). So, w.h.p.

\[\chi(G_{X, r}) \leq \theta \chi(\Gamma(sT, \rho)) \leq \theta \chi(\Gamma(T, \rho/s)) \leq \theta \left(\frac{\rho}{s} + 1 \right)^2 \approx \frac{ns^2 \sqrt{3}}{2} \times \frac{r^2}{s^2} = \frac{\omega_r \sqrt{3} \log n}{2\pi}. \] (12.19)

For the lower bound we use a classic result on packing disks in the plane.

Lemma 12.17. Let \(A_n = [0, n]^2 \) and \(\mathcal{C} \) be a collection of disjoint disks of unit area that touch \(A_n \). Then \(|\mathcal{C}| \leq (1 + o(1)) \pi n^2 / \sqrt{12}. \)

Proof. Thue’s theorem states that the densest packing of disjoint same size disks in the plane is the hexagonal packing which has density \(\lambda = \pi / \sqrt{12} \). Let \(\mathcal{C}' \) denote the disks that are contained entirely in \(A_n \). Then we have

\[|\mathcal{C}'| \geq |\mathcal{C}| - O(n) \text{ and } |\mathcal{C}'| \leq \frac{\pi n^2}{\sqrt{12}}. \]

The first inequality comes from the fact that if \(C \in \mathcal{C} \setminus \mathcal{C}' \) then it is contained in a perimeter of width \(O(1) \) surrounding \(A_n \). □
Now consider the subgraph \(H \) of \(G_{x', r} \) induced by the points of \(x' \) that belong to the square with centre \((1/2, 1/2)\) and side \(1 - 2r \). It follows from Lemma 12.17 that if \(\alpha(H) \) is the size of the largest independent set in \(H \) then \(\alpha(H) \leq (1 + o(1))2/r^2 \sqrt{3} \).

This is because if \(S \) is an independent set of \(H \) then the disks \(B(x, r/2) \) for \(x \in S \) are necessarily disjoint. Now using the Chernoff bounds, we see that w.h.p. \(H \) contains at least \((1 - o(1))n \) vertices. Thus

\[
\chi(G_{x', r}) \geq \chi(H) \geq \frac{|V(H)|}{\alpha(H)} \geq (1 - o(1)) \frac{r^2 \sqrt{3}n}{2} = (1 - o(1)) \frac{\omega \sqrt{3} \log n}{2\pi}.
\]

This completes the proof of Theorem 12.15.

12.3 Exercises

12.3.1 Show that if \(p = \omega(n)/(n\sqrt{m}) \), and \(\omega(n) \rightarrow \infty \), then \(G(n, m, p) \) has w.h.p. at least one edge.

12.3.2 Show that if \(p = (2\log n + \omega(n))/m^{1/2} \) and \(\omega(n) \rightarrow -\infty \) then w.h.p. \(G(n, m, p) \) is not complete.

12.3.3 Prove that the bound (12.2) holds.

12.3.4 Prove that the bound (12.3) holds.

12.3.5 Prove that the bound (12.4) holds.

12.3.6 Prove the claims in Lemma 12.2.

12.3.7 Let \(X \) denotes the number of isolated vertices in the binomial random intersection graph \(G(n, m, p) \), where \(m = n^\alpha, \alpha > 0 \). Show that if

\[
p = \begin{cases}
\frac{(\log n + \omega(n))/m}{\sqrt{(\log n + \omega(n))/mn}} & \text{when } \alpha \leq 1 \\
(\log n + \omega(n))/m & \text{when } \alpha > 1,
\end{cases}
\]

then \(E X \rightarrow e^{-c} \) if \(\lim_{n \rightarrow \infty} \omega(n) \rightarrow c, \) for any real \(c \).

12.3.8 Find the variance of the random variable \(X \) counting isolated vertices in \(G(n, m, p) \).

12.3.9 Let \(Y \) be a random variable which counts vertices of degree greater than one in \(G(n, m, p) \), with \(m = n^\alpha \) and \(\alpha > 1 \). Show that for \(p^2 m^2 n \gg \log n \)

\[
\lim_{n \rightarrow \infty} \mathbb{P}(Y > 2p^2 m^2 n) = 0.
\]
12.3.10 Suppose that \(r \geq (1 + \varepsilon)r_0 \), as in Theorem 12.8. Show that if \(1 \leq k = O(1) \) then \(G_{\mathcal{X},r} \) is \(k \)-connected w.h.p.

12.3.11 Show that if \(2 \leq k = O(1) \) and \(r \gg n^{-\frac{k}{2k-1}} \) then w.h.p. \(G_{\mathcal{X},r} \) contains a \(k \)-clique. On the other hand, show that if \(r = o(n^{-\frac{k}{2k-1}}) \) then \(G_{\mathcal{X},r} \) contains no \(k \)-clique.

12.3.12 Suppose that \(r \gg \sqrt{\log n} \). Show that w.h.p. the diameter of \(G_{\mathcal{X},r} = \Theta\left(\frac{1}{r} \right) \).

12.3.13 Suppose that \(r \geq (1 + \varepsilon)r_0 \), as in Theorem 12.8. Show that if \(2 \leq k = O(1) \) then \(G_{\mathcal{X},r} \) has \(k \) edge disjoint Hamilton cycles w.h.p.

12.3.14 Given \(\mathcal{X} \) and an integer \(k \) we define the \(k \)-nearest neighbor graph \(G_{\mathcal{X},NN,k} \) as follows: We add an edge between \(x \in \mathcal{X}_b \) and \(x \in \mathcal{X}_w \) iff \(y \) is one of \(x \)'s \(k \) nearest neighbors, in Euclidean distance or vice-versa. Show that if \(k \geq C \log n \) for a sufficiently large \(C \) then \(G_{\mathcal{X},NN,k} \) is connected w.h.p.

12.3.15 Suppose that we independently deposit \(n \) random black points \(\mathcal{X}_b \) and \(n \) random white points \(\mathcal{X}_w \) into \(D \). Let \(B_{\mathcal{X}_b,\mathcal{X}_w,r} \) be the bipartite graph where we connect \(x \in \mathcal{X}_b \) with \(x \in \mathcal{X}_w \) iff \(|x - y| \leq r \). Show that if \(r \gg \sqrt{\frac{\log n}{n}} \) then w.h.p. \(B_{\mathcal{X}_b,\mathcal{X}_w,r} \) contains a perfect matching.

12.4 Notes

Binomial Random Intersection Graphs

For \(G(n,m,p) \) with \(m = n^\alpha \), \(\alpha \) constant, Rybarczyk and Stark [691] provided a condition, called strictly \(\alpha \)-balanced for the Poisson convergence for the number of induced copies of a fixed subgraph, thus complementing the results of Theorem 12.5 and generalising Theorem 12.7. (Thresholds for small subgraphs in a related model of random intersection digraph are studied by Kurauskas [538]).

Rybarczyk [693] introduced a coupling method to find thresholds for many properties of the binomial random intersection graph. The method is used to establish sharp threshold functions for \(k \)-connectivity, the existence of a perfect matching and the existence of a Hamilton cycle.

Stark [722] determined the distribution of the degree of a typical vertex of \(G(n,m,p) \), \(m = n^\alpha \) and showed that it changes sharply between \(\alpha < 1 \), \(\alpha = 1 \) and \(\alpha > 1 \).

Behrisch [70] studied the evolution of the order of the largest component in \(G(n,m,p) \), \(m = n^\alpha \) when \(\alpha \neq 1 \). He showed that when \(\alpha > 1 \) the random graph \(G(n,m,p) \) behaves like \(G_{n,p} \) in that a giant component of size order \(n \) appears w.h.p. when
the expected vertex degree exceeds one. This is not the case when \(\alpha < 1 \). There is a jump in the order of size of the largest component, but not to one of linear size. Further study of the component structure of \(G(n,m,p) \) for \(\alpha = 1 \) is due to Lageras and Lindholm in [540].

Behrisch, Taraz and Ueckerdt [71] study the evolution of the chromatic number of a random intersection graph and showed that, in a certain range of parameters, these random graphs can be colored optimally with high probability using various greedy algorithms.

Uniform Random Intersection Graphs

Uniform random intersection graphs differ from the binomial random intersection graph in the way a subset of the set \(M \) is defined for each vertex of \(V \). Now for every \(k = 1, 2, \ldots, n \), each \(S_k \) has fixed size \(r \) and is randomly chosen from the set \(M \). We use the notation \(G(n,m,r) \) for an \(r \)-uniform random intersection graph.

This version of a random intersection graph was introduced by Eschenauer and Gligor [295] and, independently, by Godehardt and Jaworski [388]. Bloznelis, Jaworski and Rybarczyk [105] determined the emergence of the giant component in \(G(n,m,r) \) when \(n(\log n)^2 = o(m) \). A precise study of the phase transition of \(G(n,m,r) \) is due to Rybarczyk [694]. She proved that if \(c > 0 \) is a constant, \(r = r(n) \geq 2 \) and \(r(r - 1)n/m \approx c \), then if \(c < 1 \) then w.h.p. the largest component of \(G(n,m,r) \) is of size \(O(\log n) \), while if \(c > 1 \) w.h.p. there is a single giant component containing a constant fraction of all vertices, while the second largest component is of size \(O(\log n) \).

The connectivity of \(G(n,m,r) \) was studied by various authors, among them by Eschenauer and Gligor [295] followed by DiPietro, Mancini, Mei, Panconesi and Radhakrishnan [258], Blackbourn and Gerke [94] and Yagan and Makowski [763]. Finally, Rybarczyk [694] determined the sharp threshold for this property. She proved that if \(c > 0 \) is a constant, \(\omega(n) \to \infty \) as \(n \to \infty \) and \(r^2 n/m = \log n + \omega(n) \), then similarly as in \(G_{n,p} \), the uniform random intersection graph \(G(n,m,r) \) is disconnected w.h.p. if \(\omega(n) \to \infty \), is connected w.h.p. if \(\omega(n) \to \infty \), while the probability that \(G(n,m,r) \) is connected tends to \(e^{-e^{-c}} \) if \(\omega(n) \to c \). The Hamiltonicity of \(G(n,m,r) \) was studied in [108] and by Nicoletseas, Raptopoulos and Spirakis [634].

If in the uniform model we require \(|S_i \cap S_j| \geq s \) to connect vertices \(i \) and \(j \) by an edge, then we denote this random intersection graph by \(G_s(n,m,r) \). Bloznelis, Jaworski and Rybarczyk [105] studied phase transition in \(G_s(n,m,r) \). Bloznelis and Łuczak [107] proved that w.h.p. for even \(n \) the threshold for the property that \(G_s(n,m,r) \) contains a perfect matching is the same as that for \(G_s(n,m,r) \) being connected. Bloznelis and Rybarczyk [109] show that w.h.p. the edge density
threshold for the property that each vertex of $G_s(n,m,r)$ has degree at least k is the same as that for $G_s(n,m,r)$ being k-connected (for related results see [768]).

Generalized Random Intersection Graphs

Godehardt and Jaworski [388] introduced a model which generalizes both the binomial and uniform models of random intersection graphs. Let P be a probability measure on the set $\{0, 1, 2, \ldots, m\}$. Let $V = \{1, 2, \ldots, n\}$ be the vertex set. Let $M = \{1, 2, \ldots, m\}$ be the set of attributes. Let S_1, S_2, \ldots, S_n be independent random subsets of M such that for any $v \in V$ and $S \subseteq M$ we have $P(S_v = S) = P(|S|)/\binom{m}{|S|}$. If we put an edge between any pair of vertices i and j when $S_i \cap S_j \neq \emptyset$, then we denote such a random intersection graph as $G(n,m,P)$, while if the edge is inserted if $|S_i \cap S_j| \geq s$, $s \geq 1$, the respective graph is denoted as $G_s(n,m,P)$. Bloznelis [98] extends these definitions to random intersection digraphs.

The study of the degree distribution of a typical vertex of $G(n,m,P)$ is given in [463], [241] and [96], see also [464]. Bloznelis (see [97] and [99]) shows that the order of the largest component L_1 of $G(n,m,P)$ is asymptotically equal to $n\rho$, where ρ denotes the non-extinction probability of a related multi-type Poisson branching process. Kurauskas and Bloznelis [539] study the asymptotic order of the clique number of the sparse random intersection graph $G_s(n,m,P)$.

Finally, a dynamic approach to random intersection graphs is studied by Barbour and Reinert [63], Bloznelis and Karoński [106], Bloznelis and Goetze [103] and Britton, Deijfen, Lageras and Lindholm [165].

One should also notice that some of the results on the connectivity of random intersection graphs can be derived from the corresponding results for random hypergraphs, see for example [517], [704] and [389].

Inhomogeneous Random Intersection Graphs

Nicoletseas, Raptopoulos and Spirakis [633] have introduced a generalisation of the binomial random intersection graph $G(n,m,p)$ in the following way. As before let n, m be positive integers and let $0 \leq p_i \leq 1, i = 1, 2, \ldots, m$. Let $V = \{1, 2, \ldots, n\}$ be the set of vertices of our graph and for every $1 \leq k \leq n$, let S_k be a random subset of the set $M = \{1, 2, \ldots, m\}$ formed by selecting ith element of M independently with probability p_i. Let $\mathbf{p} = (p_i)_{i=1}^m$. We define the *inhomogeneous random intersection graph* $G(n,m,\mathbf{p})$ as the intersection graph of sets S_k, $k = 1, 2, \ldots, n$. Here two vertices i and j are adjacent in $G(n,m,\mathbf{p})$ if and only if $S_i \cap S_j \neq \emptyset$. Several asymptotic properties of the random graph $G(n,m,\mathbf{p})$ were studied, such as: large independent sets (in [634]), vertex degree distribution (by Bloznelis and Dama-
rackas in [100]), sharp threshold functions for connectivity, matchings and Hamiltonian cycles (by Rybarczyk in [693]) as well as the size of the largest component (by Bradonjić, Elsässer, Friedrich, Sauerwald and Stauffer in [162]).

To learn more about different models of random intersection graphs and about other results we refer the reader to recent review papers [101] and [102].

Random Geometric Graphs

McDiarmid and Müller [586] gives the leading constant for the chromatic number when the average degree is $\Theta(\log n)$. The paper also shows a “surprising” phase change for the relation between χ and ω. Also the paper extends the setting to arbitrary dimensions. Müller [616] proves a two-point concentration for the clique number and chromatic number when $nr^2 = o(\log n)$.

Blackwell, Edmonson-Jones and Jordan [95] studied the spectral properties of the adjacency matrix of a random geometric graph (RGG). Rai [669] studied the spectral measure of the transition matrix of a simple random walk. Preciado and Jadabaei [662] studied the spectrum of RGG’s in the context of the spreading of viruses.

Sharp thresholds for monotone properties of RGG’s were shown by McColm [580] in the case $d = 1$ viz. a graph defined by the intersection of random sub-intervals. And for all $d \geq 1$ by Goel, Rai and Krishnamachari [390].

First order expressible properties of random points $\mathcal{X} = \{X_1, X_2, \ldots, X_n\}$ on a unit circle were studied by McColm [579]. The graph has vertex set \mathcal{X} and vertices are joined by an edge if and only if their angular distance is less than some parameter d. He showed among other things that for each fixed d, the set of a.s. FO sentences in this model is a complete non-categorical theory. McColm’s results were anticipated in a more precise paper [387] by Godehardt and Jaworski, where the case $d = 1$, i.e., the evolution a random interval graph, was studied.

Diaz, Penrose, Petit and Serna [255] study the approximability of several layout problems on a family of RGG’s. The layout problems that they consider are bandwidth, minimum linear arrangement, minimum cut width, minimum sum cut, vertex separation, and edge bisection. Diaz, Grandoni and Marchetti-Spaccemela [254] derive a constant expected approximation algorithm for the β-balanced cut problem on random geometric graphs: find an edge cut of minimum size whose two sides contain at least βn vertices each.

Bradonjić, Elsässer, Friedrich, Sauerwald and Stauffer [161] studied the broadcast time of RGG’s. They study a regime where there is likely to be a single giant component and show that w.h.p. their broadcast algorithm only requires $O(n^{1/2}/r + \log n)$ rounds to pass information from a single vertex, to every vertex of the giant. They show on the way that the diameter of the giant is $\Theta(n^{1/2}/r)$.
w.h.p. Friedrich, Sauerwald and Stauffer [333] extended this to higher dimensions.

A recent interesting development can be described as *Random Hyperbolic Graphs*. These are related to the graphs of Section 12.2 and are posed as models of real world networks. Here points are randomly embedded into hyperbolic, as opposed to Euclidean space. See for example Bode, Fountoulakis and Müller [110], [111]; Candellero and Fountoulakis [176]; Chen, Fang, Hu and Mahoney [185]; Friedrich and Krohmer [332]; Krioukov, Papadopolous, Kitsak, Vahdat and Boguñá [520]; Fountoulakis [322]; Gugelmann, Panagiotou and Peter [402]; Papadopolous, Krioukov, Boguñá and Vahdat [642]. One version of this model is described in [322]. The models are a little complicated to describe and we refer the reader to the above references.
Chapter 13

Digraphs

In graph theory, we sometimes orient edges to create a directed graph or digraph. It is natural to consider randomly generated digraphs and this chapter discusses the component size and connectivity of the simplest model $D_{n,p}$. Hamiltonicity is discussed in the final section.

13.1 Strong Connectivity

In this chapter we study the random digraph $D_{n,p}$. This has vertex set $[n]$ and each of the $n(n-1)$ possible edges occurs independently with probability p. We will first study the size of the strong components of $D_{n,p}$.

Recall the definition of strong components: Given a digraph $D = (V,A)$ we define the relation ρ on V by $x \rho y$ if there is a path from x to y in D and there is a path from y to x in D. It is easy to show that ρ is an equivalence relation and the equivalence classes are called the strong components of D.

Strong component sizes: sub-critical region.

Theorem 13.1. Let $p = c/n$, where c is a constant, $c < 1$. Then w.h.p.

(i) all strong components of $D_{n,p}$ are either cycles or single vertices,

(ii) the number of vertices on cycles is at most ω, for any $\omega = \omega(n) \to \infty$.

Proof. The expected number of cycles is

\[
\sum_{k=2}^{n} \binom{n}{k} (k-1)! \left(\frac{c}{n}\right)^k \leq \sum_{k=2}^{n} \frac{c^k}{k} = O(1).
\]

267
Part (ii) now follows from the Markov inequality.

To tackle (i) we observe that if there is a component that is not a cycle or a single vertex then there is a cycle C and vertices $a, b \in C$ and a path P from a to b that is internally disjoint from C.

However, the expected number of such subgraphs is bounded by

$$
\sum_{k=2}^{n} \sum_{l=0}^{n-k} \binom{n}{k} (k-1)! \left(\frac{c}{n} \right)^k \frac{k^2}{l!} \left(\frac{n}{n} \right)^{l+1} \leq \sum_{k=2}^{\infty} \sum_{l=0}^{\infty} \frac{k^2 c^{k+l+1}}{kn} = O(1/n).
$$

Here l is the number of vertices on the path P, excluding a and b.

Strong component sizes: super-critical region.

We will prove the following beautiful theorem that is a directed analogue of the existence of a giant component in $G_{n,p}$. It is due to Karp [492].

Theorem 13.2. Let $p = c/n$, where c is a constant, $c > 1$, and let x be defined by $x < 1$ and $xe^{-x} = ce^{-c}$. Then w.h.p. $D_{n,p}$ contains a unique strong component of size $\approx (1 - \frac{2}{c})^2 n$. All other strong components are of logarithmic size.

We will prove the above theorem through a sequence of lemmas.

For a vertex v we set

$$D^+(v) = \{ w : \exists \text{ path } v \to w \text{ in } D_{n,p} \}$$

$$D^-(v) = \{ w : \exists \text{ path } w \to v \text{ in } D_{n,p} \}.$$

We will first prove

Lemma 13.3. There exist constants α, β, dependent only on c, such that w.h.p.

$\exists v$ such that $|D^+(v)| \in [\alpha \log n, \beta n]$.

Proof. If there is a v such that $|D^+(v)| = s$ then $D_{n,p}$ contains a tree T of size s, rooted at v such that

(i) all arcs are oriented away from v, and

(ii) there are no arcs oriented from $V(T)$ to $[n] \setminus V(T)$.

The expected number of such trees is bounded above by
\[s \left(\frac{n}{s} \right)^{s-2} \left(\frac{c}{n} \right)^{s-1} \left(1 - \frac{c}{n} \right)^{(s-n)s} \leq \frac{n}{c s} (ce^{1-c+s/n})^s. \]

Now \(ce^{1-c} < 1 \) for \(c \neq 1 \) and so there exists \(\beta \) such that when \(s \leq \beta n \) we can bound \(ce^{1-c+s/n} \) by some constant \(\gamma < 1 \) (\(\gamma \) depends only on \(c \)). In which case
\[\frac{n}{c s} \gamma^s \leq n^{-3} \text{ for } \frac{4}{\log 1/\gamma} \log n \leq s \leq \beta n. \]

Fix a vertex \(v \in [n] \) and consider a directed breadth first search from \(v \). Let \(S_0^+, S_1^+, \ldots, S_k^+ \subseteq [n] \) let \(T_k^+ = T_k^+ (v) = \bigcup_{i=1}^k S_i^+ \) and let
\[S_{k+1}^+ = \{ w \in T_k^+: \exists x \in T_k^+ \text{ such that } (x, w) \in E(D_n, p) \}. \]

We similarly define \(T_0^-, T_1^-, \ldots, T_k^- \subseteq [n] \) with respect to a directed breadth first search into \(v \).

Not surprisingly, we can show that the subgraph \(\Gamma_k \) induced by \(T_k^+ \) is close in distribution to the tree defined by the first \(k+1 \) levels of a Galton-Watson branching process with \(\text{Po}(c) \) as the distribution of the number of offspring from a single parent. See Chapter 24 for some salient facts about such a process. Here \(\text{Po}(c) \) is the Poisson random variable with mean \(c \) i.e.
\[\mathbb{P}(\text{Po}(c) = k) = \frac{e^c (c)^{-k}}{k!} \text{ for } k = 0, 1, 2, \ldots. \]

Lemma 13.4. If \(\hat{S}_0, \hat{S}_1, \ldots, \hat{S}_k \) and \(\hat{T}_k \) are defined with respect to the Galton-Watson branching process and if \(k \leq k_0 = (\log n)^3 \) and \(S_0, S_1, \ldots, S_k \subseteq [n] \) then
\[\mathbb{P}(|\hat{S}_i| = s_i, 0 \leq i \leq k) = \left(1 + O\left(\frac{1}{n^{1-o(1)}} \right) \right) \mathbb{P}(\hat{S}_i = s_i, 0 \leq i \leq k). \]

Proof. We use the fact that if \(\text{Po}(a), \text{Po}(b) \) are independent then \(\text{Po}(a) + \text{Po}(b) \) has the same distribution as \(\text{Po}(a+b) \). It follows that
\[\mathbb{P}(\hat{S}_i = s_i, 0 \leq i \leq k) = \prod_{i=1}^k \frac{(cs_i-1)^{s_i} e^{-cs_i-1}}{s_i!}. \]
Furthermore, putting $t_{i-1} = s_0 + s_1 + \ldots + s_{i-1}$ we have for $v \notin T_{i-1}^+$,

$$
P(v \in S_i^+) = 1 - (1 - p)^{s_{i-1}} = s_{i-1}p \left(1 + O\left(\frac{(\log n)^7}{n}\right)\right),
$$

(13.1)

$$
P\left(|S_i^+| = s_i, 0 \leq i \leq k\right) = \prod_{i=1}^{k} \left(\frac{n-t_{i-1}}{s_i} \right) \left(\frac{s_{i-1}c}{n} \left(1 + O\left(\frac{(\log n)^7}{n}\right)\right)\right)^{s_i}
$$

$$
\times \left(1 - \frac{s_{i-1}c}{n} \left(1 + O\left(\frac{(\log n)^7}{n}\right)\right)\right)^{n-t_{i-1}-s_i}
$$

Here we use the fact that given s_{i-1}, t_{i-1}, the distribution of $|S_i^+|$ is the binomial with $n - t_{i-1}$ trials and probability of success given in (13.1). The lemma follows by simple estimations. \qed

Lemma 13.5. For $1 \leq i \leq (\log n)^3$

(a) $\mathbb{P}\left(|S_i^+| \geq s \log n ||S_{i-1}^+| = s\right) \leq n^{-10}$

(b) $\mathbb{P}\left(|\hat{S}_i| \geq s \log n ||\hat{S}_{i-1}| = s\right) \leq n^{-10}$.

Proof.

(a) $\mathbb{P}\left(|S_i^+| \geq s \log n ||S_{i-1}^+| = s\right) \leq \mathbb{P}\left(\text{Bin}(sn, c/n) \geq s \log n\right)$

$$
\leq \left(\frac{sn}{s \log n}\right) \left(\frac{c}{n}\right)^{s \log n}
$$

$$
\leq \left(\frac{s \log n}{s \log n}\right)^{s \log n}
$$

$$
\leq \left(\frac{ec}{\log n}\right)^{\log n}
$$

$$
\leq n^{-10}.
$$

The proof of (b) is similar. \qed

Keeping v fixed we next let

$$
\mathcal{F} = \{\exists i : |T_i^+| > (\log n)^2\}
$$

$$
= \{\exists i \leq (\log n)^2 : |T_0^+|, |T_1^+|, \ldots, |T_{i-1}^+| < (\log n)^2 < |T_i^+|\}.
$$
13.1. STRONG CONNECTIVITY

Lemma 13.6.

\[P(\mathcal{F}) = 1 - \frac{x}{c} + o(1). \]

Proof. Applying Lemma 13.4 we see that

\[P(\mathcal{F}) = P(\hat{\mathcal{F}}) + o(1), \tag{13.3} \]

where \(\hat{\mathcal{F}} \) is defined with respect to the branching process.

Now let \(\hat{E} \) be the event that the branching process eventually becomes extinct. We write

\[P(\hat{\mathcal{F}}) = P(\hat{\mathcal{F}} | \neg \hat{E}) P(\neg \hat{E}) + P(\hat{\mathcal{F}} \cap \hat{E}). \tag{13.4} \]

To estimate (13.4) we use Theorem 24.1. Let

\[G(z) = \sum_{k=0}^{\infty} \frac{c^k e^{-c}}{k!} z^k = e^{cz-c} \]

be the probability generating function of \(Po(c) \). Then Theorem 24.1 implies that \(\rho = P(\hat{E}) \) is the smallest non-negative solution to \(G(\rho) = \rho \). Thus

\[\rho = e^{c\rho - c}. \]

Substituting \(\rho = \frac{x}{c} \) we see that

\[P(\hat{E}) = \frac{x}{c} \text{ where } \frac{x}{c} = e^{\frac{x}{c} - c}, \tag{13.5} \]

and so \(\xi = x \).

The lemma will follow from (13.4) and (13.5) and \(P(\hat{\mathcal{F}} | \neg \hat{E}) = 1 \) and

\[P(\hat{\mathcal{F}} \cap \hat{E}) = o(1). \]

This in turn follows from

\[P(\hat{E} | \hat{\mathcal{F}}) = o(1), \tag{13.6} \]

which will be established using the following lemma.

Lemma 13.7. Each member of the branching process has probability at least \(\varepsilon > 0 \) of producing \((\log n)^2 \) descendants at depth \(\log n \). Here \(\varepsilon > 0 \) depends only on \(c \).

Proof. If the current population size of the process is \(s \) then the probability that it reaches size at least \(\frac{c+1}{2} s \) in the next round is

\[
\sum_{k \geq \frac{c+1}{2} s} \frac{(cs)^k e^{-cs}}{k!} \geq 1 - e^{-as}
\]
for some constant $\alpha > 0$ provided $s \geq 100$, say.

Now there is a positive probability ε_1 say that a single member spawns at least 100 descendants and so there is a probability of at least

$$\varepsilon_1 \left(1 - \sum_{s=100}^{\infty} e^{-\alpha s}\right)$$

that a single object spawns

$$\left(\frac{c + 1}{2}\right)^{\log n} \gg (\log n)^2$$
descendants at depth $\log n$.

Given a population size between $(\log n)^2$ and $(\log n)^3$ at level i_0, let s_i denote the population size at level $i_0 + i \log n$. Then Lemma 13.7 and the Chernoff bounds imply that

$$\mathbb{P}\left(s_{i+1} \leq \frac{1}{2} \varepsilon s_i (\log n)^2 \right) \leq \exp\left\{-\frac{1}{8} \varepsilon^2 s_i (\log n)^2\right\}.$$

It follows that

$$\mathbb{P}(\hat{S} | \mathcal{F}) \leq \mathbb{P}\left(\exists i : s_i \leq \left(\frac{1}{2} \varepsilon (\log n)^2\right)^i s_0 | s_0 \geq (\log n)^2\right) \leq \sum_{i=1}^{\infty} \exp\left\{-\frac{1}{8} \varepsilon^2 \left(\frac{1}{2} \varepsilon (\log n)^2\right)^i (\log n)^2\right\} = o(1).$$

This completes the proof (13.6) and of Lemma 13.6. \hfill \Box

We must now consider the probability that both $D^+(v)$ and $D^-(v)$ are large.

Lemma 13.8.

$$\mathbb{P}\left(|D^-(v)| \geq (\log n)^2 \mid |D^+(v)| \geq (\log n)^2\right) = 1 - \frac{x}{c} + o(1).$$

Proof. Expose $S_0^+, S_1^+, \ldots, S_k^+$ until either $S_k^+ = \emptyset$ or we see that $|T_k^+| \in [(\log n)^2, (\log n)^3]$. Now let S denote the set of edges/vertices defined by $S_0^+, S_1^+, \ldots, S_k^+$.

Let \mathcal{E} be the event that there are no edges from T_i^- to S_k^+ where T_i^- is the set of vertices we reach through our BFS into v, up to the point where we first realise
that $D^-(v) < (\log n)^2$ (because $S_i^- = \emptyset$ and $|T_i^-| \leq (\log n)^2$) or we realise that $D^-(v) \geq (\log n)^2$. Then

$$P(\neg \mathcal{C}) = O\left(\frac{(\log n)^4}{n}\right) = \frac{1}{n^{1-o(1)}}$$

and, as in (13.2),

$$P \left(|S_i^-| = s_i, \ 0 \leq i \leq k \mid \mathcal{C} \right) = \prod_{i=1}^{k} \left(\frac{n' - t_{i-1}}{s_i} \right) \left(\frac{s_{i-1}c}{n} \left(1 + O\left(\frac{(\log n)^7}{n}\right) \right) \right)^{s_i} \times \left(1 - \frac{s_{i-1}c}{n} \left(1 + O\left(\frac{(\log n)^7}{n}\right) \right) \right)^{n' - t_{i-1} - s_i}$$

where $n' = n - |T_k^+|$. Given this we can prove a conditional version of Lemma 13.4 and continue as before.

We have now shown that if α is as in Lemma 13.3 and if

$$S = \{ v : |D^+(v)|, |D^-(v)| > \alpha \log n \}$$

then the expectation

$$\mathbb{E}(|S|) = (1 + o(1)) \left(1 - \frac{x}{c} \right)^2 n.$$

We also claim that for any two vertices v, w

$$P(v, w \in S) = (1 + o(1)) P(v \in S) P(w \in S) \quad (13.7)$$

and therefore the Chebyshev inequality implies that w.h.p.

$$|S| = (1 + o(1)) \left(1 - \frac{x}{c} \right)^2 n.$$

But (13.7) follows in a similar manner to the proof of Lemma 13.8. All that remains of the proof of Theorem 13.2 is to show that

$$S \text{ is a strong component w.h.p.} \quad (13.8)$$

Recall that any $v \notin S$ is in a strong component of size $\leq \alpha \log n$ and so the second part of the theorem will also be done.
We prove (13.8) by arguing that
\[P\left(\exists v, w \in S : w \not\in D^+(v) \right) = o(1). \] (13.9)

In which case, we know that w.h.p. there is a path from each \(v \in S \) to every other vertex \(w \neq v \) in \(S \).

To prove (13.9) we expose \(S^0_+, S^1_+, \ldots, S^k_+ \) until we find that
\[|T^+_k(v)| \geq n^{1/2} \log n. \]
At the same time we expose \(S^0_-, S^1_-, \ldots, S^l_- \) until we find that
\[|T^-_l(w)| \geq n^{1/2} \log n. \]
If \(w \not\in D^+(v) \) then this experiment will have tried at least \(\left(n^{1/2} \log n \right)^2 \) times to find an edge from \(D^+(v) \) to \(D^-(w) \) and failed every time.

The probability of this is at most
\[\left(1 - \frac{c}{n} \right)^{n \left(\log n \right)^{2}} = o(n^{-2}). \]

This completes the proof of Theorem 13.2.

\[\square \]

Threshold for strong connectivity

Here we prove

Theorem 13.9. Let \(\omega = \omega(n), c > 0 \) be a constant, and let \(p = \frac{\log n + \omega(n)}{n} \). Then

\[\lim_{n \to \infty} P(D_n, p \text{ is strongly connected}) = \begin{cases} 0 & \text{if } \omega \to -\infty \\ e^{-2e^{-c}} & \text{if } \omega \to c \\ 1 & \text{if } \omega \to \infty. \end{cases} \]

\[= \lim_{n \to \infty} P(\exists v \text{ s.t. } d^+(v) = 0 \text{ or } d^-(v) = 0) \]

Proof. We leave as an exercise to prove that

\[\lim_{n \to \infty} P(\exists v \text{ s.t. } d^+(v) = 0 \text{ or } d^-(v) = 0) = \begin{cases} 1 & \text{if } \omega \to -\infty \\ 1 - e^{-2e^{-c}} & \text{if } \omega \to c \\ 0 & \text{if } \omega \to \infty. \end{cases} \]

Given this, one only has to show that if \(\omega \not\to -\infty \) then w.h.p. there does not exist a set \(S \) such that (i) \(2 \leq |S| \leq n/2 \) and (ii) \(E(S : \bar{S}) = \emptyset \) or \(E(\bar{S} : S) = \emptyset \) and (iii) \(S \) induces a connected component in the graph obtained by ignoring orientation.

But, here with \(s = |S| \),
\[P(\exists S) \leq 2 \sum_{s=2}^{n/2} \binom{n}{s} s^{s-2}(2p)^{s-1}(1-p)^{(n-s)} \]
13.2. HAMILTON CYCLES

13.2 Hamilton Cycles

Existence of a Hamilton Cycle

Here we prove the following remarkable inequality: It is due to McDiarmid [582]

Theorem 13.10.

\[\mathbb{P}(D_{n,p} \text{ is Hamiltonian}) \geq \mathbb{P}(G_{n,p} \text{ is Hamiltonian}) \]

Proof. We consider an ordered sequence of random digraphs
\[\Gamma_0, \Gamma_1, \Gamma_2, \ldots, \Gamma_N, \quad N = \binom{n}{2} \]
defined as follows: Let \(e_1, e_2, \ldots, e_N \) be an enumeration of the edges of the complete graph \(K_n \). Each \(e_i = \{ v_i, w_i \} \) gives rise to two directed edges \(\overrightarrow{e_i} = (v_i, w_i) \) and \(\overleftarrow{e_i} = (w_i, v_i) \). In \(\Gamma_i \) we include \(\overrightarrow{e_j} \) and \(\overleftarrow{e_j} \) independently of each other, with probability \(p \), for \(j \leq i \). While for \(j > i \) we include both or neither with probability \(p \). Thus \(\Gamma_0 \) is just \(G_{n,p} \) with each edge \(\{ v, w \} \) replaced by a pair of directed edges \((v, w), (w, v) \) and \(\Gamma_N = D_{n,p} \). Theorem 13.10 follows from

\[\mathbb{P}(\Gamma_i \text{ is Hamiltonian}) \geq \mathbb{P}(\Gamma_{i-1} \text{ is Hamiltonian}) \]

To prove this we condition on the existence or otherwise of directed edges associated with \(e_1, \ldots, e_{i-1}, e_{i+1}, \ldots, e_N \). Let \(\mathcal{C} \) denote this conditioning.

Either

(a) \(\mathcal{C} \) gives us a Hamilton cycle without arcs associated with \(e_i \), or

(b) not (a) and there exists a Hamilton cycle if at least one of \(\overrightarrow{e_i}, \overleftarrow{e_i} \) is present, or

(c) \(\mathcal{B} \) a Hamilton cycle even if both of \(\overrightarrow{e_i}, \overleftarrow{e_i} \) are present.
(a) and (c) give the same conditional probability of Hamiltonicity in Γ, Γ_{i-1}. In Γ_{i-1} (b) happens with probability p. In Γ_i we consider two cases (i) exactly one of $\overrightarrow{e_i}, \overleftarrow{e_i}$ yields Hamiltonicity and in this case the conditional probability is p and (ii) either of $\overrightarrow{e_i}, \overleftarrow{e_i}$ yields Hamiltonicity and in this case the conditional probability is $1 - (1 - p)^2 > p$.

Note that we will never require that both $\overrightarrow{e_i}, \overleftarrow{e_i}$ occur. \hfill \Box

Theorem 13.10 was subsequently improved by Frieze [337], who proved the equivalent of Theorem 6.5.

Theorem 13.11. Let $p = \log n + c n / n$. Then

$$\lim_{n \to \infty} \mathbb{P}(D_{n,p} \text{ has a Hamilton cycle}) = \begin{cases} 0 & \text{if } c_n \to -\infty \\ e^{-2e^{-c}} & \text{if } c_n \to c \\ 1 & \text{if } c_n \to \infty. \end{cases}$$

Number of Distinct Hamilton Cycles

Here we give an elegant result of Ferber, Kronenberg and Long [305].

Theorem 13.12. Let $p = \omega \left(\log^2 n \right)$. Then w.h.p. $D_{n,p}$ contains $e^{o(n)} n! p^n$ directed Hamilton cycles.

Proof. The upper bound follows from the first moment method. Let X_H denote the number of Hamilton cycles in $D = D_{n,p}$. Now $\mathbb{E} X_H = (n - 1)! p^n$, and therefore the Markov inequality implies that w.h.p. we have $X_H \leq e^{o(n)} n! p^n$.

For the lower bound let $\alpha := \alpha(n)$ be a function tending slowly to infinity with n. Let $S \subseteq V(G)$ be a fixed set of size s, where $s \approx \frac{n}{\alpha \log n}$ and let $V' = V \setminus S$. Moreover, assume that s is chosen so that $|V'|$ is divisible by integer $\ell = 2\alpha \log n$. From now on the set S will be fixed and we will use it for closing Hamilton cycles.

Our strategy is as follows: we first expose all the edges within V', and show that one can find the “correct” number of distinct families \mathcal{P} consisting of $m := |V'| / \ell$ vertex-disjoint paths which span V'. Then, we expose all the edges with at least one endpoint in S, and show that w.h.p. one can turn “most” of these families into Hamilton cycles and that all of these cycles are distinct.

We take a random partitioning $V' = V_1 \cup \ldots \cup V_t$ such that all the V_i’s are of size m. Let us denote by D_j the bipartite graph with parts V_j and V_{j+1}. Observe that D_j is distributed as $G_{m,m,p}$, and therefore, since $p = \omega \left(\frac{\log n}{m} \right)$, by Exercise 13.3.2, with probability $1 - n^{-o(1)}$ we conclude that D_j contains $(1 - o(1))m$ edge-disjoint perfect matchings (in particular, a $(1 - o(1))m$ regular subgraph). The Van der Waerden conjecture proved by Egorychev [284] and by Falikman [298] implies
13.2. HAMILTON CYCLES

the following: Let $G = (A \cup B, E)$ be an r-regular bipartite graph with part sizes $|A| = |B| = n$. Then, the number of perfect matchings in G is at least $(\frac{r}{n})^n n!$.

Applying this and the union bound, it follows that w.h.p. each D_j contains at least $(1 - o(1)) m! p^m$ perfect matchings for each j. Taking the union of one perfect matching from each of the D_j’s we obtain a family \mathcal{P} of m vertex disjoint paths which spans V'. Therefore, there are

$$((1 - o(1)) m! p^m)^\ell = (1 - o(1))^{n-s} (m!)^\ell p^{n-s}$$

distinct families \mathcal{P} obtained from this partitioning in this manner. Since this occurs w.h.p. we conclude (applying the Markov inequality to the number of partitions for which the bound fails) that this bound holds for $(1 - o(1))$-fraction of such partitions. Since there are $\frac{(n-s)!}{(m!)^\ell}$ such partitions, one can find at least

$$(1 - o(1)) \frac{(n-s)!}{(m!)^\ell} (1 - o(1))^{n-s} (m!)^\ell p^{n-s}$$

$$= (1 - o(1))^{n-s} (n-s)! p^{n-s} = (1 - o(1)) n! p^n$$

distinct families, each of which consists of exactly m vertex-disjoint paths of size ℓ (for the last equality, we used the fact that $s = o(n/\log n)$).

We show next how to close a given family of paths into a Hamilton cycle. For each such family \mathcal{P}, let $A := A(\mathcal{P})$ denote the collection of all pairs (s_p, t_p) where s_p is a starting point and t_p is the endpoint of a path $P \in \mathcal{P}$, and define an auxiliary directed graph $D(A)$ as follows. The vertex set of $D(A)$ is $V(A) = S \cup \{z_p = (s_p, t_p) : z_p \in A\}$. Edges of $D(A)$ are determined as follows: if $u, v \in S$ and $(u, v) \in E(D)$ then (u, v) is an edge of $D(A)$. The in-neighbors (out-neighbors) of vertices z_P in S are the in-neighbors of s_P in D (out-neighbors of t_P). Lastly, (z_P, z_Q) is an edge of $D(A)$ if (t_p, s_Q) is an edge D.

Clearly $D(A)$ is distributed as $\mathcal{D}_{s+m,p}$, and that a Hamilton cycle in $D(A)$ corresponds to a Hamilton cycle in D after adding the corresponding paths between each s_P and t_P. Now distinct families $\mathcal{P} \neq \mathcal{P}'$ yield distinct Hamilton cycles (to see this, just delete the vertices of S from the Hamilton cycle, to recover the paths). Using Theorem 13.11 we see that for $p = \omega (\log n/(s+m)) = \omega (\log(s+m)/(s+m))$, the probability that $D(A)$ does not have a Hamilton cycle is $o(1)$. Therefore, using the Markov inequality we see that for almost all of the families \mathcal{P}, the corresponding auxiliary graph $D(A)$ is indeed Hamiltonian and we have at least $(1 - o(1)) n! p^n$ distinct Hamilton cycles, as desired. \qed
CHAPTER 13. DIGRAPHS

13.3 Exercises

13.3.1 Let \(p = \frac{\log n + (k-1) \log \log n + \omega}{n} \) for a constant \(k = 1, 2, \ldots \). Show that w.h.p. \(D_{np} \) is \(k \)-strongly connected.

13.3.2 The Gale-Ryser theorem states: Let \(G = (A \cup B, E) \) be a bipartite graph with parts of sizes \(|A| = |B| = n\). Then, \(G \) contains an \(r \)-factor if and only if for every two sets \(X \subseteq A \) and \(Y \subseteq B \), we have

\[
e_G(X, Y) \geq r(|X| + |Y| - n).
\]

Show that if \(p = \omega(\log n / n) \) then with probability \(1 - n^{-\omega(1)} \), \(G_{n,n,p} \) contains \((1 - o(1))np \) edge disjoint perfect matchings.

13.3.3 Show that if \(p = \omega((\log n)^2 / n) \) then w.h.p. \(G_{n,p} \) contains \(e^{o(n)} n! p^n \) distinct Hamilton cycles.

13.3.4 A tournament \(T \) is an orientation of the complete graph \(K_n \). In a random tournament, edge \(\{u, v\} \) is oriented from \(u \) to \(v \) with probability \(1/2 \) and from \(v \) to \(u \) with probability \(1/2 \). Show that w.h.p. a random tournament is strongly connected.

13.3.5 Let \(T \) be a random tournament. Show that w.h.p. the size of the largest acyclic sub-tournament is asymptotic to \(2 \log_2 n \). (A tournament is acyclic if it contains no directed cycles).

13.3.6 Suppose that \(0 < p < 1 \) is constant. Show that w.h.p. the size of the largest acyclic tournament contained in \(D_{np} \) is asymptotic to \(2 \log_b n \) where \(b = 1/p \).

13.3.7 Let \(\text{mas}(D) \) denote the number of vertices in the largest acyclic subgraph of a digraph \(D \). Suppose that \(0 < p < 1 \) is constant. Show that w.h.p. \(\text{mas}(D_{n,p}) \leq \frac{4 \log n}{\log q} \) where \(q = \frac{1}{1-p} \).

13.3.8 Consider the random digraph \(D_n \) obtained from \(G_{n,1/2} \) by orienting edge \((i, j) \) from \(i \) to \(j \) when \(i < j \). This can be viewed as a partial order on \([n] \) and is called a Random Graph Order. Show that w.h.p. \(D_n \) contains a path of length at least \(0.51n \). (In terms of partial orders, this bounds the height of the order).

13.3.9 Show that if \(np \geq \log^{10} n \) then w.h.p. \(D_{n,p} \) is \(\frac{1}{2} + o(1) \) resilient, i.e. \((\frac{1}{2} - \varepsilon) np \leq \Delta_{D_{n,p}} \leq (\frac{1}{2} + \varepsilon) np \). (Hint: just tweak the proof of Theorem 9.3 so that the lemmas refer to digraphs.)
13.3.10 Let O represent an orientation of the edges of a Hamilton cycle. Show that

$$\mathbb{P}(D_{n,p} \text{ has a Hamilton cycle with orientation } O) \geq \mathbb{P}(G_{n,p} \text{ has a Hamilton cycle}).$$

13.4 Notes

Packing

The paper of Frieze [337] was in terms of the hitting time for a digraph process D_t. It proves that the first time that the $\delta^+(G_t), \delta^-(G_t) \geq k$ is w.h.p. the time when G_t has k edge disjoint Hamilton cycles. The paper of Ferber, Kronenberg and Long [305] shows that if $p = \omega((\log n)^4/n)$ then w.h.p. $D_{n,p}$ contains $(1-o(1))np$ edge disjoint Hamilton cycles.

Long Cycles

The papers by Hefetz, Steger and Sudakov [422] and by Ferber, Nenadov, Noever, Peter and Škorić [308] study the local resilience of having a Hamilton cycle. In particular, [308] proves that if $p \gg (\log n)^8/n$ then w.h.p. one can delete any subgraph H of $D_{n,p}$ with maximum degree at most $(1/2 - \epsilon)np$ and still leave a Hamiltonian subgraph.

Krivelevich, Lubetzky and Sudakov [526] proved that w.h.p. the random digraph $D_{n,p}, p = c/n$ contains a directed cycle of length $(1 - (1 + \epsilon_c)e^{-c})n$ where $\epsilon_c \rightarrow 0$ as $c \rightarrow \infty$.

Cooper, Frieze and Molloy [231] showed that a random regular digraph with indegree = outdegree = r is Hamiltonian w.h.p. iff $r \geq 3$.

Connectivity

Cooper and Frieze [220] studied the size of the largest strong component in a random digraph with a given degree sequence. The strong connectivity of an inhomogeneous random digraph was studied by Bloznelis, Götze and Jaworski in [104].
Chapter 14

Hypergraphs

In this chapter we discuss random k-uniform hypergraphs, where $k \geq 3$. We are concerned with the models $\mathbb{H}_{n,p,k}$ and $\mathbb{H}_{n,m,k}$. For $\mathbb{H}_{n,p,k}$ we consider the hypergraph with vertex set $[n]$ in which each possible k-set in $\binom{[n]}{k}$ is included as an edge with probability p. In $\mathbb{H}_{n,m,k}$ the edge set is a random m-subset of $\binom{[n]}{k}$. The parameter k is fixed and independent of n throughout this chapter.

Many of the properties of $G_{n,p}$ and $G_{n,m}$ have been generalized without too much difficulty to these models of hypergraphs. Hamilton cycles have only recently been tackled with any success. Surprisingly enough, in some cases it is enough to use the Chebyshev inequality and we will describe these cases. We then describe a remarkable new result concerning thresholds. It easily gives the threshold for perfect matchings and a number of other structures. We begin however with a more basic question. That is as to when is there a giant component and when are $\mathbb{H}_{n,m,k}, \mathbb{H}_{n,p,k}$ connected?

14.1 Component Size

We remind the reader that $k \geq 3$ here. Suppose that $p = \frac{c}{\binom{n-1}{k-1}}$ and c is constant. We will prove that if $c < \frac{1}{k-1}$ then w.h.p. the maximum component size is $O(\log n)$ and if $c > \frac{1}{k-1}$ then w.h.p. there is a unique giant component of size $\Omega(n)$. This generalises the main result of Chapter 2. We will assume then that $p = \frac{c}{\binom{n-1}{k-1}}$ for the remainder of this section.

Many of the components of a sparse random graph are small trees. The corresponding objects here are called hypertrees. The size of a hypertree is the number of edges that it contains. An edge is a hypertree of size one. We obtain a hypertree of size $k + 1$ by choosing a hypertree C of size k and a vertex $v \in V(C)$ and then adding a new edge $\{v,v_2,v_3,\ldots,v_k\}$ where $v_2,v_3,\ldots,v_k \notin V(C)$.
Chapter 14. Hypergraphs

A hypertree of size 5.

Lemma 14.1. A hypertree of size \(\ell \) contains \(\ell(k - 1) + 1 \) vertices.

Proof. By induction on \(\ell \). It is clearly true if \(\ell = 1 \) and if we increase the size by one, then we add exactly \(k - 1 \) new vertices.

A proof of the following generalisation of Cayley’s formula for the number of spanning hypertrees of the complete graph can be found in Selivanov [710] and Sivasubramanian [716].

Lemma 14.2. The number \(N_k(\ell) \) of distinct hypertrees with \(\ell \) edges contained in the complete \(k \)-uniform hypergraph on \([(k - 1)\ell + 1] \) is given by

\[
N_k(\ell) = \left((k-1)\ell + 1 \right)^{\ell-1} \frac{((k-1)\ell)!}{\ell! \left((k-1)! \right)^{\ell}}.
\]

We now look into the structure of small components of \(\mathbb{H}_{n,p;k} \).

Lemma 14.3. Let \(p = \frac{c}{(k-1)} \) where \(c \neq \frac{1}{k-1} \). Suppose that \(S \subseteq [n] \) and \(|S| = s \leq \log^4 n \). Suppose also that \(S \) contains a hypertree \(C \) with \(t = (k - 1)\ell + 1 \) vertices and \(\ell \) edges. Suppose that in addition, \(S \) contains \(a \) vertices and \(b \) edges that are not part of \(C \). Suppose also that there are no edges joining \(C \) to \(V \setminus S \). Then, for some \(A = A(c) > 0 \), we have that w.h.p.

(a) \(b \leq 1 \) and \(b(k - 2) + 1 \geq a + 1 \geq b(k - 1) \).

(b) \(\ell < A \log n \) and either (i) \(a = b = 0 \) or (ii) \(b = 1 \).

(c) \(|\{S : \ell \leq A \log n, b = 1\}| = O(\log^{k+1} n) \).

Proof. We bound the expected number of sets \(S \) that violate this by

\[
\left(\frac{n}{s} \right) \left(\frac{s}{a} \right) \left(\frac{s}{b} \right)^{\ell - 1} \left(\frac{(k - 1)\ell)!}{\ell! \left((k-1)! \right)^{\ell}} \right) \left(\frac{c}{\frac{n-1}{k-1}} \right)^{\ell+b} \left(1 - \frac{c}{\frac{n-1}{k-1}} \right)^{t(\frac{n-1}{k-1})} \leq \left(\frac{ne}{s} \right)^{s^{a+b} t^{\ell-1}} \left(\frac{\ell^{k-2}(k-1)^{k-1}}{\ell e^{k-2+o(1)} (k-1)!} \right)^{\ell} \left(\frac{e^{\omega(1)} (k-1)!}{n^{k-1}} \right)^{\ell+b} \quad (14.1)
\]
Now $ce^{-(k-1)c}$ is maximised at $c = 1/(k-1)$ and for $c \neq 1/(k-1)$ we have
\[e^{o(1)}ce^{1-(k-1)c}(k-1) \leq 1 - \varepsilon_c. \]

We may therefore upper bound the expression in (14.2) by
\[n^{a+1-b(k-1)+O(b \log \log n / \log n)} e^{-\varepsilon_c \ell} \leq n^{1-b+O(b \log \log n / \log n)} e^{-\varepsilon_c \ell}. \]

(14.3)

For the second expression, we used the fact that $a \leq b(k-2)$. The second expression in (14.3) tends to zero if $b > 1$ and so we can assume that $b \leq 1$. The first expression in (14.3) then tends to zero if $a+1 < b(k-1)$ and this verifies Part (a). Because $a+1-b(k-1) \leq 1$, we see that Part (b) of the lemma follows with $A = 2/\varepsilon_c$. Part (c) follows from the Markov inequality.

Lemma 14.4. W.h.p. there are no components in the range $[A \log n, \log^4 n]$ and all but $\log^{k+1} n$ of the small components (of size at most $A \log n$) are hypertrees.

Proof. Now suppose that S is a small component of size s which is not a hypertree and let C be the set of vertices of a maximal hypertree with $t = (k-1)\ell + 1$ vertices and ℓ edges that is a subgraph of S. (Maximal in the sense that it is not contained in any other hypertree of S.) Lemma 14.3 implies that w.h.p. there is at most one edge e in S that is not part of C but is incident with at least two vertices of C. Furthermore, Lemma 14.3(c) implies that the number of sets with $b = 1$ is $O(\log^{k+1} n)$ w.h.p.

Lemma 14.5. If $c < \frac{1}{k-1}$ then w.h.p. the largest component has size $O(\log n)$.

Proof. Fix an edge e and do a Breadth First Search (BFS) on the edges starting with e. We start with $L_1 = e$ and let L_t denote the number of vertices at depth t in the search i.e the neighbors of L_{t-1} that are not in L_{t-1}. Then $|L_{t+1}|$ is dominated by $(k-1)\Bin \left(|L_t| \left(\frac{n}{k-1} \right), p \right)$. So,

\[\mathbb{E}(|L_{t+1}| \mid L_t) \leq (k-1)|L_t| \left(\frac{n}{k-1} \right) p \leq \theta |L_t| \]
where \(\theta = (k - 1)c < 1 \). It follows that if \(t_0 = \frac{2 \log n}{\log \frac{1}{\theta}} \) then

\[
\Pr(\exists e : L_{t_0} \neq \emptyset) \leq nk\theta^{t_0} = o(1).
\]

So, w.h.p. there are at most \(t_0 \) levels. Furthermore, if \(|L_t| \) ever reaches \(\log^2 n \) then the Chernoff bounds imply that w.h.p. \(|L_{t+1}| \leq |L_t| \). This implies that the maximum size of a component is \(O(\log^3 n) \) and hence, by Lemma 14.4, the maximum size is \(O(\log n) \). \hfill \Box

Lemma 14.6. If \(c > \frac{1}{k - 1} \) then w.h.p. there is a unique giant component of size \(\Omega(n) \) and all other components are of size \(O(\log n) \).

Proof. We consider BFS as in Lemma 14.5. We choose a vertex \(v \) and begin to grow a component from it. Sometimes the component we grow has size \(O(\log n) \), in which case, we choose a new vertex, not yet seen in the search and grow another component. We argue that w.h.p. (i) after \(O(\log n) \) attempts, we grow a component \(\geq \log 2 n \) and (ii) this component is of size \(\Omega(n) \).

We say that we **explore** \(L_t \setminus L_{t-1} \) when we determine \(L_{t+1} \). With \(L_t \) as in Lemma 14.5, we see that if we have explored at most \(\log^4 n \) vertices then given \(L_t \), \(|L_{t+1}| \) dominates \(Y_t = (k-1)\text{Bin}\left(|L_t|\binom{n-o(n)}{k-1}, p\right) - X_t \) where \(X_t \) is an overcount due to vertices outside \(L_t \) that are in two edges containing vertices of \(L_t \). We have

\[
\mathbb{E}(X_t) \leq n|L_t|^2 \binom{n}{k-3} p = O\left(\frac{\log^8 n}{n}\right).
\]

Now

\[
\mathbb{E}(Y_t) = (k-1)|L_t|\binom{n-o(n)}{k-1} p = (1-o(1))c|L_t| = \theta|L_t| \text{ where } \theta > 1.
\]

The Chernoff bounds \(\text{applied to } \text{Bin}\left(|L_t|\binom{n-o(n)}{k-1}, p\right) \) imply that

\[
\Pr\left(Y_t \leq \frac{1 + \theta}{2} |L_t|\right) \leq \exp \left\{ -\frac{(\theta - 1)^2 |L_t|}{3(k-1)} \right\}.
\]

So, for \(t = O(\log \log n) \) we have

\[
\Pr\left(|L_t| \geq \left(\frac{1 + \theta}{2}\right)^r\right) \geq \prod_{\ell=1}^{t} \left(1 - \exp \left\{ -\frac{(\theta - 1)^2 (1+\theta)^{r}\ell}{3(k-1)} \right\} \right) - O\left(\frac{t \log^8 n}{n}\right) \tag{14.4}
\]
14.1. COMPONENT SIZE

\[\geq \gamma, \]

where \(\gamma > 0 \) is a positive constant. This lower bound of \(\gamma \) follows from the fact that \(\sum_{t=1}^{\infty} \exp \left\{ -\frac{(\theta - 1)^2}{3(k-1)} t^3 \right\} \) converges, see Apostol [39], Theorem 8.55. Note that if \(t = 2 \log \log n / \log 1/\gamma \) then \(\left(1 + \frac{\theta}{2} \right)^t = \log^2 n \). It follows that the probability we fail to grow a component of size \(\log^2 n \) after \(s \) attempts is at most \((1 - \gamma)^s \). Choosing \(s = \frac{2\log n}{\log 1/(1-\gamma)} \) we see that after exploring \(O(\log^3 n) \) vertices, we find a component of size at least \(\log^2 n \), with probability \(1 - n^{-(1-o(1))} \).

We show next that with (conditional) probability \(1 - O(n^{-(1-o(1))}) \) the component of size at least \(\log^2 n \) will in fact have at least \(n_0 = \frac{n(k-1)}{k \log n} \) vertices. We handle \(X_t, Y_t \) exactly as above. Going back to (14.4), if we run BFS for another \(O(\log n) \) steps then, starting with \(|L_0| \approx \log^2 n \), we have

\[
P \left(|L_0 + t| \geq \left(\frac{1 + \theta}{2} \right)^t \log^2 n \right) \\ \geq \prod_{t=1}^{t} \left(1 - \exp \left\{ -\frac{(\theta - 1)^2 \log^2 n}{3(k-1)} \right\} \right) - O \left(\frac{\log^9 n}{n} \right) \\ = 1 - n^{-(1-o(1))}. \tag{14.5} \]

It follows that w.h.p. \(\mathbb{H}_{n, p, k} \) only contains components of size \(O(\log n) \) and \(\Omega(n_0) \). For this we use the fact that we only need to apply (14.5) less than \(n/n_0 \) times.

We now prove that there is a unique giant component. This is a simple sprinkling argument. Suppose that we let \((1 - p) = (1 - p_1)(1 - p_2) \) where \(p_2 = 1/\omega n^{k-1} \) for some \(\omega \to \infty \) slowly. Then we know from Lemma 14.4 that there is a gap in component sizes for \(\mathbb{H}(n, p_1, k) \). Now add in the second round of edges with probability \(p_2 \). If \(C_1, C_2 \) are distinct components of size at least \(n_0 \) then the probability there is no \(C_1 : C_2 \) edge added is at most

\[
(1 - p_2) \sum_{i=1}^{k-1} \binom{n_0}{i} \binom{n_0}{k-i} \leq \exp \left\{ -\frac{\sum_{i=1}^{k-1} \binom{n_0}{i} \binom{n_0}{k-i}}{\omega n^{k-1}} \right\} \\ \leq \exp \left\{ -\frac{2^{k-1} n_0^k}{\omega n^{k-1}} \right\} = \exp \left\{ -\frac{2^{k-1} \log^k n}{\omega} \right\}. \]

So, w.h.p. all components of size at least \(n_0 \) are merged into one component. \(\square \)

We now look at the size of this giant component. The fact that almost all small components are hypertrees when \(c < \frac{1}{k-1} \) yields the following lemma. The proof
follows that of Lemma 2.13 and is left as Exercise 13.4.5. For $c > 0$ we define

$$x = x(c) = \begin{cases} c & c \leq \frac{1}{k-1} \\ \text{The solution in } (0, \frac{1}{k-1}) \text{ to } xe^{-(k-1)x} = ce^{-(k-1)c} & c > \frac{1}{k-1} \end{cases}.$$

Lemma 14.7. Suppose that $c > 0$ is constant and $c(k-1) \neq 1$ and x is as defined above. Then

$$\sum_{\ell=0}^{\infty} \frac{c^\ell((k-1)\ell+1)e^{-c((k-1)\ell+1)}}{\ell!(k-1)\ell+1} = \left(\frac{x}{c}\right)^{1/(k-1)}.$$

It follows from Lemmas 14.6 and 14.7 that we have

Lemma 14.8. If $c > \frac{1}{k-1}$ then w.h.p. there is a unique giant component of size

$$\approx \left(1 - \left(\frac{c}{x}\right)^{1/(k-1)}\right)n.$$

The connectivity threshold for $\mathbb{H}_{n,p,k}$ coincides with minimum degree at least one. The proof is straightforward and is left as Exercise 13.4.6.

Lemma 14.9. Let $p = \frac{\log n + cn}{(k-1)n}$. Then

$$\lim_{n \to \infty} \mathbb{P}(\mathbb{H}_{n,p,k} \text{ is connected}) = \begin{cases} 0 & c_n \to -\infty \\ e^{-c} & c_n \to c \\ 1 & c_n \to \infty. \end{cases}$$

14.2 Hamilton Cycles

Suppose that $1 \leq r < k$. An r-overlapping Hamilton cycle C in a k-uniform hypergraph $H = (V, \mathcal{E})$ on n vertices is a collection of $m_r = n/(k-r)$ edges of H such that for some cyclic order of $[n]$ every edge consists of k consecutive vertices and for every pair of consecutive edges E_{i-1}, E_i in C (in the natural ordering of the edges) we have $|E_{i-1} \cap E_i| = r$. Thus, in every r-overlapping Hamilton cycle the sets $C_i = E_i \setminus E_{i-1}$, $i = 1, 2, \ldots, m_r$, are a partition of V into sets of size $k-r$. Hence, $m_r = n/(k-r)$. We thus always assume, when discussing r-overlapping Hamilton cycles, that this necessary condition, $k-r$ divides n, is fulfilled. In the literature, when $r = k-1$ we have a **tight** Hamilton cycle and when $r = 1$ we have a **loose** Hamilton cycle.

In this section we will restrict our attention to the case $r = k-1$ i.e. tight Hamilton cycles. So when we say that a hypergraph is Hamiltonian, we mean that it contains a tight Hamilton cycle. The proof extends easily to $r \geq 2$. The case $r = 1$ poses some more problems and is discussed in Frieze [341], Dudek, Frieze [263] and
Dudek, Frieze, Loh and Speiss [265] and in Ferber [303]. Also, see Section 14.3. The following theorem is from Dudek and Frieze [264]. Furthermore, we assume that \(k \geq 3 \).

Theorem 14.10.

(i) If \(p \leq (1 - \varepsilon)e/n \), then w.h.p. \(\mathbb{H}_{n,p,k} \) is not Hamiltonian.

(ii) If \(k = 3 \) and \(np \to \infty \) then \(\mathbb{H}_{n,p,k} \) is Hamiltonian w.h.p.

(iii) For all fixed \(\varepsilon > 0 \), if \(k \geq 4 \) and \(p \geq (1 + \varepsilon)e/n \), then w.h.p. \(\mathbb{H}_{n,p,k} \) is Hamiltonian.

Proof. We will prove parts (i) and (ii) and leave the proof of (iii) as an exercise, with a hint.

Let \((\mathbb{E}, \mathbb{C}) \) be a \(k \)-uniform hypergraph. A permutation \(\pi \) of \([n] \) is Hamilton cycle inducing if

\[
E_{\pi}(i) = \{\pi(i - 1 + j) : j \in [k]\} \in \mathcal{C} \text{ for all } i \in [n].
\]

(We use the convention \(\pi(n + r) = \pi(r) \) for \(r > 0 \).) Let the term hamperm refer to such a permutation.

Let \(X \) be the random variable that counts the number of hamperms \(\pi \) for \(\mathbb{H}_{n,p,k} \). Every Hamilton cycle induces at least one hamperm and so we can concentrate on estimating \(\mathbb{P}(X > 0) \).

Now

\[
\mathbb{E}(X) = n! p^n.
\]

This is because \(\pi \) induces a Hamilton cycle if and only if a certain \(n \) edges are all in \(\mathbb{H}_{n,p,k} \).

For part (i) we use Stirling’s formula to argue that

\[
\mathbb{E}(X) \leq 3\sqrt{n} \left(\frac{np}{e} \right)^n \leq 3\sqrt{n}(1 - \varepsilon)^n = o(1).
\]

This verifies part (i).

We see that

\[
\mathbb{E}(X) \geq \left(\frac{np}{e} \right)^n \to \infty \quad (14.6)
\]

in parts (ii) and (iii).

Fix a hamperm \(\pi \). Let \(H(\pi) = (E_{\pi}(1), E_{\pi}(2), \ldots, E_{\pi}(n)) \) be the Hamilton cycle induced by \(\pi \). Then let \(N(b,a) \) be the number of permutations \(\pi' \) such that \(|E(H(\pi)) \cap E(H(\pi'))| = b \) and \(E(H(\pi)) \cap E(H(\pi')) \) consists of \(a \) edge disjoint paths. Here a path is a maximal sub-sequence \(F_1, F_2, \ldots, F_q \) of the edges of \(H(\pi) \)
such that $F_i \cap F_{i+1} \neq \emptyset$ for $1 \leq i < q$. The set $\bigcup_{j=1}^{q} F_j$ may contain other edges of $H(\pi)$. Observe that $N(b,a)$ does not depend on π.

Note that

$E(X^2) = \frac{n!N(0,0)p^{2n}}{E(X)^2} + \sum_{b=1}^{n} \sum_{a=1}^{b} \frac{n!N(b,a)p^{2n-b}}{E(X)^2}$.

Since trivially, $N(0,0) \leq n!$, we obtain,

$\frac{E(X^2)}{E(X)^2} \leq 1 + \sum_{b=1}^{n} \sum_{a=1}^{b} \frac{n!N(b,a)p^{2n-b}}{E(X)^2}$. \hspace{1cm} (14.7)

We show that

$\sum_{b=1}^{n} \sum_{a=1}^{b} \frac{n!N(b,a)p^{2n-b}}{E(X)^2} = \sum_{b=1}^{n} \sum_{a=1}^{b} \frac{N(b,a)p^{n-b}}{E(X)} = o(1).$ \hspace{1cm} (14.8)

The Chebyshev inequality implies that

$\mathbb{P}(X = 0) \leq \frac{E(X^2)}{E(X)^2} - 1 = o(1)$,

as required.

It remains to show (14.8). First we find an upper bound on $N(b,a)$. Choose a vertices v_i, $1 \leq i \leq a$, on π. We have at most

n^a \hspace{1cm} (14.9)

choices. Let

$b_1 + b_2 + \cdots + b_a = b$,

where $b_i \geq 1$ is an integer for every $1 \leq i \leq a$. Note that this equation has exactly

$\binom{b-1}{a-1} < 2^b$ \hspace{1cm} (14.10)

solutions. For every i, we choose a path of length b_i in $H(\pi)$ which starts at v_i. Suppose a path consists of edges $F_1, F_2, \ldots, F_q, q = b_i$. Assuming that F_1, \ldots, F_j are chosen, we have at most k possibilities for F_{j+1}. Hence, every such a path can be selected in most k^{b_i} ways. Consequently, we have at most

$\prod_{i=1}^{a} k^{b_i} = k^b$

choices for all a paths.
Thus, by the above considerations we can find a edge disjoint paths in $H(\pi)$ with the total of b edges in at most

$$n^a(2k)^b \quad (14.11)$$

many ways.

Let P_1, P_2, \ldots, P_a be any collection of the above a paths. Now we count the number of permutations π' containing these paths.

First we choose for every P_i a sequence of vertices inducing this path in π'. We see the vertices in each edge of P_i in at most $k!$ orderings. Crudely, every such sequence can be chosen in at most $(k!)^{b_i}$ ways. Thus, we have

$$\prod_{i=1}^{a} (k!)^{b_i} = (k!)^b \quad (14.12)$$

choices for all a sequences.

Now we bound the number of permutations containing these sequences. First note that

$$|V(P_i)| \geq b_i + k - 1.$$

Thus we have at most

$$n - \sum_{i=1}^{a} (b_i + k - 1) = n - b - a(k - 1) \quad (14.13)$$

vertices not in $V(P_1) \cup \cdots \cup V(P_a)$. We choose a permutation σ of $V \setminus (V(P_1) \cup \cdots \cup V(P_a))$. Here we have at most

$$(n - b - a(k - 1))!$$

choices. Now we extend σ to a permutation of $[n]$. We mark a positions on σ and then insert the sequences. We can do it in

$$\binom{n}{a}! < n^a$$

ways. Therefore, the number of permutations containing P_1, P_2, \ldots, P_a is smaller than

$$(k!)^b (n - b - a(k - 1))! n^a. \quad (14.14)$$

Thus, by (14.11) and (14.14) and the Stirling formula we obtain

$$N(b, a) < n^{2a}(2k!)^b (n - b - a(k - 1))! < n^{2a}(2k!)^b \sqrt{2\pi n} \left(\frac{n}{e}\right)^{n-b-a(k-1)}. $$
Since
\[\mathbb{E}(X) = n!p^n = \sqrt{(2 + o(1))\pi n} \left(\frac{n}{e}\right)^n p^n, \]
we get
\[\frac{N(b,a)p^n - b}{\mathbb{E}(X)} < (1 + o(1))n^{2a}(2k!k^b) \left(\frac{e}{n}\right)^{b+a(k-1)} p^{-b}. \]
Finally, since \(a \leq b \) we estimate \(e^{b+a(k-1)} \leq e^{kb} \), and consequently,
\[\frac{N(b,a)p^n - b}{\mathbb{E}(X)} < \left(\frac{2k!ke^k}{np}\right)^b \left(1 + o(1)\right) \left(\frac{n^{a(k-3)}}{n}\right). \] (14.15)

Proof of (ii):
Here \(k = 3 \) and \(np \geq \omega \). Hence, we obtain in (14.15)
\[\frac{N(b,a)p^n - b}{\mathbb{E}(X)} \leq (1 + o(1)) \left(\frac{2k!ke^k}{\omega}\right)^b. \]
Thus,
\[\sum_{b=1}^n \sum_{a=1}^b \frac{N(b,a)p^n - b}{\mathbb{E}(X)} < (1 + o(1)) \sum_{b=1}^n b \left(\frac{2k!ke^k}{\omega}\right)^b = o(1). \] (14.16)
This completes the proof of part (ii).
We prove Part (iii) by estimating \(N(b,a) \) more carefully, see Exercise 14.4.2 at the end of the chapter.

Before leaving Hamilton cycles, we note that Allen, Böttcher, Kohayakawa, and Person [20] describe a polynomial time algorithm for finding a tight Hamilton cycle in \(\mathbb{H}_{n,p,k} \) w.h.p. when \(p = n^{-1+\varepsilon} \) for a constant \(\varepsilon > 0 \).

There is a weaker notion of Hamilton cycle due to Berge [83] viz. an alternating sequence \(v_1, e_1, v_2, \ldots, v_n, e_n \) of vertices and edges such that (i) \(v_1, v_2, \ldots, v_n \) are distinct and (ii) \(v_i \in e_{i-1} \cap e_i \) for \(i = 1, 2, \ldots, n \). The cycle is weak if we do not insist that the edges are distinct. Poole [657] proves that the threshold for the existence of a weak Hamilton cycle in \(\mathbb{H}_{n,m,k} \) is equal to the threshold for minimum degree one.

14.3 Thresholds

In this section we describe a breakthrough result of Frankston, Kahn, Narayanan and Park [327]. It will give us good estimates of the thresholds for various structures.
14.3. **Thresholds**

A hypergraph \mathcal{H} (thought of as a set of edges) is r-bounded if $e \in \mathcal{H}$ implies that $|e| \leq r$. (As part of the proof, we have to deal with non-uniform hypergraphs.) The most important notion comes next. For a set $S \subseteq X$ we let $\langle S \rangle = \{T : S \subseteq T \subseteq X\}$ denote the subsets of X that contain S. We say that \mathcal{H} is κ-spread if

$$|\mathcal{H} \cap \langle S \rangle| \leq \frac{|\mathcal{H}|}{\kappa^|S|}, \quad \forall S \subseteq X. \quad (14.17)$$

Let X_m denote a random m-subset of X and X_p denote a subset of X where each $x \in X$ is included independently in X_p with probability p. The following theorem is from [327]:

Theorem 14.11. Let \mathcal{H} be an r-bounded, κ-spread hypergraph and let $X = V(\mathcal{H})$. There is an absolute constant $K > 0$ such that if

$$m \geq \frac{(K \log r)|X|}{\kappa} \quad (14.18)$$

then w.h.p. X_m contains an edge of \mathcal{H}. Here w.h.p. assumes that $r \to \infty$.

Before giving a proof of Theorem 14.11, we will give some examples of its applicability. In the first two examples, $X = \binom{[n]}{r}$ and $H = \mathbb{H}_{n,m,k}$ (not to be confused with \mathcal{H}).

Shamir’s Problem: This is the name given to that of finding the threshold for the existence of a perfect matching in the random hypergraph $\mathbb{H}_{n,m,k}$. A perfect matching of an n-vertex, k-uniform hypergraph H, where $k|n$, is a set of n/k disjoint edges that cover all vertices of H. If $m = cn \log n$ then the expected number of isolated vertices in $\mathbb{H}_{n,m,k}$ is $\approx n^{1-ck}$. If $ck < 1$ then there will be isolated vertices, w.h.p., see Exercise 14.4.1. Suppose now that \mathcal{H} is the hypergraph with vertex set $X = \binom{[n]}{r}$ and an edge of size n/k corresponding to each perfect matching of the complete k-uniform hypergraph $\mathcal{H}_{n,r}$ on vertex set $[n]$. Viz. each partition of $[n]$ into n/k sets of size k. Thus \mathcal{H} is n/k-bounded. Now \mathcal{H} has exactly $\frac{n!}{(n/k)!k^{n/k}}$ edges. We see more generally, that if we choose a set $S = \{e_1, e_2, \ldots, e_s\} \subseteq X$, i.e. s subsets of $[n]$ of size k then $E(\mathcal{H}) \cap \langle S \rangle = \emptyset$ unless e_1, e_2, \ldots, e_s are disjoint. If they are disjoint then

$$\frac{|E(\mathcal{H}) \cap \langle S \rangle|}{|E(\mathcal{H})|} = \frac{(n - ks)!}{n!} \cdot \frac{(n/k)!k^s}{(n/k - s)!} = \frac{(k!)^s \prod_{i=0}^{s-1} \frac{n/k - i}{n/k - i}}{\prod_{j=0}^{k-1} (n - j)} \leq \left(\frac{(k - 1)!}{(n - 2k)^{k-1}} \right)^s.$$

Thus, \mathcal{H} is $\kappa = \frac{(n-2k)^{k-1}}{(k-1)!}$-spread. Applying Theorem 14.11 with this value of κ and $r = n/k$, we see that there exists $K > 0$ such if $m = Kn \log n$ then $\mathbb{H}_{n,m,k}$
has a perfect matching w.h.p. This was first proved in a breakthrough paper by Johansson, Kahn and Vu [468].

Loose Hamilton Cycles: We consider the case $r = 1$ of Section 14.2. In this case $X = \binom{[n]}{r}$ and the edges of \mathcal{H} correspond to the loose Hamilton cycles of the complete k-uniform hypergraph $\mathcal{H}_{n,r}$ on vertex set $[n]$. We see from Exercise 14.4.1 that we need at least $\Omega(n \log n)$ random edges to have a loose Hamilton cycle w.h.p. Now there are $n/(k-1)$ edges in a loose cycle and so we take $r = n/(k-1)$. The number of loose Hamilton cycles in $\mathcal{H}_{n,r}$ is given by $\frac{k-1}{2n} \frac{n!}{(k-2)^{n/(k-1)}}$. Exercise 14.4.11, and for a set $S = \{e_1, e_2, \ldots, e_s\} \subseteq X$ we have

$$
\frac{|E(\mathcal{H}) \cap \langle S \rangle|}{|E(\mathcal{H})|} \leq \frac{(n - (k - 1)s - 1)!}{(k-2)^{n/(k-1)-s}} \cdot \frac{2n(k-2)^{n/(k-1)}}{(k-1)n!} \\
\leq \frac{2(k-2)^s}{n^{(k-1)s}} \cdot \prod_{i=1}^{(k-1)s} \left(1 - \frac{i}{n}\right)^{-1} \\
= \frac{2(k-2)^s}{n^{(k-1)s}} \cdot \exp \left\{ \sum_{i=1}^{(k-1)s} \frac{i}{n} + 2 \sum_{i=1}^{(k-1)s} \left(\frac{i}{n}\right)^2 + \cdots \right\} \leq \left(\frac{O(1)}{n^{k-1}}\right)^s. \quad (14.19)
$$

Arguing as for the Shamir problem, we see that there exists $K > 0$ such if $m = Kn \log n$ then $\mathbb{H}_{n,m}$ has a loose hamilton cycle w.h.p. This being the result of [341], [263] and [265].

Powers of Hamilton cycles: The kth power of a Hamilton cycle in a graph $G = (V, E)$ is a permutation x_1, x_2, \ldots, x_n of the vertices V such that $\{x_i, x_{i+j}\}$ is an edge of G for all $i \in [n], j \in [k]$. Kühn and Osthus [537] studied the existence of kth powers in $G_{n,p}$. They showed that for $k \geq 3$ one could use Riordan’s Theorem [671] to show that if $np^k \rightarrow \infty$ then $G_{n,p}$ contains the kth power of a Hamilton cycle w.h.p. This is tight as the first moment method shows that if $np^k \rightarrow 0$ then w.h.p. there are no kth powers. The problem is more difficult for $k = 2$ and then after a series of papers, Nenadov and Škorić [629], Fischer, Škorić, Steger and Trujić [312], Montgomery [610] we have an upper bound of $p \gg \frac{\log^2 n}{n^{1/2}}$. Theorem 14.11 reduces the bound to $O(n^{3/2} \log n)$ in $G_{n,m}$, as we will now show.

We take $X = \binom{[n]}{2}$ and the edges of \mathcal{H} correspond to the squares of Hamilton cycles of K_n. In which case we have for $|S| = s$, $r = n$ and

$$
\frac{|E(\mathcal{H}) \cap \langle S \rangle|}{|E(\mathcal{H})|} \leq \frac{(n - 2 - \lfloor s/2 \rfloor)!}{(n-1)!/2} \leq \left(\frac{e}{n-1}\right)^{\lfloor s/2 \rfloor + 1}. \quad (14.20)
$$

We can therefore take $\kappa = e^{-1}n^{1/2}$, and then (14.18) yields the claimed upper bound of $O(n^{3/2} \log n)$ on the threshold for the existence of the square of a Hamilton cycle in $G_{n,m}$.
Bounded degree spanning trees: Let T_n be a sequence of spanning trees of K_n all of maximum degree $\Delta = O(1)$. We take $X = \binom{[n]}{2}$ and the edges of \mathcal{H} correspond to the copies of T in K_n. We prove that (14.17) holds with $\kappa = n/\Delta$. If $S \subseteq X$ is not isomorphic to a subset of $E(T)$ then $E(\mathcal{H}) \cap \langle S \rangle = \emptyset$ and (14.17) holds. Suppose then that $S \subseteq X$ is isomorphic to a subset of $E(T)$. Then, where π is a random premutation of $[n]$ and

$$\pi(T) = ([n], \{\{\pi(v), \pi(w)\} : \{v, w\} \in E(T)\},$$

we have

$$\frac{|E(\mathcal{H}) \cap \langle S \rangle|}{|E(\mathcal{H})|} = \Pr(S \subseteq \pi(T)) \leq \kappa^{|S|}.$$ \hspace{1cm} (14.21)

We leave the verification of (14.21) as an exercise – Exercise 14.4.15. Consequently, we can apply Theorem 14.11 with $r = n - 1$ that $O(n \log n)$ random edges are sufficient to contain a copy of T_n, w.h.p. Montgomery [608] gave the first proof of this result.

Proof of Theorem 14.11

In the following, some passages have been more or less taken from [327]. Let γ be a moderately small constant (e.g. $\gamma = 0.1$ suffices), and let C_0 be a constant large enough to support the estimates that follow. Let \mathcal{H} be an r-bounded, κ-spread hypergraph on a set X of size n, with $r, \kappa \geq C_0^2$. Set $p = C/\kappa$ with $C_0 \leq C \leq \kappa/C_0$ (so $p \leq 1/C_0$), $r' = (1 - \gamma) r$ and $N = \binom{n}{np}$. Let

$$\langle \mathcal{H} \rangle = \bigcup_{S \in \mathcal{H}} \langle S \rangle.$$

Fix $\psi : \langle \mathcal{H} \rangle \to \mathcal{H}$ satisfying $\psi(Z) \subseteq Z$ for all $Z \in \langle \mathcal{H} \rangle$. I.e. given $Z \in \langle \mathcal{H} \rangle$, ψ chooses a member of \mathcal{H} contained in Z.

For $W \subseteq X$ and $S \in \mathcal{H}$, set

$$\chi(S, W) = \psi(S \cup W) \setminus W;$$

and say that the pair (S, W) is bad if $|\chi(S, W)| > r'$ and good otherwise.
The idea now is to choose a small random set W and argue that w.h.p. there exists $H \in \mathcal{H}$ such that $|H \setminus W|$ is significantly smaller than $|H|$. We then repeat the argument with respect to the hypergraph $\mathcal{H} \setminus W$. In this way, we build up a member of \mathcal{H} bit by bit. After $O(\log r)$ iterations we can prove the existence of a final small piece by using the second moment method.

Lemma 14.12. For \mathcal{H} as above, and W chosen uniformly from $\binom{X}{np}$,

$$\mathbb{E}(\{|S \in \mathcal{H} : (S, W) \text{ is bad}\}) \leq |\mathcal{H}|C^{-r/3}.$$

Proof. It is enough to show, for $s \in (r', r]$,

$$\mathbb{E}(\{|S \in \mathcal{H} : (S, W) \text{ is bad and } |S| = s\}) \leq (\gamma r)^{-1}|\mathcal{H}|C^{-r/3}. \tag{14.22}$$

We let $\mathcal{H}_s = \{S \in \mathcal{H} : |S| = s\}$. Now

$$\mathbb{E}(\{|S \in \mathcal{H} : (S, W) \text{ is bad and } |S| = s\}) = \sum_{S \in \mathcal{H}_s} \mathbb{P}((S, W) \text{ is bad})$$

$$= \frac{1}{N} \left| \left\{ \left(S \in \mathcal{H}_s, W \in \binom{X}{np} \right) : (S, W) \text{ is bad} \right\} \right|.$$

So, we instead concentrate on showing

$$|\{(S, W) : (S, W) \text{ is bad and } |S| = s\}| \leq (\gamma r)^{-1}N|\mathcal{H}|C^{-r/3}. \tag{14.23}$$

(Note that $\gamma r = r - r'$ bounds the number of s for which the set in question can be nonempty, whence the factor $(\gamma r)^{-1}$.)

For $Z \supseteq S \in \mathcal{H}_s$, we say that (S, Z) is **pathological** if there is $T \subseteq S$ with $t := |T| > r'$ and

$$|\{S' \in \mathcal{H}_s : S' \in [T, Z]\}| > C^t/2|\mathcal{H}|\kappa^{-t}p^{t-1}. \tag{14.24}$$

(Note that one would expect to bound the typical size of $\{S' \in \mathcal{H}_s : S' \in [T, Z]\}$ by something of the order $|\mathcal{H}|\kappa^{-t}p^{t-1}$.)

From now on we will always take $Z = W \cup S$ (with W as in Lemma 14.12). Note that in proving (14.23) we may assume $s \leq n/2$. Because, as we may assume that $|\mathcal{H}_s|$ is at least the R.H.S. of (14.22), we have

$$1 \leq \kappa^{-s}|\mathcal{H}| \leq \kappa^{-s}\gamma rC^{t/3}|\mathcal{H}_s| \leq \kappa^{-s}\gamma rC^{t/3}2^n < 1,$$

if $s > n/2$ (since $\kappa > C$).

We bound the nonpathological and pathological parts of (14.23) separately.

Nonpathological contributions. We first bound the number of pairs (S, W) in (14.23) with (S, Z) nonpathological.
Step 1. There are at most
\[\sum_{i=0}^{s} \binom{n}{np+i} \leq \binom{n+s}{np+s} \leq Np^{-s} \] (14.25)
choices for \(Z = W \cup S \).

Step 2. Given \(Z \), let \(S' = \psi(Z) \). Choose \(T := S \cap S' \), for which there are at most \(2^{S'} \leq 2^t \) possibilities, and set \(t = |T| > r' \). (If \(t \leq r' \) then \((S,W)\) cannot be bad, as \(\chi(S,W) = S' \setminus W \subseteq T \).)

Step 3. Since we are only interested in nonpathological choices, and we choose \(S \setminus S' \) by choosing \(S \in [T,Z] \), the number of possibilities for \(S \) is now at most \(C^{r/2}|\mathcal{H}|\kappa^{-t}p^{s-t} \).

Step 4. Complete the specification of \((S,W)\) by choosing \(W \cap S \), the number of possibilities for which is at most \(2^{s-t} \).

In sum, since \(s \leq r \) and \(t > r' = (1-\gamma)r \), the number of nonpathological possibilities is at most
\[2^{r+s}N|\mathcal{H}|C^{r/2}(p\kappa)^{-t} \leq N|\mathcal{H}|(4C^{1/2})^{t}C^{-t} < N|\mathcal{H}|[4C^{(1/2-\gamma)}]^{r}. \] (14.26)

Pathological contributions. We next bound the number of \((S,W)\) as in (14.23) with \((S,Z)\) pathological. The main point here is Step 4.

Step 1. There are at most \(|\mathcal{H}| \) possibilities for \(S \).

Step 2. Choose \(T \subseteq S \) witnessing the pathology of \((S,Z)\) (i.e. for which (14.24) holds); there are at most \(2^{s} \) possibilities for \(T \).

Step 3. Choose \(U \in [T,S] \) for which
\[|\mathcal{H} \cap [U, (Z \setminus S) \cup U]| > 2^{-(s-t)}C^{r/2}|\mathcal{H}|\kappa^{-t}p^{s-t}. \] (14.27)
(Here the left hand side counts the members of \(\mathcal{H} \) in \(Z \) whose intersection with \(S \) is precisely \(U \). Of course, the existence of \(U \) as in (14.27) follows from (14.24).) The number of possibilities for this choice is at most \(2^{s-t} \).

Step 4. Choose \(Z \setminus S \), the number of choices for which is less than \(N(2/C^{1/2})^{r} \).

To see this, write \(\Phi \) for the R.H.S. of (14.27). Noting that \(Z \setminus S \) must belong to \(\binom{X}{np} \cup \binom{X}{np-1} \cup \cdots \cup \binom{X}{np-s} \), we consider, for \(Y \) drawn uniformly from this set,
\[\mathbb{P}(|\mathcal{H} \cap [U, Y \cup U]| > \Phi). \] (14.28)

Set \(|U| = u \). We have
\[|\mathcal{H} \cap U| \leq |\mathcal{H} \cap (U)| \leq |\mathcal{H}|\kappa^{-u}, \]
while, for any \(S' \in \mathcal{H} \cap \langle U \rangle \),

\[
\mathbb{P}(Y \supseteq S' \setminus U) \leq \left(\frac{np}{n-s} \right)^{s-u}
\]

(of course if \(S' \cap S \neq U \) the probability is zero); so

\[
\theta := \mathbb{E}(|\mathcal{H} \cap \langle U, Y \cup U \rangle|) \leq |\mathcal{H}| \kappa^{-u} \left(\frac{np}{n-s} \right)^{s-u} \leq |\mathcal{H}| \kappa^{-u} (2p)^{s-u}
\]

(since \(n - s \geq n/2 \)). Markov’s Inequality then bounds the probability in (14.28) by \(\theta / \Phi \), and this bounds the number of possibilities for \(Z \setminus S \) by \(N(\theta / \Phi) \) (cf. (14.25)), which is easily seen to be less than \(N(2/\mathcal{C}^{1/2})^r \).

Step 5. Complete the specification of \((S, W)\) by choosing \(S \cap W \), which can be done in at most \(2^s \) ways.

Combining (and slightly simplifying), we find that the number of pathological possibilities is at most

\[
|\mathcal{H}|N(16/\mathcal{C}^{1/2})^r.
\]

Finally, the sum of the bounds in (14.26) and (14.29) is less than the \((\gamma r)^{-1}N|\mathcal{H}| \mathcal{C}^{-r/3}\) of (14.23). \(\square\)

Small uniformities

Very small set sizes are handled by a simple use of the Janson inequality, Theorem 22.13.

Lemma 14.13. For an \(r \)-bounded, \(\kappa \)-spread \(\mathcal{G} \) on \(Y \), and \(\alpha \in (0, 1) \),

\[
\mathbb{P}(Y_\alpha \notin \langle \mathcal{G} \rangle) \leq \exp \left\{ -\left(2 \sum_{t=1}^r \binom{r}{t} (\alpha \kappa)^{-t} \right) \right\}.
\]

Proof. Denote the members of \(\mathcal{G} \) by \(S_i \) and set \(\zeta_i = \mathbb{1}_{\{Y_\alpha \subseteq S_i\}} \). We add \(r - |S_i| \) new elements to each \(S_i \) to create an \(r \)-uniform hypergraph \(\mathcal{G}' \) on a set of vertices \(Y' \). Note that \(Y_\alpha' \in \langle \mathcal{G}' \rangle \) implies \(Y_\alpha \in \langle \mathcal{G} \rangle \). This is for the purposes of the proof only and for the rest of the proof of this lemma, we let \(\mathcal{G} = \mathcal{G}' \).

\[
\mu := \sum \mathbb{E}(\zeta_i) = \alpha^r |\mathcal{G}|
\]

and

\[
\Delta = \sum_{i,j:S_i \cap S_j \neq \emptyset} \mathbb{E}(\zeta_i \zeta_j) =
\]
14.3. Thresholds

\[\sum_{G \in \mathcal{G}} \alpha^r \sum_{T \subseteq G} \sum_{H \cap G = T} \alpha^{-t} \leq \mu \max_{G \in \mathcal{G}} \left\{ \sum_{T \subseteq G} \sum_{H \cap G = T} \alpha^{-t} \right\} \]

\[\leq \mu \sum_{t=1}^{r} \alpha^{-t} \max_{G \in \mathcal{G}} \left(\frac{r}{t} \right) \max_{T \subseteq G} \left\{ \sum_{H \cap G = T} \alpha^r \right\} \]

\[\leq \mu \sum_{t=1}^{r} \alpha^{-t} \frac{r}{t} \alpha^r \frac{\gamma}{\kappa} = \mu^2 \sum_{t=1}^{r} (\alpha \kappa)^{-t} \left(\frac{r}{t} \right). \] \hspace{1cm} (14.31)

Janson’s Inequality bounds the probability in (14.30) by \(\exp \{-\mu^2/2\Delta\} \). □

Corollary 14.14. Let \(\mathcal{G} \) be as in Lemma 14.13, let \(t = \alpha |Y| \) be an integer with \(\alpha \kappa \geq 2r \), and let \(W = Y \). Then

\[\mathbb{P}(W \notin \langle \mathcal{G} \rangle) \leq 2 \exp \left\{ -\frac{(\alpha \kappa)}{4r} \right\}. \]

Proof. Note that

\[\sum_{t=1}^{r} \left(\frac{r}{t} \right) (\alpha \kappa)^{-t} = \left(1 + \frac{1}{\alpha \kappa} \right)^r - 1 \leq \frac{2r}{\alpha \kappa}. \]

Thus Lemma 14.13 gives

\[\exp\left[-\frac{\alpha \kappa}{(4r)} \right] \geq \mathbb{P}(Y \notin \langle \mathcal{G} \rangle) \geq \mathbb{P}(|Y| \leq t) \mathbb{P}(W \notin \langle \mathcal{G} \rangle) \geq \mathbb{P}(W \notin \langle \mathcal{G} \rangle)/2, \]

where we use the fact that any binomial \(\xi \) with \(\mathbb{E}[\xi] \in \mathbb{Z} \) satisfies \(\mathbb{P}(\xi \leq \mathbb{E}[\xi]) \geq 1/2. \) □

Completing the proof

It will be convenient to prove the theorem assuming \(\mathcal{H} \) is \((2\kappa)\)-spread. Let \(\gamma \) and \(C_0 \) be as in Section 14.3 and \(\mathcal{H} \) as in the statement of Theorem 14.11, and recall that asymptotics refer to \(r \). We may of course assume that \(\kappa \geq 2\gamma^{-1}C_0 \log r \) (or the result is trivial with a suitably adjusted \(K \)). The statement is also trivial if \(K \kappa^{-1} \log r \geq 1 \).

In what follows we will have a sequence \(\mathcal{H}_i \), with \(\mathcal{H}_0 = \mathcal{H} \) and

\[\mathcal{H}_i \subseteq \{ \chi_i(S, W_i) : S \in \mathcal{H}_{i-1} \}, \]

where \(W_i \) and \(\chi_i \) will be defined below (with \(\chi_i \) a version of the \(\chi \) of Section 14.3).

Set \(C = C_0 \) and \(p = C/\kappa \), define \(\ell \) by \((1 - \gamma)\ell = \sqrt{\log r} \), and set \(q = \log r/\kappa \).

Then \(\ell = \frac{\gamma^{-1} \log r}{1 + \frac{1}{2} + \ldots} \leq \gamma^{-1} \log r \) and Theorem 14.11 will follow from the next assertion.
Claim 9. If \(W \) is a uniform \(((\ell p + q)n)\)-subset of \(X \), then \(W \in \langle \mathcal{H} \rangle \) w.h.p.

Proof. Set \(\delta = 1/(2\ell) \). Let \(r_0 = r \) and \(r_i = (1 - \gamma)r_{i-1} = (1 - \gamma)i r_0 \) for \(i \in [\ell] \). Let \(X_0 = X \) and, for \(i = 1, \ldots, \ell \), let \(W_i \) be uniform from \(\binom{X_{i-1}}{nq} \) and set \(X_i = X_{i-1} \setminus W_i \). The sequence \(X_i, W_i, i = 1, 2, \ldots, \ell + 1 \) is defined momentarily. Note the assumption \(\kappa \geq 2\gamma^{-1}C_0 \log r \) ensures that

\[
|X_i| = n - \ell np \geq n \left(1 - \frac{C_0\gamma^{-1} \log r}{\kappa} \right) \geq n \left(1 - \frac{C_0\gamma^{-1} \log r}{2\gamma^{-1}C_0 \log r} \right) = \frac{n}{2}.
\]

For \(S \in \mathcal{H}_{i-1} \) let \(\chi_i(S, W_i) = S' \setminus W_i \), where \(S' \) is a member of \(\mathcal{H}_{i-1} \) contained in \(W_i \cup S \). Say that \(S \) is good if \(|\chi_i(S, W_i)| \leq r_i \) (and bad otherwise), and set

\[
\mathcal{H}_i = \{ \chi_i(S, W_i) : S \in \mathcal{H}_{i-1} \text{ is good} \}.
\]

Thus \(\mathcal{H}_i \) is an \(r_i \)-bounded collection of subsets of \(X_i \). Note that \(\mathcal{H}_i \) contains a copy of set \(T \) for each \(S \) such that \(T = \chi_i(S, W_i) \). Finally, choose \(W_{\ell+1} \) uniformly from \(\binom{X_{\ell}}{np} \). Then \(W = W_1 \cup \cdots \cup W_{\ell+1} \) is uniformly distributed as required for Claim 9. Note also that \(W \in \langle \mathcal{H} \rangle \) whenever \(W_{\ell+1} \in \langle \mathcal{H}_\ell \rangle \). (More generally, \(W_1 \cup \cdots \cup W_{\ell+1} \cup Y \in \langle \mathcal{H} \rangle \) whenever \(Y \subseteq X_{\ell} \) lies in \(\langle \mathcal{H}_\ell \rangle \).

So to prove the claim, we just need to show

\[
\mathbb{P}(W_{\ell+1} \in \langle \mathcal{H}_\ell \rangle) = 1 - o(1) \tag{14.32}
\]

(where the \(\mathbb{P} \) refers to the entire sequence \(W_1 \ldots W_{\ell+1} \)).

For \(i \in [\ell] \) call \(W_i \) successful if \(|\mathcal{H}_i| \geq (1 - \delta)|\mathcal{H}_{i-1}| \), call \(W_{\ell+1} \) successful if it lies in \(\langle \mathcal{H}_\ell \rangle \), and say a sequence of \(W_i \)'s is successful if each of its entries is. We show that

\[
\mathbb{P}(W_1 \ldots W_{\ell+1} \text{ is successful}) = 1 - \exp \left[-\Omega(\sqrt{\log r}) \right]. \tag{14.33}
\]

Now \(W_1 \ldots W_{\ell-1} \) successful implies that \(|\mathcal{H}_{i-1}| > (1 - \delta)^{\ell} |\mathcal{H}| > |\mathcal{H}|/2 \). So for \(I \subseteq X_{i-1} \) we have

\[
|\mathcal{H}_{i-1} \cap \langle I \rangle| \leq |\mathcal{H} \cap \langle I \rangle| \leq \frac{|\mathcal{H}|}{(2\kappa)|I|} \leq \frac{|\mathcal{H}_{i-1}|}{\kappa^\ell|I|}.
\]

We therefore have the spread condition (14.17) for \(\mathcal{H}_{i-1} \). For \(i \in [\ell] \), according to Lemma 14.12 (and Markov’s Inequality),

\[
\mathbb{P}(W_i \text{ is not successful} \mid W_1 \ldots W_{i-1} \text{ is successful}) < \delta^{-1}C^{-n-1/3},
\]

Thus
\[\Pr(W_1 \ldots W_\ell \text{ is successful}) > 1 - \delta^{-1} \sum_{i=1}^\ell C^{-r_i/3} \]
\[> 1 - \exp\left\{ -\sqrt{\log r} / 4 \right\} \] (14.34)

(\text{using } r_\ell = \sqrt{\log r}).

Finally, if \(W_1 \ldots W_\ell \) is successful, then Corollary 14.14 applied with \(\mathcal{G} = \mathcal{N}_\ell \), \(Y = X_\ell \), \(\alpha = nq/|Y| \geq q \), \(r = r_\ell \), and \(W = W_{\ell+1} \) gives
\[\Pr(W_{\ell+1} \not\in \mathcal{N}_\ell) \leq 2\exp\left\{ -\sqrt{\log r} / 4 \right\}, \tag{14.35} \]

and we have (14.33) and the claim.

We used the following to obtain (14.35):
\[\frac{\alpha \kappa}{e r_\ell} = \frac{Np \cdot \kappa}{e|X_\ell||Y|} = \frac{(N\log r_0/k) \cdot \kappa}{e|X_\ell|(1 - \gamma)^\ell r_0} \geq \frac{N\log r_0}{eN(\sqrt{\log r_0/r_0})r_0}. \]

\[\square \]

Sparse Hypergraphs

The above proof can be adapted to prove the following result related to the Shamir problem.

Theorem 14.15. Suppose that \(p = \frac{C}{(k-1)} \) where \(C \) is a constant and \(C > C_0 \). Then w.h.p. \(H_n,p,k \) contains a matching of size at least
\[\frac{n}{k} \left(1 - e^{-C\gamma/C_0} \right). \]

Proof. Let now \(\ell = \left\lfloor C/C_0 \right\rfloor \) and let \(\delta = 1/(2\ell) \) as before. The first inequality in (14.34) continues to hold with \(r_1, r_2, \ldots, r_{\ell-1} \geq r_\ell = \Omega(n) \). It follows that w.h.p. there is a matching of size
\[\frac{n}{k} - r_\ell \geq \frac{n}{k} \left(1 - (1 - \gamma)^{C/C_0} \right). \]

\[\square \]

Square of a Hamilton cycle and more

Kahn, Narayanan and Park [474] modified the proof of Theorem 14.11 and proved

Theorem 14.16. If \(m \geq Cn^{3/2} \) for sufficiently large \(C \) then w.h.p. \(G_{n,m} \) contains a copy of \(H_2 \), the square of a Hamilton cycle.
It is straightforward to generalise their proof as follows: For \(S \in \mathcal{H} \), let
\[
f_{t,S} = |\mathcal{H}|^{-1} |\{J \in \mathcal{H} : |J \cap S| = t\}|.
\]

Theorem 14.17. Suppose that \(\mathcal{H} \) is \(\kappa \)-spread and \(r \)-uniform and that there exist constants \(\alpha, K_0 \) such that for all \(S \in \mathcal{H} \),
\[
f_{t,S} \leq \left(\frac{K_0}{\kappa} \right)^t \text{ for } 1 \leq t \leq \alpha r.
\]

Then
\[
\forall \varepsilon > 0, \exists C_\varepsilon \text{ such that } m \geq C_\varepsilon |X| \kappa \text{ implies that }
\]
\[
\Pr(X_m \text{ contains a copy of } e \in \mathcal{H}) \geq 1 - \varepsilon.
\]

It would seem likely that \(1 - \varepsilon \) can be replaced by \(1 - o(1) \) using Friedgut’s method [328], as was claimed in [474]. We will not pursue this here though.

Proof. The strategy here is similar to that used to prove Theorem 14.11. The main difference is that we replace the \(O(\log r) \) rounds by a single round where we obtain almost all of an edge of \(\mathcal{H} \).

Let \(N = |X| \) and \(m = CN \kappa \) and \(k = r^{1/2} \). For \(W \subseteq X, \ |W| = m \) and \(S \in \mathcal{H} \) we say that \((S, W) \) is bad if \(|T \setminus W| > k \) for all \(T \in \mathcal{H}, T \subseteq S \cup W \). Otherwise \((S, W) \) is good.

In the course of the proof, we make some claims that will be verified later.

Let \(p = \frac{3m}{Nq} \) and \(p_0 = \frac{2p}{3} \) and define \(p_1 \) by \((1 - p) = (1 - p_0)(1 - p_1) \) so that \(X_p = X_{p_0} \cup X_{p_1} \). The size of \(X_{p_0} \) is distributed as the binomial \(\text{Bin}(Nq, 6m/5Nq) \) and so the Chernoff bounds imply that w.h.p. \(|X_{p_0}| \geq m \). Let \(W_0 \) be distributed as \(X_m \). Let \(W_0 \) be a success if \(|\{S \in \mathcal{H} : (S, W_0) \text{ is bad}\}| \leq |\mathcal{H}|/2 \).

Claim 10. If \(t \geq k \) then
\[
|\{(S, W) : (S, W) \text{ is bad and } |S \cap W| = t\}| \leq 2C^{-k/3} |\mathcal{H}| \binom{r}{t} \binom{N - r}{m - t}.
\]

Now
\[
|\{W_0 : W_0 \text{ is a failure}\}| \times \frac{|\mathcal{H}|}{2} \leq \sum_{W \subseteq E} |\{(S, W) : (S, W) \text{ is bad}\}|.
\]

Claim 10 shows that
\[\Pr(W_0 \text{ is not a success}) = \frac{|\{W_0 : W_0 \text{ is not a success}\}|}{\binom{N}{m}} \leq 2 \sum_{W \subseteq E} \frac{|\{S, W) : (S, W) \text{ is bad}\}|}{\binom{N}{m} |\mathcal{H}|} \leq 4C^{-k/3}. \]

(We have used the Vandermonde identity \(\binom{N}{m} = \sum_{t=0}^{N} \binom{N-t}{m-t} \).) Suppose now that \(W_0 \) is a success and then let \(\mathcal{R} = \{S \in \mathcal{H} : |S \setminus W_0| \leq k\} \) and for each \(S \in \mathcal{R} \) let \(\eta(S) \) denote some \(k \)-subset of \(S \) that contains \(S \setminus W_0 \). Let \(Z \) denote the number of sets \(S \in \mathcal{R} \) such that \(\eta(S) \) is contained in \(X_{p_1} \). Then we have

\[\mathbb{E}(Z) = |\mathcal{R}| p_1^k. \] (14.39)

Now

\[\text{Var}(Z) \leq p_1^{2k} \sum_{t=1}^{k} \sum_{A, B \in \mathcal{R}} p_1^{-t}. \] (14.40)

For \(R \in \mathcal{R} \) and \(1 \leq t \leq k \), equation (14.36) implies that

\[|\{S \in \mathcal{R} : |R \cap S| = t\}| \leq \sum_{|I| = t} |\mathcal{R} \cap |I|| \leq \sum_{|I| = t} |\mathcal{H} \cap |I|| \leq \left(\frac{K_0}{\kappa}\right)^t |\mathcal{H}|. \]

So the sum in (14.40) is at most

\[\text{Var}(Z) \leq |\mathcal{R}| |\mathcal{H}| p_1^{2k} \sum_{t=1}^{k} \left(\frac{K_0}{\kappa}\right)^t p_1^{-t} \leq 2 |\mathcal{R}|^2 p_1^{2k} \sum_{t=1}^{k} \left(\frac{K_0}{\kappa p_1}\right)^t \leq 2 |\mathcal{R}|^2 p_1^{2k} \sum_{t=1}^{k} \left(\frac{K_0}{\kappa p_1}\right)^t \leq 2 \mathbb{E}(Z)^2 \sum_{t=1}^{k} \left(\frac{K_0}{\kappa p_1}\right)^t \leq \frac{4K_0}{C} \mathbb{E}(Z)^2, \]

for \(C \geq 2K_0 \). The Chebyshev inequality implies that

\[\Pr(Z = 0) \leq \frac{\text{Var}(Z)}{\mathbb{E}(Z)^2} \leq \frac{4K_0}{C}. \]

Putting \(C_\varepsilon = 10K_0/\varepsilon \) verifies (14.37).
Proof of Claims

Proof of Claim 10 Fix t. We bound the number of bad (S, W)'s with $|W \cap S| = t$. In which case, $|W \setminus S| = m - t$ and $|W \cup S| = m - t + r$. Call $Y \subseteq \binom{E}{m-t+r}$ pathological if

$$\left| \{ S \subseteq Y : (S, Y \setminus S) \mbox{ is bad} \right| > C^{-k/3} |\mathcal{H}| \binom{N-r}{m-t} / \binom{N}{m-t+r}.$$

We say that (S, W) is pathological, if $Y = S \cup W$ is.

Non-pathological contributions: To specify such, we choose $Y = S \cup W$, then S, W. This gives at most

$$\binom{N}{m-t+r} \times C^{-k/3} |\mathcal{H}| \binom{N-r}{m-t} / \binom{N}{m-t+r} \times \binom{r}{t} = C^{-k/3} |\mathcal{H}| \binom{r}{t} \binom{N-r}{m-t}. \quad (14.41)$$

Pathological contributions:

Claim 11. For a fixed $S \in \mathcal{H}$ and random $W \setminus S$ from $\binom{E \setminus S}{m-t}$ and $t \geq k$ and large enough C,

$$\mathbb{E} \left(\left| \{ \mathcal{H} \ni J \subseteq W \cup S : |J \cap S| = t \} \right| \right) \leq C^{-2k/3} |\mathcal{H}| \binom{N-r}{m-t} / \binom{N}{m-t+r}. \quad (14.42)$$

Assume Claim 11 for now.

We choose $(S, W \cap S)$ in at most $|\mathcal{H}| \binom{r}{t}$ ways. \quad (14.43)

Now (S, W) bad implies that every $J \subseteq S \cup W$ satisfies $|J \cap S| \geq |J \setminus W| \geq k$. Because (S, W) is pathological,

$$a_W = \left| \{ \mathcal{H} \ni J \subseteq S \cup W : |J \cap S| = t \} \right| \geq C^{-k/3} |\mathcal{H}| \binom{N-r}{m-t} / \binom{N}{m-t+r}.$$

Claim 11 implies that

$$\frac{1}{\binom{N-r}{m-t} W \setminus S \in \binom{E \setminus S}{m-t}} a_W \leq C^{-2k/3} |\mathcal{H}| \binom{N-r}{m-t} / \binom{N}{m-t+r}.$$
14.3. **THRESHOLDS**

Thus the number of choices for $W \setminus S$ is at most

$$\frac{C^{-2k/3} |\mathcal{H}| \binom{N-r}{m-t}^2}{C^{-k/3} |\mathcal{H}| \binom{N-r}{m-t+r}} = C^{-k/3} \binom{N-r}{m-t}. \quad (14.44)$$

Claim 10 now follows from (14.41), (14.43) and (14.44).

Proof of Claim 11 The left hand side of (14.42) is equal to

$$f_{t,S} |\mathcal{H}| \Pr(J \subseteq W \cup S) = f_{t,S} |\mathcal{H}| \binom{r-t}{N-r} \binom{N-r}{m-t}^r,$$

for arbitrary $J \in \mathcal{H}$, $|J \cap S| = t$.

It is therefore enough to show that

$$f_{t,S} \binom{r-t}{N-r} \binom{N-r}{m-t} \leq \frac{1}{C^{2k/3}}. \quad (14.45)$$

Observe that

$$\frac{r-t}{N-r} \leq \left(\frac{m-t}{N-r} \right)^{r-t} \text{ and } \frac{N-r}{m-t} \leq \left(\frac{N-r}{m-t} \right)^r.$$

This implies that

$$f_{t,S} \leq \left(\frac{r}{t} \right) \left(\frac{1}{\kappa} \right)^t \leq \left(\frac{e}{\alpha \kappa} \right)^t. \quad (14.47)$$

For $k \leq t \leq \alpha r$ we have from (14.36) that

$$f_{t,S} \leq \left(\frac{K_0}{\kappa} \right)^t. \quad (14.48)$$

Equation (14.45) (and Claim 11) now follow from (14.46), (14.47) and (14.48), assuming $K_0 \geq e/\alpha$. \qed
14.4 Exercises

14.4.1 Show that if \(m = cn \log n \) then (i) \(ck < 1 \) implies that \(\mathbb{H}_{n,m;k} \) has isolated vertices w.h.p. and (ii) if \(ck > 1 \) then \(\mathbb{H}_{n,m;k} \) is connected w.h.p.

14.4.2 Generalise the notion of configuration model to \(k \)-uniform, \(k \geq 3 \), hypergraphs. Use it to show that if \(r = O(1) \) then the number of \(r \)-regular, \(k \)-uniform hypergraphs with vertex set \([n]\), \(k|n \) is asymptotically equal to

\[
\frac{(rn)!}{(k!)^{m/k} r^{m}(rn/k)!} e^{-(k-1)(r-1)/2}.
\]

14.4.3 Generalise the notion of switchings to \(k \)-uniform hypergraphs. Use them to extend the result of Exercise 14.4.2 to \(r = n^{\varepsilon} \), for sufficiently small \(\varepsilon > 0 \).

14.4.4 Extend the result of Exercise 14.4.2 to \(k \)-uniform, \(k \geq 3 \), hypergraphs with a fixed degree sequence \(d = (d_1, d_2, \ldots, d_n) \), and maximum degree \(\Delta = O(1) \). Let \(M_1 = \sum_{i=1}^{n} d_i \) where \(k|M_1 \) and \(M_2 = \sum_{i=1}^{n} d_i(d_i - 1) \). Show that the number of \(k \)-uniform hypergraphs with degree sequence \(d \) is asymptotically equal to

\[
\frac{M_1!}{k^{M_1/k} (\prod_{i=1}^{n} d_i!) (M_1/k)!} \exp \left\{ -\frac{(k-1)M_2}{2M_1} \right\}.
\]

14.4.5 Prove Lemma 14.7.

14.4.6 Prove Lemma 14.9.

14.4.7 Let \(\mathbb{H}_{n,d} \) be a random \(k \)-uniform hypergraph with a fixed degree sequence. Suppose that there are \(\lambda_i n \) vertices of of degree \(i = 1, 2, \ldots, L = O(1) \). Let \(\Lambda = \sum_{i=1}^{L} \lambda_i ((i-1)(k-1) - 1) \). Prove that for \(\varepsilon > 0 \), we have

(a) If \(\Lambda < -\varepsilon \) then w.h.p. the size of the largest component in \(\mathbb{H}_{n,d} \) is \(O(\log n) \).

(b) If \(\Lambda > \varepsilon \) then w.h.p. there is a unique giant component of linear size \(\approx \Theta n \) where \(\Theta \) is defined as follows: let \(K = \sum_{i=1}^{L} i\lambda_i \) and

\[
f(\alpha) = K - k\alpha - \sum_{i=1}^{L} i\lambda_i \left(1 - \frac{k\alpha}{K} \right)^{i/k}.
\]

(14.49)

Let \(\psi \) be the smallest positive solution to \(f(\alpha) = 0 \). Then

\[
\Theta = 1 - \sum_{i=1}^{L} \lambda_i \left(1 - \frac{k\psi}{K} \right)^{i/k}.
\]
If $\lambda_1 = 0$ then $\Theta = 1$, otherwise $0 < \Theta < 1$.

(c) In Case (b), the degree sequence of the graph obtained by deleting the giant component satisfies the conditions of (a).

14.4.8 Prove Part (iii) of Theorem 14.10 by showing that

$$N(b, a) \leq n^{2a} \sum_{t \geq 0} 2^{t+a}(n-b-a(k-1)-t)!{(k!)^{a+t}}$$

$$\leq c_k (2k)^a(n-b-a(k-1))!,$$

where c_k depends only on k.

Then use (14.7).

14.4.9 In a directed k-uniform hypergraph, the vertices of each edge are totally order. Thus each k-set has $k!$ possible orientations. Given a permutation i_1, i_2, \ldots, i_n of $[n]$ we construct a directed ℓ-overlapping Hamilton cycle $\vec{E}_1 = (i_1, \ldots, i_k), \vec{E}_2 = (i_{k+1}, \ldots, i_{2k-\ell}), \ldots, \vec{E}_m = (i_{n-(k-\ell)+1}, \ldots, i_{\ell})$. Let $H_{n,p,k}$ be the directed hypergraph in which each possible directed edge is included with probability p. Use the idea of McDiarmid in Section 13.2 to show (see Ferber [303]) that

$$\mathbb{P}(H_{n,p,k} \text{ contains a directed } r\text{-overlapping Hamilton cycle})$$

$$\geq \mathbb{P}(H_{n,p,k} \text{ contains an } r\text{-overlapping Hamilton cycle}).$$

14.4.10 A hypergraph $H = (V, E)$ is 2-colorable if there exists a partition of V into two non-empty sets A, B such that $e \cap A \neq \emptyset, e \cap B \neq \emptyset$ for all $e \in E$. Let $m = \binom{n}{k}P$. Show that if c is sufficiently large and $m = c2^kn$ then w.h.p. $H_{n,p,k}$ is not 2-colorable.

14.4.11 Verify (14.19) and (14.20)

14.4.12 Given a hypergraph H, let a vertex coloring be strongly proper if no edge contains two vertices of the same color. The strong chromatic number $\chi_1(H)$ is the minimum number of color’s in a strongly proper coloring. Suppose that $k \geq 3$ and $0 < p < 1$ is constant. Show that w.h.p.

$$\chi_1(H_{n,p,k}) \approx \frac{d}{2\log d} \quad \text{where } d = \frac{n^{k-1}p}{(k-2)!}.$$

14.4.13 Let U_1, U_2, \ldots, U_k denote k disjoint sets of size n. Let $\mathcal{H}_{n,m,k}$ denote the set of k-partite, k-uniform hypergraphs with vertex set $V = U_1 \cup U_2 \cup \cdots \cup$
U_k and m edges. Here each edge contains exactly one vertex from each $U_i, 1 \leq i \leq k$. The random hypergraph $HP_{n,m,k}$ is sampled uniformly from $H_n^{P_{m,k}}$. Prove the k-partite analogue of Shamir’s problem viz. there exists a constant $K > 0$ such that if $m \geq Kn \log n$ then

$$\lim_{n \to \infty} \Pr(HP_{n,m,k} \text{ has a 1-factor}) = 1.$$

14.4.14 Find the threshold, up to a $\log n$ factor for the existence of the following structures in $G_{n,p}$: replace 4 by n in an appropriate way.

- C_4-cycle, overlap 2
- K_4-cycle, overlap 2

14.4.15 Verify (14.21).

14.4.16 Verify (14.36) for the square of a Hamilton cycle.

(Hints: For $I \subseteq \binom{X}{2}$ let $\kappa(I)$ denote the number of components in the graph induced by I and the vertices incident with I.

(a) $|I| = t \leq n/3$ implies that $|\mathcal{H} \cap (I)| \leq (16)^t \left(n - \left\lceil \frac{t + c}{2} \right\rceil - 1 \right)!$.

(b) If $F \subseteq H_2$ and $|F| = h$ then the number of subgraphs of F with t edges and c components is at most $(8e)^t \binom{2h}{c}$.)

14.5 Notes

Components and cores

If $H = (V,E)$ is a k-uniform hypergraph and $1 \leq j \leq k - 1$ then two sets $J_1, J_2 \subseteq \binom{V}{j}$ are said to be j-connected if there is a sequence of sets E_1, E_2, \ldots, E_ℓ such that $J_1 \subseteq E_1, J_2 \subseteq E_\ell$ and $|E_i \cap E_{i+1}| \geq j$ for $1 \leq i < \ell$. This defines an equivalence relation on $\binom{V}{j}$ and the equivalence classes are called j-components. Karpinski and Łuczak [485] studied the sizes of the 1-components of the random hypergraph $H_{n,m,k}$ and proved the existence of a phase transition at $m \approx \frac{n}{k(k-1)}$. Cooley, Kang
and Koch [205] generalised this to \(j \)-components and proved the existence of a phase transition at \(m \approx \binom{n}{j} \binom{n}{k} / \binom{n}{j-1} \binom{n-j}{k-j} \). As usual, a phase transition corresponds to the emergence of a unique giant, i.e. one of order \(\binom{n}{j} \).

The notion of a core extends simply to hypergraphs and the sizes of cores in random hypergraphs has been considered by Molloy [602]. The \(r \)-core is the largest sub-hypergraph with minimum degree \(r \). Molloy proved the existence of a constant \(c_k, r \) such that if \(c < c_{r,k} \) then w.h.p. \(H_{n,cn,k} \) has no \(r \)-core and that if \(c > c_{r,k} \) then w.h.p. \(H_{n,cn,k} \) has a \(r \)-core. The efficiency of the peeling algorithm for finding a core has been considered by Jiang, Mitzenmacher and Thaler [466]. They show that w.h.p. the number of rounds in the peeling algorithm is asymptotically \(\log \log n \log \left(k-1 \right) \left(r-1 \right) \) if \(c < c_{r,k} \) and \(\Omega \left(\log n \right) \) if \(c > c_{r,k} \). Gao and Molloy [372] show that for \(|c - c_{r,k}| \leq n^{-\delta}, 0 < \delta < 1/2 \), the number of rounds grows like \(\tilde{\Theta} \left(n^\delta / 2 \right) \). In this discussion, \((r,k) \neq (2,2)\).

Chromatic number

Krivelevich and Sudakov [529] studied the chromatic number of the random \(k \)-uniform hypergraph \(H_{n,p,k} \). For \(1 \leq \gamma \leq k-1 \) we say that a set of vertices \(S \) is \(\gamma \)-independent in a hypergraph \(H \) if \(|S \cap e| \leq \gamma \). The \(\gamma \)-chromatic number of a hypergraph \(H = (V,E) \) is the minimum number of sets in a partition of \(V \) into \(\gamma \)-independent sets. They show that if \(d(\gamma) = \gamma \binom{k-1}{\gamma} \binom{n-1}{k-1} p \) is sufficiently large then w.h.p. \(d(\gamma) \) is a good estimate of the \(\gamma \)-chromatic number of \(H_{n,p,k} \).

Dyer, Frieze and Greenhill [278] extended the results of [6] to hypergraphs. Let \(u_{k,\ell} = \ell^{k-1} \log \ell \). They show that if \(u_{k,\ell-1} < c < u_{k,\ell} \) then w.h.p. the (weak (\(\gamma = k-1 \))) chromatic number of \(H_{n,cn,k} \) is either \(k \) or \(k+1 \).

Achlioptas, Kim, Krivelevich and Tetali [3] studied the 2-colorability of \(H = H_{n,p,k} \). Let \(m = \left(\binom{n}{k} \right) p \) be the expected number of edges in \(H \). They show that if \(m = c2^k n \) and \(c > \log \frac{2}{k} \) then w.h.p. \(H \) is not 2-colorable. They also show that if \(c \) is a small enough constant then w.h.p. \(H \) is 2-colorable.

Orientability

Gao and Wormald [374], Fountoulakis, Khosla and Panagiotou [324] and Lelarge [542] discuss the orientability of random hypergraphs. Suppose that \(0 < \ell < k \). To \(\ell \)-orient an edge \(e \) of a \(k \)-uniform hypergraph \(H = (V,E) \), we assign positive signs to \(\ell \) of its vertices and \(k-\ell \) negative signs to the rest. An \((\ell, r) \)-orientation of \(H \) consists of an \(\ell \)-orientation of each of its edges so that each
vertex receives at most \(r \) positive signs due to incident edges. This notion has uses in load balancing. The papers establish a threshold for the existence of an \((\ell, r)\)-orientation. Describing it is somewhat complex and we refer the reader to the papers themselves.

VC-dimension

Ycart and Ratsaby [764] discuss the VC-dimension of \(H = H_{n;p;k} \). Let \(p = cn - \alpha \) for constants \(c, \alpha \). They give the likely VC-dimension of \(H \) for various values of \(\alpha \). For example if \(h \in [k] \) and \(\alpha = k - \frac{h(h-1)}{h+1} \) then the VC-dimension is \(h \) or \(h - 1 \) w.h.p.

Erdős-Ko-Rado

The famous Erdős-Ko-Rado theorem states that if \(n > 2k \) then the maximum size of a family of mutually intersecting \(k \)-subsets of \([n] \) is \(\binom{n-1}{k-1} \) and this is achieved by all the subsets that contain the element 1. Such collections will be called *stars*. Balogh, Bohman and Mubayi [49] considered this problem in relation to the random hypergraph \(H_{n;p;k} \). They consider for what values of \(k, p \) is it true that maximum size intersecting family of edges is w.h.p. a star. More recently Hamm and Kahn [408], [409] have answered some of these questions. For many ranges of \(k, p \) the answer is as yet unknown.

Balogh, Cooper, Frieze, Martin and Ruszinko [115] and Bohman, Frieze, Martin, Ruszinko and Smyth [116] studied the \(k \)-uniform hypergraph \(H \) obtained by adding random \(k \)-sets one by one, only adding a set if it intersects all previous sets. They prove that w.h.p. \(H \) is a star for \(k = o(n^{1/3}) \) and were able to analyse the structure of \(H \) for \(k = o(n^{5/12}) \).

Perfect matchings and Hamilton cycles in regular hypergraphs

The perfect matching problem turns out to be a much easier problem than that discussed in Section 14.3. Cooper, Frieze, Molloy and Reed [233] used small subgraph conditioning to prove that \(H_{n;r;k} \) has a perfect matching w.h.p. iff \(k > k_r \) where

\[
k_r = \frac{\log r}{(r-1)\log((r-1)/r)} + 1.
\]

Dudek, Frieze, Ruciński and Šileikis [266] made some progress on loose Hamilton cycles in random regular hypergraphs. Their approach was to find an embedding of \(\mathbb{H}_{n,m;k} \) in a random regular \(k \)-uniform hypergraph.
Part III

Other models
Chapter 15

Trees

The properties of various kinds of trees are one of the main objects of study in graph theory mainly due to their wide range of application in various areas of science. Here we concentrate our attention on the “average” properties of two important classes of trees: labeled and recursive. The first class plays an important role in both the sub-critical and super-critical phase of the evolution of random graphs. On the other hand random recursive trees serve as an example of the very popular random preferential attachment models. In particular we will point out, an often overlooked fact, that the first demonstration of a power law for the degree distribution in the preferential attachment model was shown in a special class of inhomogeneous random recursive trees.

The families of random trees, whose properties are analyzed in this chapter, fall into two major categories according to the order of their heights: they are either of square root (labeled trees) or logarithmic (recursive trees) height. While most of square-root-trees appear in probability context, most log-trees are encountered in algorithmic applications.

15.1 Labeled Trees

Consider the family \mathcal{T}_n of all n^{n-2} labeled trees on vertex set $[n] = \{1, 2, \ldots, n\}$. Let us choose a tree T_n uniformly at random from the family \mathcal{T}_n. The tree T_n is called a random tree (random Cayley tree).

The Prüfer code [665] establishes a bijection between labeled trees on vertex set $[n]$ and the set of sequences $[n]^{n-2}$ of length $n - 2$ with items in $[n]$. Such a coding also implies that there is a one-to-one correspondence between the number of labeled trees on n vertices with a given degree sequence d_1, d_2, \ldots, d_n and the number of ways in which one can distribute $n - 2$ particles into n cells, such that ith cell contains exactly $d_i - 1$ particles.
If the positive integers \(d_i, i = 1, 2, \ldots, n \) satisfy
\[
d_1 + d_2 + \cdots + d_n = 2(n - 1),
\]
then there exist
\[
\binom{n - 2}{d_1 - 1, d_2 - 1, \ldots, d_n - 1}
\] (15.1)
trees with \(n \) labeled vertices, the \(i \)th vertex having degree \(d_i \).
The following observation is a simple consequence of the Prüfer bijection. Namely, there are
\[
\binom{n - 2}{i - 1} (n - 1)^{n-i-1}
\] (15.2)
trees with \(n \) labeled vertices in which the degree of a fixed vertex \(v \) is equal to \(i \).
Let \(X_v \) be the degree of the vertex \(v \) in a random tree \(T_n \), and let \(X_v^* = X_v - 1 \).
Dividing the above formula by \(n^{n-2} \), it follows that, for every \(i \), \(X_v^* \) has the \(\text{Bin}(n - 2, 1/n) \) distribution, which means that the asymptotic distribution of \(X_v^* \) tends to the Poisson distribution with mean one.
This observation allows us to obtain an immediate answer to the question of the limiting behavior of the maximum degree of a random tree. Indeed, the proof of Theorem 3.4 yields:

Theorem 15.1. Denote by \(\Delta = \Delta(T_n) \) the maximum degree of a random tree. Then w.h.p.
\[
\Delta(T_n) \approx \frac{\log n}{\log \log n}.
\]

The classical approach to the study of the properties of labeled trees chosen at random from the family of all labeled trees was purely combinatorial, i.e., via counting trees with certain properties. In this way, Rényi and Szekeres [667], using complex analysis, found the height of a random labeled tree on \(n \) vertices (see also Stepanov [725], while for a general probabilistic context of their result, see a survey paper by Biane, Pitman and Yor [93]).
Assume that a tree with vertex set \(V = [n] \) is rooted at vertex 1. Then there is a unique path connecting the root with any other vertex of the tree. The height of a tree is the length of the longest path from the root to any pendant vertex of the tree. Pendant vertices are the vertices of degree one.
15.1. LABELED TREES

Theorem 15.2. Let \(h(T_n) \) be the height of a random tree \(T_n \). Then

\[
\lim_{n \to \infty} P \left(\frac{h(T_n)}{\sqrt{2n}} < x \right) = \eta(x),
\]

where

\[
\eta(x) = \frac{4\pi^{5/2}}{3} \sum_{k=1}^{\infty} k^2 e^{-(k\pi/x)^2}.
\]

Moreover,

\[
E h(T_n) \approx \sqrt{2\pi n} \quad \text{and} \quad \text{Var} h(T_n) \approx \frac{\pi(\pi - 3)}{3} n.
\]

We will now introduce a useful relationship between certain characteristics of random trees and branching processes. Consider a Galton-Watson branching process \(\mu(t), t = 0, 1, \ldots \), starting with \(M \) particles, i.e., \(\mu(0) = M \), in which the number of offspring of a single particle is equal to \(r \) with probability \(p_r \), \(\sum_r p_r = 1 \). Denote by \(Z_M \) the total number of offspring in the process \(\mu(t) \). Dwass [275] (see also Viskov [747]) proved the following relationship.

Lemma 15.3. Let \(Y_1, Y_2, \ldots, Y_N \) be a sequence of independent identically distributed random variables, such that

\[
P(Y_1 = r) = p_r \quad \text{for} \quad r = 1, 2, \ldots, N.
\]

Then

\[
P(Z_M = N) = \frac{M}{N} P(Y_1 + Y_2 + \ldots + Y_N = N - M).
\]

Now, instead of a random tree \(T_n \) chosen from the family of all labeled trees \(\mathcal{T}_n \) on \(n \) vertices, consider a tree chosen at random from the family of all \((n + 1)^{n-1} \) trees on \(n + 1 \) vertices, with the root labeled 0 and all other vertices labeled from 1 to \(n \). In such a random tree, with a natural orientation of the edges from the root to pendant vertices, denote by \(V_t \) the set of vertices at distance \(t \) from the root 0. Let the number of outgoing edges from a given vertex be called its out-degree and \(X_{r,t} \) be the number of vertices of out-degree \(r \) in \(V_t \). For our branching process, choose the probabilities \(p_r \), for \(r = 0, 1, \ldots \), as equal to

\[
p_r = \frac{\lambda^r}{r!} e^{-\lambda},
\]

i.e., assume that the number of offspring has the Poisson distribution with mean \(\lambda > 0 \). Note that \(\lambda \) is arbitrary here.
Let \(Z_{r,t} \) be the number of particles in the \(t \)th generation of the process, having exactly \(r \) offspring. Next let \(X = [m_{r,t}] \), \(r,t = 0,1,\ldots,n \) be a matrix of non-negative integers. Let \(s_t = \sum_{r=0}^{n} m_{r,t} \) and suppose that the matrix \(X \) satisfies the following conditions:

(i) \(s_0 = 1 \),
\[
s_t = m_{1,t-1} + 2m_{2,t-1} + \ldots + nm_{n,t-1} \text{ for } t = 1,2,\ldots,n.
\]

(ii) \(s_t = 0 \) implies that \(s_{t+1} = \ldots = s_n = 0 \).

(iii) \(s_0 + s_1 + \ldots + s_n = n + 1 \).

Then, as proved by Kolchin [514], the following relationship holds between the out-degrees of vertices in a random rooted tree and the number of offspring in the Poisson process starting with a single particle.

Theorem 15.4.

\[
P([X^+_{r,t}] = X) = P([Z_{r,t}] = X|Z = n+1).
\]

Proof. In Lemma 15.3 let \(M = 1 \) and \(N = n + 1 \). Then,

\[
P(Z_1 = n + 1) = \frac{1}{n+1} P(Y_1 + Y_2 + \ldots + Y_{n+1} = n)
\]
\[
= \frac{1}{n+1} \sum_{r_1 + \ldots + r_{n+1} = n} \prod_{i=1}^{n+1} \frac{\lambda r_i}{r_i!} e^{-\lambda}
\]
\[
= \frac{(n+1)^n \lambda^n e^{-\lambda(n+1)}}{(n+1)!}.
\]

Therefore

\[
P([Z_{r,t}] = X|Z = n + 1) = \frac{\prod_{t=0}^{n} \left(\begin{array}{l} s_t \\ m_{0,t}, \ldots, m_{n,t} \end{array} \right) p_0^{m_{0,t}} \cdots p_n^{m_{n,t}}}{P(Z = n + 1)}
\]
\[
= \frac{(n+1)! \prod_{t=0}^{n} \frac{s_t!}{m_{0,t}! m_{1,t}! \cdots m_{n,t}!} \prod_{r=0}^{n} \left(\frac{\lambda^r e^{-\lambda}}{r!} \right)^{m_{r,t}}}{(n+1)^n \lambda^n e^{-\lambda(n+1)}}
\]
\[
= \frac{(n+1)! s_1! s_2! \ldots s_n!}{(n+1)^n} \prod_{t=0}^{n} \prod_{r=0}^{m_{r,t}} \frac{1}{(r!)^{m_{r,t}}}. \tag{15.3}
\]
15.1. LABELS TREES

On the other hand, one can construct all rooted trees such that \([X_{r,t}^+] = X\) in the following manner. We first layout an unlabelled tree in the plane. We choose a single point \((0,0)\) for the root and then points \(S_t = \{(i,t) : i = 1, 2, \ldots, s_t\}\) for \(t = 1, 2, \ldots, n\). Then for each \(t, r\) we choose \(m_{t,r}\) points of \(S_t\) that will be joined to \(r\) points in \(S_{t+1}\). Then, for \(t = 0, 1, \ldots, n - 1\) we add edges. Note that \(S_n\), if non-empty, has a single point corresponding to a leaf. We go through \(S_t\) in increasing order of the first component. Suppose that we have reached \((i,t)\) and this has been assigned out-degree \(r\). Then we join \((i,t)\) to the first \(r\) vertices of \(S_{t+1}\) that have not yet been joined by an edge to a point in \(S_t\). Having put in these edges, we assign labels \(1, 2, \ldots, n\) to \(\bigcup_{t=1}^n S_t\). The number of ways of doing this is

\[
\prod_{t=1}^n \frac{s_t!}{\prod_{r=1}^{m_{t,r}} r!} \times n!.
\]

The factor \(n!\) is an over count. As a set of edges, each tree with \([X_{r,t}^+] = X\) appears exactly \(\prod_{t=0}^n \prod_{r=0}^{(r!)} (r!)^{m_{t,r}}\) times, due to permutations of the trees below each vertex. Summarising, the total number of tree with out-degrees given by the matrix \(X\) is

\[
n! \cdot s_1! \cdot s_2! \ldots s_n! \prod_{t=0}^n \prod_{r=0}^{m_{t,r}} \frac{1}{r!} (r!)^{m_{t,r}},
\]

which, after division by the total number of labeled trees on \(n + 1\) vertices, i.e., by \((n + 1)^{n-1}\), results in an identical formula to that given for the random matrix \([X_{r,t}^+]\) in the case of \([Z_{r,t}]\), see (15.3). To complete the proof one has to notice that for those matrices \(X\) which do not satisfy conditions (i) to (iii) both probabilities in question are equal to zero.

Hence, roughly speaking, a random rooted labeled tree on \(n\) vertices has asymptotically the same shape as a branching process with Poisson, parameter one in terms of family sizes. Grimmett [399] uses this probabilistic representation to deduce the asymptotic distribution of the distance from the root to the nearest pendant vertex in a random labeled tree \(T_n\), \(n \geq 2\). Denote this random variable by \(d(T_n)\).

Theorem 15.5. As \(n \to \infty\),

\[
\mathbb{P}(d(T_n) \geq k) \to \exp\left\{ \sum_{i=1}^{k-1} \alpha_i \right\},
\]

where the \(\alpha_i\) are given recursively by

\[
\alpha_0 = 0, \quad \alpha_{i+1} = e^{\alpha_i} - e^{-1} - 1.
\]
Proof. Let k be a positive integer and consider the sub-tree of T_n induced by the vertices at distance at most k from the root. Within any level (strata) of T_n, order the vertices in increasing lexicographic order, and then delete all labels, excluding that of the root. Denote the resulting tree by T_k^n.

Now consider the following branching process constructed recursively according to the following rules:

(i) Start with one particle (the unique member of generation zero).

(ii) For $k \geq 0$, the $(k+1)$th generation A_{k+1} is the union of the families of descendants of the kth generation together with one additional member which is allocated at random to one of these families, each of the $|A_k|$ families having equal probability of being chosen for this allocation. As in Theorem 15.4, all family sizes are independent of each other and the past, and are Poisson distributed with mean one.

Lemma 15.6. As $n \to \infty$ the numerical characteristics of T_k^n have the same distribution as the corresponding characteristics of the tree defined by the first k generations of the branching process described above.

Proof. For a proof of Lemma 15.6, see the proof Theorem 3 of [399].

Let Y_k be the size of the kth generation of our branching process and let N_k be the number of members of the kth generation with no offspring. Let $i = (i_1, i_2, \ldots, i_k)$ be a sequence of positive integers, and let

$A_j = \{ N_j = 0 \}$ and $B_j = \{ Y_j = i_j \}$ for $j = 1, 2, \ldots, k$.

Then, by Lemma 15.6, as $n \to \infty$,

$$P(d(T_n) \geq k) \to P(A_1 \cap A_2 \cap \ldots \cap A_k).$$

Now,

$$P(A_1 \cap A_2 \cap \ldots \cap A_k) = \sum_{i=1}^{k} \prod_{j=1}^{k} P(A_j | A_1 \cap \ldots \cap A_{j-1} \cap B_1 \cap \ldots B_{j-1}) \times P(B_j | A_1 \cap \ldots \cap A_{j-1} \cap B_1 \cap \ldots B_{j-1}),$$

Using the Markov property,

$$P(A_1 \cap A_2 \cap \ldots \cap A_k) = \sum_{i=1}^{k} \prod_{j=1}^{k} P(A_j | B_j) P(B_j | A_{j-1} \cap B_{j-1}).$$
= \sum_{i_1}^{k} \prod_{j=1}^{k} (1 - e^{-1})^{i_j} C_j(i_j), \quad (15.4)

where \(C_j(i_j) = \mathbb{P}(B_j|A_{j-1} \cap B_{j-1}) \) is the coefficient of \(x^{i_j} \) in the probability generating function \(D_j(x) \) of \(Y_j \) conditional upon \(Y_{j-1} = i_{j-1} \) and \(N_j = 0 \). Thus

\[Y_j = 1 + Z + R_1 + \ldots + R_{i_{j-1}}, \]

where \(Z \) has the Poisson distribution and the \(R_i \) are independent random variables with Poisson distribution conditioned on being non-zero. Hence

\[D_j(x) = xe^{x-1} \left(\frac{e^{x-1} - 1}{e-1} \right)^{i_{j-1}-1}. \]

Now,

\[\sum_{i_k=1}^{\infty} (1 - e^{-1})^{i_k-1} C_k(i_k) = \frac{D_k(1 - e^{-1})}{1 - e^{-1}}. \]

We can use this to eliminate \(i_k \) in (15.4) and give

\[\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_k) = \sum_{(i_1, \ldots, i_{k-1})} \prod_{j=1}^{k-1} \beta_j^{i_j-1} C_j(i_j) e^{\beta_1-1} \left(\frac{e^{\beta_1} - 1}{e-1} \right)^{i_{k-1}-1}, \quad (15.5) \]

where \(\beta_1 = 1 - e^{-1} \). Eliminating \(i_{k-1} \) from (15.5) we get

\[\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_k) = \sum_{(i_1, \ldots, i_{k-2})} \prod_{j=1}^{k-2} \beta_j^{i_j-1} C_j(i_j) e^{\beta_1+\beta_2-2} \left(\frac{e^{\beta_2} - 1}{e-1} \right)^{i_{k-2}-1}, \]

where \(\beta_2 = (e^{\beta_1} - 1) \). Continuing we see that, for \(k \geq 1 \),

\[\mathbb{P}(A_1 \cap A_2 \cap \ldots \cap A_k) = \exp \left\{ \sum_{i=1}^{k} (\beta_i - 1) \right\} = \exp \left\{ \sum_{i=1}^{k} \alpha_i \right\}, \]

where \(\beta_0, \beta_1, \ldots \) are given by the recurrence

\[\beta_0 = 1, \quad \beta_{i+1} = (e^{\beta_i} - 1) e^{-1}, \]

and \(\alpha_i = \beta_i - 1 \). One can easily check that \(\beta_i \) remains positive and decreases monotonically as \(i \to \infty \), and so \(\alpha_i \to -1 \).
Another consequence of Lemma 15.3 is that, for a given N, one can associated with the sequence Y_1,Y_2,\ldots,Y_N, a generalized occupancy scheme of distributing n particles into N cells (see [514]). In such scheme, the joint distribution of the number of particles in each cell (v_1,v_2,\ldots,v_N) is given, for $r = 1, 2, \ldots, N$ by

$$P(v_r = k_r) = P\left(Y_r = k_r \mid \sum_{r=1}^{N} Y_r = n\right).$$

(15.6)

Now, denote by $X_r^+ = \sum_{t=0}^{n} X_{r,t}$ the number of vertices of out-degree r in a random tree on $n+1$ vertices, rooted at a vertex labeled 0. Denote by $Z^{(r)} = \sum_{t=0}^{n} Z_{r,t}$, the number of particles with exactly r offspring in the Poisson process $\mu(t)$. Then by Theorem 15.4,

$$P(X_r^+ = k_r, r = 0, 1, \ldots, n) = P(Z^{(r)} = k_r, r = 0, 1, \ldots, n | Z_1 = n + 1).$$

Hence by equation (15.1), the fact that we can choose $\lambda = 1$ in the process $\mu(t)$ and (15.6), the joint distribution of out-degrees of a random tree coincides with the joint distribution of the number of cells containing the given number of particles in the classical model of distributing n particles into $n+1$ cells, where each choice of a cell by a particle is equally likely.

The above relationship, allows us to determine the asymptotic behavior of the expectation of the number X_r of vertices of degree r in a random labeled tree T_n.

Corollary 15.7.

$$\mathbb{E}X_r \approx \frac{n}{(r-1)! \cdot e}.$$

15.2 Recursive Trees

We call a tree on n vertices labeled 1,2,\ldots, n a **recursive tree** (or increasing tree) if the tree is rooted at vertex 1 and, for $2 \leq i \leq n$, the labels on the unique path from the root to vertex i form an increasing sequence. It is not difficult to see that any such tree can be constructed “recursively”: Starting with the vertex labeled 1 and assuming that vertices “arrive” in order of their labels, and connect themselves by an edge to one of the vertices which “arrived” earlier. So the number of recursive (increasing) trees on n vertices is equal to $(n-1)!$.

A **random recursive tree** is a tree chosen uniformly at random from the family of all $(n-1)!$ recursive trees. Or equivalently, it can be generated by a recursive procedure in which each new vertex chooses a neighbor at random from previously arrived vertices. We assume that our tree is rooted at vertex 1 and all edges are directed from the root to the leaves.
Let T_n be a random recursive tree and let $D_{n,i}^+$ be the out-degree of the vertex with label i, i.e. the number of “children” of vertex i. We start with the exact probability distribution of these random variables.

Theorem 15.8. For $i = 1, 2, \ldots, n$ and $r = 1, 2, \ldots, n - 1$,

$$
\mathbb{P}(D_{n,i}^+ = r) = \frac{(i-1)!}{(n-1)!} \sum_{k=r}^{n-i} \binom{k}{r} (i-1)^{k-r} |s(n-i,k)| \tag{15.7}
$$

where $s(n-i,k)$ is the Stirling number of the first kind.

Proof. Conditioning on tree T_{n-1} we see that, for $r \geq 1$,

$$
\mathbb{P}(D_{n,i}^+ = r) = \frac{n-2}{n-1} \mathbb{P}(D_{n-1,i}^+ = r) + \frac{1}{n-1} \mathbb{P}(D_{n-1,i}^+ = r-1). \tag{15.8}
$$

Fix i and let

$$
\Phi_{n,i}(z) = \sum_{r=0}^{n-i} \mathbb{P}(D_{n,i}^+ = r) z^r
$$

be the probability generating function of $D_{n,i}^+$.

Multiplying (15.8) by z^r and then summing over $r \geq 1$ we see that

$$
\Phi_{n,i}(z) - \mathbb{P}(D_{n,i}^+ = 0) = \frac{n-2}{n-1} \left(\Phi_{n-1,i}(z) - \mathbb{P}(D_{n-1,i}^+ = 0) \right) + \frac{z}{n-1} \Phi_{n-1,i}(z).
$$

Notice, that the probability that vertex i is a leaf equals

$$
\mathbb{P}(D_{n,i}^+ = 0) = \prod_{j=i}^{n-1} \left(1 - \frac{1}{j} \right) = \frac{i-1}{n-1}. \tag{15.9}
$$

Therefore

$$
\Phi_{n,i}(z) = \frac{n-2}{n-1} \Phi_{n-1,i}(z) + \frac{z}{n-1} \Phi_{n-1,i}(z).
$$

With the boundary condition,

$$
\Phi_{i,i}(z) = \mathbb{P}(D_{i,i}^+ = 0) = 1.
$$

One can verify inductively that

$$
\Phi_{n,i}(z) = \prod_{k=1}^{n-i} \left(\frac{z+i+k-2}{i+k-1} \right)
$$
Recall the definition of Stirling numbers of the first kind \(s(n, k) \). For non-negative integers \(n \) and \(k \)
\[
z(z - 1) \ldots (z - n + 1) = \sum_{k=1}^{n} s(n, k) z^k.
\]
Hence
\[
\Phi_{n,i}(z) = \frac{(i - 1)!}{(n - 1)!} \sum_{k=1}^{n-i} |s(n - i, k)|(z + i - 1)^k
\]
\[
= \frac{(i - 1)!}{(n - 1)!} \sum_{k=1}^{n-i} \sum_{r=0}^{k} \binom{k}{r} z^r (i - 1)^{k-r} |s(n - i, k)|
\]
\[
= \sum_{r=0}^{n-i} \left(\frac{(i - 1)!}{(n - 1)!} \sum_{k=r}^{n-i} \binom{k}{r} (i - 1)^{k-r} |s(n - i, k)| \right) z^r.
\]

It follows from (15.10), by putting \(z = 0 \), that the expected number of vertices of out-degree zero is
\[
\sum_{i=1}^{n} \frac{i-1}{n-1} = \frac{n}{2}.
\]
Then (15.8) with \(i = r = 1 \) implies that \(\mathbb{P}(D_{n,1}^+ = 1) = 1/(n - 1) \). Hence, if \(L_n \) is the number of leaves in \(T_n \), then
\[
\mathbb{E} L_n = \frac{n}{2} + \frac{1}{n-1}.
\]
\[
(15.11)
\]

For a positive integer \(n \), let \(\zeta_n(s) = \sum_{k=1}^{n} k^{-s} \) be the incomplete Riemann zeta function, and let \(H_n = \zeta(1) = \sum_{k=1}^{n} k^{-1} \) be the \(n \)th harmonic number, and let \(\delta_{n,k} \) denote the Kronecker function \(1_{n=k} \).

Theorem 15.9. For \(1 \leq i \leq n \), let \(D_{n,i} \) be the degree of vertex \(i \) in a random recursive tree \(T_n \). Then
\[
\mathbb{E} D_{n,i} = H_{n-1} - H_{i-1} + 1 - \delta_{1,i},
\]
while
\[
\text{Var} D_{n,i} = H_{n-1} - H_{i-1} - \zeta_{n-1}(2) + \zeta_{i-1}(2).
\]
Proof. Let N_j be the label of that vertex among vertices $1, 2, \ldots, j - 1$ which is the parent of vertex j. Then for $j \geq 1$ and $1 \leq i < j$

$$D_{n,i} = \sum_{j=i+1}^{n} \delta_{N_j,i}. \quad (15.12)$$

By definition N_2, N_3, \ldots, N_n are independent random variables and for all i, j,

$$\mathbb{P}(N_j = i) = \frac{1}{j-1}. \quad (15.13)$$

The expected value of $D_{n,i}$ follows immediately from (15.12) and (15.13). To compute the variance observe that

$$\text{Var} D_{n,i} = \sum_{j=i+1}^{n} \frac{1}{j-1} \left(1 - \frac{1}{j-1}\right).$$

From the above theorem it follows that $\text{Var} D_{n,i} \leq \mathbb{E} D_{n,i}$. Moreover, for fixed i and n large, $\mathbb{E} D_{n,i} \approx \log n$, while for i growing with n the expectation $\mathbb{E} D_{n,i} \approx \log n - \log i$. The following theorem, see Kuba and Panholzer [535], shows a standard limit behavior of the distribution of $D_{n,i}$.

Theorem 15.10. Let $i \geq 1$ be fixed and $n \to \infty$. Then

$$(D_{n,i} - \log n)/\sqrt{\log n} \xrightarrow{d} N(0,1).$$

Now, let $i = i(n) \to \infty$ as $n \to \infty$. If

(i) $i = o(n)$, then

$$(D_{n,i} - (\log n - \log i))/\sqrt{\log n - \log i} \xrightarrow{d} N(0,1),$$

(ii) $i = cn$, $0 < c < 1$, then

$$D_{n,i} \xrightarrow{d} \text{Po}(-\log c),$$

(iii) $n - i = o(n)$, then

$$\mathbb{P}(D_{n,i}^+ = 0) \to 1.$$

Now, consider another parameter of a random recursive tree.
Theorem 15.11. Let $r \geq 1$ be fixed and let $X_{n,r}$ be the number of vertices of degree r in a random recursive tree T_n. Then, w.h.p.

$$X_{n,r} \approx \frac{n}{2^r},$$

and

$$\frac{X_{n,r} - \frac{n}{2^r}}{\sqrt{n}} \xrightarrow{d} Y_r,$$

as $n \to \infty$, where Y_r has the $N(0, \sigma_r^2)$ distribution.

In place of proving the above theorem we will give a simple proof of its immediate implication, i.e., the asymptotic behavior of the expectation of the random variable $X_{n,r}$. The proof of asymptotic normality of suitably normalized $X_{n,r}$ is due to Janson and can be found in [441]. (In fact, in [441] a stronger statement is proved, namely, that, asymptotically, for all $r \geq 1$, random variables $X_{n,r}$ are jointly Normally distributed.)

Corollary 15.12. Let $r \geq 1$ be fixed. Then

$$\mathbb{E}X_{n,r} \approx \frac{n}{2^r}.$$

Proof. Let us introduce a random variable $Y_{n,r}$ counting the number of vertices of degree at least r in T_n. Obviously,

$$X_{n,r} = Y_{n,r} - Y_{n,r+1}. \tag{15.14}$$

Moreover, using a similar argument to that given for formula (15.7), we see that for $2 \leq r \leq n$,

$$\mathbb{E}[Y_{n,r}|T_{n-1}] = \frac{n-2}{n-1}Y_{n-1,r} + \frac{1}{n-1}Y_{n-1,r-1}. \tag{15.15}$$

Notice, that the boundary condition for the recursive formula (15.15) is, trivially given by

$$\mathbb{E}Y_{n,1} = n.$$

We will show, that $\mathbb{E}Y_{n,r}/n \to 2^{-r+1}$ which, by (15.14), will imply the theorem. Set

$$a_{n,r} := n2^{-r+1} - \mathbb{E}Y_{n,r}. \tag{15.16}$$

$\mathbb{E}Y_{n,1} = n$ implies that $a_{n,1} = 0$. We see from (15.11) that the expected number of leaves in a random recursive tree on n vertices is given by

$$\mathbb{E}X_{n,1} = \frac{n}{2} + \frac{1}{n-1}.$$
15.2. RECURSIVE TREES

Hence $a_{n,2} = 1/(n-1)$ as $\mathbb{E}Y_{n,2} = n - \mathbb{E}X_{n,1}$.
Now we show that,

$$0 < a_{n,1} < a_{n,2} < \cdots < a_{n,n-1}. \quad (15.17)$$

From the relationships (15.15) and (15.16) we get

$$a_{n,r} = \frac{n-2}{n-1}a_{n-1,r} + \frac{1}{n-1}a_{n-1,r-1}. \quad (15.18)$$

Inductively assume that (15.17) holds for some $n \geq 3$. Now, by (15.18), we get

$$a_{n,r} > \frac{n-2}{n-1}a_{n-1,r-1} + \frac{1}{n-1}a_{n-1,r-1} = a_{n-1,r-1}.$$

Finally, notice that

$$a_{n,n-1} = n2^{2-n} - \frac{2}{(n-1)!},$$

since there are only two recursive trees with n vertices and a vertex of degree $n-1$. So, we conclude that $a(n,r) \to 0$ as $n \to \infty$, for every r, and our theorem follows.

Finally, consider the maximum degree $\Delta_n = \Delta_n(T_n)$ of a random recursive tree T_n.
It is easy to see that for large n, its expected value should exceed $\log n$, since it is as large as the expected degree of the vertex 1, which by Theorem 15.9 equals $H_{n-1} \approx \log n$. Szymański [731] proved that the upper bound is $O(\log_2 n)$ (see Goh and Schmutz [391] for a strengthening of his result). Finally, Devroye and Lu (see [251]) have shown that in fact $\Delta_n \approx \log_2 n$. This is somewhat surprising. While each vertex in $[1, n^{1-o(1)}]$ only has a small chance of having such a degree, there are enough of these vertices to guarantee one w.h.p..

Theorem 15.13. In a random recursive tree T_n, w.h.p.

$$\Delta_n \approx \log_2 n.$$

The next theorem was originally proved by Devroye [246] and Pittel [652]. Both proofs were based on an analysis of certain branching processes. The proof below is related to [246].

Theorem 15.14. Let $h(T_n)$ be the height of a random recursive tree T_n. Then w.h.p.

$$h(T_n) \approx e \log n.$$
Proof.

Upper Bound: For the upper bound we simply estimate the number v_1 of vertices at height $h_1 = (1 + \varepsilon)\log n$ where $\varepsilon = o(1)$ but is sufficiently large so that claimed inequalities are valid. Each vertex at this height can be associated with a path $i_0 = 1, i_1, \ldots, i_h$ of length h in T_n. So, if $S = \{i_1, \ldots, i_h\}$ refers to such a path, then

$$E v_1 = \sum_{|S|=h_1} \prod_{i \in S} \frac{1}{t_i - 1} \leq \frac{1}{h_1!} \left(\sum_{i=1}^n t_i \right)^{h_1} \leq \left(\frac{(1 + \log n)e}{h_1} \right)^{h_1} = o(1), \quad (15.19)$$

assuming that $h_1 \varepsilon \to \infty$.

Explanation: If $S = \{i_1 = 1, i_2, \ldots, i_{h_1}\}$ then the term $\prod_{j=1}^{h_1} 1/i_j$ is the probability that i_j chooses i_{j-1} in the construction of T_n.

Lower Bound: The proof of the lower bound is more involved. We consider a different model of tree construction and relate it to T_n. We consider a *Yule* process. We run the process for a specific time t and construct a tree $Y(t)$. We begin by creating a single particle x_1 at time 0 this will be the root of a tree $Y(t)$. New particles are generated at various times $\tau_1 = 0, \tau_2, \ldots$. Then at time τ_k there will be k particles $X_k = \{x_1, x_2, \ldots, x_k\}$ and we will have $Y(t) = Y(\tau_k)$ for $\tau_k \leq t < \tau_{k+1}$. After x_k has been added to $Y(\tau_k)$, each $x \in X_k$ is associated with an exponential random variable E_x with mean one. If z_k is the particle in X_k that minimizes $E_x, x \in X_k$ then a new particle x_{k+1} is generated at time $\tau_{k+1} = \tau_k + E_{z_k}$ and an edge $\{z_k, x_{k+1}\}$ is added to $Y(\tau_k)$ to create $Y(\tau_{k+1})$. After this we independently generate new random variables $E_x, x \in X_{k+1}$.

Remark 15.15. The memory-less property of the exponential random variable, i.e. $\mathbb{P}(Z \geq a + b \mid Z \geq a) = \mathbb{P}(Z \geq b)$, implies that we could equally well think that at time $t \geq \tau_k$ the E_x are independent exponentials conditional on being at least τ_k. In which case the choice of z_k is uniformly random from X_k, even conditional on the processes prior history.

Suppose then that we focus attention on $Y(y,s,t)$, the sub-tree rooted at y containing all descendants of y that are generated after time s and before time t.

We observe three things:

(T1) The tree $Y(\tau_y)$ has the same distribution as T_n. This is because each particle in X_k is equally likely to be z_k.

1 An exponential random variable Z with mean λ is characterised by $\mathbb{P}(Z \geq x) = e^{-x/\lambda}$.

15.2. RECURSIVE TREES

(T2) If $s < t$ and $y \in Y(s)$ then $Y(y; s, t)$ is distributed as $Y(t - s)$. This follows from Remark 15.15, because when $z_k \notin Y(y; s, t)$ it does not affect any of the the variables $E_x, x \in Y(y; s, t)$.

(T3) If $x, y \in Y(s)$ then $Y(x; s, t)$ and $Y(y; s, t)$ are independent. This also follows from Remark 15.15 for the same reasons as in (T2).

It is not difficult to prove (see Exercise (vii) or Feller [301]) that if $P_n(t)$ is the probability there are exactly n particles at time t then

$$P_n(t) = e^{-t} (1 - e^{-t})^{n-1}. \quad (15.20)$$

Next let

$$t_1 = (1 - \varepsilon) \log n.$$

Then it follows from (15.20) that if $v(t)$ is the number of particles in our Yule process at time t then

$$P(v(t_1) \geq n) \leq \sum_{k \geq n} e^{-t_1} (1 - e^{-t_1})^{k-1} = \left(1 - \frac{1}{n^{1-\varepsilon}}\right)^{n-1} = o(1). \quad (15.21)$$

We will show that w.h.p. the tree $T_{v(t_1)}$ has height at least

$$h_0 = (1 - \varepsilon) t_1$$

and this will complete the proof of the theorem.

We will choose $s \to \infty$, $s = O(\log t_1)$. It follows from (15.20) that if $v_0 = \varepsilon e^s$ then

$$P(v(s) \leq v_0) = \sum_{k=0}^{v_0} e^{-s} (1 - e^{-s})^{k-1} \leq \varepsilon = o(1). \quad (15.22)$$

Suppose now that $v(s) \geq v_0$ and that the vertices of $T_{1;0, t_1}$ are

$$\{x_1, x_2, \ldots, x_{v(s)}\}.$$

Let $\sigma = v_0^{1/2}$ and consider the sub-trees $A_j, j = 1, 2, \ldots, \tau$ of $T_{1;0,t_1}$ rooted at $x_j, j = 1, 2, \ldots, v(s)$. We will show that

$$P(T_{x_j;0,t_1}) \text{ has height at least } (1 - \varepsilon)^3 e \log n \geq \frac{1}{2\sigma \log \sigma}. \quad (15.23)$$

Assuming that (15.23) holds, since the trees A_1, A_2, \ldots, A_τ are independent, by T3, we have

$$P(h(T_n) \leq (1 - \varepsilon)^3 e \log n) \leq \frac{1}{2\sigma \log \sigma} v_0 = o(1).$$
To prove all this we will associate a Galton-Watson branching process with each of \(x_1, x_2, \ldots, x_\tau \). Consider for example \(x = x_1 \) and let \(\tau_0 = \log \sigma \). The vertex \(x \) will be the root of a branching process \(\Pi \), which we now define. We will consider the construction of \(Y(x; s, t) \) at times \(\tau_i = s + i\tau_0 \) for \(i = 1, 2, \ldots, \tau \), \(\tau_i = (t_1 - s)/\tau_0 \).

The children of \(x \) in \(\Pi \) are the vertices at depth at least \((1 - \epsilon)e\tau_0 \) in \(Y(x; s, t_1) \). In general, the particles in generation \(i \) will correspond to particles at depth at least \((1 - \epsilon)e\tau_0 \) in the tree \(Y(\xi; \tau_{i-1}, \tau_i) \) where \(\xi \) is a particle of \(Y(x; s, t) \) included in generation \(i - 1 \) of \(\Pi \).

If the process \(\Pi \) does not ultimately become extinct then generation \(\tau_0 \) corresponds to vertices in \(Y(\tau) \) that are at depth

\[
i_0 \times (1 - \epsilon)e\tau_0 = (1 - \epsilon)e(t_1 - s) \geq (1 - \epsilon)^3e\log n.
\]

We will prove that

\[
P(\Pi \text{ does not become extinct}) \geq \frac{1}{2\sigma \log \sigma}, \tag{15.24}
\]

and this implies (15.23) and the theorem.

To prove (15.24) we first show that \(\mu \), the expected number of progeny of a particle in \(\Pi \) satisfies \(\mu > 1 \) and after that we prove (15.24).

Let \(D(h, m) \) denote the expected number of vertices at depth \(h \) in the tree \(T_m \). Then for any \(\xi \in \Pi \),

\[
\mu \geq D((1 - \epsilon)e\tau_0, \sigma) \times P(\nu(\tau_0) \geq \sigma). \tag{15.25}
\]

It follows from (15.20) and \(\sigma = e^{\tau_0} \) that

\[
P(|Y(\xi, 0, \tau_0)| \geq \sigma) = \sum_{k=\sigma}^\infty e^{-\tau_0}(1 - e^{-\tau_0})^k = (1 - e^{-\tau_0})^\sigma \geq \frac{1}{2e}. \tag{15.26}
\]

We show next that for \(m \gg h \) we have

\[
D(h, m) \geq \frac{(\log m - \log h - 1)h}{h!}. \tag{15.27}
\]

To prove this, we go back to (15.19) and write

\[
D(h, m) = \frac{1}{h} \sum_{i=2}^m \frac{1}{i-1} \sum_{S \in \binom{\{2, m\}\setminus\{i\}}{h-1} \prod_{j \in S \setminus\{i\}} \frac{1}{j-1}}
\]

\[= \frac{1}{h} \sum_{S \in \binom{\{2, m\}}{h-1}} \prod_{j \in S} \frac{1}{j-1} \sum_{1 \leq k \leq h} \frac{1}{k \cdot k} \geq \frac{1}{h} \sum_{S \in \binom{\{2, m\}}{h-1}} \prod_{j \in S} \frac{1}{j-1} \sum_{k=h+1}^m \frac{1}{k}.
\]
\[\geq \frac{\log m - \log h - 1}{h} D(h - 1, m). \quad (15.28) \]

Equation (15.27) follows by induction since \(D(1, m) \geq \log m \).

Explanation of (15.28): We choose a path of length \(h \) by first choosing a vertex \(i \) and then choosing \(S \subseteq [2, m] \setminus \{i\} \). We divide by \(h \) because each \(h \)-set arises \(h \) times in this way. Each choice will contribute \(\prod_{j \in S \cup \{i\}} \frac{1}{j} \).

We now see from (15.25), (15.26) and (15.27) that
\[\mu \geq \left(\frac{\tau_0 - \log((1 - \varepsilon)\tau_0) - 1}{((1 - \varepsilon)\tau_0)!} \right) \times \frac{1}{2e} \geq \frac{1}{2e\sqrt{2\pi}} \times \left(\frac{1}{(1 - \varepsilon/2)(1 - \varepsilon)\tau_0} \right) \gg 1, \]
if we take \(\varepsilon \tau_0 / \log \tau_0 \to \infty \).

We are left to prove (15.24). Let \(G(z) \) be the probability generating function for the random variable \(Z \) equal to the number of descendants of a single particle. We first observe that for any \(\theta \geq 1 \),
\[\mathbb{P}(Z \geq \theta \sigma) \leq \mathbb{P}(|Y(\xi, 0, \tau_0)| \geq \theta \sigma) = \sum_{k=\theta \sigma}^{\infty} e^{-\tau_0} (1 - e^{-\tau_0})^k \leq e^{-\theta}. \]

Note that for \(0 \leq x \leq 1 \), any \(k \geq 0 \) and \(a \geq k \) it holds that
\[\left(1 - \frac{k}{a} \right) + \frac{k}{a} x^a \geq x^k. \]

We then write for \(0 \leq x \leq 1 \),
\[G(x) \leq \sum_{k=0}^{\theta \sigma} p_k x^k + \mathbb{P}(Z \geq \theta \sigma) \leq \sum_{k=0}^{\theta \sigma} p_k x^k + e^{-\theta} \]
\[\leq \sum_{k=0}^{\theta \sigma} \left(\left(1 - \frac{k}{\theta \sigma} \right) p_k + \frac{k}{\theta \sigma} p_k x^{\theta \sigma} \right) + e^{-\theta} \]
\[\leq \sum_{k=0}^{\infty} \left(\left(1 - \frac{k}{\theta \sigma} \right) p_k + \frac{k}{\theta \sigma} p_k x^{\theta \sigma} \right) + e^{-\theta} \]
\[= H(x) = 1 - \frac{\mu}{\theta \sigma} + \frac{\mu}{\theta \sigma} x^{\theta \sigma} + e^{-\theta}. \]

The function \(H \) is monotone increasing in \(x \) and so \(\rho = \mathbb{P}(\Pi \text{ becomes extinct}) \) being the smallest non-negative solution to \(x = G(x) \) (see Theorem 24.1) implies
that ρ is at most the smallest non-negative solution q to $x = H(x)$. The convexity of H and the fact that $H(0) > 0$ implies that q is at most the value ζ satisfying $H'(\zeta) = 1$ or

$$q \leq \zeta = \frac{1}{\mu^{1/(\theta\sigma - 1)}} < 1.$$

But $\rho = G(\rho) \leq G(q) \leq H(q)$ and so

$$1 - \rho \geq \frac{\mu}{\theta\sigma} \left(1 - \frac{1}{\mu^{\theta\sigma/(\theta\sigma - 1)}} \right) - e^{-\theta} \geq \frac{\mu - 1}{\theta\sigma} - e^{-\theta} \geq \frac{1}{2\sigma \log \sigma},$$

after putting $\theta = 2\log \sigma$ and using $\mu \gg 1$.

Devroye, Fawzi and Fraiman [247] give another proof of the above theorem that works for a wider class of random trees called *scaled attachment random recursive trees*, where each vertex i attaches to the random vertex $\lfloor iX_i \rfloor$ and X_0, \ldots, X_n is a sequence of independent identically distributed random variables taking values in $[0, 1)$.

15.3 Inhomogeneous Recursive Trees

Plane-oriented recursive trees

This section is devoted to the study of the properties of a class of *inhomogeneous recursive trees* that are closely related to the Barabási-Albert “preferential attachment model”, see [58]. Bollobás, Riordan, Spencer and Tusnády gave a proper definition of this model and showed how to reduce it to random plane-oriented recursive trees, see [155]. In this section we present some results that preceded [58] and created a solid mathematical ground for the further development of general preferential attachment models, which will be discussed later in the book (see Chapter 18).

Suppose that we build a recursive tree in the following way. We start as before with a single vertex labeled 1 and add $n - 1$ vertices labeled 2, 3, ..., n, one by one. We assume that the children of each vertex are ordered (say, from left to right). At each step a new vertex added to the tree is placed in a position “in between” old vertices. A tree built in this way is called a *plane-oriented recursive tree*. To study this model it is convenient to introduce an *extension* of a plane-oriented recursive tree: given a plane-oriented recursive tree we connect each vertex with external nodes, representing a possible insertion position for an incoming new vertex. See Figure 15.3 for a diagram of all plane-oriented recursive trees on $n = 3$ vertices, together with their extensions.
Assume now, as before that all the edges of a tree are directed toward the leaves, and denote the out-degree of a vertex \(v \) by \(d^+(v) \). Then the total number of extensions of an plane-oriented recursive tree on \(n \) vertices is equal to

\[
\sum_{v \in V} (d^+(v) + 1) = 2n - 1.
\]

Figure 15.1: Plane-oriented recursive trees and their extensions, \(n = 3 \)

So a new vertex can choose one of those \(2n - 1 \) places to join the tree and create a tree on \(n + 1 \) vertices. If we assume that this choice in each step is made uniformly at random then a tree constructed this way is called a random plane-oriented recursive tree. Notice that the probability that the vertex labeled \(n + 1 \) is attached to vertex \(v \) is equal to \(\frac{d^+(v) + 1}{2n - 1} \), i.e., it is proportional to the degree of \(v \). Such random trees, called plane-oriented because of the above geometric interpretation, were introduced by Szymański [730] under the name of non-uniform recursive trees. Earlier, Prodinger and Urbanek [664] described plane-oriented recursive trees combinatorially, as labeled ordered (or plane) trees with the property that labels along any path down from the root are increasing. Such trees are also known in the literature as heap-ordered trees (see Chen and Ni [184], Prodinger [663], Morris, Panholzer and Prodinger [614]) or, more recently, as scale-free trees. So, random plane-oriented recursive trees are the simplest example of random preferential attachment graphs.

Denote by \(a_n \) the number of plane-oriented recursive trees on \(n \) vertices. This number, for \(n \geq 2 \) satisfies an obvious recurrence relation

\[
a_{n+1} = (2n - 1)a_n.
\]
Solving this equation we get that

\[a_n = 1 \cdot 3 \cdot 5 \cdots (2n - 3) = (2n - 3)!! . \]

This is also the number of Stirling permutations, introduced by Gessel and Stanley [381], i.e. the number of permutations of the multiset \(\{1, 1, 2, 2, 3, 3, \ldots, n, n\} \), with the additional property that, for each value of \(1 \leq i \leq n \), the values lying between the two copies of \(i \) are greater than \(i \).

There is a one-to-one correspondence between such permutations and plane-oriented recursive trees, given by Koganov [509] and, independently, by Janson [443]. To see this relationship consider a plane-oriented recursive tree on \(n + 1 \) vertices labelled \(0, 1, 2, \ldots, n \), where the vertex with label 0 is the root of the tree and is connected to the vertex labeled 1 only, and the edges of the tree are oriented in the direction from the root. Now, perform a depth first search of the tree in which we start from the root. Next we go to the leftmost child of the root, explore that branch recursively, go to the next child in order etc., until we stop at the root. Notice that every edge in such a walk is traversed twice. If every edge of the tree gets a label equal to the label of its end-vertex furthest from the root, then the depth first search encodes each tree by a string of length \(2n \), where each label 1, 2, \ldots, \(n \) appears twice. So the unique code of each tree is a unique permutation of the multiset \(\{1, 1, 2, 2, 3, 3, \ldots, n, n\} \) with additional property described above. Note also that the insertion of a pair \((n + 1, n + 1)\) into one of the \(2n - 1 \) gaps between labels of the permutation of this multiset, corresponds to the insertion of the vertex labeled \(n + 1 \) into a plane-oriented recursive tree on \(n \) vertices.

Let us start with exact formulas for probability distribution of the out-degree \(D_{n,i}^+ \) of a vertex with label \(i \), \(i = 1, 2, \ldots, n \) in a random plane-oriented recursive tree. Kuba and Panholzer [535] proved the following theorem.

Theorem 15.16. For \(i = 1, 2, \ldots, n \) and \(r = 1, 2, \ldots, n - 1 \),

\[
\mathbb{P}(D_{n,i}^+ = r) = \sum_{k=0}^{r} \binom{r}{k} (-1)^k \frac{\Gamma(n - 3/2)\Gamma(i - 1/2)}{\Gamma(i - k/2)\Gamma(n - 1/2)},
\]

where \(\Gamma(z) = \int_0^\infty t^{z-1}e^{-t}dt \) is the Gamma function. Moreover,

\[
\mathbb{E}(D_{n,i}^+) = \frac{(2i-2)4^{n-i}}{\binom{2n-2}{n-1}} - 1 \quad (15.29)
\]

For simplicity, we show below that the formula (15.29) holds for \(i = 1 \), i.e., the expected value of the out-degree of the root of a random plane-oriented recursive tree, and investigate its behavior as \(n \to \infty \). It is then interesting to compare the
latter with the asymptotic behavior of the degree of the root of a random recursive
tree. Recall that for large \(n \) this is roughly \(\log n \) (see Theorem 15.10).
The result below was proved by Mahmoud, Smythe and Szymański [574].

Corollary 15.17. For \(n \geq 2 \) the expected value of the degree of the root of a
random plane-oriented recursive tree is

\[
\mathbb{E}(D_{n,1}^+) = \frac{4^{n-1}}{(2n-2)} - 1,
\]

and,

\[
\mathbb{E}(D_{n,1}^+) \approx \sqrt{\pi n}.
\]

Proof. Denote by

\[u_n = \frac{4^n}{(2n)^2} = \prod_{i=1}^{n} \frac{2i}{2i-1} = \frac{(2n)!!}{(2n-1)!!}, \]

Hence, in terms of \(u_n \), we want to prove that

\[
\mathbb{E}(D_{n,1}^+) = u_{n-1} - 1.
\]

It is easy to see that the claim holds for \(n = 1, 2 \) and that

\[
\mathbb{P}(D_{n,1}^+ = 1) = \prod_{i=1}^{n-1} \left(1 - \frac{2}{2i-1} \right) = \frac{1}{2n-3},
\]

while, for \(r > 1 \) and \(n \geq 1 \),

\[
\mathbb{P}(D_{n+1,1}^+ = r) = \left(1 - \frac{r+1}{2n-1} \right) \mathbb{P}(D_{n,1}^+ = r) + \frac{r}{2n-1} \mathbb{P}(D_{n,1}^+ = r-1).
\]

Hence

\[
\mathbb{E}(D_{n+1,1}^+) = \sum_{r=1}^{n} r \left(\frac{2n-r-2}{2n-1} \mathbb{P}(D_{n,1}^+ = r) + \frac{r}{2n-1} \mathbb{P}(D_{n,1}^+ = r-1) \right) = \frac{1}{2n-1} \left(\sum_{r=1}^{n-1} r(2n-r-2) \mathbb{P}(D_{n,1}^+ = r) + \sum_{r=1}^{n-1} (r+1)^2 \mathbb{P}(D_{n,1}^+ = r) \right)
= \frac{1}{2n-1} \sum_{r=1}^{n} (2nr+1) \mathbb{P}(D_{n,1}^+ = r).
\]
So, we get the following recurrence relation
\[\mathbb{E}(D^+_{n+1,1}) = \frac{2n}{2n-1} \mathbb{E}(D^+_{n,1}) + \frac{1}{2n-1} \]
and the first part of the theorem follows by induction.
To see that the second part also holds one has to use the Stirling approximation to check that
\[u_n = \sqrt{\pi n - 1} + \frac{3}{8} \sqrt{\pi/n} + \cdots. \]

The next theorem, due to Kuba and Panholzer [535], summarizes the asymptotic behavior of the suitably normalized random variable \(D^+_{n,i} \).

Theorem 15.18. Let \(i \geq 1 \) be fixed and let \(n \to \infty \). If

(i) \(i = 1 \), then
\[n^{-1/2} D^+_{n,1} \xrightarrow{d} D_1, \text{ with density } f_{D_1}(x) = (x/2)e^{-x^2/2}, \]
i.e., is asymptotically Rayleigh distributed with parameter \(\sigma = \sqrt{2} \),

(ii) \(i \geq 2 \), then \(n^{-1/2} D^+_{n,i} \xrightarrow{d} D_i \), with density
\[f_{D_i}(x) = \frac{2i-3}{2^{2i-1}(i-2)!} \int_x^\infty (t-x)^{2i-4} e^{-t^2/4} dt. \]

Let \(i = i(n) \to \infty \) as \(n \to \infty \). If

(i) \(i = o(n) \), then the normalized random variable \((n/i)^{-1/2} D^+_{n,i} \) is asymptotically Gamma distributed \(\gamma(\alpha, \beta) \), with parameters \(\alpha = -1/2 \) and \(\beta = 1 \),

(ii) \(i = cn \), \(0 < c < 1 \), then the random variable \(D^+_{n,i} \) is asymptotically negative binomial distributed \(\text{NegBinom}(r, p) \) with parameters \(r = 1 \) an \(p = \sqrt{c} \),

(iii) \(n - i = o(n) \), then \(\mathbb{P}(D^+_{n,i} = 0) \to 1 \), as \(n \to \infty \).

We now turn our attention to the number of vertices of a given out-degree. The next theorem shows a characteristic feature of random graphs built by preferential attachment rule where every new vertex prefers to attach to a vertex with high degree (rich get richer rule). The proportion of vertices with degree \(r \) in such a random graph with \(n \) vertices grows like \(n/r^\alpha \), for some
15.3. INHOMOGENEOUS RECURSIVE TREES

constant \(\alpha > 0\), i.e., its distribution obeys a so called power law. The next result was proved by Szymański [730] (see also [574] and [732]) and it indicates such a behavior for the degrees of the vertices of a random plane-oriented recursive tree, where \(\alpha = 3\).

Theorem 15.19. Let \(r\) be fixed and denote by \(X^+_{n,r}\) the number of vertices of out-degree \(r\) in a random plane-oriented recursive tree \(T_n\). Then,

\[
\mathbb{E}X^+_{n,r} = \frac{4n}{(r+1)(r+2)(r+3)} + O\left(\frac{1}{r}\right).
\]

Proof. Observe first that conditional on \(T_n\),

\[
\mathbb{E}(X^+_{n+1,r}|T_n) = X^+_{n,r} - \frac{r+1}{2n-1}X^+_{n,r} + \frac{r}{2n-1}X^+_{n,r-1} + 1_{r=0},
\]

which gives

\[
\mathbb{E}X^+_{n+1,r} = \frac{2n-r-2}{2n-1}\mathbb{E}X^+_{n,r} + \frac{r}{2n-1}\mathbb{E}X^+_{n,r-1} + 1_{r=0}
\]

for \(r \geq 1\), \((X^+_{n,-1} = 0)\).

We will show that the difference

\[
a_{n,r} \overset{\text{def}}{=} \mathbb{E}X^+_{n,r} - \frac{4n}{(r+1)(r+2)(r+3)},
\]

is asymptotically negligible with respect to the leading term in the statement of the theorem. Substitute \(a_{n,r}\) in the equation (15.31) to get that for \(r \geq 1\),

\[
a_{n+1,r} = \frac{2n-r-2}{2n-1}a_{n,r} + \frac{r}{2n-1}a_{n,r-1} - \frac{1}{2n-1}.
\]

We want to show that \(|a_{n,r}| \leq \frac{2}{\max\{r+1\}}\), for all \(n \geq 1, r \geq 0\). Note that this is true for all \(n\) and \(r = 0, 1\), since from (15.31) it follows (inductively) that for \(n \geq 2\)

\[
\mathbb{E}X^+_{n,0} = \frac{2n-1}{3} \quad \text{and so} \quad a_{n,0} = -\frac{1}{3}.
\]

For \(n \geq 2\),

\[
\mathbb{E}X^+_{n,1} = \frac{n}{6} - \frac{1}{12} + \frac{3}{4(2n-3)} \quad \text{and so} \quad a_{n,1} = -\frac{1}{12} + \frac{3}{4(2n-3)}.
\]

We proceed by induction on \(r\). By definition

\[
a_{r,r} = -\frac{4r}{(r+1)(r+2)(r+3)},
\]
and so,
\[|a_{r,r}| < \frac{2}{r}. \]
We then see from (15.32) that for and \(r \geq 2 \) and \(n \geq r \) that
\[
|a_{n+1,r}| \leq \frac{2n - r - 2}{2n - 1} \cdot \frac{2}{r} + \frac{r}{2n - 1} \cdot \frac{2}{r - 1} - \frac{1}{2n - 1}.
\]
\[
= \frac{2}{r} - \frac{2}{(2n - 1)r} \left(r + 1 - \frac{r^2}{r - 1} - \frac{r}{2} \right)
\]
\[
\leq \frac{2}{r},
\]
which completes the induction and the proof of the theorem.

\(\Box \)

In fact much more can be proved.

Theorem 15.20. Let \(\varepsilon > 0 \) and \(r \) be fixed. Then, w.h.p.
\[
(1 - \varepsilon)a_r \leq \frac{X_{n,r}^+}{n} \leq (1 + \varepsilon)a_r,
\]
where
\[
a_r = \frac{4}{(r + 1)(r + 2)(r + 3)}.\]

Moreover,
\[
\frac{(X_{n,r}^+ - na_r)}{\sqrt{n}} \xrightarrow{d} Y_r,
\]
(15.34)
as \(n \to \infty \), jointly for all \(r \geq 0 \), where the \(Y_r \) are jointly Normally distributed with expectations \(\mathbb{E}Y_r = 0 \) and covariances \(\sigma_{rs} = \text{Cov}(Y_r, Y_s) \) given by
\[
\sigma_{rs} = 2 \sum_{k=0}^{r} \sum_{l=0}^{s} \frac{(-1)^{k+l}}{k + l + 4} \binom{r}{k} \binom{s}{l} \frac{(2(k + l + 4)!(k + 3)!(l + 3)!)}{(k + 3)(l + 3)} - 1 - \frac{(k + 1)(l + 1)}{(k + 3)(l + 3)}.
\]

Proof. For the proof of asymptotic normality of a suitably normalized random variable \(X_{n,r}^+ \), i.e., for the proof of statement (15.34) see Janson [441]. We will give a short proof of the first statement (15.33), due to Bollobás, Riordan, Spencer and Tusnády [155] (see also Mori [612]).

Consider a random plane-oriented recursive tree \(T_n \) as an element of a process \((T_t)_{t=0}^{\infty} \). Fix \(n \geq 1 \) and \(r \geq 0 \) and for \(0 \leq t \leq n \) define the martingale
\[
Y_t = \mathbb{E}(X_{n,r}^+|T_t) \quad \text{where} \quad Y_0 = \mathbb{E}(X_{n,r}^+) \quad \text{and} \quad Y_n = X_{n,r}^+.
\]

One sees that the differences
\[
|Y_{t+1} - Y_t| \leq 2.
\]
15.3. INHOMOGENEOUS RECURSIVE TREES

For a proof of this, see the proof of Theorem 18.3. Applying the Hoeffding-Azuma inequality (see Theorem 22.16) we get, for any fixed r,

$$P(|X_{n,r}^+ - \mathbb{E}X_{n,r}^+| \geq \sqrt{n \log n}) \leq e^{-\frac{1}{8}\log n} = o(1).$$

But Theorem 15.19 shows that for any fixed r, $\mathbb{E}X_{n,r}^+ \gg \sqrt{n \log n}$ and (15.33) follows. □

Similarly, as for uniform random recursive trees, Pittel [652] established the asymptotic behavior of the height of a random plane-oriented recursive tree.

Theorem 15.21. Let h_n^* be the height of a random plane-oriented recursive tree. Then w.h.p.

$$h_n^* \approx \frac{\log n}{2\gamma},$$

where γ is the unique solution of the equation

$$\gamma e^{\gamma+1} = 1,$$

i.e., $\gamma = 0.27846...$, so $\frac{1}{2\gamma} = 1.79556...$

Inhomogeneous recursive trees: a general model

As before, consider a tree that grows randomly in time. Each time a new vertex appears, it chooses exactly one of the existing vertices and attaches to it. This way we build a tree T_n of order n with $n+1$ vertices labeled $\{0, 1, \ldots, n\}$, where the vertex labeled 0 is the root. Now assume that for every $n \geq 0$ there is a probability distribution

$$p(n) = (p_0, p_1, \ldots, p_n), \quad \sum_{j=0}^{n} p_j = 1.$$

Suppose that T_n has been constructed for some $n \geq 1$. Given T_n we add an edge connecting one of its vertices with a new vertex labeled $n+1$ and thus forming a tree T_{n+1}. A vertex $v_n \in \{0, 1, 2, \ldots, n\}$ is chosen to be a neighbor of the incoming vertex with probability

$$P(v_n = j|T_n) = p_j, \quad \text{for} \quad j = 0, 1, \ldots, n.$$

Note that for the uniform random recursive tree we have

$$p_j = \frac{1}{n+1}, \quad \text{for} \quad 0 \leq j \leq n.$$
We say that a random recursive tree is *inhomogeneous* if the attachment rule of new vertices is determined by a non-uniform probability distribution. Most often the probability that a new vertex chooses a vertex $j \in \{0, 1, \ldots, n\}$ is proportional to $w(d_n(j))$, the value of a weight function w applied to the degree $d_n(j)$ of vertex j after n-th step. Then the probability distribution $P^{(n)}$ is defined

$$p_j = \frac{w(d_n(j))}{\sum_{k=0}^{n} w(d_n(k))}.$$

Consider a special case when the weight function is linear and, for $0 \leq j \leq n$,

$$w(d_n(j)) = d_n(j) + \beta, \quad \beta > -1,$$

so that the total weight

$$w_n = \sum_{k=0}^{n} (d_n(k) + \beta) = 2n + (n + 1)\beta. \quad (15.36)$$

Obviously the model with such probability distribution is only a small generalisation of plane-oriented random recursive trees and we obtain the latter when we put $\beta = 0$ in (15.35). Inhomogeneous random recursive trees of this type are known in the literature as either *scale free random trees* or *Barabási-Albert random trees*. For obvious reasons, we will call such graphs *generalized random plane-oriented recursive trees*.

Let us focus the attention on the asymptotic behavior of the maximum degree of such random trees. We start with some useful notation and observations.

Let $X_{n,j}$ denote the weight of vertex j in a generalized plane-oriented random recursive tree, with initial values $X_{1,0} = X_{j,j} = 1 + \beta$ for $j > 0$. Let

$$c_{n,k} = \frac{\Gamma\left(n + \frac{\beta}{\beta + 2}\right)}{\Gamma\left(n + \frac{\beta + k}{\beta + 2}\right)}, \quad n \geq 1, \quad k \geq 0,$$

be a double sequence of normalising constants. Note that

$$\frac{c_{n+1,k}}{c_{n,k}} = \frac{w_n}{w_n + k}, \quad (15.37)$$

and, for any fixed k,

$$c_{n,k} = n^{-k/2} (1 + O(n^{-1})).$$

Let k be a positive integer and

$$X_{n,j,k} = c_{n,k} \binom{X_{n,j} + k - 1}{k}.$$
Lemma 15.22. Let \mathcal{F}_n be the σ-field generated by the first n steps. If $n \geq \max\{1, j\}$, then $(X_{n, j; k}, \mathcal{F}_n)$ is a martingale.

Proof. Because $X_{n+1, j} - X_{n, j} \in \{0, 1\}$, we see that

$$\begin{align*}
\left(\frac{X_{n+1, j} + k - 1}{k}\right) &= \left(\frac{X_{n, j} + k - 1}{k}\right) + \left(\frac{X_{n, j} + k - 1}{k - 1}\right)\left(\frac{X_{n+1, j} - X_{n, j}}{1}\right) \\
&= \left(\frac{X_{n, j} + k - 1}{k}\right) \left(1 + \frac{k(X_{n+1, j} - X_{n, j})}{X_{n, j}}\right).
\end{align*}$$

Hence, noting that

$$\mathbb{P}(X_{n+1, j} - X_{n, j} = 1 | \mathcal{F}_n) = \frac{X_{n, j}}{w_n},$$

and applying (15.37)

$$\mathbb{E}(X_{n+1, j; k} | \mathcal{F}_n) = X_{n, j; k} \frac{c_{n+1, k}}{c_{n, k}} \left(1 + \frac{k}{w_n}\right) = X_{n, j; k},$$

we arrive at the lemma. □

Thus, the random variable $X_{n, j; k}$, as a non-negative martingale, is bounded in L_1 and it almost surely converges to $X_j^k/k!$, where X_j is the limit of $X_{n, j; 1}$. Since $X_{n, j; k} \leq cX_{n, j; 2k}$, where the constant c does not depend on n, it is also bounded in L_2, which implies that it converges in L_1. Therefore we can determine all moments of the random variable X_j. Namely, for $j \geq 1$,

$$\frac{X_j^k}{k!} = \lim_{n \to \infty} \mathbb{E}X_{n, j; k} = X_{j, j; k} = c_{j, k} \left(\beta + k\right).$$

(15.38)

Let Δ_n be the maximum degree in a generalized random plane-oriented recursive tree T_n and let, for $j \leq n$,

$$\Delta_{n, j} = \max_{0 \leq i \leq j} X_{n, i; 1} = \max_{0 \leq i \leq j} c_{n, 1} X_{n, i}.$$

Note that since $X_{n, i}$ is the weight of vertex i, i.e., its degree plus β, we find that $\Delta_{n, n} = c_{n, 1}(\Delta_n + \beta)$. Define

$$\xi_j = \max_{0 \leq i \leq j} X_i \quad \text{and} \quad \xi_{\infty} = \sup_{j \geq 0} X_j.$$

(15.39)

Now we are ready to prove the following result, due to Móri [613].
Theorem 15.23.
\[\mathbb{P}\left(\lim_{n \to \infty} n^{-1/(\beta+2)} \Delta_n = \xi \right) = 1. \]

The limiting random variable \(\xi \) is almost surely finite and positive and it has an absolutely continuous distribution. The convergence also holds in \(L_p \), for all \(p \), \(1 \leq p < \infty \).

Proof. In the proof we skip the part dealing with the positivity of \(\xi \) and the absolute continuity of its distribution.

By Lemma 15.22, \(\Delta_{n,n} \) is the maximum of martingales, therefore \((\Delta_{n,n}|\mathcal{F})\) is a non-negative sub-martingale, and so
\[\mathbb{E} \Delta_{n,n}^k \leq \sum_{j=0}^{\infty} \mathbb{E} X_{n,j,1}^k \leq \sum_{j=0}^{\infty} \mathbb{E} X_j^k = k! \left(\frac{\beta+k}{k} \right) \sum_{j=0}^{\infty} c_{j,k} < \infty, \]
if \(k > \beta + 2 \). (Note \(c_{0,k} \) is defined here as equal to \(c_{1,k} \)). Hence \((\Delta_{n,n}|\mathcal{F})\) is bounded in \(L_k \), for every positive integer \(k \), which implies both almost sure convergence and convergence in \(L_p \), for any \(p \geq 1 \).

Assume that \(k > \beta + 2 \) is fixed. Then, for \(n \geq k \),
\[\mathbb{E}(\Delta_{n,n} - \Delta_{n,j})^k \leq \sum_{i=j+1}^{n} \mathbb{E} X_{n,i,1}^k. \]
Take the limit as \(n \to \infty \) of both sides of the above inequality. Applying (15.39) and (15.38), we get
\[\mathbb{E} \left(\lim_{n \to \infty} n^{-1/(\beta+2)} \Delta_n - \xi_j \right)^k \leq \sum_{i=j+1}^{\infty} \mathbb{E} \xi_i^k = k! \left(\frac{\beta+k}{k} \right) \sum_{i=j+1}^{\infty} c_{j,k}. \]
The right-hand side tends to 0 as \(j \to \infty \), which implies that \(n^{-1/(\beta+2)} \Delta_n \) tends to \(\xi \), as claimed. \(\square \)

To conclude this section, setting \(\beta = 0 \) in Theorem 15.23, one can obtain the asymptotic behavior of the maximum degree of a plane-oriented random recursive tree.

15.4 Exercises

(i) Use the Prüfer code to show that there is one-to-one correspondence between the family of all labeled trees with vertex set \([n] \) and the family of all ordered sequences of length \(n-2 \) consisting of elements of \([n] \).

(ii) Prove Theorem 15.1.
(iii) Let Δ be the maximum degree of a random labeled tree on n vertices. Use (15.1) to show that for every $\epsilon > 0$, $\mathbb{P}(\Delta > (1 + \epsilon) \log n / \log \log n)$ tends to 0 as $n \to \infty$.

(iv) Let Δ be defined as in the previous exercise and let $t(n,k)$ be the number of labeled trees on n vertices with maximum degree at most k. Knowing that $t(n,k) < (n-2)! \left(1 + \frac{1}{2!} + \ldots + \frac{1}{(k-1)!}\right)^n$, show that for every $\epsilon > 0$, $\mathbb{P}(\Delta < (1 - \epsilon) \log n / \log \log n)$ tends to 0 as $n \to \infty$.

(v) Determine a one-to-one correspondence between the family of permutations on $\{2,3,\ldots,n\}$ and the family of recursive trees on the set $[n]$.

(vi) Let L_n denote the number of leaves of a random recursive tree with n vertices. Show that $\mathbb{E}L_n = n/2$ and $\text{Var}L_n = n/12$.

(vii) Prove (15.20).

(viii) Show that $\Phi_{n,i}(z)$ given in Theorem 15.8 is the probability generating function of the convolution of $n-i$ independent Bernoulli random variables with success probabilities equal to $1/(i + k - 1)$ for $k = 1,2,\ldots,n-i$.

(ix) Let L^*_n denotes the number of leaves of a random plane-oriented recursive tree with n vertices. Show that

$$\mathbb{E}L^*_n = \frac{2n-1}{3} \quad \text{and} \quad \text{Var}L^*_n = \frac{2n(n-2)}{9(2n-3)}.$$

(x) Prove that L^*_n/n (defined above) converges in probability, to $2/3$.

15.5 Notes

Labeled trees

The literature on random labeled trees and their generalizations is very extensive. For a comprehensive list of publications in this broad area we refer the reader to a recent book of Drmota [261], to a chapter of Bollobás’s book [135] on random graphs, as well as to the book by Kolchin [516]. For a review of some classical results, including the most important contributions, forming the foundation of the research on random trees, mainly due to Meir and Moon (see, for example : [594], [595]and [597]), one may also consult a survey by Karoński [483].
Recursive trees

Recursive trees have been introduced as probability models for system generation (Na and Rapoport [621]), spread of infection (Meir and Moon [596]), pyramid schemes (Gastwirth [375]) and stemma construction in philology (Najock and Heyde [625]). Most likely, the first place that such trees were introduced in the literature, is the paper by Tapia and Myers [735], presented there under the name “concave node-weighted trees”. Systematic studies of random recursive trees were initiated by Meir and Moon ([596] and [611]) who investigated distances between vertices as well as the process of cutting down such random trees. Observe that there is a bijection between families of recursive trees and binary search trees, and this has opened many interesting directions of research, as shown in a survey by Mahmoud and Smythe [573] and the book by Mahmoud [571].

Early papers on random recursive trees (see, for example, [621], [375] and [260]) were focused on the distribution of the degree of a given vertex and of the number of vertices of a given degree. Later, these studies were extended to the distribution of the number of vertices at each level, which is referred to as the profile. Recall, that in a rooted tree, a level (strata) consists of all those vertices that are at the same distance from the root.

The profile of a random recursive tree is analysed in many papers. For example, Drmota and Hwang [262] derive asymptotic approximations to the correlation coefficients of two level sizes in random recursive trees and binary search trees. These coefficients undergo sharp sign-changes when one level is fixed and the other is varying. They also propose a new means of deriving an asymptotic estimate for the expected width, which is the number of nodes at the most abundant level.

Devroye and Hwang [249] propose a new, direct, correlation-free approach based on central moments of profiles to the asymptotics of width in a class of random trees of logarithmic height. This class includes random recursive trees. Fuchs, Hwang, Neininger [369] prove convergence in distribution for the profile, normalized by its mean, of random recursive trees when the limit ratio α of the level and the logarithm of tree size lies in $[0, e)$. Convergence of all moments is shown to hold only for $\alpha \in (0, 1)$ (with only convergence of finite moments when $\alpha \in (1, e)$).

van der Hofstadt, Hooghiemstra and Van Mieghem [426] study the covariance structure of the number of nodes k and l steps away from the root in random recursive trees and give an analytic expression valid for all k, l and tree sizes n.

For an arbitrary positive integer $i \leq i_n \leq n - 1$, a function of n, Su, Liu and Feng [728] demonstrate the distance between nodes i and n in random recursive trees T_n, is asymptotically normal as $n \to \infty$ by using the classical limit theory method.
Holmgren and Janson [428] proved limit theorems for the sums of functions of sub-trees of binary search trees and random recursive trees. In particular, they give new simple proofs of the fact that the number of fringe trees of size \(k = k_n \) in a binary search tree and the random recursive tree (of total size \(n \)) asymptotically has a Poisson distribution if \(k \to \infty \), and that the distribution is asymptotically normal for \(k = o(\sqrt{n}) \). Recall that a fringe tree is a sub-tree consisting of some vertex of a tree and all its descendants (see Aldous [15]). For other results on that topic see Devroye and Janson [250].

Feng, Mahmoud and Panholzer [302] study the variety of sub-trees lying on the fringe of recursive trees and binary search trees by analysing the distributional behavior of \(X_{n,k} \), which counts the number of sub-trees of size \(k \) in a random tree of size \(n \), with \(k = k(n) \). Using analytic methods, they characterise for both tree families the phase change behavior of \(X_{n,k} \).

One should also notice interesting applications of random recursive trees. For example, Mehrabian [593] presents a new technique for proving logarithmic upper bounds for diameters of evolving random graph models, which is based on defining a coupling between random graphs and variants of random recursive trees. Goldschmidt and Martin [392] describe a representation of the Bolthausen-Sznitman coalescent in terms of the cutting of random recursive trees.

Bergeron, Flajolet, Salvy [84] have defined and studied a wide class of random increasing trees. A tree with vertices labeled \(\{1, 2, \ldots, n\} \) is increasing if the sequence of labels along any branch starting at the root is increasing. Obviously, recursive trees and binary search trees (as well as the general class of inhomogeneous trees, including plane-oriented trees) are increasing. Such a general model, which has been intensively studied, yields many important results for random trees discussed in this chapter. Here we will restrict ourselves to pointing out just a few papers dealing with random increasing trees authored by Dobrow and Smythe [259], Kuba and Panholzer [535] and Panholzer and Prodinger [640], as well as with their generalisations, i.e., random increasing \(k \)-trees, published by Zhang, Rong, and Comellas [767], Panholzer and Seitz [641] and Darrasse, Hwang and Soria [240].

Inhomogeneous recursive trees

Plane-oriented recursive trees

As we already mentioned in Section 15.3, Prodinger and Urbanek [664], and, independently, Szymański [730] introduced the concept of plane-oriented random trees (more precisely, this notion was introduced in an unpublished paper by Dondajewski and Szymański [260]), and studied the vertex degrees of such random trees. Mahmoud, Smythe and Szymański [574], using Pólya urn models, investi-
CHAPTER 15. TREES

gated the exact and limiting distributions of the size and the number of leaves in the branches of the tree (see [443] for a follow up). Lu and Feng [552] considered the strong convergence of the number of vertices of given degree as well as of the degree of a fixed vertex (see also [573]). In Janson’s [441] paper, the distribution of vertex degrees in random recursive trees and random plane recursive trees are shown to be asymptotically normal. Brightwell and Luczak [163] investigate the number \(D_{n,k} \) of vertices of each degree \(k \) at each time \(n \), focusing particularly on the case where \(k = k(n) \) is a growing function of \(n \). They show that \(D_{n,k} \) is concentrated around its mean, which is approximately \(4n/k^3 \), for all \(k \leq (n \log n)^{-1/3} \), which is best possible up to a logarithmic factor.

Hwang [430] derives several limit results for the profile of random plane-oriented recursive trees. These include the limit distribution of the normalized profile, asymptotic bimodality of the variance, asymptotic approximation to the expected width and the correlation coefficients of two level sizes.

Fuchs [368] outlines how to derive limit theorems for the number of sub-trees of size \(k \) on the fringe of random plane-oriented recursive trees. Finally, Janson, Kuba and Panholzer [445] consider generalized Stirling permutations and relate them with certain families of generalized plane recursive trees.

Generalized recursive trees

Móri [612] proves the strong law of large numbers and central limit theorem for the number of vertices of low degree in a generalized random plane-oriented recursive tree. Szymański [732] gives the rate of concentration of the number of vertices with given degree in such trees. Móri [613] studies maximum degree of a scale-free trees. Zs. Katona [496] shows that the degree distribution is the same on every sufficiently high level of the tree and in [495] investigates the width of scale-free trees.

Rudas, Toth, Valko [689], using results from the theory of general branching processes, give the asymptotic degree distribution for a wide range of weight functions. Backhausz and Móri [46] present sufficient conditions for the almost sure existence of an asymptotic degree distribution constrained to the set of selected vertices and describe that distribution.

Bertoin, Bravo [85] consider Bernoulli bond percolation on a large scale-free tree in the super-critical regime, i.e., when there exists a giant cluster with high probability. They obtain a weak limit theorem for the sizes of the next largest clusters, extending a result in Bertoin [87] for large random recursive trees.

Devroye, Fawzi, Fraiman [247] study depth properties of a general class of random recursive trees called attachment random recursive trees. They prove that the height of such tree is asymptotically given by \(\alpha_{\text{max}} \log n \) where \(\alpha_{\text{max}} \) is a constant. This gives a new elementary proof for the height of uniform random recursive
trees that does not use branching random walk. For further generalisations of random recursive trees see Mahmoud [572].
Chapter 16
Mappings

In the evolution of the random graph \(G_{n,p}\), during its sub-critical phase, tree components and components with exactly one cycle, i.e., graphs with the same number of vertices and edges, are w.h.p. the only elements of its structure. Similarly, they are the only graphs outside the giant component after the phase transition, until the random graph becomes connected w.h.p. In the previous chapter we studied the properties of random trees. Now we focus our attention on random mappings of a finite set into itself. Such mappings can be represented as digraphs with the same number of vertices and edges. So the study of their “average” properties may help us to better understand the typical structure of classical random graphs. We start the chapter with a short look at the basic properties of random permutations (one-to-one mappings) and then continue to the general theory of random mappings.

16.1 Permutations

Let \(f\) be chosen uniformly at random from the set of all \(n!\) permutations on the set \([n]\), i.e., from the set of all one-to-one functions \([n] \to [n]\). In this section we will concentrate our attention on the properties of a functional digraph representing a random permutation.

Let \(D_f\) be the functional digraph \(([n], (i, f(i)))\). The digraph \(D_f\) consists of vertex disjoint cycles of any length \(1, 2, \ldots, n\). Loops represent fixed points, see Figure 16.1.

Let \(X_{n,t}\) be the number of cycles of length \(t\), \(t = 1, 2, \ldots, n\) in the digraph \(D_f\). Thus \(X_{n,1}\) counts the number of fixed points of a random permutation. One can easily check that

\[
P(X_{n,t} = k) = \frac{1}{k!t^k} \binom{n/t}{i} \frac{(-1)^i}{i!} \to \frac{e^{-1/t}}{t^k k!} \quad \text{as} \quad n \to \infty, \quad (16.1)
\]
for \(k = 0, 1, 2, \ldots, n \). Indeed, convergence in (16.1) follows directly from Lemma 21.10 and the fact that

\[
B_i = \mathbb{E} \left(\frac{X_{n,t}}{i} \right) = \frac{1}{n!} \frac{n!}{(t!)^i(n-ti)!} \left(\frac{(t-1)!}{i!} \right)^i = \frac{1}{t^i!}.
\]

This means that \(X_{n,t} \) converges in distribution to a random variable with Poisson distribution with mean \(1/t \).

Moreover, direct computation gives

\[
\mathbb{P}(X_{n,1} = j_1, X_{n,2} = j_2, \ldots, X_{n,n} = j_n) = \frac{1}{n! \prod_{i=1}^{n} j_i!} \frac{n!}{(t!)^i(n-ti)!} \prod_{t=1}^{n} \left(\frac{(t-1)!}{i!} \right)^j i.
\]

for non-negative integers \(j_1, j_2, \ldots, j_n \) satisfying \(\sum_{t=1}^{n} t j_t = n \).

Hence, asymptotically, the random variables \(X_{n,t} \) have independent Poisson distributions with expectations \(1/t \), respectively (see Goncharov [395] and Kolchin [513]).

Next, consider the random variable \(X_n = \sum_{j=1}^{n} X_{n,j} \) counting the total number of cycles in a functional digraph \(D_f \) of a random permutation. It is not difficult to show that \(X_n \) has the following probability distribution.
Theorem 16.1. For $k = 1, 2, \ldots, n$,

$$P(X_n = k) = \frac{|s(n,k)|}{n!},$$

where the $s(n,k)$ are Stirling numbers of the first kind, i.e., numbers satisfying the following relation:

$$x(x-1) \cdots (x-n+1) = \sum_{k=0}^{n} s(n,k) x^{k}.$$

Moreover,

$$\mathbb{E}X_n = H_n = \sum_{j=1}^{n} \frac{1}{j}, \quad \text{Var}X_n = H_n - \sum_{j=1}^{n} \frac{1}{j^2}.$$

Proof. Denote by $c(n,k)$ the number of digraphs D_f (permutations) on n vertices and with exactly k cycles. Consider a vertex n in D_f. It either has a loop (belongs to a unit cycle) or it doesn’t. If it does, then D_f is composed of a loop in n and a cyclic digraph (permutation) on $n-1$ vertices with exactly $k-1$ cycles. and there are $c(n-1,k-1)$ such digraphs (permutations). Otherwise, the vertex n can be thought as dividing (lying on) one of the $n-1$ arcs which belongs to cyclic digraph on $n-1$ vertices with k cycles and there are $(n-1)c(n-1,k)$ such permutations (digraphs) of the set $[n]$. Hence

$$c(n,k) = c(n-1,k-1) + (n-1)c(n-1,k).$$

Now, multiplying both sides by x^{k}, dividing by $n!$ and summing up over all k, we get

$$G_n(x) = (x+n-1)G_{n-1}(x),$$

where $G_n(x)$ is the probability generating function of X_n. But $G_1(x) = x$, so

$$G_n(x) = \frac{x(x+1) \cdots (x+n-1)}{n!},$$

and the first part of the theorem follows. Note that

$$G_n(x) = \binom{x+n-1}{n} = \frac{\Gamma(x+n)}{\Gamma(x)\Gamma(n+1)},$$

where Γ is the Gamma function.

The results for the expectation and variance of X_n can be obtained by calculating the first two derivatives of $G_n(x)$ and evaluating them at $x = 1$ in a standard way but
one can also show them using only the fact that the cycles of functional digraphs must be disjoint. Notice, for example, that

\[E_X = \sum_{\emptyset \neq S \subset [n]} \mathbb{P}(S \text{ induces a cycle}) = \sum_{k=1}^{n} \binom{n}{k} \frac{(k-1)!(n-k)!}{n!} = H_n. \]

Similarly one can derive the second factorial moment of \(X_n \) counting ordered pairs of cycles (see Exercises 16.3.2 and 16.3.3) which implies the formula for the variance.

Goncharov [395] proved a Central Limit Theorem for the number \(X_n \) of cycles.

Theorem 16.2.

\[\lim_{n \to \infty} \mathbb{P} \left(\frac{X_n - \log n}{\sqrt{\log n}} \leq x \right) = \int_{-\infty}^{x} e^{-t^2/2} dt, \]

i.e., the standardized random variable \(X_n \) converges in distribution to the standard Normal random variable.

Another numerical characteristic of a digraph \(D_f \) is the length \(L_n \) of its longest cycle. Shepp and Lloyd [712] established the asymptotic behavior of the expected value of \(L_n \).

Theorem 16.3.

\[\lim_{n \to \infty} \frac{\mathbb{E} L_n}{n} = \int_0^\infty \exp \left\{ -x - \int_x^\infty \frac{1}{y} e^{-y} dy \right\} dx = 0.62432965\ldots \]

16.2 Mappings

Let \(f \) be chosen uniformly at random from the set of all \(n^n \) mappings from \([n] \to [n] \). Let \(D_f \) be the functional digraph \(((n), (i, f(i)))\) and let \(G_f \) be the graph obtained from \(D_f \) by ignoring orientation. In general, \(D_f \) has unicyclic components only, where each component consists of a directed cycle \(C \) with trees rooted at vertices of \(C \), see the Figure 16.2.

Therefore the study of functional digraphs is based on results for permutations of the set of cyclical vertices (these lying on cycles) and results for forests consisting of trees rooted at these cyclical vertices (we allow also trivial one vertex trees). For example, to show our first result on the connectivity of \(G_f \) we will need the following enumerative result for the forests.
Lemma 16.4. Let $T(n, k)$ denote the number of forests with vertex set $[n]$, consisting of k trees rooted at the vertices $1, 2, \ldots, k$. Then,

$$T(n, k) = kn^{n-k-1}.$$

Proof. Observe first that by (15.2) there are $\binom{n-1}{k-1}n^{n-k}$ trees with $n + 1$ labelled vertices in which the degree of a vertex $n + 1$ is equal to k. Hence there are

$$\binom{n-1}{k-1}n^{n-k} / \binom{n}{k} = kn^{n-k-1}$$

trees with $n + 1$ labeled vertices in which the set of neighbors of the vertex $n + 1$ is exactly $[k]$. An obvious bijection (obtained by removing the vertex $n + 1$ from the tree) between such trees and the considered forests leads directly to the lemma.

Theorem 16.5.

$$\mathbb{P}(G_f \text{ is connected}) = \frac{1}{n} \sum_{k=1}^{n} \frac{(n)_k}{n^k} \approx \sqrt{\frac{\pi}{2n}}.$$

Proof. If G_f is connected then there is a cycle with k vertices say such that after removing the cycle we have a forest consisting of k trees rooted at the vertices of
the cycle. Hence,

\[\mathbb{P}(G_f \text{ is connected}) = n^{-n} \sum_{k=1}^{n} \left(\begin{array}{c} n \\ k \end{array} \right) (k-1)! \, T(n,k) \]

\[= \frac{1}{n} \sum_{k=1}^{n} \frac{(n)_k}{n^k} = \frac{1}{n} \sum_{k=1}^{n} \frac{k-1}{\prod_{j=0}^{k-1} \left(1 - \frac{j}{n}\right)} \]

\[= \frac{1}{n} \sum_{k=1}^{n} u_k. \]

If \(k \geq n^{3/5} \), then

\[u_k \leq \exp \left\{ -\frac{k(k-1)}{2n} \right\} \leq \exp \left\{ -\frac{1}{3} n^{1/6} \right\}, \]

while, if \(k < n^{3/5} \),

\[u_k = \exp \left\{ -\frac{k^2}{2n} + O \left(\frac{k^3}{n^2} \right) \right\}. \]

So

\[\mathbb{P}(G_f \text{ is connected}) = \frac{1 + o(1)}{n} \int_0^{n^{3/5}} e^{-x^2/2n} dx + O \left(ne^{-n^{1/6}/3} \right) \]

\[= \frac{1 + o(1)}{n} \int_0^{n^{3/5}} e^{-x^2/2n} dx + O \left(ne^{-n^{1/6}/3} \right) \]

\[= \frac{1 + o(1)}{\sqrt{n}} \int_0^{n^{3/5}} e^{-y^2/2} dy + O \left(ne^{-n^{1/6}/3} \right) \]

\[\approx \sqrt{\frac{\pi}{2n}}. \]
(To estimate the integral \(\frac{1}{2} \int_{s=1}^{\infty} \frac{1}{s} e^{-s/2n} \) we break it into \(I_1 + I_2 + I_3 \) where \(I_1 = \int_{s=1}^{n/\omega} \cdots ds \approx \log n, \omega = \log n, I_2 = \int_{s=n/\omega}^{\omega n} \cdots ds \leq \log \left(\frac{\omega n}{n/\omega} \right) = o(\log n) \) and \(I_3 = \int_{s=\omega n}^{\infty} \cdots ds = o(1). \)

Moreover the expected number of vertices of cycles in a random mapping is equal to

\[
\mathbb{E} \left(\sum_{k=1}^{n} kZ_k \right) = \sum_{k=1}^{n} u_k \approx \sqrt{\frac{\pi n}{2}}.
\]

Note that the functional digraph of a random mapping can be interpreted as a representation of a process in which vertex \(i \in [n] \) chooses its image independently with probability \(1/n \). So, it is natural to consider a general model of a random mapping \(\hat{f} : [n] \rightarrow [n] \) where, independently for all \(i \in [n] \),

\[
P(\hat{f}(i) = j) = p_j, \ j = 1, 2, \ldots, n,
\]

and

\[
p_1 + p_2 + \ldots + p_n = 1.
\]

This model was introduced (in a slightly more general form) independently by Burtin [174] and Ross [683]. We will first prove a generalisation of Theorem 16.5.

Theorem 16.6.

\[
P(\hat{G} \ is \ connected) = \sum_{i} p_i^2 \left(1 + \sum_{j \neq i} p_j + \sum_{j \neq i, k \neq i, j} p_jp_k + \sum_{j \neq i, k \neq i, j} \sum_{l \neq i, j, k} p_jp_kp_l + \cdots \right).
\]

To prove this theorem we use the powerful “Burtin–Ross Lemma”. The short and elegant proof of this lemma given here is due to Jaworski [456] (His general approach can be applied to study other characteristics of a random mappings, not only their connectedness).

Lemma 16.7 (Burtin–Ross Lemma). Let \(\hat{f} \) be a generalized random mapping defined above and let \(G_{\hat{f}}[U] \) be the subgraph of \(G_{\hat{f}} \) induced by \(U \subset [n] \). Then

\[
P(G_{\hat{f}}[U] \ does \ not \ contain \ a \ cycle) = \sum_{k \in [n] \setminus U} p_k.
\]
Proof. The proof is by induction on \(r = |U| \). For \(r = 0 \) and \(r = 1 \) it is obvious. Assume that the result holds for all values less than \(r \), \(r \geq 2 \). Let \(\emptyset \neq S \subset U \) and denote by \(\mathcal{A} \) the event that \(G_f[S] \) is the union of disjoint cycles and by \(\mathcal{B} \) the event that \(G_f[U \setminus S] \) does not contain a cycle. Notice that events \(\mathcal{A} \) and \(\mathcal{B} \) are independent, since the first one depends on choices of vertices from \(S \), only, while the second depends on choices of vertices from \(U \setminus S \). Hence

\[
\mathbb{P}(\text{\(G_f[U] \) contains a cycle}) = \sum_{\emptyset \neq S \subset U} \mathbb{P}(\mathcal{A}) \mathbb{P}(\mathcal{B}).
\]

But if \(\mathcal{A} \) holds then \(\hat{f} \) restricted to \(S \) defines a permutation on \(S \). So,

\[
\mathbb{P}(\mathcal{A}) = |S|! \prod_{j \in S} p_j.
\]

Since \(|U \setminus S| < r \), by the induction assumption we obtain

\[
\mathbb{P}(\text{\(G_f[U] \) contains a cycle}) =
\sum_{\emptyset \neq S \subset U} |S|! \prod_{j \in S} p_j \sum_{k \in [n] \setminus (U \setminus S)} p_k
= \sum_{\emptyset \neq S \subset U} |S|! \prod_{j \in S} \left(1 - \sum_{k \in (U \setminus S)} p_k \right)
= \sum_{S \subset U, |S| \geq 1} |S|! \prod_{k \in S} p_k \sum_{S \subset U, |S| \geq 2} |S|! \prod_{k \in S} p_k
= \sum_{k \in U} p_k,
\]

completing the induction. \(\square \)

Before we prove Theorem 16.6 we will point out that Lemma 16.4 can be immediately derived from the above result. To see this, in Lemma 16.7 choose \(p_j = 1/n \), for \(j = 1, 2, \cdots n \), and \(U \) such that \(|U| = r = n - k \). Then, on one hand,

\[
\mathbb{P}(\text{\(G_f[U] \) does not contain a cycle}) = \sum_{i \in [n] \setminus U} \frac{1}{n} = \frac{k}{n}.
\]

On the other hand,

\[
\mathbb{P}(\text{\(G_f[U] \) does not contain a cycle}) = \frac{T(n,k)}{n^{n-k}},
\]

where \(T(n,k) \) is the number of forests on \([n] \) with \(k \) trees rooted in vertices from the set \([n] \setminus U \). Comparing both sides we immediately get the result of Lemma 16.4, i.e., that

\[
T(n,k) = kn^{n-k-1}.
\]
Proof (of Theorem 16.6). Notice that G_f is connected if and only if there is a subset $U \subseteq [n]$ such that U spans a single cycle while there is no cycle on $[n] \setminus U$. Moreover, the events “$U \subseteq [n]$ spans a cycle” and “there is no cycle on $[n] \setminus U$” are independent. Hence, by Lemma 16.7,

$$Pr(G_f \text{ is connected}) = \sum_{\emptyset \neq U \subseteq [n]} \Pr(U \subseteq [n] \text{ spans a cycle}) \Pr(\text{there is no cycle on } [n] \setminus U) \quad (16.3)$$

Using the same reasoning as in the above proof, one can show the following result due to Jaworski [456].

Theorem 16.8. Let X be the number of components in G_f and Y be the number of its cyclic vertices (vertices belonging to a cycle). Then for $k = 1, 2, \ldots, n$,

$$\Pr(X = k) = \sum_{U \subseteq [n]} \prod_{j \in U} p_j^{|U| - 1} \prod_{k \in U} p_k - \sum_{U \subseteq [n]} \prod_{j \in U} p_j^{|U| - 1} \prod_{k \in U} p_k \prod_{j \neq k} p_k,$$

where $s(\cdot, \cdot)$ is the Stirling number of the first kind. On the other hand,

$$\Pr(Y = k) = k! \sum_{U \subseteq [n]} \prod_{j \in U, |U| = k} p_j - (k + 1)! \sum_{U \subseteq [n]} \prod_{j \in U, |U| = k+1} p_j.$$

The Burtin–Ross Lemma has another formulation which we present below.

Lemma 16.9 (Burtin-Ross Lemma - the second version). Let $\hat{g} : [n] \to [n] \cup \{0\}$ be a random mapping from the set $[n]$ to the set $[n] \cup \{0\}$, where, independently for all $i \in [n]$,

$$\Pr(\hat{g}(i) = j) = q_j, \ j = 0, 1, 2, \ldots, n,$$

and

$$q_0 + q_1 + q_2 + \ldots + q_n = 1.$$

Let $D_{\hat{g}}$ be the random directed graph on the vertex set $[n] \cup \{0\}$, generated by the mapping \hat{g} and let $G_{\hat{g}}$ denote its underlying simple graph. Then

$$\Pr(G_{\hat{g}} \text{ is connected}) = q_0.$$
CHAPTER 16. MAPPINGS

Notice that the event that \(G_\hat{g} \) is connected is equivalent to the event that \(D_\hat{g} \) is a (directed) tree, rooted at vertex \(\{0\} \), i.e., there are no cycles in \(G_\hat{g}[n] \).

We will use this result and Lemma 16.9 to prove the next theorem (for more general results, see [457]).

Theorem 16.10. Let \(D_\hat{f} \) be the functional digraph of a mapping \(\hat{f} \) defined in (16.2) and let \(Z_R \) be the number of predecessors of a set \(R \subset [n], |R| = r, r \geq 1 \), of vertices of \(D_\hat{f} \), i.e.,

\[
Z_R = |\{ j \in [n] : \text{for some non-negative integer } k, \hat{f}^{(k)}(j) \in R \}|
\]

where \(\hat{f}^{(0)}(j) = j \) and for \(k \geq 1 \), \(\hat{f}^{(k)}(j) = \hat{f}(\hat{f}^{(k-1)}(j)) \).

Then, for \(k = 0, 1, 2, \ldots, n - r \),

\[
P(Z_R = k + r) = \sum_{U \subset [n] \setminus R \mid |U| = k} \left(\Sigma U \cup R \right)^{k-1} (1 - \Sigma U \cup R)^{n-k}.
\]

where for \(A \subseteq [n] \), \(\Sigma_A = \sum_{j \in A} p_j \).

Proof. The distribution of \(Z_R \) follows immediately from the next observation and the application of Lemma 16.9. Denote by \(A \) the event that there is a forest spanned on the set \(W = U \cup R \), where \(U \subset [n] \setminus R \), composed of \(r \) (directed) trees rooted at vertices of \(R \). Then

\[
P(Z_R = k + r) = \sum_{U \subset [n] \setminus R \mid |U| = k} P(A|B \cap C) P(B) P(C),
\]

where \(B \) is the event that all edges that begin in \(U \) end in \(W \), while \(C \) denotes the event that all edges that begin in \([n] \setminus W \) end in \([n] \setminus W \). Now notice that

\[
P(B) = (\Sigma_W)^k, \text{ while } P(C) = (1 - \Sigma_W)^{n-k}.
\]

Furthermore,

\[
P(A|B \cap C) = P(G_\hat{g} \text{ is connected }),
\]

where \(\hat{g} : U \to U \cup \{0\} \), where \(\{0\} \) stands for the set \(R \) collapsed to a single vertex, is such that for all \(u \in U \) independently,

\[
q_j = P(\hat{g}(u) = j) = \frac{p_j}{\Sigma W}, \text{ for } j \in U, \text{ while } q_0 = \frac{\Sigma_R}{\Sigma W}.
\]

So, applying Lemma 16.9, we arrive at the thesis. \(\square \)
We will finish this section by stating the central limit theorem for the number of components of \(G_f \), where \(f \) is a uniform random mapping \(f : [n] \to [n] \) (see Stepanov [726]). It is an analogous result to Theorem 16.2 for random permutations.

Theorem 16.11.

\[
\lim_{n \to \infty} \mathbb{P}\left(\frac{X_n - \frac{1}{2} \log n}{\sqrt{\frac{1}{2} \log n}} \leq x \right) = \int_{-\infty}^{x} e^{-t^2/2} dt,
\]

the standardized random variable \(X_n \) converges in distribution to the standard Normal random variable.

16.3 Exercises

16.3.1 Prove directly that if \(X_{n,t} \) is the number of cycles of length \(t \) in a random permutation then \(\mathbb{E}X_{n,t} = 1/t \).

16.3.2 Find the expectation and the variance of the number \(X_n \) of cycles in a random permutation using fact that the \(r \)th derivative of the gamma function equals \(\frac{d^r}{(dx)^r} \Gamma(x) = \int_{0}^{\infty} (\log t)^{r-1} e^{-t} dt \).

16.3.3 Determine the variance of the number \(X_n \) of cycles in a random permutation (start with computation of the second factorial moment of \(X_n \), counting ordered pairs of cycles).

16.3.4 Find the probability distribution for the length of a typical cycle in a random permutation, i.e., the cycle that contains a given vertex (say vertex 1). Determine the expectation and variance of this characteristic.

16.3.5 Find the probability distribution of the number of components in a functional digraph \(D_f \) of a uniform random mapping \(f : [n] \to [n] \).

16.3.6 Show that the length of the cycle containing item 1 in a random permutation is uniformly distributed in \([n] \).

16.3.7 Show that if \(X \) denotes the number of cycles in a random permutation of \([n] \) then \(\mathbb{P}(X \geq t) \leq \mathbb{P}(\text{Bin}(t, 1/2) \leq \lceil \log_2 n \rceil) \). Deduce that for every constant \(K > 0 \), there exists a constant \(L > 0 \), such that \(\mathbb{P}(X \geq K \log n) \leq n^{-L} \).
16.3.8 Now let X denote the number of cycles in the digraph D_f of a random mapping $f : [n] \rightarrow [n]$. Show that for every constant $K > 0$, there exists a constant $L > 0$, such that $\mathbb{P}(X \geq K \log n) \leq n^{-L}$.

16.3.9 Determine the expectation and variance of the number of components in a functional digraph $D_{\hat{f}}$ of a generalized random mapping \hat{f} (see Theorem 16.8).

16.3.10 Find the expectation and variance of the number of cyclic vertices in a functional digraph $D_{\hat{f}}$ of a generalized random mapping \hat{f} (see Theorem 16.8).

16.3.11 Prove Theorem 16.8.

16.3.12 Show that Lemmas 16.7 and 16.9 are equivalent.

16.3.13 Prove the Burtin-Ross Lemma for a bipartite random mapping, i.e. a mapping with bipartition $([n], [m])$, where each vertex $i \in [n]$ chooses its unique image in $[m]$ independently with probability $1/m$, and, similarly, each vertex $j \in [m]$ selects its image in $[n]$ with probability $1/n$.

16.3.14 Consider an evolutionary model of a random mapping (see [458],[459]), i.e., a mapping $\hat{f}_q[n] \rightarrow [n]$, such that for $i, j \in [n]$, $\mathbb{P}(\hat{f}_q(i) = j) = q$ if $i = j$ while, $\mathbb{P}(\hat{f}_q(i) = j) = (1 - q)/(n - 1)$ if $i \neq j$, where $0 \leq q \leq 1$. Find the probability that \hat{f}_q is connected.

16.3.15 Show that there is one-to-one correspondence between the family of n^n mappings $f : [n] \rightarrow [n]$ and the family of all doubly-rooted trees on the vertex set $[n]$ (Joyal bijection).

16.4 Notes

Permutations

Systematic studies of the properties of random permutations of n objects were initiated by Goncharov in [394] and [395]. Golomb [393] showed that the expected length of the longest cycle of D_f, divided by n is monotone decreasing and gave a numerical value for the limit, while Shepp and Lloyd in [712] found the closed form for this limit (see Theorem 16.3). They also gave the corresponding result for kth moment of the rth longest cycle, for $k, r = 1, 2, \ldots$ and showed the limiting distribution for the length of the rth longest cycle.

Kingman [503] and, independently, Vershik and Schmidt [745], proved that for a random permutation of n objects, as $n \rightarrow \infty$, the process giving the proportion of
elements in the longest cycle, the second longest cycle, and so on, converges in distribution to the Poisson-Dirichlet process with parameter 1 (for further results in this direction see Arratia, Barbour and Tavaré [41]). Arratia and Tavaré [42] provide explicit bounds on the total variation distance between the process which counts the sizes of cycles in a random permutations and a process of independent Poisson random variables.

For other results, not necessarily of a “graphical” nature, such as, for example, the order of a random permutation, the number of derangements, or the number of monotone sub-sequences, we refer the reader to the respective sections of books by Feller [301], Bollobás [136] and Sachkov [697] or, in the case of monotone sub-sequences, to a recent monograph by Romik [682].

Mappings

Uniform random mappings were introduced in the mid 1950’s by Rubin and Sitgraves [684], Katz [497] and by Folkert [320]. More recently, much attention has been focused on their usefulness as a model for epidemic processes, see for example the papers of Gertsbakh [380], Ball, Mollison and Scalia-Tomba [55], Berg [82], Mutafchiev [620], Pittel [649] and Jaworski [459]. The component structure of a random functional digraph D_f has been studied by Aldous [13]. He has shown, that the joint distribution of the normalized order statistics for the component sizes of D_f converges to the Poisson-Dirichlet distribution with parameter $1/2$. For more results on uniform random mappings we refer the reader to Kolchin’s monograph [515], or a chapter of Bollobás’ [136].

The general model of a random mapping \hat{f}, introduced by Burtin [174] and Ross [683], has been intensively studied by many authors. The crucial Burtin-Ross Lemma (see Lemmas: 16.7 and 16.9) has many alternative proofs (see [38]) but the most useful seems to be the one used in this chapter, due to Jaworski [456]. His approach can also be applied to derive the distribution of many other characteristics of a random digraph D_f, as well as it can be used to prove generalisations of the Burtin-Ross Lemma for models of random mappings with independent choices of images. (For an extensive review of results in that direction see [457]).

Aldous, Miermont, Pitman ([18],[19]) study the asymptotic structure of D_f using an ingenious coding of the random mapping \hat{f} as a stochastic process on the interval $[0,1]$ (see also the related work of Pitman [648], exploring the relationship between random mappings and random forests).

Hansen and Jaworski (see [410], [411]) introduce a random mapping $f^D : [n] \rightarrow [n]$ with an in-degree sequence, which is a collection of exchangeable random variables (D_1,D_2,\ldots,D_n). In particular, they study predecessors and successors of a given set of vertices, and apply their results to random mappings with preferential
and anti-preferential attachment.
Chapter 17

k-out

Several interesting graph properties require that the minimum degree of a graph be at least a certain amount. E.g. having a Hamilton cycle requires that the minimum degree is at least two. In Chapter 6 we saw that $G_{n,m}$ being Hamiltonian and having minimum degree at least two happen at the same time w.h.p. One is therefore interested in models of a random graph which guarantee a certain minimum degree. We have already seen d-regular graphs in Chapter 11. In this chapter we consider another simple and quite natural model G_{k-out} that generalises random mappings. It seems to have first appeared in print as Problem 38 of “The Scottish Book” [578]. We discuss the connectivity of this model and then matchings and Hamilton cycles. We also consider a related model of “Nearest Neighbor Graphs”.

17.1 Connectivity

For an integer k, $1 \leq k \leq n-1$, let \vec{G}_{k-out} be a random digraph on vertex set $V = \{1, 2, \ldots, n\}$ with arcs (directed edges) generated independently for each $v \in V$ by a random choice of k distinct arcs (v, w), where $w \in V \setminus \{v\}$, so that each of the $\binom{n-1}{k}$ possible sets of arcs is equally likely to be chosen. Let G_{k-out} be the random graph(multigraph) obtained from \vec{G}_{k-out} by ignoring the orientation of its arcs, but retaining all edges.

Note that \vec{G}_{1-out} is a functional digraph of a random mapping $f : [n] \to [n]$, with a restriction that loops (fixed points) are not allowed. So for $k = 1$ the following result holds.

Theorem 17.1.

$$\lim_{n \to \infty} \mathbb{P}(\vec{G}_{1-out} \text{ is connected }) = 0.$$
The situation changes when each vertex is allowed to choose more than one neighbor. Denote by \(\kappa(G) \) and \(\lambda(G) \) the vertex and edge connectivity of a graph \(G \) respectively, i.e., the minimum number of vertices (respectively edges) the deletion of which disconnects \(G \). Let \(\delta(G) \) be the minimum degree of \(G \). The well known Whitney’s Theorem states that, for any graph \(G \),

\[
\kappa(G) \leq \lambda(G) \leq \delta(G).
\]

In the next theorem we show that for random \(k-out \) graphs these parameters are equal w.h.p. It is taken from Fenner and Frieze [309]. The Scottish Book [578] contains a proof that \(G_{k-out} \) is connected for \(k \geq 2 \).

Theorem 17.2. Let \(\kappa = \kappa(G_{k-out}), \lambda = \lambda(G_{k-out}) \) and \(\delta = \delta(G_{k-out}) \). Then, for \(2 \leq k = O(1) \),

\[
\lim_{n \to \infty} \mathbb{P}(\kappa = \lambda = \delta = k) = 1.
\]

Proof. In the light of Whitney’s Theorem, to prove our theorem we have to show that the following two statements hold:

\[
\lim_{n \to \infty} \mathbb{P}(\kappa(G_{k-out}) \geq k) = 1,
\]

and

\[
\lim_{n \to \infty} \mathbb{P}(\delta(G_{k-out}) \leq k) = 1.
\]

Then, w.h.p.

\[
k \leq \kappa \leq \lambda \leq \delta \leq k,
\]

and the theorem follows.

To prove statement (17.1) consider the deletion of \(r \) vertices from the random graph \(G_{k-out} \), where \(1 \leq r \leq k-1 \). If \(G_{k-out} \) can be disconnected by deleting \(r \) vertices, then there exists a partition \((R,S,T)\) of the vertex set \(V \), with \(|R| = r \), \(|S| = s \) and \(|T| = t = n-r-s \), with \(k-r+1 \leq s \leq n-k-1 \), such that \(G_{k-out} \) has no edge joining a vertex in \(S \) with a vertex in \(T \). The probability of such an event, for an arbitrary partition given above, is equal to

\[
\left(\frac{r+s-1}{k} \right)^s \left(\frac{n-s-1}{k} \right)^{n-r-s} \left(\frac{r+s}{n} \right)^{sk} \left(\frac{n-s}{n} \right)^{(n-r-s)k} \]

Thus

\[
\mathbb{P}(\kappa(G_{k-out}) \leq r) \leq \sum_{s=k-r+1}^{[n-r/2]} \frac{n!}{s!r!(n-r-s)!} \left(\frac{r+s}{n} \right)^{sk} \left(\frac{n-s}{n} \right)^{(n-r-s)k}
\]
We have replaced \(n - k - 1 \) by \(\lfloor (n - r)/2 \rfloor \) because we can always interchange \(S \) and \(T \) so that \(|S| \leq |T| \).

But, by Stirling’s formula,

\[
\frac{n!}{s!(n-r-s)!} \leq \alpha_s n^n s^s (n-r-s)^{n-r-s}
\]

where

\[
\alpha_s = \alpha(s, n, r) \leq c \left(\frac{n}{s(n-r-s)} \right)^{1/2} \leq \frac{2c}{s^{1/2}},
\]

for some absolute constant \(c > 0 \).

Thus

\[
\mathbb{P}(\kappa(G_{k-out}) \leq r) \leq 2c \sum_{s=k-r+1}^{\lfloor (n-r)/2 \rfloor} \frac{1}{s^{1/2}} \left(\frac{r+s}{s} \right)^s \left(\frac{n-s}{n-r-s} \right)^{(n-r-s)} u_s
\]

where

\[
u_s = (r+s)^{(k-1)s}(n-s)^{(k-1)(n-r-s)} n^{n-k(n-r)}.
\]

Now,

\[
\left(\frac{r+s}{s} \right)^s \left(\frac{n-s}{n-r-s} \right)^{n-r-s} \leq e^{2r},
\]

and

\[
(r+s)^{s(n-r-s)}
\]

decreases monotonically, with increasing \(s \), for \(s \leq (n-r)/2 \). Furthermore, if \(s \leq n/4 \) then the decrease is by a factor of at least 2.

Therefore

\[
\mathbb{P}(\kappa(G_{k-out}) \leq r) \leq 2ce^{2r} \sum_{s=k-r+1}^{n/4} 2^{-(k-1)(s-k-r+1)} \cdot \frac{2}{n^{1/2}} \cdot \frac{n}{4} u_{k-r+1}
\]
\[
\leq 5ce^{2r} n^{1/2} u_{k-r+1} \leq 5ce^{2r} an^{3/2-k(k-r)},
\]

where

\[
a = (k+1)^{(k-1)(k-r+1)}.
\]

It follows that

\[
\lim_{n \to \infty} \mathbb{P}(\kappa(G_{k-out}) \leq r) = \lim_{n \to \infty} \mathbb{P}(\kappa(G_{k-out}) \leq k - 1) = 0,
\]

which implies that

\[
\lim_{n \to \infty} \mathbb{P}(\kappa(G_{k-out}) \geq k) = 1,
\]
i.e., that equation (17.1) holds.
To complete the proof we have to show that equation (17.2) holds, i.e., that
\[P(\delta(G_{k-out}) = k) \rightarrow 1 \quad \text{as} \quad n \rightarrow \infty. \]
Since \(\delta \geq k \) in \(G_{k-out} \), we have to show that w.h.p. there is a vertex of degree \(k \) in \(G_{k-out} \).

Let \(\delta_v \) be the event that vertex \(v \) has indegree zero in \(G_{k-out} \). Thus the degree of \(v \) in \(G_{k-out} \) is \(k \) if and only if \(\delta_v \) occurs. Now
\[
P(\delta_v) = \left(\frac{n-2}{k} \right) \left(\frac{n-1}{k} \right)^{n-1} = \left(1 - \frac{k}{n-1} \right)^{n-1} \rightarrow e^{-k}.
\]
Let \(Z \) denote the number of vertices of degree \(k \) in \(G_{k-out} \). Then we have shown that \(\mathbb{E}(Z) \approx ne^{-k} \). Now the random variable \(Z \) is determined by \(kn \) independent random choices. Changing one of these choices can change the value of \(Z \) by at most one. Applying the Azuma-Hoeffding concentration inequality – see Section 22.7, in particular Lemma 22.17 we see that for any \(t > 0 \)
\[
P(Z \leq \mathbb{E}(Z) - t) \leq \exp \left\{ -\frac{2t^2}{kn} \right\}.
\]
Putting \(t = ne^{-k}/2 \) we see that \(Z > 0 \) w.h.p. and the theorem follows. \(\square \)

17.2 Perfect Matchings

Non-bipartite graphs

Assuming that the number of vertices \(n \) of a random graph \(G_{k-out} \) is even, Frieze [336] proved the following result.

Theorem 17.3.
\[
\lim_{n \to \infty} \mathbb{P}(G_{k-out} \text{ has a perfect matching}) = \begin{cases}
0 & \text{if } k = 1 \\
1 & \text{if } k \geq 2.
\end{cases}
\]

We will only prove a weakening of the above result to where \(k \geq 15 \). We follow the ideas of Section 6.1. So, we begin by examining the expansion properties of \(G = G_{a-out}, a \geq 3 \).

Lemma 17.4. W.h.p. \(|N_G(S)| \geq |S| \) for all \(S \subseteq [n], |S| \leq \kappa_a n \) where \(\kappa_a = \frac{1}{2} \left(\frac{1}{30} \right)^{1/(a-2)}. \)
Proof. The probability there exists a set S with insufficient expansion is at most

$$\sum_{s=3}^{\kappa n} \binom{n}{s} \binom{n}{s-1} \left(\frac{2s}{n}\right)^{as} \leq \sum_{s=3}^{\kappa n} \left(\frac{ne}{s}\right)^{2s} \left(\frac{2s}{n}\right)^{as} = \sum_{s=3}^{\kappa n} \left(\frac{s}{n}\right)^{a^2/2} e^{2^{2a}} = o(1). \quad (17.3)$$

Lemma 17.5. Let $b = \lceil (1 + \kappa^{-2})/2 \rceil$. Then as $n \to \infty$, n even, $G_{(a+b)-out}$ has a perfect matching w.h.p.

Proof. First note that $G_{(a+b)-out}$ contains $H = G_{a-out} \cup G_{b-out}$ in the following sense. Start the construction of $G_{(a+b)-out}$ with H. If there is a $v \in [n]$ that chooses edge $\{v, w\}$ in both G_{a-out} and G_{b-out} then add another random choice for v.

Let us show that H has a perfect matching w.h.p. Enumerate the edges of G_{b-out} as e_1, e_2, \ldots, e_{bn}. Here $e_{(i-1)n+j}$ is the jth edge chosen by vertex j. Let $G_0 = G_{a-out}$ and let $G_i = G_0 + \{e_1, e_2, \ldots, e_i\}$. If G_i does not have a perfect matching, consider the sets $A, A(x), x \in A$ defined prior to (6.6). It follows from Lemma 17.4 that w.h.p. all of these sets are of size at least $\kappa_n n$. Thus, $\Pr(y \in A(x)) \geq \frac{\kappa_n n-b}{n}$. We subtract b to account for the previously inspected edges associated with x’s choices.

It follows that

$$\Pr(G_{(a+b)-out} \text{ does not have a perfect matching})$$
$$\leq \Pr(H \text{ does not have a perfect matching})$$
$$\leq \Pr(\text{Bin}(b \kappa_n n, \kappa_n - b/n) \leq n/2) = o(1).$$

Putting $a = 8$ gives $b = 7$ and a proof that G_{15-out}, n even, has a perfect matching w.h.p.

Bipartite graphs

We now consider the related problem of the existence of a perfect matching in a random k-out bipartite graph.

Let $U = \{u_1, u_2, \ldots, u_n\}, V = \{v_1, v_2, \ldots, v_n\}$ and let each vertex from U choose independently and without repetition, k neighbors in V, and let each vertex from V choose independently and without repetition k neighbors in U. Denote by \mathbb{B}_{k-out} the digraphs generated by the above procedure and let B_{k-out} be its underlying simple bipartite graph.
CHAPTER 17. K-OUT

Theorem 17.6.

$$\lim_{n \to \infty} \mathbb{P}(B_{k\text{-out}} \text{ has a perfect matching }) = \begin{cases} 0 & \text{if } k = 1 \\ 1 & \text{if } k \geq 2. \end{cases}$$

We will give two different proofs. The first one - existential- of a combinatorial nature is due to Walkup [750]. The second one - constructive- of an algorithmic nature, is due to Karp, Rinnooy-Kan and Vohra [493]. We start with the combinatorial approach.

Existence proof

Let X denote the number of perfect matchings in $B_{k\text{-out}}$. Then

$$\mathbb{P}(X > 0) \leq \mathbb{E}(X) \leq n! \ 2^n (k/n)^n.$$

The above bound follows from the following observations. There are $n!$ ways of pairing the vertices of U with the vertices of V. For each such pairing there are 2^n ways to assign directions for the connecting edges, and then each possible matching has probability $(k/n)^n$ of appearing in $B_{k\text{-out}}.$

So, by Stirling’s formula,

$$\mathbb{P}(X > 0) \leq 3n^{1/2}(2k/e)^n,$$

which, for $k = 1$ tends to 0 as $n \to \infty$, and the first statement of our theorem follows.

To show that $B_{k\text{-out}}$ has a perfect matching w.h.p. notice that since this is an increasing graph property, it is enough to show that it is true for $k = 2$. Note also, that if there is no perfect matching in $B_{k\text{-out}}$, then there must exist a set $R \subseteq U$ (or $R \subseteq V$) such that the cardinality of neighborhood of $S = N(R)$ of R in U (respectively, in V) is smaller than the cardinality of the set R itself, i.e., $|S| < |R|$. We will call such a pair (R,S) a bad pair, and, in particular, we will restrict our attention to the “minimal bad pairs”, i.e., such that there is no $R' \subset R$ for which $(R',N(R'))$ is bad.

If (R,S) is a bad pair with $R \subseteq U$ then $(V \setminus S, U \setminus R)$ is also a bad pair. Given this, we can concentrate on showing that w.h.p. there are no bad pairs (R,S) with $2 \leq |R| \leq (n+1)/2$.

Every minimal bad pair has to have the following two properties:

(i) $|S| = |R| - 1,$
(ii) every vertex in S has at least two neighbors in R.

The first property is obvious. To see why property (ii) holds, suppose that there is a vertex $v \in S$ with at most one neighbor u in R. Then the pair $(R \setminus \{u\}, S \setminus \{v\})$ is also “bad pair” and so the pair (R, S) is not minimal. Let $r \in [2, (n+1)/2]$ and let Y_r be the number of minimal bad pairs (R, S), with $|R| = r$ in \mathbb{E}_{k-out}. To complete the proof of the theorem we have to show that $\sum r EY_r \to 0$ as $n \to \infty$. By symmetry, choose (R, S), such that $R = \{u_1, u_2, \ldots u_r\} \subset U$ and $S = \{v_1, v_2, \ldots v_{r-1}\} \subset V$ is a minimal “bad pair”. Then

$$\mathbb{E}Y_r = 2 \binom{n}{r} \binom{n}{r-1} P_r Q_r,$$

where

$$P_r = \mathbb{P}((R, S) \text{ is bad})$$

and

$$Q_r = \mathbb{P}((R, S) \text{ is minimal } | (R, S) \text{ is bad}).$$

We observe that, for any fixed k,

$$P_r = \left(\frac{r-1}{\binom{n}{k}} \right)^r \left(\frac{n-r}{\binom{n}{k}} \right)^{n-r+1}.$$

Hence, for $k = 2$,

$$P_r \leq \left(\frac{r}{n} \right)^{2r} \left(\frac{n-r}{n} \right)^{2(n-r)}.$$ (17.5)

Then we use Stirling’s formula to show,

$$\binom{n}{r} \binom{n}{r-1} \leq \frac{r}{n-r+1} \binom{n}{r}^2 \leq \frac{r}{n-r+1} \frac{n}{r} \binom{n}{r}^{2r} \left(\frac{n}{n-r} \right)^{2(n-r)}.$$ (17.6)

To estimate Q_r, we have to consider condition (ii) which a minimal bad pair has to satisfy. This implies that a vertex $v \in S = N(R)$ is chosen by at least one vertex from R (denote this event by A_v), or it chooses both its neighbors in R (denote this event by B_v). Then the events $A_v, v \in S$ are negatively correlated (see Section 22.2) and the events $B_v, v \in S$ are independent of other events in this collection. Let $S = \{v_1, v_2, \ldots, v_{r-1}\}$. Then we can write

$$Q_r \leq \mathbb{P} \left(\bigcap_{i=1}^{r-1} (A_{v_i} \cup B_{v_i}) \right).$$
\[
\prod_{i=1}^{r-1} \mathbb{P}(A_{v_i} \cup B_{v_i}) \leq \prod_{i=1}^{r-1} \mathbb{P}(A_{v_i} \cup B_{v_i}) = (1 - \mathbb{P}(A_{v_1}^c) \mathbb{P}(B_{v_1}^c))^r-1 \\
\leq \left(1 - \left(\frac{r-2}{r-1}\right)^{2r} \left(1 - \left(\frac{r}{2}\right)^{r}\right)\right)^{r-1} \leq \eta^{r-1}
\]
for some absolute constant \(0 < \eta < 1\) when \(r \leq (n+1)/2\).

Going back to (17.4), and using (17.5), (17.6), (17.7)
\[
\sum_{r=2}^{(n+1)/2} \mathbb{E}X_r \leq 2 \sum_{r=2}^{(n+1)/2} \eta^{r-1} \frac{n}{(n-r)(n-r+1)} = o(1).
\]
Hence \(\sum_r \mathbb{E}X_r \to 0\) as \(n \to \infty\), which means that w.h.p. there are no bad pairs, implying that \(\mathbb{B}_{k-out}\) has a perfect matching w.h.p.

Frieze and Melsted [358] considered the related question. Suppose that \(M, N\) are disjoint sets of size \(m, n\) and that each \(v \in M\) chooses \(d \geq 3\) neighbors in \(N\). Suppose that we condition on each vertex in \(N\) being chosen at least twice. They show that w.h.p. there is a matching of size equal to \(\min\{m, n\}\). Fountoulakis and Panagiotou [323] proved a slightly weaker result, in the same vein.

Algorithmic Proof

We will now give a rather elegant algorithmic proof of Theorem 17.6. It is due to Karp, Rinnooy-Kan and Vohra [493]. We do this for two reasons. First, because it is a lovely proof and second this proof is the basis of the proof that 2-in,2-out is Hamiltonian in [217]. In particular, this latter example shows that constructive proofs can sometimes be used to achieve results not obtainable through existence proofs alone.

Start with the random digraph \(\mathbb{B}_{2-out}\) and consider two multigraphs, \(G_U\) and \(G_V\) with labeled vertices and edges, generated by \(\mathbb{B}_{2-out}\) on the sets of the bipartition \((U, V)\) in the following way. The vertex set of the graph \(G_U\) is \(U\) and two vertices, \(u\) and \(u'\), are connected by an edge, labeled \(v\), if a vertex \(v \in V\) chooses \(u\) and \(u'\) as its two neighbors in \(U\). Similarly, the graph \(G_V\) has vertex set \(V\) and we put an edge labeled \(u\) between two vertices \(v\) and \(v'\), if a vertex \(u \in U\) chooses \(v\) and \(v'\) as its two neighbors in \(V\). Hence graphs \(G_U\) and \(G_V\) are random multigraphs with exactly \(n\) labeled vertices and \(n\) labeled edges.
17.2. PERFECT MATCHINGS

We will describe below, a randomized algorithm which w.h.p. finds a perfect matching in B_{2-out} in $O(n)$ expected number of steps.

Algorithm PAIR

- **Step 0.** Set $H_U = G_U$ and let H_V be empty graph on vertex set V. Initially all vertices in H_U are unmarked and all vertices in G_V are unchecked. Let CORE denote the set of edges of G_U that lie on cycles in G_U i.e. the edges of the 2-core of G_U.

- **Step 1.** If every isolated tree in H_U contains a marked vertex, go to Step 5. Otherwise, select any isolated tree T in H_U in which all vertices are unmarked. Pick a random vertex u in T and mark it.

- **Step 2.** Add the edge $\{x, y\}, x, y \in V$ that has label u to the graph H_V.

- **Step 3.** Let C_x, C_y be the components of H_V just before the edge labeled u is added. Let $C = C_x \cup C_y$. If all vertices in C are checked, go to Step 6. Otherwise, select an unchecked vertex v in C. If possible, select an unchecked vertex v for which the edge labeled v in H_U belongs to CORE.

- **Step 4.** Delete the edge labeled v from H_U, return to Step 1.

- **Step 5.** STOP and declare success.

- **Step 6.** STOP and declare failure.

We next argue that Algorithm PAIR, when it finishes at Step 5, does indeed produce a perfect matching in B_{2-out}. There are two simple invariants of this process that explain this:

(I1) The number of marked vertices plus the number of edges in H_U is equal to n.

(I2) The number of checked vertices is equal to the number of edges in H_V.

For I1, we observe that each round marks one vertex and deletes one edge of H_U. Similarly, for I2, we observe that each round checks one vertex and adds one edge to H_V.

Lemma 17.7. Up until (possible) failure in Step 6, the components of H_V are either trees with a unique unchecked vertex or are unicyclic components with all vertices checked. Also, failure in Step 6 means that PAIR tries to add an edge to a unicyclic component.
Proof. This is true initially, as initially HV has no edges and all vertices are unchecked. Assume this to be the case when we add an edge $\{x, y\}$ to HV. If $C_x \neq C_y$ are both trees then we will have a choice of two unchecked vertices in $C = C_x \cup C_y$ and C will be a tree. After checking one vertex, our claim will still hold. The other possibilities are that C_x is a tree and C_y is unicyclic. In this case there is one unchecked vertex and this will be checked and C will be unicyclic. The other possibility is that $C = C_x = C_y$ is a tree. Again there is only one unchecked vertex and adding $\{x, y\}$ will make C unicyclic.

Lemma 17.8. If HU consists of trees and unicyclic components then all the trees in HU contain a marked vertex.

Proof. Suppose that HU contains k trees with marked vertices and ℓ trees with no marked vertices and that the rest of the components are unicyclic. It follows that HU contains $n - k - \ell$ edges and then (11) implies that $\ell = 0$.

Lemma 17.9. If the algorithm stops in Step 5, then we can extract a perfect matching from HU, HV.

Proof. Suppose that we arrive at Step 5 after k rounds. Suppose that there are k trees with a marked vertex. Let the component sizes in HU be n_1, n_2, \ldots, n_k for the trees and m_1, m_2, \ldots, m_ℓ for the remaining components. Then,

\[
\begin{align*}
n_1 + n_2 + \cdots + n_k + m_1 + m_2 + \cdots + m_\ell &= |V(H_U)| = n. \\
|E(H_U)| &= n - k,
\end{align*}
\]

from (11) and so

\[
(n_1 - 1) + (n_2 - 1) + \cdots + (n_k - 1) + \sum_{i=1}^{\ell} m_i = n - k.
\]

It follows that the components of HU that are not trees with a marked vertex have as many edges as vertices and so are unicyclic.

We now show, given that HU, HV only contain trees and unicyclic components, that we can extract a perfect matching. The edges of HU define a matching of B_{2-out} of size $n - k$. Consider a tree T component with marked vertex ρ. Orient the edges of T away from ρ. Now consider an edge $\{x, y\}$ of T, oriented from x to y. Suppose that this edge has label $z \in V$. We add the edge $\{y, z\}$ to M_1. These edges are disjoint: z appears as the label of exactly one edge and y is the head of exactly one oriented edge.

For the unicyclic components, we orient the unique cycle $C = (u_1, u_2, \ldots, u_s)$ arbitrarily in one of two ways. We then consider the trees attached to each of the u_i and orient them away from the u_i. An oriented edge $\{x, y\}$ with label z yields a matching edge $\{y, z\}$ as before.
The remaining k edges needed for a perfect matching come from H_V. We extract a set of k matching edges out of H_V in the same way we extracted $n - k$ edges from H_U. We only need to check that these k edges are disjoint from those chosen from H_U. Let $\{y, z\}$ be such an edge, obtained from the edge $\{x, y\}$ of H_V, which has label z. z is marked in H_U and so is the root of a tree and does not appear in any matching edge of M_1. y is a checked vertex and so the edge labelled y has been deleted from H_U and this prevents y appearing in a matching edge of M_1.

Lemma 17.10. W.h.p. Algorithm PAIR cannot reach Step 6 in fewer than $0.49n$ iterations.

Proof. It follows from Lemma 2.10 that w.h.p. after $\leq 0.499n$ rounds, H_V only contains trees and unicyclic components. The lemma now follows from Lemma 17.7.

To complete our analysis, it only remains to show

Lemma 17.11. W.h.p., at most $0.49n$ rounds are needed to make H_U the union of trees and unicyclic components.

Proof. Recall that each edge of H_U corresponds to an unchecked vertex of H_V, the edges corresponding to checked vertices having been deleted. Moreover, each tree component T of H_V has one unchecked vertex, u_T say. If u_T is the label of an edge of H_U belonging to CORE then due to the choice rule for vertex checking in Step 3, every vertex of T must be the label of an edge of CORE. Hence the number of edges left in CORE, after a given iteration of the algorithm, is equal to the number of tree components of H_V, where every vertex labels an edge of CORE. We use this to estimate the number of edges of CORE that remain in H_U after $0.49n$ iterations.

Let $xe^{-x} = 2e^{-2}$, where $0 < x < 1$. One can easily check that $0.40 < x < 0.41$. It follows from Lemma 2.16 that w.h.p. $|\text{CORE}| \approx (1 - \frac{x}{2})^2 n$, which implies, that $0.63n \leq |\text{CORE}| \leq 0.64n$.

Let Z be the number of tree components in H_V made up of vertices which are the labels of edges belong to CORE. Then, after at most $0.49n$ rounds,

$$
\mathbb{E}Z \leq o(1) + \sum_{k=1}^{\log n^2} \binom{n}{k} k^{k-2} \left(\frac{0.49n}{k-1} \right)^k \left(\frac{n}{2} \right)^{k-1} \times \frac{0.64^k}{(k-1)!} \times \left(1 - \frac{k(n-k)}{(n/2)} \right)^{0.49n-(k-1)}.
$$

(17.8)

$$
\leq (1 + o(1))n \sum_{k=1}^{\log n^2} \frac{k^{k-2}}{k!} \left(\frac{0.64}{0.98} \right)^k e^{-0.98k}
$$
CHAPTER 17. \(K \)-OUT

\[
\leq (1 + o(1))n \times \\
\left[
\frac{0.64\theta}{2} + \frac{(0.64\theta)^2}{2} + \frac{2(0.64\theta)^3}{3} + \sum_{k=5}^{\infty} \left((0.64)e^{0.02} \right)^k
\right]
\]

where \(\theta = e^{-0.98} \)

\[
\leq (1 + o(1))n \left[0.279 + \frac{1}{2 \times 5^{5/2}(1 - (0.64)e^{0.02})} \right]
\]

\[
\leq (1 + o(1))n [0.279 + 0.026]
\]

\[
\leq (0.305)n.
\]

Explanation of (17.8); The \(o(1) \) term corresponds to components of size greater than \((\log n)^2 \) and w.h.p. there are none of these. For the summand, we choose \(k \) vertices and a tree on these \(k \) vertices in \(\binom{n}{k}k^{k-2} \) ways. The term \(\binom{n}{k-1}(k-1)! \) gives the number of sequences of edge choices that lead to a given tree. The term \(\binom{n}{k}^{-k-1} \) is the probability that these edges exist and \((0.64)^k \) bounds the probability that the vertices of the tree correspond to edges in \(\text{CORE} \). The final term is the probability that the tree is actually a component.

So after \(0.49n \) rounds, in expectation, the number of edges left in \(\text{CORE} \), is at most \(0.305n \times 0.485 \) of its original size, and the Chebyshev inequality (applied to \(Z \)) can be used to show that w.h.p. it is at most 0.49 of its original size. However, randomly deleting approximately 0.51 fraction of the edges of \(\text{CORE} \) will w.h.p. leave just trees and unicyclic components in \(H_U \). To see this, observe that if we delete \(0.505n \) random edges from \(G_U \) then we will have a random graph in the sub-critical stage and so w.h.p. it will consist of trees and unicyclic components. But deleting \(0.505n \) random edges will w.h.p. delete less than a 0.51 fraction of \(\text{CORE} \). This completes the proof that w.h.p. Algorithm PAIR finishes before 0.49n rounds with a perfect matching. In summary,

Theorem 17.12. W.h.p. the algorithm PAIR finds a perfect matching in the random graph \(B_{2-out} \) in at most \(0.49n \) steps.

One can ask whether one can w.h.p. secure a perfect matching in a bipartite random graph having more edges then \(B_{1-out} \), but less than \(B_{2-out} \). To see that it is possible, consider the following two-round procedure. In the first round assume that each vertex from the set \(U \) chooses exactly one neighbor in \(V \) and, likewise, every vertex from the set \(V \) chooses exactly one neighbor in \(U \). In the next round, only those vertices from \(U \) and \(V \) which have not been selected in the first round get a second chance to make yet another random selection. It is easy to see that,
for large n, such a second chance is, on the average, given to approximately n/e vertices on each side. I.e, that the average out-degree of vertices in U and V is approximately $1 + 1/e$. Therefore the underlying simple graph is denoted as $B_{(1+1/e)-out}$, and Karoński and Pittel [486] proved that the following result holds.

Theorem 17.13. With probability $1 - O(n^{-1/2})$ a random graph $B_{(1+1/e)-out}$ contains a perfect matching.

17.3 Hamilton Cycles

Bohman and Frieze [118] proved the following:

Theorem 17.14.

$$
\lim_{n \to \infty} \mathbb{P}(G_k-out has a Hamiltonian Cycle) = \begin{cases}
0 & \text{if } k \leq 2 \\
1 & \text{if } k \geq 3.
\end{cases}
$$

To see that this result is best possible note that one can show that w.h.p. the random graph G_2-out contains a vertex adjacent to three vertices of degree two, which prevents the existence of a Hamiltonian Cycle. The proof that G_3-out w.h.p. contains a Hamiltonian Cycle is long and complicated, we will therefore prove the weaker result given below which has a straightforward proof, using the ideas of Section 6.2. It is taken from Frieze and Łuczak [353].

Theorem 17.15.

$$
\lim_{n \to \infty} \mathbb{P}(G_k-out has a Hamiltonian Cycle) = 1, \text{ if } k \geq 5.
$$

Proof. Let $H = G_0 \cup G_1 \cup G_2$ where $G_i = G_{k_i-out}$, where (i) $k_0 = 1, k_1 = k_2 = 2$ and (ii) G_0, G_1, G_2 are generated independently of each other. Then we can couple the construction of H and G_{5-out} so that $H \subseteq G_{5-out}$. This is because in the construction of H, some random choices in the construction of the associated digraphs might be repeated. In which case, having constructed H, we can give G_{5-out} some more edges. It follows from Theorem 17.3 that w.h.p. $G_i, i = 1, 2$ contain perfect matchings $M_i, i = 1, 2$. Here we allow n to be odd and so a perfect matching may leave one vertex isolated. By symmetry M_1, M_2 are uniform random matchings. Let $M = M_1 \cup M_2$. The components of M are cycles. There could be
CHAPTER 17. \(K\)-OUT

degenerate 2-cycles consisting of two copies of the same edge and there may be a path in the case \(n\) is odd.

\textbf{Lemma 17.16.} Let \(X\) be the number of components of \(M\). Then w.h.p.
\[
X \leq 3 \log n.
\]

\textit{Proof.} Let \(C\) be the cycle containing vertex 1. We show that
\[
P \left(|C| \geq \frac{n}{2} \right) \geq \frac{1}{2}.
\]
To see this note that
\[
P(|C| = 2k) = \prod_{i=1}^{k-1} \left(\frac{n - 2i}{n - 2i + 1} \right) \frac{1}{n - 2k + 1} < \frac{1}{n - 2k + 1}.
\]
Indeed, consider the \(M_1\)-edge \(\{1 = i_1, i_2\} \in C\) containing vertex 1. Let \(\{i_2, i_3\} \in C\) be the \(M_2\)-edge containing \(i_2\). Now, \(P(i_3 \neq 1) = (n - 2)/(n - 1)\). Assume that \(i_3 \neq 1\) and let \(\{i_3, i_4\} \in C\) be the \(M_1\)-edge containing \(i_3\). Let \(\{i_4, i_5\} \in C\) be the \(M_2\)-edge containing \(i_4\). Then \(P(i_5 \neq 1) = (n - 4)/(n - 3)\), and so on until we close the cycle with probability \(1/(n - 2k + 1)\). Hence
\[
P \left(|C| < \frac{n}{2} \right) < \sum_{k=1}^{[n/4]} \frac{1}{n - 2k + 1} < \frac{1}{2},
\]
and the bound given in (17.9) follows.

Consider next the following experiment. Choose the size \(s\) of the cycle containing vertex 1. Next choose the size of the cycle containing a particular vertex from the remaining \(n - s\) vertices. Continue until the cycle chosen contains all remaining vertices. Observe now, that deleting any cycle from \(M\) leaves a random pair of matchings of the remaining vertices. So, by this observation and the fact that the bound (17.9) holds, whatever the currently chosen cycle sizes, with probability at least 1/2, the size of the remaining vertex set halves, at least. Thus,
\[
P(X \geq 3 \log n) \leq P(\text{Bin}(3 \log n, 1/2) \leq \log_2 n) = o(1).
\]

We use rotations as in Section 6.2. Lemma 17.16 enables us to argue that we only need to add random edges trying to find \(x, y\) where \(y \in END(x)\), at most \(O(\log n)\) times. We show next that \(H_1 = G_1 \cup G_2\) has sufficient expansion.
Lemma 17.17. W.h.p. $S \subseteq [n], |S| \leq n/1000$ implies that $|N_{H_1}(S)| \geq 2|S|$.

Proof. Let X be the number of vertex sets that violate the claim. Then,

$$
\mathbb{E} X \leq \sum_{k=1}^{n/1000} \binom{n}{k} \binom{n}{2k} \left(\left(\frac{\binom{3k}{2}}{\binom{n-1}{2}} \right)^2 \right)^k
$$

$$
\leq \sum_{k=1}^{n/1000} \left(\frac{e^3 n^3 81k^4}{4k^3 n^4} \right)^k
$$

$$
= \sum_{k=1}^{n/1000} \left(\frac{81e^3 k}{4n} \right)^k
$$

$$
= o(1).
$$

If n is even then we begin our search for a Hamilton cycle by choosing a cycle of H_1 and removing an edge. This will give us our current path P. If n is odd we use the path P joining the two vertices of degree one in $M_1 \cup M_2$. We can ignore the case where the isolated vertex is the same in M_1 and M_2 because this only happens with probability $1/n$. We run Algorithm Pósa of Section 6.2 and observe the following: At each point of the algorithm we will have a path P plus a collection of vertex disjoint cycles spanning the vertices not in P. This is because in Step (d) the edge $\{u, v\}$ will join two cycles, one will be the newly closed cycle and the other will be a cycle of M. It follows that w.h.p. we will only need to execute Step (d) at most $3 \log n$ times.

We now estimate the probability that we reach the start of Step (d) and fail to close a cycle. Let the edges of G_0 be $\{e_1, e_2, \ldots, e_n\}$ where e_i is the edge chosen by vertex i. Suppose that at the beginning of Step (d) we have identified END. We can go through the vertices of END until we find $x \in END$ such that $e_x = \{x, y\}$ where $y \in END(x)$. Because G_0 and H_1 are independent, we see by Lemma 17.17 that we can assume $\mathbb{P}(y \in END(x)) \geq 1/1000$. Here we use the fact that adding edges to H_1 will not decrease the size of neighborhoods. It follows that with probability $1 - o(1/n)$ we will examine fewer than $(\log n)^2$ edges of G_0 before we succeed in closing a cycle.

Now we try closing cycles $O(\log n)$ times and w.h.p. each time we look at $O((\log n)^2)$ edges of G_0. So, if we only examine an edge of G_0 once, we will w.h.p. still always have $n/1000 - O((\log n)^3)$ edges to try. The probability we fail to find a Hamilton cycle this way, given that H_1 has sufficient expansion, can therefore be bounded by $\mathbb{P}(\text{Bin}(n/1000 - O((\log n)^3), 1/1000) \leq 3 \log n) = o(1)$.

\[\Box\]
17.4 Nearest Neighbor Graphs

Consider the complete graph K_n, on vertex set $V = \{1, 2, \ldots, n\}$, in which each edge is assigned a cost $C_{i,j}, i \neq j$, and the costs are independent identically distributed continuous random variables. Color an edge green if it is one of the k shortest edges incident to either end vertex, and color it blue otherwise. The graph made up of the green edges only is called the k-th nearest neighbor graph and is denoted by $G_{k\text{-nearest}}$. Note that in the random graph $G_{k\text{-nearest}}$, the edges are no longer independent, as in the case of $G_{k\text{-out}}$ or in the classical model $G_{n,p}$.

Assume without loss of generality that the $C_{i,j}$ are exponential random variables of mean one. Cooper and Frieze [216] proved

Theorem 17.18.

$$
\lim_{n \to \infty} \mathbb{P}(G_{k\text{-nearest}} \text{ is connected}) = \begin{cases}
0 & \text{if } k = 1, \\
\gamma & \text{if } k = 2, \\
1 & \text{if } k \geq 3,
\end{cases}
$$

where $0.99081 \leq \gamma \leq 0.99586$.

A similar result holds for a random bipartite k-th nearest neighbor graph, generated in a similar way as $G_{k\text{-nearest}}$ but starting with the complete bipartite graph $K_{n,n}$ with vertex sets $V_1, V_2 = \{1, 2, \ldots, n\}$, and denoted by $B_{k\text{-nearest}}$. The following result is from Pittel and Weishar [656].

Theorem 17.19.

$$
\lim_{n \to \infty} \mathbb{P}(B_{k\text{-nearest}} \text{ is connected}) = \begin{cases}
0 & \text{if } k = 1, \\
\gamma & \text{if } k = 2, \\
1 & \text{if } k \geq 3,
\end{cases}
$$

where $0.996636 \leq \gamma$.

The paper [656] contains an explicit formula for γ.

Consider the related problem of the existence of a perfect matching in the bipartite k-th nearest neighbor graph $B_{k\text{-nearest}}$. For convenience, to simplify computations, we will assume here that the $C_{i,j}$ are iid exponential random variables with rate $1/n$. Coppersmith and Sorkin [237] showed that the expected size of the largest matching in $B_{1\text{-nearest}}$ (which itself is a forest) is w.h.p. asymptotic to

$$
\left(2 - e^{-e^{-1}} - e^{-e^{-1}}\right)n \approx 0.807n.
$$
The same expression was obtained independently in [656]. Also, w.h.p., $B_{2-nearest}$ does not have a perfect matching. Moreover, w.h.p., in a maximal matching there are at least $\frac{2\log n}{13\log \log n}$ unmatched vertices, see [656].

The situation changes when each vertex chooses three, instead of one or two, of its “green” edges. Then the following theorem was proved in [656]:

Theorem 17.20. $B_{3-nearest}$ has a perfect matching, w.h.p.

Proof. The proof is analogous to the proof of Theorem 17.6 and uses Hall’s Theorem. We use the same terminology. We can, as in Theorem 17.6, consider only bad pairs of “size” $k \leq n/2$. Consider first the case when $k < \varepsilon n$, where $\varepsilon < 1/(2e^2)$, i.e., “small” bad pairs. Notice, that in a bad pair, each of the k vertices from V_1 must choose its neighbors from the set of $k-1$ vertices from V_2. Let A_k be the number of such sets. Then,

$$
\mathbb{E}A_k \leq 2 \binom{n}{k} \left(\frac{n}{k-1} \right) \left(\frac{k}{n} \right)^{3k} \leq 2 \frac{n^{2k}}{(k!)^2} \left(\frac{k}{n} \right)^{3k} \leq 2 \left(\frac{ke^2}{n} \right)^k.
$$

(The factor 2 arises from allowing R to be chosen from V_1 or V_2.)

Let P_k be the probability that there is a bad pair of size k in $B_{3-nearest}$. Then the probability that $B_{3-nearest}$ contains a bad pair of size less than $t = \lfloor \varepsilon n \rfloor$ is, letting $l = \lfloor \log n \rfloor$, at most

$$
\sum_{k=4}^{l+1} P_k \leq 2 \sum_{k=4}^{l} \left(\frac{ke^2}{n} \right)^k
$$

$$
= 2 \sum_{k=4}^{l} \left(\frac{ke^2}{n} \right)^k + 2 \sum_{k=l+1}^{t} \left(\frac{ke^2}{n} \right)^k
$$

$$
\leq 2 \sum_{k=4}^{l} \left(\frac{le^2}{n} \right)^k + 2 \sum_{k=l+1}^{t} (\varepsilon e^2)^k
$$

$$
\leq \frac{2l^2e^8}{n^k} + (\varepsilon e^2)^t.
$$

So, if $\varepsilon < 1/(2e^2)$, then

$$
\sum_{k=4}^{\lfloor \varepsilon n \rfloor} P_k \to 0.
$$

It suffices to show that

$$
\sum_{k=\lfloor \varepsilon n \rfloor + 1}^{n/2} P_k \to 0.
$$

To prove that there are no “large” bad pairs, note that for a pair to be bad it must be the case that there is a set of $n-k+1$ vertices of V_2 that do not choose any of
the k vertices from V_1. Let $R \subset V_1, |R| = k$ and $S \subset V_2, |S| = k - 1$. Without loss of generality, assume that $R = \{1, 2, \ldots, k\}, S = \{1, 2, \ldots, k - 1\}$. Then let $Y_i, i = 1, 2, \ldots, k$ be the smallest weight in $K_{n,n}$ among the weights of edges connecting vertex $i \in R$ with vertices from $V_2 \setminus S$, and let $Z_j, j = k, k + 1, \ldots, n$ be the smallest weight among the weights of edges connecting vertex $j \in V_2 \setminus S$ with vertices from R. Then, each Y_i has an exponential distribution with rate $(n - k + 1)/n$ and each Z_j has the exponential distribution with rate k/n.

Notice that in order for there not to be any edge in $B_{3\text{-nearest}}$ between respective sets R and $V_2 \setminus S$ the following property should be satisfied: each vertex $i \in R$ has at least three neighbors in $K_{n,n}$ with weights smaller than Y_i and each vertex $j \in V_2 \setminus S$ has at least three neighbors in $K_{n,n}$ with weights smaller than the corresponding Z_j. If we condition on the value $Y_i = y$, then the probability that vertex i has at least three neighbors with respective edge weight smaller than Y_i is given by

$$P_{n,k}(y) = 1 - \left(e^{-y/n} \right)^{k-1} - (k-1) \left(1 - e^{-y/n} \right) \left(e^{-y/n} \right)^{k-2} - \left(k-1 \right) \left(1 - e^{-y/n} \right)^2 \left(e^{-y/n} \right)^{k-3}$$

Putting $a = k/n$

$$P_{n,k}(y) \approx f(a,y) = 1 - e^{-ay} - ay - \frac{1}{2} a^2 y^2 e^{-ay}.$$

Similarly, the probability that there are three neighbors of vertex $j \in V_2 \setminus S$ with edge weights smaller than Z_j is $f(1 - a, Z_j)$.

So, the probability that there is a bad pair in $B_{3\text{-nearest}}$ can be bounded by

$$P_k \leq 2 \binom{n}{k} \binom{n}{k-1} E_k,$$

where, by the Cauchy-Schwarz inequality and independence separately of Y_1, \ldots, Y_n and Z_1, \ldots, Z_n,

$$E_k = \mathbb{E} \left(\prod_{i=1}^{k} f(a, Y_i) \prod_{j=k}^{n} f(1 - a, Z_j) \right)$$

$$\leq \left(\mathbb{E} \left(\prod_{i=1}^{k} f^2(a, Y_i) \right) \right)^{1/2} \left(\mathbb{E} \left(\prod_{j=k}^{n} f^2(1 - a, Z_j) \right) \right)^{1/2}$$

$$= k \mathbb{E}(f^2(a, Y_1))^{1/2} \prod_{j=k}^{n} \mathbb{E}(f^2(1 - a, Z_j))^{1/2}$$

$$= \mathbb{E}(f^2(a, Y_1))^{k/2} \mathbb{E}(f^2(1 - a, Z_n))^{(n-k+1)/2}.$$
Asymptotically, Y_1 has an exponential $(1 - a)$ distribution, so

$$
\mathbb{E}(f^2(a, Y_1)) \\
\approx \int_0^\infty \left(1 - e^{-ay} - aye^{-ay} - \frac{1}{2} a^2 ye^{-ay}\right)^2 (1 - a)e^{-(1-a)y} dy \\
= (1 - a) \int_0^\infty (e^{-(1-a)y} - 2e^y - 2aye^{-y} - a^2 ye^{-y} + e^{-(1+a)y} \\
+ 2aye^{-(1+a)y} + 2a^2 ye^{-(1+a)y} + a^3 ye^{-(1+a)y} + \frac{1}{4} a^4 ye^{-(1+a)y}) dy.
$$

Now using

$$
\int_0^\infty y^i e^{-cy} dy = \frac{i!}{c^{i+1}},
$$

we obtain

$$
\mathbb{E}(f^2(a, Y_1)) = (1 - a) \left(\frac{1}{1-a} - 2 - 2a - 2a^2 + \frac{1}{1+a} \\
+ \frac{2a}{(1+a)^2} + \frac{4a^2}{(1+a)^3} + \frac{6a^3}{(1+a)^4} + \frac{6a^4}{(1+a)^5}\right) \\
= \frac{2a^6(10 + 5a + a^2)}{(1+a)^5}.
$$

Letting

$$
g(a) = \mathbb{E}(f^2(a, Y_1))^{a/2},
$$

we have

$$
P_k \leq 2 \binom{n}{k} \left(\binom{n}{k-1}\right) (g(a)g(1-a))^n \approx 2 \left(\frac{g(a)g(1-a)}{a^2(1-a)^2}\right)^n = 2h(a)^n.
$$

Numerical examination of the function $h(a)$ shows that it is bounded below 1 for a in the interval $[\delta, 0.5]$, which implies that the expected number of bad pairs is exponentially small for any $k > \delta n$, with $k \leq n/2$. Taking $\delta < \varepsilon < 1/(2e^2)$, we conclude that, w.h.p., there are no bad pairs in $B_{\text{3-nearest}}$, and so we arrive at the theorem.

\[\square\]

17.5 Exercises

17.5.1 Let $p = \frac{\log n + (m-1) \log \log n + \omega}{n}$ where $\omega \to \infty$. Show that w.h.p. it is possible to orient the edges of $G_{n,p}$ to obtain a digraph D such that the minimum out-degree $\delta^+(D) \geq m$.
17.5.2 The random digraph $D_{k-\text{in},\ell-\text{out}}$ is defined as follows: each vertex $v \in [n]$ independently randomly chooses k-in-neighbors and ℓ-out-neighbors. Show that w.h.p. $D_{m-\text{in},m-\text{out}}$ is m-strongly connected for $m \geq 2$ i.e. to destroy strong connectivity, one must delete at least m vertices.

17.5.3 Show that w.h.p. the diameter of $G_{k-\text{out}}$ is asymptotically equal to $\log_2 k n$ for $k \geq 2$.

17.5.4 For a graph $G = (V, E)$ let $f : V \rightarrow V$ be a G-mapping if $(v, f(v))$ is an edge of G for all $v \in V$. Let G be a connected graph with maximum degree d. Let $H = \bigcup_{i=0}^{k} H_i$ where (i) $k \geq 1$, (ii) H_0 is an arbitrary spanning tree of G and (iii) H_1, H_2, \ldots, H_k are independent uniform random G-mappings. Let $\theta_k = 1 - \left(1 - \frac{1}{d}\right)^{2k}$ and let $\alpha = 16/\theta_k$. Show that w.h.p. for every $A \subset V$, we have

$$|e_H(A)| \geq \frac{\theta_k}{16 \log n} \cdot |e_G(A)|.$$

where $e_G(A)$ (resp. $e_H(A)$) is the number of edges of G (resp. H) with exactly one endpoint in A.

17.5.5 Let G be a graph with n vertices and minimum degree $(\frac{1}{2} + \varepsilon)n$ for some fixed $\varepsilon > 0$. Let $H = \bigcup_{i=1}^{k} H_i$ where (i) $k \geq 2$ and (ii) H_1, H_2, \ldots, H_k are independent uniform random G-mappings. Show that w.h.p. H is connected.

17.5.6 Show that w.h.p. $G_{k-\text{out}}$ contains k edge disjoint spanning trees. (Hint: Use the Nash-Williams condition [626] – see Frieze and Łuczak [354]).

17.5.7 In the random digraph $G_{k-\text{in},k-\text{out}}$ each $v \in [n]$ independently chooses k uniformly random in-neighbors and k uniformly random out-neighbors. Show that $G_{k-\text{in},k-\text{out}}$ is k-strongly connected for $k \geq 2, k = O(1)$.

17.6 Notes

k-out process

Jaworski and Łuczak [460] studied the following process that generates $G_{k-\text{out}}$ along the way. Starting with the empty graph, a vertex v is chosen uniformly at random from the set of vertices of minimum out-degree. We then add the arc (v, w) where w is chosen uniformly at random from the set of vertices that are not out-neighbors of v. After kn steps the digraph in question is precisely $G_{k-\text{out}}$. Ignoring orientation, we denote the graph obtained after m steps by $U(n, m)$. The
paper [460] studied the structure of $U(n,m)$ for $n \leq m \leq 2m$. These graphs sit between random mappings and G_{2-out}.

Nearest neighbor graphs

There has been some considerable research on the nearest neighbor graph generated by n points $X = \{X_1, X_2, \ldots, X_n\}$ chosen randomly in the unit square. Given a positive integer k we define the k-nearest neighbor graph $G_{X,k}$ by joining vertex $X \in X$ to its k nearest neighbors in Euclidean distance. We first consider the existence of a giant component. Teng and Yao [736] showed that if $k \geq 213$ then there is a giant component w.h.p. Balister and Bollobás [52] reduced this number to 11. Now consider connectivity. Balister, Bollobás, Sarkar and Walters [54] proved that there exists a critical constant c^* such that if $k \leq c \log n$ and $c < c^*$ then w.h.p. $G_{X,k}$ is not connected and if $k \geq c \log n$ and if $c > c^*$ then w.h.p. $G_{X,k}$ is connected. The best estimates for c^* are given in Balister, Bollobás, Sarkar and Walters [53] i.e. $0.3043 < c^* < 0.5139$.

When distances are independently generated then the situation is much clearer. Cooper and Frieze [216] proved that if $k = 1$ then the k-nearest neighbor graph \mathcal{O}_1 is not connected; the graph \mathcal{O}_2 is connected with probability $\gamma \in [0.99081, 0.99586]$; for $k \geq 2$, the graph \mathcal{O}_k is k-connected w.h.p.

Directed k-in, ℓ-out

There is a natural directed version of G_{k-out} called $D_{k-in,\ell-out}$ where each vertex randomly chooses k in-neighbors and ℓ out-neighbors. Cooper and Frieze [214] studied the connectivity of such graphs. They prove for example that if $1 \leq k, \ell \leq 2$ then

$$\lim_{n \to \infty} \mathbb{P}(D_{k-in,\ell-out} \text{ is strongly connected}) = (1 - (2-k)e^{-\ell})(1 - (2-\ell)e^{-k}).$$

In this result, one can in a natural way allow $k, \ell \in [1, 2]$. Hamiltonicity was discussed in [217] where it was shown that w.h.p. $D_{2-in,2-out}$ is Hamiltonian.

The random digraph $\mathbb{D}_{n,p}$ as well as \mathcal{G}_{k-out} are special cases of a random digraph where each vertex, independently of others, first chooses its out-degree d according to some probability distribution and then the set of its images - uniformly from all d-element subsets of the vertex set. If d is chosen according to the binomial distribution then it is $\mathbb{D}_{n,p}$ while if d equals k with probability 1, then it is \mathcal{G}_{k-out}. Basic properties of the model (monotone properties, k-connectivity), were studied in Jaworski and Smit [462] and in Jaworski and Palka [461].
CHAPTER 17. K-OUT

k-out subgraphs of large graphs

Just as in Section 6.5, we can consider replacing the host graph K_n by graphs of large degree. Let an n vertex graph G be *strongly Dirac* if its minimum degree is at least cn for some constant $c > 1/2$. Frieze and Johansson [347] consider the subgraph G_k obtained from G by letting each vertex independently choose k neighbors in G. They show that w.h.p. G_k is k-connected for $k \geq 2$ and that G_k is Hamiltonian for k sufficiently large. The paper by Frieze, Goyal, Rademacher and Vempala [343] shows the use of G_k as a cut-sparsifier.

k-out with preferential attachment

Peterson and Pittel [647] considered the following model: Vertices $1, 2, \ldots, n$ in this order, each choose k random out-neighbors one at a time, subject to a “preferential attachment” rule: the current vertex selects vertex i with probability proportional to a given parameter $\alpha = \alpha(n)$ plus the number of times i has already been selected. Intuitively, the larger α gets, the closer the resulting k-out mapping is to the uniformly random k-out mapping. They prove that $\alpha = \Theta(n^{1/2})$ is the threshold for α growing “fast enough” to make the random digraph approach the uniformly random digraph in terms of the total variation distance. They also determine an exact limit of this distance for $\alpha = \beta n^{1/2}$.
Chapter 18

Real World Networks

There has recently been an increased interest in the networks that we see around us in our everyday lives. Most prominent are the Internet or the World Wide Web or social networks like Facebook and LinkedIn. The networks are constructed by some random process. At least we do not properly understand their construction. It is natural to model such networks by random graphs. When first studying so-called "real world networks", it was observed that often the degree sequence exhibits a tail that decays polynomially, as opposed to classical random graphs, whose tails decay exponentially. See, for example, Faloutsos, Faloutsos and Faloutsos [299]. This has led to the development of other models of random graphs such as the ones described below.

18.1 Preferential Attachment Graph

Fix an integer \(m > 0 \), constant and define a sequence of graphs \(G_1, G_2, \ldots, G_t \). The graph \(G_t \) has vertex set \([t]\) and \(G_1 \) consists of \(m \) loops on vertex 1. Suppose we have constructed \(G_t \). To obtain \(G_{t+1} \) we apply the following rule. We add vertex \(t + 1 \) and connect it to \(m \) randomly chosen vertices \(y_1, y_2, \ldots, y_m \in [t] \) in such a way that for \(i = 1, 2, \ldots, m \),

\[
\mathbb{P}(y_i = w) = \frac{\text{deg}(w, G_t)}{2mt}.
\]

In this way, \(G_{t+1} \) is obtained from \(G_t \) by adding vertex \(t + 1 \) and \(m \) randomly chosen edges, in such a way that the neighbors of \(t + 1 \) are biased towards higher degree vertices.

When \(m = 1 \), \(G_t \) is a tree and this is basically a plane-oriented recursive tree as considered in Section 15.5.
This model was considered by Barabási and Albert [58]. This was followed by a rigorous analysis of a marginally different model in Bollobás, Riordan, Spencer and Tusnády [155].

Expected Degree Sequence: Power Law

Fix t and let $V_k(t)$ denote the set of vertices of degree k in G_t, where $m \leq k = \tilde{O}(t^{1/2})$. Let $D_k(t) = |V_k(t)|$. Then (compare with (15.30) when $m = 1$

$$\mathbb{E}(D_k(t+1)|G_t) = D_k(t) + m \left(\frac{(k-1)D_{k-1}(t)}{2mt} - \frac{kD_k(t)}{2mt} \right) + 1_{k=m} + \varepsilon(k,t). \quad (18.1)$$

Explanation of (18.1): The total degree of G_t is $2mt$ and so $\frac{(k-1)D_{k-1}(t)}{2mt}$ is the probability that y_i is a vertex of degree $k - 1$, creating a new vertex of degree k. Similarly, $\frac{kD_k(t)}{2mt}$ is the probability that y_i is a vertex of degree k, destroying a vertex of degree k. At this point $t + 1$ has degree m and this accounts for the term $1_{k=m}$. The term $\varepsilon(k,t)$ is an error term that accounts for the possibility that $y_i = y_j$ for some $i \neq j$.

Thus

$$\varepsilon(k,t) = O \left(\left(\frac{m}{2} \right) \frac{k}{mt} \right) = \tilde{O}(t^{-1/2}). \quad (18.2)$$

Taking expectations over G_t, we obtain

$$\bar{D}_k(t+1) = \bar{D}_k(t) + 1_{k=m} + m \left(\frac{(k-1)D_{k-1}(t)}{2mt} - \frac{kD_k(t)}{2mt} \right) + \varepsilon(k,t). \quad (18.3)$$

Under the assumption $\bar{D}_k(t) \approx d_k t$ (justified below) we are led to consider the recurrence

$$d_k = \begin{cases} 1_{k=m} + \frac{(k-1)d_{k-1} - kd_k}{2} & \text{if } k \geq m, \\ 0 & \text{if } k < m, \end{cases} \quad (18.4)$$

or

$$d_k = \begin{cases} \frac{k-1}{k+2} d_{k-1} + \frac{21_{k=m}}{k+2} & \text{if } k \geq m, \\ 0 & \text{if } k < m. \end{cases}$$

Therefore

$$d_m = \frac{2}{m+2}.$$
18.1. PREFERENTIAL ATTACHMENT GRAPH

\[d_k = d_m \prod_{l=m+1}^{k} \frac{l-1}{l+2} = \frac{2m(m+1)}{k(k+1)(k+2)}. \quad (18.5) \]

So for large \(k \), under our assumption \(\bar{D}_k(t) \approx d_k t \), we see that

\[\bar{D}_k(t) \approx \frac{2m(m+1)}{k^3} t. \]

We now show that the assumption \(\bar{D}_k(t) \approx d_k t \) can be justified. Note that the following theorem is vacuous for \(k \gg t^{1/6} \).

Theorem 18.1.

\[|\bar{D}_k(t) - d_k t| = \tilde{O}(t^{1/2}) \text{ for } k = \tilde{O}(t^{1/2}). \]

Proof. Let

\[\Delta_k(t) = D_k(t) - d_k t. \]

Then, replacing \(\bar{D}_k(t) \) by \(\Delta_k(t) + d_k t \) in (18.3) and using (18.2) and (18.4) we get

\[\Delta_k(t+1) = \frac{k-1}{2t} \Delta_{k-1}(t) + \left(1 - \frac{k}{2t} \right) \Delta_k(t) + \tilde{O}(t^{-1/2}). \quad (18.6) \]

Now assume inductively on \(t \) that for every \(k \geq 0 \)

\[|\Delta_k(t)| \leq At^{1/2}(\log t)^\beta, \]

where \((\log t)^\beta\) is the hidden power of logarithm in \(\tilde{O}(t^{-1/2}) \) of (18.6) and \(A \) is an unspecified constant.

This is trivially true for \(k < m \) also for small \(t \) if we make \(A \) large enough. So, replacing \(\tilde{O}(t^{-1/2}) \) in (18.6) by the more explicit \(\alpha t^{-1/2}(\log t)^\beta \) we get

\[\Delta_k(t+1) \leq \frac{k-1}{2t} \Delta_{k-1}(t) + \left(1 - \frac{k}{2t} \right) \Delta_k(t) + \alpha t^{-1/2}(\log t)^\beta \]

\[\leq \frac{k-1}{2t} At^{1/2}(\log t)^\beta + \left(1 - \frac{k}{2t} \right) At^{1/2}(\log t)^\beta + \alpha t^{-1/2}(\log t)^\beta \]

\[\leq (\log t)^\beta (At^{1/2} + \alpha t^{-1/2}). \]

Note that if \(t \) is sufficiently large then

\[(t+1)^{1/2} = t^{1/2} \left(1 + \frac{1}{t} \right)^{1/2} \geq t^{1/2} + \frac{1}{3t^{1/2}}, \]
and so
\[\Delta_k(t+1) \leq (\log(t+1))^{\beta} \left(A \left[(t+1)^{1/2} - \frac{1}{3t^{1/2}} \right] + \frac{\alpha}{t^{1/2}} \right) \]
\[\leq A (\log(t+1))^{\beta} (t+1)^{1/2}, \]
assuming that \(A \geq 3\alpha \).

In the next section, we will justify our bound of \(\tilde{O}(t^{1/2}) \) for vertex degrees. After that we will prove concentration of the number of vertices of degree \(k \), for small \(k \).

Maximum Degree

Fix \(s \leq t \) and let \(X_l \) be the degree of vertex \(s \) in \(G_l \) for \(s \leq l \leq t \). We prove the following high probability upper bound on the degree of vertex \(s \).

Lemma 18.2.

\[\mathbb{P}(X_t \geq Ae^m(t/s)^{1/2}(\log(t+1))^2) = O(t^{-A}). \]

Proof. Note first that \(X_s = m \). If \(0 < \lambda < \varepsilon_t = \frac{1}{\log(t+1)} \) then,

\[\mathbb{E}\left(e^{\lambda X_{l+1}}|X_l\right) = e^{\lambda X_l} \sum_{k=0}^{m} \binom{m}{k} \left(\frac{X_l}{2ml} \right)^k \left(1 - \frac{X_l}{2ml} \right)^{m-k} e^{\lambda k} \]
\[\leq e^{\lambda X_l} \sum_{k=0}^{m} \binom{m}{k} \left(\frac{X_l}{2ml} \right)^k \left(1 - \frac{X_l}{2ml} \right)^{m-k} (1+k\lambda(1+k\lambda)) \]
\[= e^{\lambda X_l} \left(1 + \frac{\lambda (1+\lambda)X_l}{2l} + \frac{(m-1)\lambda^2X_l^2}{4ml^2} \right) \]
\[\leq e^{\lambda X_l} \left(1 + \frac{\lambda X_l}{2l} (1+m\lambda) \right), \quad \text{since } X_l \leq 2ml, \]
\[\leq e^{\lambda \left(1 + \frac{(1+m\lambda)}{2j} \right) X_l}. \]

We define a sequence \(\lambda = (\lambda_s, \lambda_{s+1}, \ldots, \lambda_t) \) where
\[\lambda_{j+1} = \left(1 + \frac{1+m\lambda_j}{2j} \right) \lambda_j < \varepsilon_t. \]
Here our only choice will be λ_s. We show below that we can find a suitable value for this, but first observe that if we manage this then

$$\mathbb{E}(e^{\lambda_s X_t}) \leq \mathbb{E}(e^{\lambda_{s+1} X_{t-1}}) \cdots \leq \mathbb{E}(e^{\lambda_s X_t}) \leq 1 + o(1).$$

Now

$$\lambda_{j+1} \leq \left(1 + \frac{1 + m \varepsilon_t}{2j}\right) \lambda_j,$$

implies that

$$\lambda_t = \lambda_s \prod_{j=s}^t \left(1 + \frac{1 + m \varepsilon_t}{2j}\right) \leq \lambda_s \exp\left\{\sum_{j=s}^t \frac{1 + m \varepsilon_t}{2j}\right\} \leq e^{m \left(\frac{t}{s}\right)^{1/2}} \lambda_s.$$

So a suitable choice for $\lambda = \lambda_s$ is

$$\lambda_s = e^{-m \varepsilon_t \left(\frac{s}{t}\right)^{1/2}}.$$

This gives

$$\mathbb{E}(\exp\{e^{-m \varepsilon_t (s/t)^{1/2} X_t}\}) \leq 1 + o(1).$$

So,

$$\mathbb{P}\left(X_t \geq A e^{m (t/s)^{1/2} (\log(t+1))^2}\right) \leq e^{-\lambda_s A e^{m (t/s)^{1/2} (\log(t+1))^2}} \mathbb{E}(e^{\lambda_s X_t}) = O(t^{-A}).$$

Thus with probability $1 - o(1)$ as $t \to \infty$ we have that the maximum degree in G_t is $O(t^{1/2} (\log t)^2)$. This is not best possible. One can prove that w.h.p. the maximum degree is $O(t^{1/2} \omega(t))$ and $\Omega(t^{1/2} / \omega(t))$ for any $\omega(t) \to \infty$, see for example Flaxman, Frieze and Fenner [315].

Concentration of Degree Sequence

Fix a value k for a vertex degree. We show that $D_k(t)$ is concentrated around its mean $\bar{D}_k(t)$.

Theorem 18.3.

$$\mathbb{P}(|D_k(t) - \bar{D}_k(t)| \geq u) \leq 2 \exp\left\{-\frac{u^2}{8nm}\right\}. \quad (18.7)$$
Note that x_j now suppose Y_1, Y_2, \ldots, Y_m be the sequence of edge choices made in the construction of G, and for Y_1, Y_2, \ldots, Y_i let

$$Z_i = Z_i(Y_1, Y_2, \ldots, Y_i) = \mathbb{E}(D_k(t) \mid Y_1, Y_2, \ldots, Y_i).$$

(18.8)

We will prove next that $|Z_i - Z_{i-1}| \leq 4$ and then (18.7) follows directly from the Azuma-Hoeffding inequality, see Section 22.7. Fix Y_1, Y_2, \ldots, Y_i and $\hat{Y}_i \neq Y_i$. We define a map (measure preserving projection) ϕ of

$$Y_1, Y_2, \ldots, Y_{i-1}, Y_i, Y_{i+1}, \ldots, Y_m$$

to

$$Y_1, Y_2, \ldots, Y_{i-1}, \hat{Y}_i, \hat{Y}_{i+1}, \ldots, \hat{Y}_m$$

such that

$$|Z_i(Y_1, Y_2, \ldots, Y_i) - Z_i(Y_1, Y_2, \ldots, \hat{Y}_i)| \leq 4.$$

(18.9)

In the preferential attachment model we can view vertex choices in the graph G as random choices of arcs in a digraph \bar{G}, which is obtained by replacing every edge of G by a directed 2-cycle (see Figure 18.1).

Indeed, if we choose a random arc and choose its head then v will be chosen with probability proportional to the number of arcs with v as head i.e. its degree. Hence Y_1, Y_2, \ldots can be viewed as a sequence of arc choices. Let

$$Y_i = (x, y) \text{ where } x > y,

\hat{Y}_i = (\hat{x}, \hat{y}) \text{ where } \hat{x} > \hat{y}.$$

Note that $x = \hat{x}$ if $i \mod m \neq 1$.

Now suppose $j > i$ and $Y_j = (u, v)$ arises from choosing (w, v). Then we define

$$\phi(Y_j) = \begin{cases}
Y_j & (w, v) \neq Y_i \\
(w, \hat{y}) & (w, v) = Y_i
\end{cases}$$

(18.10)
18.1. PREFERENTIAL ATTACHMENT GRAPH

This map is measure preserving since each sequence $\varphi(Y_1, Y_2, \ldots, Y_t)$ occurs with probability $\prod_{j=i+1}^{m} j^{-1}$. Only x, \hat{x}, y, \hat{y} change degree under the map φ so $D_k(t)$ changes by at most four.

We will now study the degrees of early vertices.

Degrees of early vertices

Let $d_t(s)$ denote the degree of vertex s at time t. Then we have

$$E(d_{t+1}(s)|G_t) = d_t(s) + \frac{md_t(s)}{2mt} = d_t(s) \left(1 + \frac{1}{2t}\right).$$

So, with

$$A(s) = \frac{2^{2s+1}s!(s-1)!}{(2s)!} \approx 2 \left(\frac{\pi}{s}\right)^{1/2}$$

for large s,

we have

$$E(d_t(t)) = m \prod_{i=s}^{t-1} \frac{2i+1}{2i} = m A(s) \frac{(2t-1)!}{2^{2t}((t-1)!)^2} \approx m \left(\frac{t}{s}\right)^{1/2}$$

for large s. (18.11)

For random variables X, Y and a sequence of random variables $Z = Z_1, Z_2, \ldots, Z_k$ taking discrete values, we write

$$X \succ Y$$

to mean that $\Pr(X \geq a) \geq \Pr(Y \geq a)$

and

$$X \mid Z \succ Y \mid Z$$

to mean that $\Pr(X \geq a \mid Z_l = z_l, l = 1, \ldots, k) \geq \Pr(Y \geq a \mid Z_l = z_l, l = 1, \ldots, k)$,

for all choices of a, z.

Fix $i \leq j - 2$ and let $X = d_{j-1}(t), Y = d_j(t)$ and $Z_l = d_l(t), l = i, \ldots, j - 2$.

Lemma 18.4. $X \mid Z \succ Y \mid Z$.

Proof. Consider the construction of $G_{j+1}, G_{j+2}, \ldots, G_t$. We condition on those edge choices of $j + 1, j + 2, \ldots, t$ that have one end in $i, i + 1, \ldots, j - 2$. Now if vertex j does not choose an edge $(j - 1, j)$ then the conditional distributions of $d_{j-1}, d_j(t)$ are identical. If vertex j does choose edge $(j - 1, j)$ and we do not include this edge in the value of the degree of $j - 1$ at times $j + 1$ onwards, then the conditional distributions of $d_{j-1}, d_j(t)$ are again identical. Ignoring this edge will only reduce the chances of $j - 1$ being selected at any stage and the lemma follows.

Corollary 18.5. If $j \geq i - 2$ then $d_i(t) \succ (d_{i+1}(t) + \cdots + d_j(t))/(j - i)$.
Proof. Fix $i \leq l \leq j$ and then we argue by induction that

$$d_{i+1}(t) + \cdots + d_l(t) + (j-l)d_{l+1}(t) \prec d_{i+1}(t) + \cdots + (j-l+1)d_l(t). \quad (18.12)$$

This is trivial for $j = l$ as the LHS is then the same as the RHS. Also, if true for $l = i$ then

$$d_{i+1}(t) + \cdots + d_j(t) \prec (j-i)d_{i+1}(t) \prec (j-i)d_i(t)$$

where the second inequality follows from Lemma 18.4 with $j = i + 1$.

Putting $\mathcal{A} = d_{i+1}(t), \ldots, d_{l-1}(t)$ we see that (18.12) is implied by

$$d_l(t) + (j-l)d_{l+1}(t) \prec (j-l+1)d_l(t) \mid \mathcal{A} \quad \text{or} \quad d_{l+1}(t) \mid \mathcal{A} \prec d_l(t) \mid \mathcal{A},$$

after subtracting $(j-l)d_{l+1}(t)$. But the latter follows from Lemma 18.4. \qed

Lemma 18.6. Fix $1 \leq s = O(1)$ and let $\omega = \log^2 t$ and let $D_s(t) = \sum_{i=s+1}^{s+\omega} d_i(t)$. Then w.h.p. $D_s(t) \approx 2m(\omega t)^{1/2}$.

Proof.

We have from (18.11) that

$$\mathbb{E}(D_s(t)) \approx m \sum_{i=s+1}^{s+\omega} \left(\frac{t}{i} \right)^{1/2} \approx 2m(\omega t)^{1/2}.$$

Going back to the proof of Theorem 18.3 we consider the map φ as defined in (18.10). Unfortunately, (18.9) does not hold here. But we can replace 4 by $10\log t$, most of the time. So we let Y_1, Y_2, \ldots, Y_{mt} be as in Theorem 18.3. Then let ψ_i denote the number of times that $(w, v) = Y_i$ in equation (18.10). Now ψ_j is the sum of $mt - j$ independent Bernoulli random variables and $\mathbb{E}(\psi_i) \leq \sum_{j=i+1}^{mt} 1/mt \leq m^{-1}\log mt$. It follows from Hoeffding’s inequality that $\Pr(\psi_i \geq 10\log t) \leq t^{-10}$.

Given this, we define a new random variable $\hat{d}_s(t)$ and let $\hat{D}_s(t) = \sum_{i=1}^{\omega} \hat{d}_s(i)$. Here $\hat{d}_{s+j}(t) = d_{s+j}(t)$ for $j = 1, 2, \ldots, \omega$ unless there exists i such that $\psi_i \geq 10\log t$. If there is an i such that $\psi_i \geq 10\log t$ then assuming that i is the first such we let $\hat{D}_s(t) = Z_i(Y_1, Y_2, \ldots, Y_i)$ where Z_i is as defined in (18.8), with $D_k(t)$ replaced by $\hat{D}_s(t)$. In summary we have

$$\Pr(\hat{D}_s(t) \neq D_s(t)) \leq t^{-10}. \quad (18.13)$$

So,

$$|\mathbb{E}(\hat{D}_s(t)) - \mathbb{E}(D_s(t))| \leq t^{-9}.$$

And finally,

$$|Z_i - Z_{i-1}| \leq 20\log t.$$
This is because each \(Y_i, \hat{Y}_i \) concerns at most two of the vertices \(s + 1, s + 2, \ldots, s + \omega \). So,

\[
\Pr(|\hat{D}(t) - \mathbb{E}(\hat{D}(t))| \geq u) \leq \exp\left\{-\frac{u^2}{800mt \log^2 t}\right\}. \tag{18.14}
\]

Putting \(u = \omega^{3/4} t^{1/2} \) into (18.14) yields the claim. \(\square \)

Combining Corollary 18.5 and Lemma 18.6 we have the following theorem.

Theorem 18.7. Fix \(1 \leq s = O(1) \) and let \(\omega = \log^2 t \). Then w.h.p. \(d_i(t) \geq mt^{1/2}/\omega^{1/2} \) for \(i = 1, 2, \ldots, s \).

Proof. Corollary 18.5 and (18.13) implies that \(d_i(t) \succ D_i(t) / \omega \). Now apply Lemma 18.6. \(\square \)

18.2 Spatial Preferential Attachment

The Spatial Preferential Attachment (SPA) model, was introduced by Aiello, Bonato, Cooper, Janssen and Prałat in [8]. This model combines preferential attachment with geometry by introducing "spheres of influence" of vertices, whose volumes depend on their in-degrees.

We first fix parameters of the model. Let \(m \in \mathbb{N} \) be the dimension of space \(\mathbb{R}^m \), \(p \in [0, 1] \) be the link (arc) probability and fix two additional parameters \(A_1, A_2 \), where \(A_1 < 1/p \) while \(A_2 > 0 \). Let \(S \) be the unit hypercube in \(\mathbb{R}^m \), with the torus metric \(d(\cdot, \cdot) \) derived from the \(L^\infty \) metric. In particular, for any two points \(x \) and \(y \) in \(S \),

\[
d(x, y) = \min \{ ||x - y + u||_\infty : u \in \{-1, 0, 1\}^m \}. \tag{18.15}
\]

For each positive real number \(\alpha < 1 \), and \(u \in S \), define the ball around \(u \) with volume \(\alpha \) as

\[
B_\alpha(u) = \{ x \in S : d(u, x) \leq r_\alpha \},
\]

where \(r_\alpha = \alpha^{1/m}/2 \), so that \(r_\alpha \) is chosen such that \(B_\alpha \) has volume \(\alpha \).

The SPA model generates a stochastic sequence of directed graphs \(\{G_t\} \), where \(G_t = (V_t, E_t) \) and \(V_t \subset S \), i.e., all vertices are placed in the \(m \)-dimensional hypercube \(S = [0, 1]^m \).

Let \(\deg^{-}(v; t) \) be the in-degree of the vertex \(v \) in \(G_t \), and \(\deg^{+}(v; t) \) its out-degree. Then, the sphere of influence \(S(v; t) \) of the vertex \(v \) at time \(t \geq 1 \) is the ball centered at \(v \) with the following volume:

\[
|S(v, t)| = \min\left\{ \frac{A_1 \deg^{-}(v; t) + A_2}{t}, 1 \right\}. \tag{18.16}
\]
In order to construct a sequence of graphs we start at \(t = 0 \) with \(G_0 \) being the null graph. At each time step \(t \) we construct \(G_t \) from \(G_{t-1} \) by, first, choosing a new vertex \(v_t \) uniformly at random (uar) from the cube \(S \) and adding it to \(V_{t-1} \) to create \(V_t \). Then, independently, for each vertex \(u \in V_{t-1} \) such that \(v_t \in S(u,t-1) \), a directed link \((v_t,u)\) is created with probability \(p \). Thus, the probability that a link \((v_t,u)\) is added in time-step \(t \) equals \(p|S(u,t-1)| \).

Power law and vertex in-degrees

Theorem 18.8. Let \(N_{i,n} \) be the number of vertices of in-degree \(i \) in the SPA graph \(G_t \) at time \(t = n \), where \(n \geq 0 \) is an integer. Fix \(p \in (0,1] \). Then for any \(i \geq 0 \),

\[
\mathbb{E}(N_{i,n}) = (1 + o(1))c_in, \tag{18.17}
\]

where

\[
c_0 = \frac{1}{1 + pA_2}, \tag{18.18}
\]

and for \(1 \leq i \leq n \),

\[
c_i = \frac{p^i}{1 + pA_2 + ipA_1} \prod_{j=0}^{i-1} \frac{jA_1 + A_2}{1 + pA_2 +jpA_1}. \tag{18.19}
\]

In [8] a stronger result is proved which indicates that fraction \(N_{i,n}/n \) follows a power law. It is shown that for \(i = 0, 1, \ldots, i_f \), where \(i_f = (n/\log^8 n)pA_1/(4pA_1+2) \), w.h.p.

\[
N_{i,n} = (1 + o(1))c_in.
\]

Since, for some constant \(c \),

\[
c_i = (1 + o(1))c_i^{-1/(1/pA_1)},
\]

it shows that for large \(i \) the expected proportion \(N_{i,n}/n \) follows a power law with exponent \(1 + 1/pA_1 \), and concentration for all values of \(i \) up to \(i_f \).

To prove Theorem 18.8 we need the following result of Chung and Lu (see [191], Lemma 3.1) on real sequences

Lemma 18.9. If \(\{\alpha_t\}, \{\beta_t\} \) and \(\{\gamma_t\} \) are real sequences satisfying the relation

\[
\alpha_{t+1} = \left(1 - \frac{\beta_t}{t}\right) \alpha_t + \gamma_t.
\]

Furthermore, suppose \(\lim_{t \to \infty} \beta_t = \beta > 0 \) and \(\lim_{t \to \infty} \gamma_t = \gamma \). Then \(\lim_{t \to \infty} \frac{\alpha_t}{t} \) exists and

\[
\lim_{t \to \infty} \frac{\alpha_t}{t} = \frac{\gamma}{1 + \beta}.
\]
Proof of Theorem 18.8

The equations relating the random variables $N_{i,t}$ are described as follows. Since G_1 consists of one isolated node, $N_{0,1} = 1$, and $N_{i,1} = 0$ for $i > 0$. For all $t > 0$, we derive that

\[
\mathbb{E}(N_{0,t+1} - N_{0,t} | G_t) = 1 - pN_{0,t} \frac{A_2}{t},
\]

(18.20)

while

\[
\mathbb{E}(N_{i,t+1} - N_{i,t} | G_t) = pN_{i-1,t} \frac{A_1 i + A_2}{t} - pN_{i,t} \frac{A_1 (i-1) + A_2}{t}.
\]

(18.21)

Now applying Lemma 18.9 to (18.20) with

\[
\alpha_t = \mathbb{E}(N_{0,t}), \quad \beta_t = pA_2 \quad \text{and} \quad \gamma_t = 1,
\]

we get that

\[
\mathbb{E}(N_{0,t}) = c_0 + o(t),
\]

where c_0 as in (18.18).

For $i > 0$ Lemma 18.9 can be inductively applied with

\[
\alpha_t = \mathbb{E}(N_{i,t}), \quad \beta_t = p(A_1 i + A_2) \quad \text{and} \quad \gamma_t = \mathbb{E}(N_{i-1,t}) \frac{A_1 (i-1) + A_2}{t},
\]

to show that

\[
\mathbb{E}(N_{i,t}) = c_i + o(t),
\]

where

\[
c_i = p c_{i-1} \frac{A_1 (i-1) + A_2}{1 + p(A_1 i + A_2)}.
\]

One can easily verify that the expressions for c_0, and $c_i, i \geq 1$, given in (18.18) and (18.19), satisfy the respective recurrence relations derived above.

Knowing the expected in-degree of a node, given its age, can be used to analyze geometric properties of the SPA graph G_t. Let us note also that the result below for $i \gg 1$ was proved in [454] and extended to all $i \geq 1$ in [232]. As before, let v_i be the node added at time i.

Theorem 18.10. Suppose that $i = i(t) \gg 1$ as $t \to \infty$. Then,

\[
\mathbb{E}(\deg^{-}(v_i,t)) = (1 + o(1)) \frac{A_2}{A_1} \left(\frac{t}{i} \right)^{pA_1 - A_2}.
\]

(18.22)
\[\mathbb{E}(|S(v_i, t)|) = (1 + o(1))A_2 t^{pA_1 - 1} i^{-pA_1}. \]

Moreover, for all \(i \geq 1 \),
\[
\mathbb{E}(\deg^{-}(v_i, t)) \leq \frac{e A_2 \left(\frac{t}{i} \right)^{pA_1}}{A_1} - \frac{A_2}{A_1},
\]
\[\mathbb{E}(|S(v_i, t)|) \leq (1 + o(1))e A_2 t^{pA_1 - 1} i^{-pA_1}. \]

(18.23)

\[
\mathbb{E}(X(v_i, t + 1)) = \mathbb{E}(X(v_i, t)) \left(1 + \frac{pA_1}{t} \right).
\]

Proof. In order to simplify calculations, we make the following substitution:
\[
X(v_i, t) = \deg^{-}(v_i, t) + \frac{A_2}{A_1}.
\]

(18.24)

It follows from the definition of the process that
\[
X(v_i, t + 1) = \begin{cases}
X(v_i, t) + 1, & \text{with probability } \frac{pA_1 X(v_i, t)}{t} \\
X(v_i, t), & \text{otherwise.}
\end{cases}
\]

We then have,
\[
\mathbb{E}(X(v_i, t + 1) \mid X(v_i, t)) = (X(v_i, t) + 1) \frac{pA_1 X(v_i, t)}{t} + X(v_i, t) \left(1 - \frac{pA_1 X(v_i, t)}{t} \right)
= X(v_i, t) \left(1 + \frac{pA_1}{t} \right).
\]

Taking expectations over \(X(v_i, t) \), we get
\[
\mathbb{E}(X(v_i, t + 1)) = \mathbb{E}(X(v_i, t)) \left(1 + \frac{pA_1}{t} \right).
\]

Since all nodes start with in-degree zero, \(X(v_i, i) = \frac{A_2}{A_1} \). Note that, for \(0 < x < 1 \), \(\log(1 + x) = x - O(x^2) \). If \(i \gg 1 \), one can use this to get
\[
\mathbb{E}(X(v_i, t)) = A_2 \frac{t - 1}{A_1} \left(1 + \frac{pA_1}{j} \right) = (1 + o(1))A_2 \frac{A_2}{A_1} \exp \left(\frac{t - 1}{j} \right),
\]
and in all cases \(i \geq 1 \),
\[
\mathbb{E}(X(v_i, t)) \leq A_2 \frac{A_2}{A_1} \exp \left(\frac{t - 1}{j} \right).
\]
Therefore, when \(i \gg 1 \),
\[
\mathbb{E}(X(v_i, t)) = (1 + o(1)) \frac{A_2}{A_1} \exp \left(p A_1 \log \left(\frac{t}{i} \right) \right) = \left(1 + o(1) \right) \frac{A_2}{A_1} \left(\frac{t}{i} \right)^{p A_1},
\]
and (18.22) follows from (18.24) and (18.16). Moreover, for any \(i \geq 1 \)
\[
\mathbb{E}(X(v_i, t)) \leq \frac{A_2}{A_1} \exp \left(p A_1 \left(\log \left(\frac{t}{i} \right) + 1/i \right) \right) \leq e \frac{A_2}{A_1} \left(\frac{t}{i} \right)^{p A_1},
\]
and (18.23) follows from (18.24) and (18.16) as before, which completes the proof.

Directed diameter

Consider the graph \(G_t \) produced by the SPA model. For a given pair of vertices \(v_i, v_j \in V_t \) \((1 \leq i < j \leq t)\), let \(l(v_i, v_j) \) denote the length of the shortest directed path from \(v_j \) to \(v_i \) if such a path exists, and let \(l(v_i, v_j) = 0 \) otherwise. The directed diameter of a graph \(G_t \) is defined as
\[
D(G_t) = \max_{1 \leq i < j \leq t} l(v_i, v_j).
\]
We next prove the following upper bound on \(D(G_t) \) (see [232]):

Theorem 18.11. Consider the SPA model. There exists an absolute constant \(c_1 > 0 \) such that w.h.p.
\[
D(G_t) \leq c_1 \log t.
\]

Proof. Let \(C = 18 \max(A_2, 1) \). We prove that with probability \(1 - o(t^{-2}) \) we have that for any \(1 \leq i < j \leq t \), \(G_t \) does not contain a directed \((v_i, v_j)\)-path of length exceeding \(k^* = C \log t \). As there are at most \(t^2 \) pairs \(v_i, v_j \), Theorem 18.11 will follow.

In order to simplify the notation, we use \(v \) to denote the vertex added at step \(v \leq t \). Let \(vPu \) be a directed \((v, u)\)-path of length given by \(vPu = (v, t_{k-1}, t_{k-2}, \ldots, t_1, u) \), let \(t_0 = u, t_k = v \).

\[
\Pr(\text{vPu exists}) = \prod_{i=1}^{k} p \left(\frac{A_1 \deg^- (t_{i-1}, t_i) + A_2}{t_i} \right).
\]

Let \(N(v, u, k) \) be the number of directed \((v, u)\)-paths of length \(k \), then
\[
\mathbb{E}(N(v, u, k)) = \sum_{u < t_1 < \cdots < t_{k-1} < v} p^k \mathbb{E} \left(\prod_{i=1}^{k} \left(\frac{A_1 \deg^- (t_{i-1}, t_i) + A_2}{t_i} \right) \right).
\]
We first consider the case where u tends to infinity together with t. It follows from Theorem 18.10 that

$$
\mathbb{E}(\text{deg}-(t_{i-1}, t_i)) = (1 + o(1)) \frac{A_2}{A_1} \left(\frac{t_i}{t_{i-1}} \right)^{pA_1} - \frac{A_2}{A_1}.
$$

Thus

$$
\mathbb{E}(N(v, u, k)) = \sum_{u < t_1 < \ldots < t_{k-1} < v} p^k \prod_{i=1}^{k-1} \left(A_1 \mathbb{E}(\text{deg}-(t_{i-1}, t_i)) + A_2 \right)
$$

$$
= \sum_{u < t_1 < \ldots < t_{k-1} < v} (1 + o(1))^k (A_2 p)^k \prod_{i=1}^{k-1} \left(\frac{t_i}{t_{i-1}} \right)^{pA_1}
$$

$$
= (1 + o(1))^k (A_2 p)^k \frac{1}{u} \sum_{v < u < \ldots < t_{k-1} < v} \prod_{i=1}^{k-1} \frac{1}{t_i}.
$$

However

$$
\sum_{u < t_1 < \ldots < t_{k-1} < v} \prod_{i=1}^{k-1} \frac{1}{t_i} \leq \frac{1}{(k-1)!} \left(\sum_{u < s < v} \frac{1}{s} \right)^{k-1}
$$

$$
\leq \frac{1}{(k-1)!} \left(\log v/u + 1/u \right)^{k-1}
$$

$$
\leq \left(\frac{e (\log v/u + 1/u)}{k-1} \right)^{k-1}.
$$

Let $k^* = C \log t$, where $C = 18 \max(1, A_2)$. Assuming t sufficiently large, and recalling that $pA_1 < 1$, we have

$$
\sum_{k > k^*} \mathbb{E}(N(v, u, k)) \leq 2A_2 \sum_{k > k^*} \left((1 + o(1))A_2 p e (\log v/u + 1/u) \right)^{k-1}
$$

$$
\leq 2A_2 \left((1 + o(1))A_2 p e (\log v/u + 1/u) \right)^{k^*} \frac{1}{1 - 3A_2 / C} \quad (18.25)
$$

$$
= O(6^{-18 \log t}) \quad (18.26)
$$

$$
= o(t^{-4}).
$$

The result follows for u tending to infinity. In the case where u is a constant, it follows from Theorem 18.10 that a multiplicative correction of e can be used in $\mathbb{E}(\text{deg}-(t_{i-1}, t_i))$, leading to replacing e by e^2 in (18.25) and then 6 in (18.26) by 2, giving a bound of $O(2^{-18 \log t}) = o(t^{-4})$ as before. This finishes the proof of the theorem. □
18.3 Preferential Attachment with Deletion

In this section we consider models where edges or vertices are deleted as well as added as the process continues. Random vertex deletions were considered in Chung and Lu [190] and by Cooper, Frieze and Vera [236]. These papers show that power laws for the degree sequence persist, assuming that vertices arrive at a greater rate than vertices are deleted. The arguments are based on the analysis of equations like (18.1). This is complicated by the fact that the number of edges is now a random variable.

Random Edge Deletion

The model we consider here is as follows: suppose that $\alpha < 1$ is such that αm is an integer. Suppose that after adding vertex $t+1$ and its m incident edges, we randomly delete αm edges from the current graph. The effect of this is to replace (18.1) by

$$E(D_k(t+1)|G_t) = D_k(t) + m \left(\frac{(k-1)D_{k-1}(t)}{2m(1-\alpha)t} - \frac{kD_k(t)}{2m(1-\alpha)t} \right) + 1_{k=m} + \varepsilon(k,t).$$

Here the error $\varepsilon(k,t)$ has also to absorb the possibility that we delete an edge incident with $t+1$. This is $O(1/t)$ and so is negligible. Given this, we follow the subsequent analysis and obtain

$$\bar{D}_k(t) \approx \frac{2(1-\alpha)(1-\alpha)m+1}{k^3} t.$$

We repeat that random vertex deletion is more difficult to analyse. Deletion of a vertex results in the deletion of a random number of edges and we have to handle the distribution of the inverse of the number of edges.

Adversarial Vertex Deletion

One can also consider adversarial deletions as studied in Flaxman, Frieze and Vera [318] and this will be the topic of this section. We will consider the process \mathcal{P}, which generates a sequence of graphs $G_t = (V_t, E_t)$, for $t = 1, 2, \ldots, n$. It is follows the construction of G_t in Section 18.1 except that after each addition of a vertex, an adversary is allowed to delete a (possibly empty) set of vertices.
CHAPTER 18. REAL WORLD NETWORKS

Theorem 18.12. For any sufficiently small constant \(\delta \) there exists a sufficiently large constant \(m = m(\delta) \) and a constant \(\theta = \theta(\delta, m) \) such that w.h.p. \(G_n \) has a “giant” connected component with size at least \(\theta n \).

The proof of this is quite complicated, but it does illustrate some new ideas over and above what we have seen so far in this book.

In the theorem above, the constants are phrased to indicate the suspected relationship, although we do not attempt to optimize them. Our unoptimized calculations work for \(\delta \leq 1/50 \) and \(m \geq \delta^{-2} \times 10^8 \) and \(\theta = 1/30 \).

The proof of Theorem 18.12 is based on an idea developed by Bollobas and Riordan in [154]. There they couple the graph \(G_n \) with \(G(n, p) \), the Bernoulli random graph, which has vertex set \([n]\) and each pair of vertices appears as an edge independently with probability \(p \). We couple a carefully chosen induced subgraph of \(G_n \) with \(G(n', p) \).

To describe the induced subgraph in our coupling, we now make a few definitions. We say that a vertex \(v \) of \(G_t \) is good if it was created after time \(t/2 \) and the number of its original edges that remain undeleted exceeds \(m/6 \). By original edges of \(v \), we mean the \(m \) edges that were created when \(v \) was added. Let \(\Gamma_t \) denote the set of good vertices of \(G_t \) and \(\gamma_t = |\Gamma_t| \). We say that a vertex of \(G_t \) is bad if it is not good. Notice that once a vertex becomes bad it remains bad for the rest of the process. On the other hand, a vertex that was good at time \(t_1 \) can become bad at a later time \(t_2 \), simply because it was created at a time before \(t_2/2 \).

Let
\[
p = \frac{m}{1500n}
\]
and let \(\sim \) denote “has the same distribution as”.

Theorem 18.13. For any sufficiently small constant \(\delta \) there exists a sufficiently large constant \(m = m(\delta) \) such that we can couple the construction of \(G_n \) and a random graph \(H_n \), with vertex set \(\Gamma_n \), such that \(H_n \sim G(\gamma_n, p) \) and w.h.p. \(|E(H_n)\setminus E(G_n)| \leq 10^{-3} e^{-\delta^2 m/10^7 mn} \).

In Section 18.3 we prove Theorem 18.13. In Section 18.3 we prove a lower bound on the number of good vertices, a key ingredient for the proof of Theorem 18.12, given in section 18.3.

Proof of Theorem 18.12.

We will prove the following two lemmas in Section 18.3.

Lemma 18.14. Let \(G \) obtained by deleting fewer than \(n/100 \) edges from a realization of \(G_{n,c/n} \). If \(c \geq 10 \) then w.h.p. \(G \) has a component of size at least \(n/3 \).
Lemma 18.15. W.h.p., for all t with $n/2 < t \leq n$ we have $\gamma_t \geq t/10$.

With these lemmas, the proof of Theorem 18.12 is only a few lines:

Let $G = G_n$ and $H = G(\gamma_n, p)$ be the graphs constructed in Theorem 18.13. Let $G' = G \cap H$. Then $E(H) \setminus E(G') = E(H) \setminus E(G)$ and so w.h.p. $|E(H) \setminus E(G')| \leq 10^{-3} e^{-\delta^2 m/10^7} mn$. By Lemma 18.15, $|G'| = \gamma_n \geq n/10$ w.h.p. Since m is large enough, $p = m/1500 n > 10/\gamma_n$ and $10^{-3} e^{-\delta^2 m/10^7} mn < n/1000 \leq \gamma_n/100$. Then, by Lemma 18.14, w.h.p. G' (and therefore G) has a component of size at least $|G'|/3 \geq n/30$. \hfill \Box

We construct $G[k] \sim G_k$ and $H[k] \sim G(\gamma_k, p)$ for $k \geq n/2$ inductively. $G[k]$ will be constructed by following the definition of the preferential attachment process \mathcal{P} and $H[k]$ will be constructed by coupling its construction with the construction of $G[k]$.

For $k \leq n/2$, we only make the size of $H[k]$ correct and do not try to make the edge structure look like $G[k]$. Thus we just take $H[n/2]$ to be an independent copy of $G(\gamma_{n/2}, p)$ with vertex set $\Gamma_{n/2}$.

For $k > n/2$, having constructed $G[k]$ and $H[k]$ with $G[k] \sim G_k$ and $H[k] \sim G(\gamma_k, p)$, we construct $G[k + 1]$ and $H[k + 1]$ as follows: Let $G[k] = (V_k, E_k)$, and let $\nu_k = |V_k|$, $\eta_k = |E_k|$ and recall that the number of good vertices is denoted $\gamma_k = |\Gamma_k|$. If $\gamma_k < k/10$ then we call this a failure of type 0 and generate $G[n]$ and $H[n]$ independently. (By Lemma 18.15 the probability of occurrence of this event is $o(1)$.)

Otherwise we have $\gamma_k \geq k/10$. In this case, to construct $G[k + 1]$ process \mathcal{P} adds vertex x_{k+1} to $G[k]$ and links it to vertices $t_1, \ldots, t_m \in V_k$ chosen according to the preferential attachment rule. To construct $H[k + 1]$, let $\{t_1, \ldots, t_r\} = \{t_1, \ldots, t_m\} \cap \Gamma_k$ be the subset of selected vertices that are good at time k. Let $\epsilon_0 = 1/120$.

If r, the number of good vertices selected, is less than $(1 - \delta)\epsilon_0 m$ then we call this a type 1 failure and generate $H[k + 1]$ by joining x_{k+1} to each vertex in $H[k]$ independently with probability p.

Since the number of good vertices $|\Gamma_k| = \gamma_k \geq k/10$ and any $v \in \Gamma_k$ is still incident to at least $m/6$ of its original edges and $\eta_k \leq mk$, we have

$$\Pr(t_i \in \Gamma_k) = \sum_{v \in \Gamma_k} \frac{\deg_{G[k]}(v)}{2\eta_k} \geq \frac{k m}{10} \frac{1}{2mk} = \epsilon_0.$$

So, by comparing r with a Binomial random variable, we obtain an exponential upper bound on the probability of a type 1 failure:

$$\Pr(r \leq m \epsilon_0 (1 - \delta/2)) \leq \Pr(\Bin(m, \epsilon_0) \leq (1 - \delta/2)m \epsilon_0)$$
\[\leq e^{-\delta^2 \varepsilon_0 m/8} = e^{-\delta^2 m/960}. \]

Now for every \(i = 1, \ldots, m \) and for every \(v \in \Gamma_k \),

\[\Pr(t_i = v) = \frac{\deg_{\Gamma_k}(v)}{2m} \geq \frac{m}{12mk} = \frac{1}{12k} \]

Let \(\perp \) be a new symbol. For each \(i = 1, \ldots, r \) we choose \(s_i \in \Gamma_k \cup \{ \perp \} \) such that for each \(v \in \Gamma_k \) we have \(\Pr(s_i = v) = \frac{1}{12k} \). We couple the selection of the \(s_i \)'s with the selection of the \(t_i \)'s such that if \(s_i \neq \perp \) then \(s_i = t_i \). Let \(S = \{ s_i : i = 1, \ldots, r \} \setminus \{ \perp \} \) and \(X = |S| \). Let \(Y \sim \text{Bin}(\gamma_k, p) \). If \(r \geq m \varepsilon_0 (1 - \delta / 2) \) then

\[\mathbb{E}(X) \geq r \frac{\gamma_k}{12k} - \binom{m}{2} \frac{1}{\gamma_k} \geq (1 - \delta / 2) \varepsilon_0 m \frac{\gamma_k}{12n} - \frac{200m^2}{n} \]

\[\geq (1 + \delta) \gamma_k p = (1 + \delta) \mathbb{E}(Y). \]

Since \(\mathbb{E}(X) \geq (1 + \delta) \mathbb{E}(Y) \), the probability that \((1 + \delta / 2)Y > X \) is at most the probability that \(X \) or \(Y \) deviates from its mean by a factor of \(\delta / 5 \). And, since

\[\mathbb{E}(X) \geq \mathbb{E}(Y) = \gamma_k p \geq \frac{k}{10} \frac{m}{1500n} \geq \frac{m}{30000}. \]

By Chernoff’s bound, \(\Pr(Y \geq (1 + \delta / 5) \mathbb{E}[Y]) \) is at most \(e^{-\delta^2 m / 10^7} \).

It follows from Azuma’s inequality that for any \(u > 0 \), \(\Pr(|X - \mathbb{E}(X)| > u) \leq e^{-u^2/(2r)} \). This is because \(X \) is determined by \(r \) independent trials and changing the outcome of a single trial can only change \(X \) by at most 1. Putting \(u = \delta \mathbb{E}(X) / 5 \) we get

\[\Pr(X \leq (1 - \delta / 5) \mathbb{E}(X)) \leq e^{-\delta^2 r / 50} \leq e^{-\delta^2 m / 12000}. \]

We say we have a type 2 failure if \(Y > X \), so we have a type 2 failure with probability at most \(2e^{-\delta^2 m / 10^7} \). In which case we generate \(H[k + 1] \) by joining \(x_{k+1} \) to each vertex in \(H[k] \) independently with probability \(p \).

Conditioning on \(X \), the \(s_i \)'s form a subset \(S \) of \(\Gamma_k \) of size \(X \) chosen uniformly at random from all of these subsets. We choose \(S_1 \) uniformly at random between all the subsets of \(\Gamma_k \) of size \(Y \), coupling the selection of \(S_1 \) to the selection of \(S \) such that \(S_1 \subseteq S \) when \(Y \leq X \). Now, to generate \(H[k + 1] \), we join \(x_{k+1} \) to every vertex in \(S_1 \) (deterministically).

After the adversary deletes a (possible empty) set of vertices in \(G[k] \), we delete all the vertices \(H[k] \) that don’t belong to \(\Gamma_{k+1} \), possibly including \(x_{(k+1)/2} \), simply because of its age.

For \(k \geq n/2 \) this process yields an \(H[k] \) with vertex set \(\Gamma_k \) and identically distributed with \(G(\gamma_k, p) \), so we have \(H[n] \sim G(\gamma_n, p) \).
We call an edge e in $H[n]$ misplaced if e is not an edge of $G[n]$. We are interested in bounding the number of misplaced edges. Misplaced edges can only be created when we have a failure. The probability of having a type 1 or 2 failure at step k is at most $3e^{-\delta^2m/10^7}$. Let M_k denote the number of misplaced edges created between good vertices when we have a failure of type 1 or 2 at step k. Then M_k is stochastically smaller than $Y_k \sim \text{Bin}(\gamma_k, p)$ and thus stochastically dominated by $Z_k \sim \text{Bin}(n, p)$, a binomial random variable with $\mathbb{E}[Z_k] = np = m/1500$.

Let M denote the total number of misplaced edges at time n. Let θ_k be the indicator for an error of type 1 or 2 at step k. Thus,

$$M \leq \sum_{k=n/2}^{n} M_k \leq \sum_{k=n/2}^{n} Z_k \theta_k.$$

Note that Z_k is independent of θ_k and $\mathbb{P}(\theta_k = 1) \leq \rho = 3e^{-\delta^2m/10^7}$, regardless of the value of $\theta_{k'}$, $k' \neq k$. Thus M is stochastically dominated by

$$M^* = \sum_{k=n/2}^{n} Z_k \zeta_k$$

where the ζ_k are independent Bernoulli random variables with $\mathbb{P}(\zeta_k = 1) = \rho$.

$$\mathbb{E}(M^*) \leq \sum_{k=n/2}^{n} 3e^{-\delta^2m/10^7} m/1500 = \frac{\rho mn}{3000}.$$

and

$$\mathbb{P}(M^* > \frac{(1 + \delta)\rho mn}{3000}) \leq \mathbb{P}(M^* > \frac{(1 + \delta)\rho mn}{3000} \mid \sum_{k=n/2}^{n} \zeta_k \leq \frac{n}{2} \rho \left(1 + \frac{\delta}{3}\right)) + \mathbb{P}(\sum_{k=n/2}^{n} \zeta_k > \frac{n}{2} \rho \left(1 + \frac{\delta}{3}\right))$$

$$\leq \mathbb{P}(\text{Bin}\left(\frac{n^2}{2} \rho \left(1 + \frac{\delta}{3}\right), p\right) > \left(1 + \frac{\delta}{3}\right)^2 \frac{n^2}{2} \rho p) + \mathbb{P}(\text{Bin}\left(\frac{n}{2} \rho \left(1 + \frac{\delta}{3}\right), p\right) > \frac{n}{2} \rho \left(1 + \frac{\delta}{3}\right))$$

$$\leq \exp\left(-\frac{\delta^2 n^2 \rho \left(1 + \frac{\delta}{3}\right)}{54}\right) + \exp\left(-\frac{n \rho \delta^2}{54}\right)$$

$$= \exp\left(-\frac{\delta^2 n m \rho \left(1 + \frac{\delta}{3}\right)}{90000}\right) + \exp\left(-\frac{n \rho \delta^2}{54}\right)$$

$$\leq \exp\left(-10^{-5} \delta^2 \left(1 + \frac{\delta}{3}\right) n m \rho\right).$$
Bounding the number of good vertices: Proof of Lemma 18.15.

We now prove Lemma 18.15, which is restated here for convenience.

Lemma 18.16. W.h.p., for all \(t \) with \(n/2 < t \leq n \) we have \(\gamma_t \geq t/10 \).

Proof. Let \(z_t \) denote the total number of edges created after time \(t/2 \) that have been deleted by the adversary, up to time \(t \). Let \(v'_t \) and \(\eta'_t \) be the number of vertices and edges respectively in \(G_t \) that were created after time \(t/2 \). Notice that \(\eta'_t = mt/2 - z_t \) and \(v'_t \leq t/2 \). Also, since each vertex contributes at most \(m \) edges, and bad vertices (not in \(\Gamma_t \)) contribute at most \(m/6 \) edges, we have \(\eta'_t \leq m\gamma_t + m(v'_t - \gamma_t)/6 \). So

\[
\gamma_t \geq \frac{6\eta'_t - mv'_t}{5m} \geq \frac{3mt - 6z_t - mt/2}{5m} = \frac{t}{2} - \frac{6z_t}{5m}.
\]

So if \(z_t \leq mt/3 \) then \(\gamma_t \geq t/10 \). Thus, to prove the lemma, it is sufficient to show that

\[
\Pr\left(z_t \geq \frac{mt}{3} \right) \leq e^{-\delta^2 mn/10}.
\]

(18.29)

To show that inequality (18.29) holds, we will compare our process with another process \(\mathcal{P}^* \) in which the adversary deletes no vertices until time \(t \) and then deletes the same set of vertices as in \(\mathcal{P} \).

Fix \(t \geq n/2 \). We begin by showing that we can couple the \(\mathcal{P} \) and \(\mathcal{P}^* \) in such way that for

\[
t_0 = 1000\delta n,
\]

\[
\Pr(\mathcal{Z}_t(\mathcal{P}) \geq \mathcal{Z}_t(\mathcal{P}^*) + mt_0) = O\left(ne^{-\delta^2 mn/7}\right).
\]

(18.30)

(The reason for this choice of \(t_0 \) is inequality (18.32) in Lemma 18.17).

Generate \(G_s \) for \(s = 1, \ldots, t \) by process \(\mathcal{P} \). Let \(D_1, D_2, \ldots \) be the sequence of vertex sets deleted by the adversary in this realization of \(\mathcal{P} \). Let \(D = \bigcup_{\tau=1}^{t} D_\tau \) denote the set of vertices deleted by the adversary by time \(t \).

We define \(G^*_s \) inductively. To begin, generate \(G^*_{t_0} \) according to preferential attachment (with no adversary). For every \(s \) with \(t_0 \leq s < t \) let \(G_s = (V_s, E_s) \) and \(G^*_s = (V^*_s, E^*_s) \). Define \(X_s = E^*_s \setminus E_s \), the set of edges that have been deleted by the adversary’s moves.

Selecting a vertex by preferential attachment is equivalent to choosing an edge uniformly at random and then randomly selecting one of the end points of the edge. So we can view the transition from \(G_s \) to \(G_{s+1} \) as adding \(x_{s+1} \) to \(G_s \), choosing \(m \) edges \(e_1, \ldots, e_m \) (here with replacement), and for each \(i \), selecting a random endpoint \(y_i \) of \(e_i \) and adding an edge between \(x_{s+1} \) and \(y_i \).

To construct \(G^*_{s+1} \), we first add \(x_{s+1} \) to \(G^*_s \). To choose \(y^*_1, \ldots, y^*_m \) we apply the following procedure, for each \(i \):
• With probability $1 - \left| X_s \right| / (ms)$ we set $e^*_i = e_i$ and $y^*_i = y_i$

• With probability $\left| X_s \right| / (ms)$, we choose e^*_i uniformly at random from X_s. Notice that e^*_i has already been deleted from G_s by the adversary and therefore it is incident to at least one deleted vertex, $v_i \in D$. Now, we randomly choose y^*_i from the two end points of e^*_i. If the total degree T_s of the vertices $V_s \cap D$ that \mathcal{P} will delete in the future is at most $ms/2$ then $Pr(y_i \in D) \leq 1/2$ and we can couple the (random) decisions in such way that if y_i is going to be deleted by time t then $y^*_i = v_i$. Otherwise we say we have a failure and choose y^*_i independently of y_i.

In the coupling, after time t_0 and before the first failure, an edge incident with x_{s+1} and destined for deletion in \mathcal{P} is matched with an edge incident with x_{s+1} and destined for deletion in \mathcal{P}^*. So, until the first failure, T_s is bounded by T^*_s, the corresponding total degree of $V_s \cap D$ in G^*_s. In Lemma 18.17 below, we prove that

$$Pr(T^*_s > sm/2) = O\left(e^{-\delta^2 mn/6}\right)$$

and therefore the probability of having a failure is $O\left(ne^{-\delta^2 mn/6}\right) = O\left(e^{-\delta^2 mn/7}\right)$.

To repeat, if there is no failure and if e_i is deleted in \mathcal{P} before time t we have two possibilities: x_{s+1} is deleted or y_i is deleted. In either case, x_{s+1} or y^*_i will be deleted by time t in \mathcal{P}^* and therefore e^*_i will be deleted, and Equation (18.30) follows.

We will show that

$$Pr\left(z_t(\mathcal{P}^*) \geq \frac{mt}{4}\right) \leq O\left(e^{-\delta^2 mn}\right), \quad (18.31)$$

and then Inequality (18.29) follows from Equation (18.30).

To prove Inequality (18.31) let s be such that $t/2 \leq s \leq t$ and $x_s \not\in D$. We want to upper bound the probability in the process \mathcal{P}^* that an edge created at time s chooses its end point in D. For $i = 1, \ldots, m$,

$$Pr(y^*_i \in D \mid T^*_s) = \frac{T^*_s}{2ms}.$$

By Lemma 18.17 (below), we have $Pr(T^*_s \geq mt/2) \leq O(e^{-\delta^2 mn})$ so

$$Pr(y^*_i \in D) \leq \frac{1}{4} + o(1).$$

Therefore $z_t(\mathcal{P}^*)$ is stochastically dominated by $\text{Bin}\left(\frac{mt}{2}, \frac{1}{4} + o(1)\right)$. Inequality (18.31) now follows from Chernoff’s bound. This completes the proof of Lemma 18.16. \qed
Lemma 18.17. Let \(A \subset \{x_1, \ldots, x_t\} \), with \(|A| \leq \delta n \). Let \(t \geq 1000\delta n \) and let \(G_t \) be a graph generated by preferential attachment (i.e. the process \(\mathcal{P} \), but without an adversary). Let \(T_A \) denote the total degree of the vertices in \(A \). Then

\[
\Pr(\exists A: T_A \geq mt/2) = O\left(e^{-\delta^3 nm}\right).
\]

Proof. Let \(A' = \{x_1, \ldots, x_{\delta n}\} \) be the set of the oldest \(\delta n \) vertices. We can couple the construction of \(G_t \) with \(G'_t \), another graph generated by preferential attachment, such that \(T_{A'} \geq T_A \). Therefore \(\Pr(T_A \geq mt) \leq \Pr(T_{A'} \geq mt) \), and we can assume \(A = A' \).

Now we consider the process \(\mathcal{P} \) in \(\delta^{-1} \) rounds, Each round consisting of \(\delta n \) steps. Let \(T_i \) be the total degree of \(A \) at the end of the \(i \)th round. Notice that \(T_1 = 2\delta mn \) and \(T_2 \leq 3\delta mn \). For \(i \geq 2 \), fix \(s \) with \(i\delta n < s \leq (i + 1)\delta n \). Then the probability that \(x_s \) chooses a vertex in \(A \) is at most \(\frac{T_{i+1} + \delta mn}{2i\delta mn} \). So given \(T_i \), the difference \(T_{i+1} - T_i \) is stochastically dominated by \(Y_i \sim \text{Bin}\left(\delta mn, \frac{T_i + \delta mn}{2i\delta mn}\right) \).

Therefore, for \(i \geq 2 \),

\[
\Pr(T_{i+1} \geq 3i^{2/3} \delta mn \mid T_i \leq 3(i - 1)^{2/3} \delta mn) + \Pr(T_i \geq 3(i - 1)^{2/3} \delta mn)
\leq \Pr(T_{i+1} \geq 3i^{2/3} \delta mn \mid T_i = 3(i - 1)^{2/3} \delta mn)
\leq \Pr(T_i \geq 3(i - 1)^{2/3} \delta mn).
\]

Now, for \(i \geq 2 \), we have \(3(i^{2/3} - (i - 1)^{2/3}) \leq 2i^{-1/3} \) and then

\[
\Pr(T_{i+1} \geq 3i^{2/3} \delta mn \mid T_i = 3(i - 1)^{2/3} \delta mn)
\leq \Pr(Y_i \geq 2i^{-1/3} \delta mn \mid T_i = 3(i - 1)^{2/3} \delta mn)
\leq \Pr(Y_i \geq 2i^{-1/3} \delta mn \mid T_i = 3(i - 1)^{2/3} \delta mn).
\]

As \(Y_i \sim \text{Bin}\left(\delta mn, \frac{T_i + \delta mn}{2i\delta mn}\right) \),

\[
\mathbb{E}[Y_i \mid T_i = 3(i - 1)^{2/3} \delta mn] = \left(\frac{3(i - 1)^{2/3} + 1}{2i}\right) \delta mn \leq \frac{4}{3}i^{-1/3} \delta mn.
\]

Since and \(i \leq \delta^{-1} \), by Chernoff’s bound we have

\[
\Pr(T_{i+1} \geq 3i^{2/3} \delta mn \mid T_i = 3(i - 1)^{2/3} \delta mn) \leq e^{-\delta^{4/3} mn/9}.
\]

Hence, for any \(k \leq \delta^{-1} \),

\[
\Pr(T_k > 3(k - 1)^{2/3} \delta mn) \leq \sum_{i=2}^{k-2} e^{-\delta^{4/3} mn/9} \leq e^{-2\delta^2 mn}.
\]
Now, if \(t \geq t_0 \) then
\[
k = \left\lfloor \frac{t}{\delta n} \right\rfloor \geq 10^3
\]
and so
\[
3(k - 1)^{2/3} \delta mn \leq tm/2.
\]
Thus
\[
\Pr(T_t \geq tm/2) \leq e^{-2\delta^2 mn}.
\]
We inflate the above by \(\left(\frac{n}{\delta n} \right) \) to get the bound in the lemma.

Proof of Lemma 18.14 If after deleting \(n/100 \) edges the maximum component size is at most \(n/3 \) then \(G_{n,c/n} \) contains a set \(S \) of size \(n/3 \leq s \leq n/2 \) such that there are at most \(n/100 \) edges joining \(S \) to \(V \setminus S \). The expected number of edges across this cut is \(s(n - s)c/n \) so when \(1 - \varepsilon = \frac{9}{200} \) we have \(n/100 \leq (1 - \varepsilon)s(n - s)c/n \) and by applying the union bound and Chernoff’s bound we have
\[
\Pr(\exists S) \leq \sum_{s=n/3}^{n/2} \left(\frac{n}{s} \right) e^{-(n-s)c/(2n)}
\]
\[
\leq \sum_{s=n/3}^{n/2} \left(ne^{-2(n-s)c/(2n)} \right)^s
\]
\[
= o(1).
\]

18.4 Bootstrap Percolation

This is a simplified mathematical model of the spread of a disease through a graph/network \(G = (V, E) \). Initially a set \(A_0 \) of vertices are considered to be infected. This is considered to be round 0. Then in round \(t > 0 \) any vertex that has at least \(r \) neighbors in \(A_{t-1} \) will become infected. No-one recovers in this model. The main question is as to how many vertices eventually end up getting infected. There is a large literature on this subject with a variety of graphs \(G \) and ways of defining \(A_0 \). Here we will assume that each vertex \(s \) is placed in \(A_0 \) with probability \(p \), independent of other vertices. The proof of the following theorem relies on the fact that with high probability all of the early vertices of \(G_t \) become infected during the first round. Subsequently, the connectivity of the random graph is enough to spread the infection to the remaining vertices. The following is a simplified version of Theorem 1 of Abdulla and Fountoulakis [1].
Theorem 18.18. If \(r \leq m \) and \(\omega = \log^2 t \) and \(p \geq \omega t^{-1/2} \) then w.h.p. all vertices in \(G_t \) get infected.

Proof. Given Theorem 18.7 we can assume that \(d_s(t) \geq mt^{1/2}/\omega^{1/2} \) for \(1 \leq s \leq m \). In which case, the probability that vertex \(s \leq m \) is not infected in round 1 is at most

\[
\sum_{i=1}^{m-1} \left(\frac{mt^{1/2}/\omega^{1/2}}{i} \right) p^i (1 - p)^{mt^{1/2}/\omega^{1/2} - i} \leq \sum_{i=1}^{m-1} \omega^{i/2} e^{-\omega(1-o(1))m\omega^{1/2}} = o(1).
\]

So, w.h.p. \(1, 2, \ldots, m \) are infected in round 1. After this we use induction and the fact that every vertex \(i > s \) has \(m \) neighbors \(j < i \).

\qed

18.5 A General Model of Web Graphs

In the model presented in the previous section a new vertex is added at time \(t \) and this vertex chooses \(m \) random neighbors, with probability proportional to their current degree. Cooper and Frieze [219] generalise this in the following ways: they allow (a) new edges to be inserted between existing vertices, (b) a variable number of edges to be added at each step and (c) endpoint vertices to be chosen by a mixture of uniform selection and copying. This results in a large number of parameters, which will be described below. We first give a precise description of the process.

Initially, at step \(t = 0 \), there is a single vertex \(v_0 \). At any step \(t = 1, 2, \ldots, T, \ldots, \) there is a birth process in which either new vertices or new edges are added. Specifically, either a procedure \(\text{NEW} \) is followed with probability \(1 - \alpha \), or a procedure \(\text{OLD} \) is followed with probability \(\alpha \). In procedure \(\text{NEW} \), a new vertex \(v \) is added to \(G_{t-1} \) with one or more edges added between \(v \) and \(G_{t-1} \). In procedure \(\text{OLD} \), an existing vertex \(v \) is selected and extra edges are added at \(v \).

The recipe for adding edges at step \(t \) typically permits the choice of initial vertex \(v \) (in the case of \(\text{OLD} \)) and of terminal vertices (in both cases) to be made from \(G_{t-1} \) either u.a.r (uniformly at random) or according to vertex degree, or a mixture of these two based on further sampling. The number of edges added to vertex \(v \) at step \(t \) by the procedures (\(\text{NEW}, \text{OLD} \)) is given by distributions specific to the procedure.

Notice that the edges have an intrinsic direction, arising from the way they are inserted, which one can ignore or not. Here the undirected model is considered with a sampling procedure based on vertex degree. The process allows multiple edges, and self-loops can arise from the \(\text{OLD} \) procedure. The \(\text{NEW} \) procedure, as described, does not generate self-loops, although this could easily be modified.
Sampling parameters, notation and main properties

Our undirected model G_t has sampling parameters $\alpha, \beta, \gamma, \delta, p, q$ whose meaning is given below:

Choice of procedure at step t.

α: Probability that an OLD vertex generates edges.

$1 - \alpha$: Probability that a NEW vertex is created.

Procedure NEW

$p = (p_i : i \geq 1)$: Probability that the new node generates i new edges.

β: Probability that choices of terminal vertices are made uniformly.

$1 - \beta$: Probability that choices of terminal vertices are made according to degree.

Procedure OLD

$q = (q_i : i \geq 1)$: Probability that the old node generates i new edges.

δ: Probability that the initial node is selected uniformly.

$1 - \delta$: Probability that the initial node is selected according to degree.

γ: Probability that choices of terminal vertices are made uniformly.

$1 - \gamma$: Probability that choices of terminal vertices are made according to degree.

The models require $\alpha < 1$ and $p_0 = q_0 = 0$. It is convenient to assume a finiteness condition for the distributions $\{p_j\}, \{q_j\}$. This means that there exist j_0, j_1 such that $p_j = 0$, $j > j_0$ and $q_j = 0$, $j > j_1$. Imposing the finiteness condition helps simplify the difference equations used in the analysis.

The model creates edges in the following way: An initial vertex v is selected. If the terminal vertex w is chosen u.a.r, we say v is assigned uniformly to w. If the terminal vertex w is chosen according to its vertex degree, we say v is copied to w. In either case the edge has an intrinsic direction (v, w), which we may choose to ignore. Note that sampling according to vertex degree is equivalent to selecting an edge u.a.r and then selecting an endpoint u.a.r.

Let

$$\mu_p = \sum_{j=1}^{j_0} j p_j, \quad \mu_q = \sum_{j=1}^{j_1} j q_j$$

be the expected number of edges added by NEW or OLD and let

$$\theta = 2((1 - \alpha)\mu_p + \alpha \mu_q).$$

To simplify subsequent notation, we introduce new parameters as follows:

$$a = 1 + \frac{\alpha \gamma \mu_q}{1 - \alpha} + \frac{\alpha \delta}{1 - \alpha},$$

$$b = \frac{(1 - \alpha)(1 - \beta)\mu_p}{\theta} + \frac{\alpha(1 - \gamma)\mu_q}{\theta} + \frac{\alpha(1 - \delta)}{\theta},$$
\[c = \beta \mu_p + \frac{\alpha \gamma \mu_q}{1 - \alpha}, \]
\[d = \frac{(1 - \alpha)(1 - \beta)\mu_p + \alpha(1 - \gamma)\mu_q}{\theta}, \]
\[e = \frac{\alpha \delta}{1 - \alpha}, \]
\[f = \frac{\alpha(1 - \delta)}{\theta}. \]

We note that
\[c + e = a - 1 \quad \text{and} \quad b = d + f. \] (18.33)

Now define the sequence \((d_0, d_1, \ldots, d_k, \ldots) \) by \(d_0 = 0 \), and for \(k \geq 1 \)
\[d_k(a + bk) = (1 - \alpha)p_k + (c + d(k - 1))d_{k-1} + \sum_{j=1}^{k-1} (e + f(k-j))q_j d_{k-j}. \] (18.34)

For convenience we define \(d_k = 0 \) for \(k < 0 \). Since \(a \geq 1 \), this system of equations has a unique solution.

The main quantity we study is the random variable \(D_k(t) \), the number of vertices of degree \(k \) at step \(t \). Cooper and Frieze [219] prove that, as \(t \to \infty \), for small \(k \), \(D_k(t) \approx dt_k \).

Theorem 18.19. There exists a constant \(M > 0 \) such that almost surely for all \(t, k \geq 1 \)
\[|\mathcal{D}_k(t) - td_k| \leq Mt^{1/2} \log t. \]

This will be proved in Section 18.5.

It is shown in (18.35), that the number of vertices \(v(t) \) at step \(t \) is w.h.p. asymptotic to \((1 - \alpha)t\). It follows that the proportion of vertices of degree \(k \) is w.h.p. asymptotic to
\[\bar{d}_k = \frac{d_k}{1 - \alpha}. \]

The next theorem summarises what is known about the sequence \((d_k) \) defined by (18.34).

Theorem 18.20. There exist constants \(C_1, C_2, C_3, C_4 > 0 \) such that
\begin{enumerate}
 \item \(C_1 k^{-\zeta} \leq d_k \leq C_2 \min\{k^{-1}, k^{-\zeta/j}\} \) where \(\zeta = (1 + d + f \mu_q)/(d + f) \).
 \item If \(j_1 = 1 \) then \(d_k \approx C_3 k^{-(1+1/(d+f))} \).
 \item If \(f = 0 \) then \(d_k \approx C_4 k^{-(1+1/d)} \).
\end{enumerate}
Evolution of the degree sequence of G_t

Let $v(t) = |V(t)|$ be the number of vertices and let $\eta(t) = |2E(t)|$ be the total degree of the graph at the end of step t. $E v(t) = (1 - \alpha) t$ and $E \eta(t) = \theta t$. The random variables $v(t)$, $\eta(t)$ are sharply concentrated provided $t \to \infty$. Indeed $v(t)$ has distribution $\text{Bin}(t, 1 - \alpha)$ and so by Theorem 22.6 and its corollaries,

$$\mathbb{P}(|v(t) - (1 - \alpha) t| \geq t^{1/2} \log t) = O(t^{-K}) \quad (18.35)$$

for any constant $K > 0$.

Similarly, $\eta(t)$ has expectation θt and is the sum of t independent random variables, each bounded by $\max\{j_0, j_1\}$. Hence, by Theorem 22.6 and its corollaries,

$$\mathbb{P}(|\eta(t) - \theta t| \geq t^{1/2} \log t) = O(t^{-K}) \quad (18.36)$$

for any constant $K > 0$.

These results are almost sure in the sense that they hold for all $t \geq t_0$ with probability $1 - O(t_0^{-K+1})$. Thus we can focus on processes such that this is true.

We remind the reader that $D_k(t)$ is the number of vertices of degree k at step t and that $\overline{D}_k(t)$ is its expectation. Here $\overline{D}_j(t) = 0$ for all $j \leq 0$, $\overline{D}_t(0) = 1$, $\overline{D}_k(0) = 0$, $k \geq 2$.

Using (18.35) and (18.36) we see that

$$
\overline{D}_k(t + 1) = \overline{D}_k(t) + (1 - \alpha) p_k + O(t^{-1/2} \log t)
\quad (18.37)
$$

$$
+ (1 - \alpha) \sum_{j=1}^{j_0} p_j \left(\beta \left(\frac{j \overline{D}_{k-1}(t)}{(1 - \alpha) t} - \frac{j \overline{D}_k(t)}{(1 - \alpha) t} \right)
\quad (18.38)
$$

$$
- \alpha \left(\delta \overline{D}_k(t) \right) + \left(1 - \delta \right) k \overline{D}_k(t) \right)
\quad \left(\frac{(k - 1) \overline{D}_{k-1}(t)}{\theta t} - \frac{k \overline{D}_k(t)}{\theta t} \right)
\quad (18.39)
$$

$$
+ \alpha \sum_{j=1}^{j_1} q_j \left(\delta \overline{D}_{k-j}(t) \right) + \left(1 - \delta \right) (j - k) \overline{D}_{k-j}(t) \right)
\quad \left(\frac{(k - 1) \overline{D}_{k-1}(t)}{\theta t} - \frac{k \overline{D}_k(t)}{\theta t} \right)
\quad (18.40)
$$

Here (18.38), (18.39), (18.40) are (respectively) the main terms of the change in the expected number of vertices of degree k due to the effect on: terminal vertices
in NEW, the initial vertex in OLD and the terminal vertices in OLD. Rearranging the right hand side, we find:

$$D_k(t + 1) = D_k(t) + (1 - \alpha)p_k + O(t^{-1/2} \log t)$$

$$- \frac{D_k(t)}{t} \left(\beta \mu_p + \frac{\alpha \gamma \mu_q}{1 - \alpha} + \frac{\alpha \delta}{1 - \alpha} + \frac{(1 - \alpha)(1 - \beta)\mu_p k}{\theta} + \frac{\alpha(1 - \gamma)\mu_q k}{\theta} + \frac{\alpha(1 - \delta)k}{\theta} \right)$$

$$+ \frac{D_{k-1}(t)}{t} \left(\beta \mu_p + \frac{\alpha \gamma \mu_q}{1 - \alpha} + \frac{(1 - \alpha)(1 - \beta)\mu_p (k-1)}{\theta} + \frac{\alpha(1 - \gamma)\mu_q (k-1)}{\theta} \right)$$

$$+ \sum_{j=1}^{\beta} q_j \frac{D_{k-j}(t)}{t} \left(\frac{\alpha \delta}{1 - \alpha} + \frac{\alpha(1 - \delta)(k-j)}{\theta} \right).$$

Thus for all $k \geq 1$ and almost surely for all $t \geq 1$,

$$D_k(t + 1) = D_k(t) + (1 - \alpha)p_k + O(t^{-1/2} \log t)$$

$$+ \frac{1}{t}((1 - (a + bk))D_k(t) + (c + d(k-1))D_{k-1}(t))$$

$$+ \sum_{j=1}^{\beta} q_j(e + f(k-j))D_{k-j}(t).$$

The following Lemma establishes an upper bound on d_k given in Theorem 18.20(i).

Lemma 18.21. The solution of (18.34) satisfies $d_k \leq \frac{C_2}{k}$.

Proof. Assume that $k > k_0$ where k_0 is sufficiently large, and thus $p_k = 0$. Smaller values of k can be dealt with by adjusting C_2. We proceed by induction on k. From (18.34),

$$(a + bk)d_k \leq (c + d(k - 1)) \frac{C_2}{k - 1} + \sum_{j=1}^{\beta} q_j(e + f(k-j))q_j \frac{C_2}{k - j}$$

$$\leq C_2(d + f) + \frac{C_2(c + e)}{k - j_1}$$

$$= C_2 b + \frac{C_2(a - 1)}{k - j_1},$$
from (18.33). So

\[
d_k - \frac{C_2}{k} \leq \frac{C_2 b}{a + bk} + \frac{C_2 (a - 1)}{(k - j_1)(a + bk)} - \frac{C_2}{k} = \frac{C_2 (a - 1)}{(k - j_1)(a + bk)} - \frac{C_2 a}{k(a + bk)} \leq 0,
\]

for \(k \geq j_1 a \).

We can now prove Theorem 18.19, which is restated here for convenience.

Theorem 18.22. There exists a constant \(M > 0 \) such that almost surely for \(t, k \geq 1 \),

\[
|D_k(t) - td_k| \leq Mt^{1/2} \log t.
\]

(18.42)

Proof. Let \(\Delta_k(t) = \overline{D}_k(t) - td_k \). It follows from (18.34) and (18.41) that

\[
\Delta_k(t + 1) = \Delta_k(t) \left(1 - \frac{a + bk - 1}{t} \right) + O(t^{-1/2} \log t) + \frac{1}{t} \left((c + d(k - 1))\Delta_{k-1}(t) + \sum_{j=1}^{j_1} (e + f(k - j)) q_j \Delta_{k-j}(t) \right).
\]

(18.43)

Let \(L \) denote the hidden constant in \(O(t^{-1/2} \log t) \). We can adjust \(M \) to deal with small values of \(t \), so we assume that \(t \) is sufficiently large. Let \(k_0(t) = \left\lfloor \frac{t + 1 - b}{a} \right\rfloor \). If \(k > k_0(t) \) then we observe that (i) \(D_k(t) \leq \frac{t \max\{j_0, j_1\}}{k_0(t)} = O(1) \) and (ii) \(td_k \leq t \frac{C_2}{k_0(t)} = O(1) \) follows from Lemma 18.21, and so (18.42) holds trivially.

Assume inductively that \(\Delta_k(\tau) \leq M \tau^{1/2} \log \tau \) for \(\kappa + \tau \leq k + t \) and that \(k \leq k_0(t) \). Then (18.43) and \(k \leq k_0 \) implies that for \(M \) large,

\[
|\Delta_k(t + 1)| \leq L \frac{\log t}{t^{1/2}} + Mt^{1/2} \log t \times \left(1 + \frac{1}{t} \left(c + dk + \sum_{j=1}^{j_1} (e + f(k - j)) q_j - (a + bk - 1) \right) \right) = L \frac{\log t}{t^{1/2}} + Mt^{1/2} \log t \leq M(t + 1)^{1/2} \log(t + 1)
\]

provided \(M \gg 2L \). We have used (18.33) to obtain the second line. This completes the proof by induction. \(\Box \)
A general power law bound for d_k

The following lemma completes the proof of Theorem 18.20(i).

Lemma 18.23. For $k > j_0$ we have,

(i) $d_k > 0$.

(ii) $C_1 k^{-(1 + d f \mu_q) / b} \leq d_k \leq C_2 k^{-(1 + d f \mu_q) / b j_1}$.

Proof. (i) Let κ be the first index such that $p_\kappa > 0$, so that, from (18.34), $d_\kappa > 0$. It is not possible for both c and d to be zero. Therefore the coefficient of d_k in (18.34) is non-zero and thus $d_k > 0$ for $k \geq \kappa$.

(ii) Re-writing (18.34) we see that for $k > j_0$, $p_k = 0$ and then d_k satisfies

$$d_k = d_{k-1} \frac{c + d(k-1)}{a + bk} + \sum_{j=1}^{j_1} d_{k-j} q_j \frac{e + f(k-j)}{a + bk}, \quad (18.44)$$

which is a linear difference equation with rational coefficients (see [601]).

We let $d_i = 0$ for $i < 0$ to handle the cases where $k - j < 0$ in the above sum. Let $y = 1 + d + f \mu_q$, then

$$\frac{c + d(k-1)}{a + bk} + \sum_{j=1}^{j_1} q_j \frac{e + f(k-j)}{a + bk} = 1 - \frac{y}{a + bk} \geq 0$$

and thus

$$\left(1 - \frac{y}{a + bk}\right) \min\{d_{k-1}, \ldots, d_{k-j_1}\} \leq d_k \leq \left(1 - \frac{y}{a + bk}\right) \max\{d_{k-1}, \ldots, d_{k-j_1}\}. \quad (18.45)$$

It follows that

$$d_{j_0} \prod_{j=j_0+1}^{k} \left(1 - \frac{y}{a + bj}\right) \leq d_k \leq \max\{d_1, d_2, \ldots, d_{j_0}\} \prod_{s=0}^{[(k-j_0)/j_1]} \left(1 - \frac{y}{a + b(k-s j_1)}\right). \quad (18.46)$$

The lower bound in (18.46) is proved by induction on k. It is trivial for $k = j_0$ and for the inductive step we have

$$d_k \geq d_{j_0} \left(1 - \frac{y}{a + bk}\right) \prod_{i=j_0+1}^{k} \left(1 - \frac{y}{a + bj}\right) \prod_{i=j_0+1}^{k-1} \left(1 - \frac{y}{a + bj}\right).$$
The upper bound in (18.46) is proved as follows: Let \(d_i = \max\{d_k, \ldots, d_{k-j_1}\} \), and in general, let \(d_{i+1} = \max\{d_{k-1}, \ldots, d_{k-j_1}\} \). Using (18.45) we see there is a sequence \(k-1 \geq i_1 > i_2 > \cdots > i_p > j_0 \geq i_{p+1} \) such that \(|i_t - i_{t-1}| \leq j_1\) for all \(t \), and \(p \geq \lceil (k-j_0)/j_1 \rceil \). Thus

\[
 d_k \leq d_{p+1} \prod_{t=0}^{p} \left(1 - \frac{y}{a + b t} \right),
\]

and the RHS of (18.46) now follows.

Now consider the product in the LHS of (18.46).

\[
 \prod_{j = j_0+1}^{k} \left(1 - \frac{y}{a + bj} \right)
 = \exp \left\{ \sum_{j = j_0+1}^{k} \left(-\frac{y}{a + bj} - \frac{1}{2} \left(\frac{y}{a + bj} \right)^2 - \cdots \right) \right\}
 = \exp \left\{ O(1) - \sum_{j = j_0+1}^{k} \frac{y}{a + bj} \right\}
 = C_1 k^{-y/b}.
\]

This establishes the lower bound of the lemma. The upper bound follows similarly, from the upper bound in (18.46).

The case \(j_1 = 1 \)

We prove Theorem 18.20(ii). When \(q_1 = 1, p_j = 0, j > j_0 = \Theta(1) \), the general value of \(d_k, k > j_0 \) can be found directly, by iterating the recurrence (18.34). Thus

\[
 d_k = \frac{1}{a + bk} \left(d_{k-1} \left((a-1) + b(k-1) \right) \right)
 = d_{k-1} \left(1 - \frac{1+b}{a + bk} \right)
 = d_{j_0} \prod_{j = j_0+1}^{k} \left(1 - \frac{1+b}{a + j b} \right).
\]

Thus, for some constant \(C_6 > 0 \),

\[
 d_k \approx C_6 (a + bk)^{-x}
\]
where
\[x = 1 + \frac{1}{b} = 1 + \frac{2}{\alpha(1-\delta) + (1-\alpha)(1-\beta) + \alpha(1-\gamma)}. \]

The case \(f = 0 \)

We prove Theorem 18.20(iii). The case \((f = 0)\) arises in two ways. Firstly if \(\alpha = 0 \) so that a new vertex is added at each step. Secondly, if \(\alpha \neq 0 \) but \(\delta = 1 \) so that the initial vertex of an OLD choice is sampled u.a.r.

Observe that \(b = d \) now, see (18.33).

We first prove that for a sufficiently large absolute constant \(A_2 > 0 \) and for all sufficiently large \(k \), that
\[\frac{d_k}{d_{k-1}} = 1 - \frac{1+d}{a+dk} + \frac{\xi(k)}{k^2} \]
(18.47)
where \(|\xi(k)| \leq A_2 \).

We first re-write (18.34) as
\[\frac{d_k}{d_{k-1}} = \frac{c+d(k-1)}{a+dk} + \sum_{j=1}^{j_1} \frac{eq_j}{a+dk} \prod_{t=k-j+1}^{k-1} \frac{d_{t-1}}{d_t}. \]
(18.48)
(We assume here that \(k > j_0 \), so that \(p_k = 0 \).)

Now use induction to write
\[\prod_{t=k-j+1}^{k-1} \frac{d_{t-1}}{d_t} = 1 + (j-1) \frac{d+1}{a+dk} + \frac{\xi^*(j,k)}{k^2} \]
(18.49)
where \(|\xi^*(j,k)| \leq A_3 \) for some constant \(A_3 > 0 \). (We use the fact that \(j_1 \) is constant here.)

Substituting (18.49) into (18.48) gives
\[\frac{d_k}{d_{k-1}} = \frac{c+d(k-1)}{a+dk} + \frac{e}{a+dk} + \frac{e(\mu_d-1)(d+1)}{(a+dk)^2} + \frac{\xi^{**}(k)}{(a+dk)k^2} \]
where \(|\xi^{**}(k)| \leq eA_3 \).

Equation (18.47) follows immediately from this and \(c+e = a-1 \). On iterating (18.47) we see that for some constant \(C_7 > 0 \),
\[d_k \approx C_7 k^{-(1+\frac{1}{\pi})}. \]
18.6 Small World

In an influential paper Milgram [600] describes the following experiment. He chose a person X to receive mail and then randomly chose a person Y to send it. If Y did not know X then Y was to send the mail to someone he/she thought more likely to know X and so on. Surprisingly, the mail got through in 64 out of 296 attempts and the number of links in the chain was relatively small, between 5 and 6. More recently, Kleinberg [506] described a model that attempts to explain this phenomenon.

Watts-Strogatz Model

Milgram’s experiment suggests that large real-world networks although being globally sparse, in terms of the number edges, have their nodes/vertices connected by relatively short short paths. In addition, such networks are locally dense, i.e. vertices lying in a small neighborhood of a given vertex are connected by many edges. This observation is called the "small world" phenomenon and it has generated many attempts, both theoretical and experimental to build and study appropriate models of small world networks. Unfortunately, for many reasons, the classical Erdős-Rényi- Gilbert random graph $G_{n,p}$ is missing many important characteristics of such networks. The first attempt to build more realistic model was introduced by Watts and Strogatz in 1998 in Nature (see [753]).

The Watts-Strogatz model starts with a kth power of a n-vertex cycle, denoted here as C_n^k. To construct it fix n and k, $n \geq k \geq 1$ and take the vertex set as $V = [n] = \{1, 2, \ldots, n\}$ and edge-set $E = \{\{i, j\} : i + 1 \leq j \leq j + k\}$, where the additions are taken modulo n.

In particular, $C_n^1 = C_n$ is a cycle on n vertices. For an example of a square C_n^2 of C_n see Figure 18.6 below.

Figure 18.2: C_8 and C_8 after two re-wirings
Notice, that for \(n > 2k \) graph \(\mathcal{C}_n^k \) is \(2k \)-regular and has \(nk \) edges. Now choose each of \(nk \) edges of \(\mathcal{C}_n^k \), one by one, and independently with small probability \(p \) decide to “rewire” it or leave it unchanged. The procedure goes as follows. We start, say, at vertex labeled 1, and move clockwise \(k \) times around the cycle. At the \(i \)th passage of the cycle, at each visited vertex, we take the edge connecting it to its neighbor at distance \(i \) to the right and decide, with probability \(p \), if its other endpoint should be replaced by a uniformly random vertex of the cycle. Not however allowing the creation a double edges. Notice that after this \(k \) round procedure is completed the number of edges of the Watts-Strogatz random graph is \(kn \), i.e., the same as in “starting” graph \(\mathcal{C}_n^k \). To study properties the original Watts-Strogatz model on a formal mathematical ground has proved rather difficult. Therefore Newman and Watts (see [632]) proposed a modified version, where instead of rewiring the edges of \(\mathcal{C}_n^k \) each of \((\binom{n}{2} - nk) \) edges not in \(\mathcal{C}_n^k \) is added independently probability \(p \). In fact this modification, when \(k = 1 \) was introduced earlier by Ball, Mollison and Scalia-Tomba in [55] as the great circle epidemic model. For a rigorous results on typical distances in such random graph see the seminal papers of Barbour and Reinert [64] and [65].

Much earlier Bollobás and Chung in [140] took a similar approach to introducing “shortcuts” in \(\mathcal{C}_n \). Namely, let \(\mathcal{C}_n \) be a cycle with \(n \) vertices labeled clockwise \(1, 2, \ldots, n \), so that vertex \(i \) is adjacent to vertex \(i + 1 \) for \(1 \leq i \leq n - 1 \). Consider the graph \(G_n \) obtained by adding a randomly chosen perfect matching to \(\mathcal{C}_n \). (We will assume that \(n \) is even. For odd \(n \) one can add a random near prefect matching.) Note that the graphs generated by this procedure are 3-regular (see Figure 18.3 below).

It is easy to see that a cycle \(\mathcal{C}_n \) itself has diameter \(n/2 \). Bollobás and Chung proved that the diameter drops dramatically after adding to \(\mathcal{C}_n \) such system of random “shortcuts”.

\[
\begin{figure}
\centering
\includegraphics{figure}
\caption{\(\mathcal{C}_8 \cup M \)}
\end{figure}
Theorem 18.24. Let G_n be formed by adding a random perfect matching M to an n-cycle C_n. Then w.h.p.

$$\text{diam}(G_n) \leq \log_2 n + \log_2 \log n + 10.$$

Proof. For a vertex u of G_n define sets

$$S_i(u) = \{ v : \text{dist}(u, v) = i \} \quad \text{and} \quad S_{\leq i}(u) = \bigcup_{j \leq i} S_j(u),$$

where $\text{dist}(u, v) = \text{dist}_{G_n}(u, v)$ denotes the length of a shortest path between u and v in G_n.

Now define the following process for generating sets $S_i(u)$ and $S_{\leq i}(u)$ in G_n, Start with a fixed vertex u and "uncover" the chord (edge of M) incident to vertex u. This determines set $S_1(u)$. Then we add the neighbours of $S_1(u)$ one by one to determine $S_2(u)$ and proceed to determine $S_i(u)$.

A chord incident to a vertex in $S_i(u)$ is called "inessential at level i" if the other vertex in $S_i(u)$ is within distance $3 \log_2 n$ in C_n of the vertices determined so far.

Notice that $|S_{\leq i}(u)| \leq 3 \cdot 2^i$ and so

$$P(\text{a chord is inessential at level } i \mid S_{\leq i-1}(u)) \leq \frac{18 \cdot 2^{i+1} \log_2 n}{n}. \quad (18.50)$$

Denote by \mathcal{A} the event that for every vertex u at most one of the chords chosen in $S_{\leq i}(u)$ is inessential and suppose that $i \leq \frac{1}{3} \log_2 n$. Then

$$P(\mathcal{A}^c) = P(\exists u : \text{at least two of the chords chosen in } S_{\leq i}(u) \text{ are inessential}) \leq n \left(3 \cdot 2^{i+1} \right) \left(\frac{18 \cdot 2^{i+1} \log_2 n}{n} \right)^2 = O \left(n^{-1/5} (\log n)^2 \right).$$

For a fixed vertex u, consider those vertices v in $S_i(u)$ for which there is a unique path from u to v of length i, say $u = u_0, u_1, \ldots, u_{i-1}, u_i = v$, such that

(i) if u_{i-1} is adjacent to v on the cycle C_n then $S_{\leq i}(u)$ contains no vertex on C_n within distance $3 \log_2 n$ on the opposite side to v (denote the set of such vertices v by $C_i(u)$),

(ii) if $\{u_{i-1}, v\}$ is a chord then $S_{\leq i}(u) \setminus \{v\}$ contains no vertex within distance, $3 \log_2 n$ both to the left and to the right of v (denote the set of such vertices by $D_i(u)$).
Obviously,
\[C_i(u) \cup D_i(u) \subseteq S_i(u). \]
Notice that if the event \(\mathcal{A} \) holds then, for \(i \leq \frac{1}{5} \log_2 n \),
\[|C_i(u)| \geq 2^{i-2} \quad \text{and} \quad |D_i(u)| \geq 2^{i-3}. \]
(18.51)
Let \(\frac{1}{5} \log_2 n \leq i \leq \frac{3}{5} \log_2 n \). Denote by \(\mathcal{B} \) the event that for every vertex \(u \), at most \(2n^{-1/10} \) inessential chords leave \(S_i(u) \). There are at most \(2^i \) chords leaving \(S_i(u) \) for such \(i \)'s and so by (18.50), for large \(n \),
\[P(\mathcal{B}^c) = P(\exists u : \text{at least } 2^i n^{-1/10} \text{ inessential chords leave } S_i(u)) \leq n \left(2^i n^{-1/10} \right) = O(n^{-2}). \]
For \(v \in C_i(u) \) a new neighbor of \(v \) in \(C_n \) is a potential element of \(C_{i+1}(u) \) and a new neighbor, which is the end-vertex of the chord from \(v \), is a potential element of \(D_{i+1}(u) \). Also if \(v \in D_i(u) \), then the two neighbors of \(v \) in \(C_n \) are potential elements of \(C_{i+1}(u) \). Here "potential" means that the vertices in question become elements of \(C_{i+1}(u) \) and \(D_{i+1}(u) \) unless the corresponding edge is inessential. Assuming that the events \(\mathcal{A} \) and \(\mathcal{B} \) both hold and \(\frac{1}{5} \log_2 n \leq i \leq \frac{3}{5} \log_2 n \), then
\[|C_{i+1}(u)| \geq |C_i(u)| + 2|D_i(u)| - 2^{i+1} n^{-1/10}, \]
\[|D_{i+1}(u)| \geq |C_i(u)| - 2^{i+1} n^{-1/10}, \]
while for \(i \leq \frac{1}{5} \log_2 n \) the bounds given in (18.51) hold. Hence for all \(3 \leq i \leq \frac{3}{5} \log_2 n \) we have
\[|C_i(u)| \geq 2^{i-3} \quad \text{and} \quad |D_i(u)| \geq 2^{i-4}. \]
To finish the proof set
\[i_0 = \left\lfloor \frac{\log_2 n + \log_2 \log n + c}{2} \right\rfloor, \]
where \(c \geq 9 \) is a constant.
Let us choose chords leaving \(C_{i_0}(u) \) one by one. At each choice the probability of not selecting the other end-vertex in \(C_{i_0}(u) \) is at most \(1 - (2^{i_0-3} / n) \). Since we have to make at least \(|C_{i_0}(u)| / 2 \geq 2^{i_0-4} \) such choices, we have
\[P(dist(u,v) > 2i_0 + 1 | \mathcal{A} \cap \mathcal{B}) \leq \left(1 - \frac{2^{i_0-3}}{n} \right)^{2^{i_0-4}} \leq \exp(-2^{i_0-7} / n) \]
\[\leq \exp(- (\log n) 2^{c-7}) \leq n^{-4}. \]

Hence,
\[\mathbb{P}(\text{diam}(G_n) > 2i_0 + 1) \leq \mathbb{P}(A^c) + \mathbb{P}(B^c) + \sum_{u,v} \mathbb{P}(|\text{dist}(u,v) > 2i_0 + 1| A \cap B) \leq c_1 (n^{-1/5} (\log n)^2) + c_2 n^{-2} + n^{-2} = o(1). \]

Therefore w.h.p. the random graph \(G_n \) has diameter at most
\[2 \left[\frac{\log_2 n + \log_2 n \log n + 9}{2} \right] \leq \log_2 n + \log_2 n \log n + 10, \]
which completes the proof of Theorem 18.24.

In fact, based on the contiguity of a random 3-regular graph and graph \(G_n \) defined above, one can prove more precise bounds, showing (see Wormald [761]), that w.h.p. \(\text{diam}(G_n) \) is highly concentrated, i.e., that
\[\log_2 n + \log_2 n \log n - 4 \leq \text{diam}(G_n) \leq \log_2 n + \log_2 n \log n + 4. \]

Kleinberg’s Model

The model can be generalized significantly, but to be specific we consider the following. We start with the \(n \times n \) grid \(G_0 \) which has vertex set \([n]^2\) and where \((i,j)\) is adjacent to \((i',j')\) iff \(d((i,j),(i',j')) = 1\) where \(d((i,j),(k,\ell)) = |i-k| + |j-\ell|\). In addition, each vertex \(u = (i,j) \) will choose another random neighbor \(\phi(u) \) where
\[\mathbb{P}(\phi(u) = v = (k,\ell)) = \frac{d(u,v)^{-2}}{D_u} \]
where
\[D_x = \sum_{y \neq x} d(x,y)^{-2}. \]

The random neighbors model “long range contacts”. Let the grid \(G_0 \) plus the extra random edges be denoted by \(G \).

It is not difficult to show that w.h.p. these random contacts reduce the diameter of \(G \) to order \(\log n \). This however, would not explain Milgram’s success. Instead, Kleinberg proposed the following decentralized algorithm \(\mathcal{A} \) for finding a path from an initial vertex \(u_0 = (i_0,j_0) \) to a target vertex \(u_\tau = (i_\tau,j_\tau) \): when at \(u \) move to the neighbor closest in distance to \(u_\tau \).
Theorem 18.25. Algorithm A finds a path from initial to target vertex of order $O((\log n)^2)$, in expectation.

Proof. Note that each step of A finds a node closer to the target than the current node and so the algorithm must terminate with a path. Observe next that for any vertex x of G we have

$$D_x \leq \sum_{j=1}^{2^{n-2}} 4j \times j^{-2} = 4 \sum_{j=1}^{2^{n-2}} j^{-1} \leq 4\log(3n).$$

As a consequence, v is the long range contact of vertex u, with probability at least $\frac{2^{2j-1}}{4\log(3n)2^{2j+4}} = \frac{1}{128\log(3n)}$.

For $0 < j \leq \log_2 n$, we say that the execution of A is in Phase j if the distance of the current vertex u to the target is greater than 2^j, but at most 2^{j+1}. We say that A is in Phase 0 if the distance from u to the target is at most 2.

Let B_j denote the set of nodes at distance 2^j or less from the target. Then

$$|B_j| \geq 1 + \sum_{i=1}^{2^j} i > 2^{2j-1}.$$

Note that by the triangle inequality, each member of B_j is within distance $2^{j+1} + 2^j < 2^{2j+2}$ of u.

Let $X_j \leq 2^{j+1}$ be the time spent in Phase j. Assume first that $\log_2 \log_2 n \leq j \leq \log_2 n$. Phase j will end if the long range contact of the current vertex lies in B_j. The probability of this is at least

$$\frac{2^{2j-1}}{4\log(3n)2^{2j+4}} = \frac{1}{128\log(3n)}.$$

We can reveal the long range contacts as the algorithm progresses. In this way, the long range contact of the current vertex will be independent of the previous contacts of the path. Thus

$$\mathbb{E}X_j = \sum_{i=1}^{\infty} \mathbb{P}(X_j \geq i) \leq \sum_{i=1}^{\infty} \left(1 - \frac{1}{128\log(3n)}\right)^i < 128\log(3n).$$

Now if $0 \leq j \leq \log_2 \log_2 n$ then $X_j \leq 2^{j+1} \leq 2\log_2 n$. Thus the expected length of the path found by A is at most $2 \log_2 n \times \log_2 n$. In the same paper, Kleinberg showed that replacing $d(u,v)^{-2}$ by $d(u,v)^{-r}$ for $r \neq 2$ led to non-polylogarithmic path length.
18.7 Exercises

18.7.1 Show that w.h.p. the Preferential Attachment Graph of Section 18.1 has diameter $O(\log n)$. (Hint: Using the idea that vertex t chooses a random edge of the current graph, observe that half of these edges appeared at time $t/2$ or less).

18.7.2 For the next few questions we modify the Preferential Attachment Graph of Section 18.1 in the following way: First let $m = 1$ and preferentially generate a sequence of graphs $\Gamma_1, \Gamma_2, \ldots, \Gamma_{mn}$. Then if the edges of Γ_{mn} are $(u_i, v_i), i = 1, 2, \ldots, mn$ let the edges of G_n be $(u_{\lceil i/m \rceil}, v_{\lceil i/m \rceil}), i = 1, 2, \ldots, mn$. Show that (18.1) continues to hold.

18.7.3 Show that G_n of the previous question can also be generated in the following way:

(a) Let π be a random permutation of $[2mn]$. Let

\[X = \{ (a_i, b_i), i = 1, 2, \ldots, mn \} \]

where $a_i = \min \{ \pi(2i-1), \pi(2i) \}$ and $b_i = \max \{ \pi(2i-1), \pi(2i) \}$.

(b) Let the edges of G_n be $(a_{\lceil i/m \rceil}, b_{\lceil i/m \rceil}), i = 1, 2, \ldots, mn$.

This model was introduced in [155].

18.7.4 Show that the edges of the graph in the previous question can be generated as follows:

(a) Let $\zeta_1, \zeta_2, \ldots, \zeta_{2mn}$ be independent uniform $[0, 1]$ random variables. Let $\{x_i < y_i\} = \{ \zeta_{2i-1}, \zeta_{2i} \}$ for $i = 1, 2, \ldots, mn$. Sort the y_i in increasing order $R_1 < R_2 < \cdots < R_{mn}$ and let $R_0 = 0$. Then let

\[W_j = R_{mj} \text{ and } I_j = (W_{j-1}, W_j) \text{ for } j = 1, 2, \ldots, n. \]

This model was introduced in [154].

(b) The edges of G_n are $(u_i, v_i), i = 1, 2, \ldots, mn$ where $x_i \in I_{u_i}, y_i \in I_{v_i}$.

18.7.5 Prove that $(R_1, R_2, \ldots, R_{mn})$ can be generated as

\[R_i = \left(\frac{Y_i}{Y_{mn+1}} \right)^{1/2} \]

where $Y_N = \zeta_1 + \zeta_2 + \cdots + \zeta_N$ for $N \geq 1$ and $\zeta_1, \zeta_2, \ldots, \zeta_{mn+1}$ are independent exponential copies of $\text{EXP}(1)$.
18.7.6 Let L be a large constant and let $\omega = \omega(n) \to \infty$ arbitrarily slowly. Then let \mathcal{E} be the event that

$$\Upsilon_k \approx k \text{ for } \frac{k}{m} \in [\omega, n] \text{ or } k = mn + 1.$$

Show that

(a) $\mathbb{P}(\neg \mathcal{E}) = o(1)$.
(b) Let $\eta_i = \xi_{(i-1)\log n} + \xi_{(i-1)\log n} + \cdots + \xi_{\log n}$. If \mathcal{E} occurs then

1. $W_i \approx \left(\frac{i}{n} \right)^{1/2}$ for $\omega \leq i \leq n$, and
2. $w_i = W_i - W_{i-1} \approx \frac{\eta_i}{2mn(i/n)^{1/2}}$ for $\omega \leq i \leq n$.

(c) $\eta_i \leq \log n$ for $i \in [n]$ w.h.p.
(d) $\eta_i \leq \log \log n$ for $i \in [(\log n)^{10}]$ w.h.p.
(e) If $\omega \leq i < j \leq n$ then $\mathbb{P}(\text{edge } ij \text{ exists}) \approx \frac{\eta_i}{2(i/n)^{1/2}}$.
(f) $\eta_i \geq \frac{1}{\log \log n}$ and $i \leq \frac{n}{\omega(\log n)^2}$ implies the degree $d_n(i) \approx \eta_i (\frac{n}{i})^{1/2}$.

18.8 Notes

There are by now a vast number of papers on different models of “Real World Networks”. We point out a few additional results in the area. The books by Durrett [273] and Bollobás, Kozma and Miklós [152] cover the area. See also van der Hofstadt [424].

Preferential Attachment Graph

Perhaps the most striking result is due to Bollobás and Riordan [154]. There they prove that the diameter of G_n is asymptotic to $\frac{\log n}{\log \log n}$ w.h.p. To prove this they introduced the model in question 4 above. Cooper [211] and Beköz, Röllin and Ross [644] discuss the degree distribution of G_n in some detail. Flaxman, Frieze and Fenner [315] show that the if Δ_k, λ_k are the kth largest degree, eigenvalue respectively, then $k \approx \Delta_k^{1/2}$ for $k = O(1)$. The proof follows ideas from Mihail and Papadimitriou [599] and Chung, Lu and Vu [192], [193].

Cooper and Frieze [219] discussed the likely proportion of vertices visited by a random walk on a growing preferential attachment graph. They show that w.h.p. this is just over 40% at all times. Borgs, Brautbar, Chayes, Khanna and Lucier
[158] discuss “local algorithms” for finding a specific vertex or the largest degree vertex. Frieze and Pegden [361] describe an algorithm for the same problem, but with reduced storage requirements.

Geometric models

Some real world graphs have a geometric constraint. Flaxman, Frieze and Vera [316], [317] considered a geometric version of the preferential attachment model. Here the vertices X_1, X_2, \ldots, X_n are randomly chosen points on the unit sphere in \mathbb{R}^3. X_{i+1} chooses m neighbors and these vertices are chosen with probability $P(deg, dist)$ dependent on (i) their current degree and (ii) their distance from X_{i+1}. van den Esker [296] added fitness to the models in [316] and [317]. Jordan [469] considered more general spaces than \mathbb{R}^3. Jordan and Wade [470] considered the case $m = 1$ and a variety of definitions of P that enable one to interpolate between the preferential attachment graph and the on-line nearest neighbor graph.

The SPA model was introduced by Aiello, Bonato, Cooper, Janssen and Pralat [8]. Here the vertices are points in the unit hyper-cube D in \mathbb{R}^m, equipped with a toroidal metric. At time t each vertex v has a domain of attraction $S(v, t)$ of volume $A_1 \deg^\alpha \frac{t}{\deg^\alpha} + A_2$. Then at time t we generate a uniform random point X_{t+1} as a new vertex. If the new point lies in the domain $S(v, t)$ then we join X_{t+1} to v by an edge directed to v, with probability p. The paper [8] deals mainly with the degree distribution. The papers by Jannsen, Pralat and Wilson [454], [455] show that for graphs formed according to the SPA model it is possible to infer the metric distance between vertices from the link structure of the graph. The paper Cooper, Frieze and Pralat [232] shows that w.h.p. the directed diameter at time t lies between $c_1 \log t$ and $c_2 \log t$.

Random Apollonian networks were introduced by Zhou, Yan and Wang [769]. Here we build a random triangulation by inserting a vertex into a randomly chosen face. Frieze and Tsourakakis [365] studied their degree sequence and eigenvalue structure. Ebrahimzadeh, Farzad, Gao, Mehrabian, Sato, Wormald and Zung [281] studied their diameter and length of the longest path. Cooper and Frieze [227] gave an improved longest path estimate and this was further improved by Collevecchio, Mehrabian and Wormald [203].

Interpolating between Erdős-Rényi and Preferential Attachment

Pittel [653] considered the following model: G_0, G_1, \ldots, G_m is a random (multi) graph growth process G_m on a vertex set $[n]$. G_{m+1} is obtained from G_m by inserting a new edge e at random. Specifically, the conditional probability that e joins two currently disjoint vertices, i and j, is proportional to $(d_i + \alpha)(d_j + \alpha)$,
where \(d_i, d_j \) are the degrees of \(i, j \) in \(G_m \), and \(\alpha > 0 \) is a fixed parameter. The limiting case \(\alpha = \infty \) is the Erdős-Rényi graph process. He shows that w.h.p. \(G_m \) contains a unique giant component iff \(c := 2m/n > c_\alpha = \alpha/(1 + \alpha) \), and the size of this giant is asymptotic to \(n \left[1 - \left(\frac{\alpha + c^*}{\alpha + c} \right)^\alpha \right] \), where \(c^* < c_\alpha \) is the root of

\[
\frac{c}{(\alpha + c)^{2+\alpha}} = \frac{c^*}{(\alpha + c^*)^{2+\alpha}}.
\]

A phase transition window is proved to be contained, essentially, in \([c_\alpha - An^{-1/3}, c_\alpha + Bn^{-1/4}]\), and he conjectured that \(1/4 \) may be replaced with \(1/3 \). For the multigraph version, \(MG_m \), he showed that \(MG_m \) is connected w.h.p. iff \(m \gg m_n := n^{1+\alpha^{-1}} \). He conjectured that, for \(\alpha > 1 \), \(m_n \) is the threshold for connectedness of \(G_m \) itself.
Chapter 19

Weighted Graphs

There are many cases in which we put weights $X_e, e \in E$ on the edges of a graph or digraph and ask for the minimum or maximum weight object. The optimisation questions that arise from this are the backbone of Combinatorial Optimisation. When the X_e are random variables we can ask for properties of the optimum value, which will be a random variable. In this chapter we consider three of the most basic optimisation problems viz. minimum weight spanning trees; shortest paths and minimum weight matchings in bipartite graphs.

19.1 Minimum Spanning Tree

Let $X_e, e \in E(K_n)$ be a collection of independent uniform $[0, 1]$ random variables. Consider X_e to be the length of edge e and let L_n be the length of the minimum spanning tree (MST) of K_n with these edge lengths. Frieze [334] proved the following theorem. The proof we give utilises the rather lovely integral formula (19.1) due to Janson [438], (see also the related equation (7) from [356].

Theorem 19.1.

$$\lim_{n \to \infty} \mathbb{E}L_n = \zeta(3) = \sum_{k=1}^{\infty} \frac{1}{k^3} = 1.202\ldots$$

Proof. Suppose that $T = T(\{X_e\})$ is the MST, unique with probability one. We use the identity

$$a = \int_0^1 1_{\{x \leq a\}} \, dx.$$

Therefore

$$L_n = \sum_{e \in T} X_e$$
\[\sum_{e \in T} \int_{p=0}^{1} 1_{p \leq X_e} dp = \int_{p=0}^{1} \sum_{e \in T} 1_{p \leq X_e} dp = \int_{p=0}^{1} \left| \{ e \in T : X_e \geq p \} \right| dp = \int_{p=0}^{1} (\kappa(G_p) - 1) dp, \]

where \(\kappa(G_p) \) denote the number of components of graph \(G_p \). Here \(G_p \) is the graph induced by the edges \(e \) with \(X_e \leq p \), i.e., \(G_p \equiv \mathbb{G}_{n,p} \). The last line may be considered to be a consequence of the fact that the greedy algorithm solves the minimum spanning tree problem. This algorithm examines edges in increasing order of edge weight. It builds a tree, adding one edge at a time. It adds the edge to the forest \(F \) of edges accepted so far, only if the two endpoints lie in distinct components of \(F \). Otherwise it moves onto the next edge. Thus the number of edges to be added given \(F \), is \(\kappa(F) - 1 \) and if the longest edge in \(e \in F \) has \(X_e = p \) then \(\kappa(F) = \kappa(G_p) \), which follows by an easy induction. Hence

\[\mathbb{E} L_n = \int_{p=0}^{1} (\mathbb{E} \kappa(G_p) - 1) dp. \tag{19.1} \]

We therefore estimate \(\mathbb{E} \kappa(G_p) \). We observe first that

\[p \geq \frac{6 \log n}{n} \Rightarrow \mathbb{E} \kappa(G_p) = 1 + o(1). \]

Indeed, \(1 \leq \mathbb{E} \kappa(G_p) \) and

\[\mathbb{E} \kappa(G_p) \leq 1 + n \mathbb{P}(G_p \text{ is not connected}) \]

\[\leq 1 + \sum_{k=1}^{n/2} \left(\frac{n}{k} \right) k^{-2} p^{k-1} (1 - p)^{k(n-k)} \]

\[\leq 1 + \frac{n}{p} \sum_{k=1}^{n/2} \left(\frac{nek \log n}{k} \frac{1}{n^3} \right)^k \]

\[= 1 + o(1). \]

Hence, if \(p_0 = \frac{6 \log n}{n} \) then

\[\mathbb{E} L_n = \int_{p=0}^{p_0} (\mathbb{E} \kappa(G_p) - 1) dp + o(1) \]
19.1. MINIMUM SPANNING TREE

\[
= \int_{p=0}^{p_0} \mathbb{E} \kappa(G_p) dp + o(1).
\]

Write
\[
\kappa(G_p) = \sum_{k=1}^{(\log n)^2} A_k + \sum_{k=1}^{(\log n)^2} B_k + C,
\]

where \(A_k \) stands for the number of components which are \(k \) vertex trees, \(B_k \) is the number of \(k \) vertex components which are not trees and, finally, \(C \) denotes the number of components on at least \((\log n)^2\) vertices. Then, for \(1 \leq k \leq (\log n)^2 \) and \(p \leq p_0 \),

\[
\mathbb{E} A_k = \binom{n}{k} k^{-2} p^{k-1}(1-p)^{k(n-k) + \binom{k}{2} - k + 1} = (1 + o(1)) n \frac{k^{k-2}}{k!} p^{k-1}(1-p)^{kn}.
\]

\[
\mathbb{E} B_k \leq \binom{n}{k} k^{-2} \binom{k}{2} p^k (1-p)^{k(n-k)} \leq (1 + o(1))(npe^{1-np})^k \leq 1 + o(1).
\]

\[
C \leq \frac{n}{(\log n)^2}.
\]

Hence
\[
\int_{p=0}^{\frac{6 \log n}{n}} \sum_{k=1}^{(\log n)^2} \mathbb{E} B_k dp \leq \frac{6 \log n}{n} (\log n)^2 (1 + o(1)) = o(1),
\]

and
\[
\int_{p=0}^{\frac{6 \log n}{n}} C dp \leq \frac{6 \log n}{n} \frac{n}{(\log n)^2} = o(1).
\]

So
\[
\mathbb{E} L_n = o(1) + (1 + o(1)) \sum_{k=1}^{(\log n)^2} n^k \frac{k^{-2}}{k!} \int_{p=0}^{\frac{6 \log n}{n}} p^{k-1}(1-p)^{kn} dp.
\]

But
\[
\sum_{k=1}^{(\log n)^2} n^k \frac{k^{-2}}{k!} \int_{p=0}^{\frac{6 \log n}{n}} p^{k-1}(1-p)^{kn} dp
\]
\[\leq \sum_{k=1}^{(\log n)^2} n^k \frac{k^{k-2}}{k!} \int_{p=6\log n}^{1} n^{-6k} dp \]
\[= o(1). \]

Therefore
\[\mathbb{E} L_n = o(1) + (1 + o(1)) \sum_{k=1}^{(\log n)^2} n^k \frac{k^{k-2}}{k!} \int_{p=0}^{1} p^{k-1} (1 - p)^{kn} dp \]
\[= o(1) + (1 + o(1)) \sum_{k=1}^{(\log n)^2} n^k \frac{k^{k-2}}{k!} \frac{(k-1)!(kn)!}{(k(n+1))!} \]
\[= o(1) + (1 + o(1)) \sum_{k=1}^{(\log n)^2} n^k k^{k-3} \prod_{i=1}^{k} \frac{1}{kn+i} \]
\[= o(1) + (1 + o(1)) \sum_{k=1}^{(\log n)^2} \frac{1}{k^3} \]
\[= o(1) + (1 + o(1)) \sum_{k=1}^{\infty} \frac{1}{k^3}. \]

One can obtain the same result if the uniform \([0, 1]\) random variable is replaced by any random non-negative random variable with distribution \(F\) having a derivative equal to one at the origin, e.g. an exponential variable with mean one, see Steele [723].

19.2 Shortest Paths

Let the edges of the complete graph \(K_n\) on \([n]\) be given independent lengths \(X_e, e \in [n]^2\). Here \(X_e\) is exponentially distributed with mean 1. The following theorem was proved by Janson [440]:

Theorem 19.2. Let \(X_{ij}\) be the distance from vertex \(i\) to vertex \(j\) in the complete graph with edge weights independent \(\text{EXP}(1)\) random variables. Then, for every \(\varepsilon > 0\), as \(n \to \infty\),

(i) For any fixed \(i, j\),
\[\mathbb{P}\left(\left|\frac{X_{ij}}{\log n/n} - 1\right| \geq \varepsilon\right) \to 0. \]

(ii) For any fixed \(i\),
\[\mathbb{P}\left(\left|\frac{\max_j X_{ij}}{\log n/n} - 2\right| \geq \varepsilon\right) \to 0. \]
19.2. **SHORTEST PATHS**

(iii) \[\mathbb{P}\left(\max_{i,j} X_{ij} \frac{\log n}{n} - 3 \geq \varepsilon \right) \to 0. \]

Proof. First, recall the following two properties of the exponential \(X \):

(P1) \(\mathbb{P}(X > \alpha + \beta | X > \alpha) = \mathbb{P}(X > \beta) \).

(P2) If \(X_1, X_2, \ldots, X_m \) are independent \(EXP(1) \) exponential random variables then \(\min\{X_1, X_2, \ldots, X_m\} \) is an exponential with mean \(1/m \).

Suppose that we want to find shortest paths from a vertex \(s \) to all other vertices in a digraph with non-negative arc-lengths. Recall Dijkstra’s algorithm. After several iterations there is a rooted tree \(T \) such that if \(v \) is a vertex of \(T \) then the tree path from \(s \) to \(v \) is a shortest path. Let \(d(v) \) be its length. For \(x \notin T \) let \(d(x) \) be the minimum length of a path \(P \) that goes from \(s \) to \(v \) to \(x \) where \(v \in T \) and the sub-path of \(P \) that goes to \(v \) is the tree path from \(s \) to \(v \). If \(d(y) = \min\{d(x): x \notin T\} \) then \(d(y) \) is the length of a shortest path from \(s \) to \(y \) and \(y \) can be added to the tree.

Suppose that vertices are added to the tree in the order \(v_1, v_2, \ldots, v_n \) and that \(Y_j = \text{dist}(v_1, v_j) \) for \(j = 1, 2, \ldots, n \). It follows from property P1 that

\[Y_{k+1} = \min_{i=1,2,\ldots,k, v \neq v_1, \ldots, v_k} [Y_i + X_{v_i,v}] = Y_k + E_k \]

where \(E_k \) is exponential with mean \(\frac{1}{k(n-k)} \) and is independent of \(Y_k \).

This is because \(X_{v_i,v_j} \) is distributed as an independent exponential \(X \) conditioned on \(X \geq Y_k - Y_i \). Hence

\[\mathbb{E} Y_n = \sum_{k=1}^{n-1} \frac{1}{k(n-k)} = \frac{1}{n} \sum_{k=1}^{n-1} \left(\frac{1}{k} + \frac{1}{n-k} \right) = \frac{2}{n} \left(\sum_{k=1}^{n-1} \frac{1}{k} \right) = \frac{2\log n}{n} + O(n^{-1}). \]

Also, from the independence of \(E_k, Y_k \),

\[\text{Var} Y_n = \sum_{k=1}^{n-1} \text{Var} E_k \]
\[= \sum_{k=1}^{n-1} \left(\frac{1}{k(n-k)} \right)^2 \]
\[\leq 2 \sum_{k=1}^{n/2} \left(\frac{1}{k(n-k)} \right)^2 \]
\[\leq \frac{8}{n^2} \sum_{k=1}^{n/2} \frac{1}{k^2} \]
\[= O(n^{-2}) \]

and we can use the Chebyshev inequality (21.3) to prove (ii).

Now fix \(j = 2 \). Then if \(i \) is defined by \(v_i = 2 \), we see that \(i \) is uniform over \(\{2, 3, \ldots, n\} \). So

\[\mathbb{E} X_{1,2} = \frac{1}{n-1} \sum_{i=2}^{n} \sum_{k=1}^{i-1} \frac{1}{k(n-k)} \]
\[= \frac{1}{n-1} \sum_{k=1}^{n-1} \frac{n-k}{k(n-k)} \]
\[= \frac{1}{n-1} \sum_{k=1}^{n-1} \frac{1}{k} \]
\[= \frac{\log n}{n} + O(n^{-1}) \]

For the variance of \(X_{1,2} \) we have

\[X_{1,2} = \delta_2 Y_2 + \delta_3 Y_3 + \cdots + \delta_n Y_n, \]

where

\[\delta_i \in \{0, 1\}; \quad \delta_2 + \delta_3 + \cdots + \delta_n = 1; \quad \mathbb{P}(\delta_i = 1) = \frac{1}{n-1}. \]

\[\text{Var} X_{1,2} = \sum_{i=2}^{n} \text{Var}(\delta_i Y_i) + \sum_{i \neq j} \text{Cov}(\delta_i Y_i, \delta_j Y_j) \]
\[\leq \sum_{i=2}^{n} \text{Var}(\delta_i Y_i). \]

The last inequality holds since

\[\text{Cov}(\delta_i Y_i, \delta_j Y_j) = \mathbb{E}(\delta_i Y_i \delta_j Y_j) - \mathbb{E}(\delta_i Y_i) \mathbb{E}(\delta_j Y_j) \]
\[= -\mathbb{E}(\delta_i Y_i) \mathbb{E}(\delta_j Y_j) \leq 0. \]
So
\[
\text{Var} X_{1,2} \leq \sum_{i=2}^{n} \text{Var}(\delta Y_i)
\]
\[
\leq \sum_{i=2}^{n} \frac{1}{n-1} \sum_{k=1}^{i-1} \left(\frac{1}{k(n-k)} \right)^2
\]
\[
= O(n^{-2}).
\]

We can now use the Chebyshev inequality.

We turn now to proving (iii). We begin with a lower bound. Let
\[
Y_i = \min \{ X_i, j : i \neq j \in [n] \}.
\]
Let \(A = \{ i : Y_i \geq \frac{(1-\varepsilon)\log n}{n} \} \). Then we have that for \(i \in [n] \),
\[
\Pr(i \in A) = \exp \left\{ -(n-1) \frac{(1-\varepsilon)\log n}{n} \right\} = n^{-1+\varepsilon+o(1)}, \tag{19.2}
\]

An application of the Chebyshev inequality shows that
\[
|A| \approx n\varepsilon + o(1) \text{ w.h.p.}
\]
Now the expected number of paths from \(a_1 \in A \) to \(a_2 \in A \) of length at most \((3-2\varepsilon)\log n \) can be bounded by
\[
n^{2\varepsilon+o(1)} \times n^2 \times n^{-3\varepsilon+o(1)} \times \frac{\log^2 n}{n^2} = n^{-\varepsilon+o(1)}. \tag{19.3}
\]

Explanation for (19.3): The first factor \(n^{2\varepsilon+o(1)} \) is the expected number of pairs of vertices \(a_1, a_2 \in A \). The second factor is a bound on the number of choices \(b_1, b_2 \) for the neighbors of \(a_1, a_2 \) on the path. The third factor \(F_3 \) is a bound on the expected number of paths of length at most \(\frac{\alpha \log n}{n} \) from \(b_1 \) to \(b_2 \), \(\alpha = 1-3\varepsilon \). This factor comes from
\[
F_3 \leq \sum_{\ell \geq 0} n^\ell \left(\frac{\alpha \log n}{n} \right)^{\ell+1} \frac{1}{(\ell+1)!}.
\]

Here \(\ell \) is the number of internal vertices on the path. There will be at most \(n^\ell \) choices for the sequence of vertices on the path. We then use the fact that the exponential mean one random variable stochastically dominates the uniform \([0,1]\) random variable \(U \). The final two factors are the probability that the sum of \(\ell + 1 \) independent copies of \(U \) sum to at most \(\frac{\alpha \log n}{n} \). Continuing we have
\[
F_3 \leq \sum_{\ell \geq 0} \frac{\alpha \log n}{n(\ell+1)} \left(\frac{e^{1+o(1)} \alpha \log n}{\ell} \right)^\ell
\]
\[
\leq \frac{\alpha \log n}{n} \left(\sum_{\ell=0}^{10 \log n} n^{\alpha+o(1)} + \sum_{\ell>10 \log n} e^{-\ell} \right) = n^{-1+\alpha+o(1)}.
\]
The final factor in (19.3) is a bound on the probability that \(X_{a_1 b_1} + X_{a_2 b_2} \leq \frac{(2+\varepsilon)\log n}{n}\).

For this we use the fact that \(X_{a_i b_i}, i = 1, 2\) is distributed as \(\frac{(1-\varepsilon)\log n}{n} + E_i\) where \(E_1, E_2\) are independent exponential mean one. Now \(\Pr(E_1 + E_2 \leq t) \leq (1 - e^{-t})^2 \leq t^2\) and taking \(t = \frac{3\varepsilon\log n}{n}\) justifies the final factor of (19.3).

It follows from (19.3) that w.h.p. the shortest distance between a pair of vertices in \(A\) is at least \(\frac{(3-2\varepsilon)\log n}{n}\) w.h.p., completing our proof of the lower bound in (iii).

We now consider the upper bound. Let now \(Y_1 = d_{k_3}\) where \(k_3 = n^{1/2}\log n\). For \(t < 1 - \frac{\log(n)}{n}\) we have that

\[
E(e^{t Y_1}) = \mathbb{E} \left(\exp \left\{ \sum_{i=1}^{k_3} \frac{t n}{i(n-i)} \right\} \right) = \prod_{i=1}^{k_3} \left(1 - \frac{(1 + o(1))t}{i} \right)^{-1}
\]

Then for any \(\alpha > 0\) and for we have

\[
\Pr \left(Y_1 \geq \frac{\alpha \log n}{n} \right) \leq \mathbb{E}(e^{t Y_1 - t \alpha \log n}) \leq e^{-t \alpha \log n} \prod_{i=1}^{k_3} \left(1 - \frac{(1 + o(1))t}{i} \right)^{-1}
\]

\[
= e^{-\alpha \log n} \exp \left\{ \sum_{i=1}^{k_3} \frac{(1 + o(1))t}{i} + O \left(\frac{1}{i^2} \right) \right\} = O(1) \times \exp \left\{ \left(\frac{1}{2} + o(1) - \alpha \right) t \log n \right\}.
\]

It follows, on taking \(\alpha = 3/2 + o(1)\) that w.h.p.

\[Y_j \leq \frac{(3 + o(1)) \log n}{2n}\]

for all \(j \in [n]\).

Letting \(T_j\) be the set corresponding to \(S_{k_3}\) when we execute Dijkstra’s algorithm starting at \(j\), then we have that for \(j \neq k\) where \(T_j \cap T_k = \emptyset\),

\[
\Pr \left(\exists e \in (T_j : T_k) : X_e \leq \frac{\log n}{n} \right) \leq \exp \left\{ -\frac{k_3^2 \log n}{n} \right\} = e^{-2 + o(1)} \log^2 n = o(n^{-2})
\]

and this is enough to complete the proof of (iii).

We can as for Spanning Trees, replace the exponential random variables by random variables that behave like the exponential close to the origin. The paper of Janson [440] allows for any random variable \(X\) satisfying \(\mathbb{P}(X \leq t) = t + o(t)\) as \(t \to 0\).

19.3 Minimum Weight Assignment

Consider the complete bipartite graph \(K_{n,n}\) and suppose that its edges are assigned independent exponentially distributed weights, with rate 1. (The rate of an exponential variable is one over its mean). Denote the minimum total weight of
a perfect matching in $K_{n,n}$ by C_n. Aldous [14], [17] proved that $\lim_{n \to \infty} \mathbb{E} C_n = \zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2}$. The following theorem was conjectured by Parisi [643]. It was proved independently by Linusson and Wästlund [551] and Nair, Prabhakar and Sharma [624]. The proof given here is from Wästlund [752].

Theorem 19.3.

$$
\mathbb{E} C_n = \sum_{k=1}^{n} \frac{1}{k^2} = 1 + \frac{1}{4} + \frac{1}{9} + \frac{1}{16} + \cdots + \frac{1}{n^2}
$$

(19.4)

From the above theorem we immediately get the following corollary, first proved by Aldous [17].

Corollary 19.4.

$$
\lim_{n \to \infty} \mathbb{E} C_n = \zeta(2) = \sum_{k=1}^{\infty} \frac{1}{k^2} = \frac{\pi^2}{6} = 1.6449\ldots
$$

Let $E(\lambda)$ denote an exponential random variable of rate λ i.e. $\Pr(E(\lambda) \geq x) = e^{-\lambda x}$. Consider the complete bipartite graph $K_{n,n}$, with bipartition (A,B), where $A = \{a_1, a_2, \ldots, a_n\}$ and $B = \{b_1, b_2, \ldots, b_n\}$, and with edge weights which are independent copies of $E(1)$. We add a special vertex b^* to B, with edges to all n vertices of A. Each edge adjacent to b^* is assigned an $E(\lambda)$ weight independently, $\lambda > 0$.

For $r \geq 1$ we let M_r be the minimum weight matching of $A_r = \{a_1, a_2, \ldots, a_r\}$ into B and M_r^* be the minimum weight matching of A_r into $B^* = B \cup \{b^*\}$. (As $\lambda \to 0$ it becomes increasingly unlikely that any of the extra edges are actually used in the minimum weight matching.) We denote this matching by M_r^* and we let B_r^* denote the corresponding set of vertices of B^* that are covered by M_r^*. We let $C(n,r)$ denote the weight of M_r.

Define $P(n,r)$ as the normalized probability that b^* participates in M_r^*, i.e.

$$
P(n,r) = \lim_{\lambda \to 0} \frac{\Pr(b^* \in B_r^*)}{\lambda}.
$$

(19.5)

Its importance lies in the following lemma:

Lemma 19.5.

$$
\mathbb{E}(C(n,r) - C(n,r-1)) = \frac{P(n,r)}{r}.
$$

(19.6)
Proof. Choose i randomly from $[r]$ and let $\hat{B}_i \subseteq B_r$ be the B-vertices in the minimum weight matching of $(A_r \setminus \{a_i\})$ into B^*. Let $X = C(n,r)$ and let $Y = C(n,r-1)$. Let w_i be the weight of the edge (a_i, b^*), and let I_i denote the indicator variable for the event that the minimum weight of an A_r matching that contains this edge is smaller than the minimum weight of an A_r matching that does not use b^*. We can see that I_i is the indicator variable for the event $\{Y_i + w_i < X\}$, where Y_i is the minimum weight of a matching from $A_r \setminus \{a_i\}$ to B. Indeed, if $(a_i, b^*) \in M^*$, then $w_i < X - Y_i$. Conversely, if $w_i < X - Y_i$ and no other edge from b^* has weight smaller than $X - Y_i$, then $(a_i, b^*) \in M^*$, and when $\lambda \to 0$, the probability that there are two distinct edges from b^* of weight smaller than $X - Y_i$ is of order $O(\lambda^2)$. Indeed, let \mathcal{F} denote the existence of two distinct edges from b^* of weight smaller than X and let $\mathcal{F}_{i,j}$ denote the event that (a_i, b^*) and a_j, b^* both have weight smaller than X.

Then,

$$\Pr(\mathcal{F}) \leq n^2 \mathbb{E}_X(\max_{i,j} \Pr(\mathcal{F}_{i,j} \mid X)) = n^2 \mathbb{E}((1 - e^{-\lambda X})^2) \leq n^2 \lambda^2 \mathbb{E}(X^2), \quad (19.7)$$

and since $\mathbb{E}(X^2)$ is finite and independent of λ, this is $O(\lambda^2)$.

Note that Y and Y_i have the same distribution. They are both equal to the minimum weight of a matching of a random $(r-1)$-set of A into B. As a consequence, $\mathbb{E}(Y) = \mathbb{E}(Y_i) = \frac{1}{r} \sum_{j \in A_v} \mathbb{E}(Y_j)$. Since w_i is $E(\lambda)$ distributed, as $\lambda \to 0$ we have from (19.7) that

$$P(n,r) = \lim_{\lambda \to 0} \left(\frac{1}{\lambda} \sum_{j \in A_v} \Pr(w_j < X - Y_j) + O(\lambda) \right) = \lim_{\lambda \to 0} \mathbb{E} \left(\frac{1}{\lambda} \sum_{j \in A_v} (1 - e^{-\lambda(X - Y_j)}) \right) = \sum_{j \in A_v} \mathbb{E}(X - Y_j) = r \mathbb{E}(X - Y).$$

We now proceed to estimate $P(n,r)$. Fix r and assume that $b^* \notin B^*_{r-1}$. Suppose that M^*_r is obtained from M^*_{r-1} by finding an augmenting path $P = (a_r, \ldots, a_\sigma, b_r)$ from a_r to $B \setminus B_{r-1}$ of minimum additional weight. We condition on (i) σ, (ii) the lengths of all edges other than $(a_\sigma, b_j), b_j \in B \setminus B_{r-1}$ and (iii) $\min \{ \omega(a_\sigma, b_j) : b_j \in B \setminus B_{r-1} \}$. With this conditioning $M^*_{r-1} = M^*_{r-1}$ will be fixed and so will $P' = (a_r, \ldots, a_\sigma)$. We can now use the following fact: Let X_1, X_2, \ldots, X_M be independent exponential random variables of rates $\lambda_1, \lambda_2, \ldots, \lambda_M$.

Then the probability that X_i is the smallest of them is $\lambda_i / (\lambda_1 + \lambda_2 + \cdots + \lambda_M)$. Furthermore, the probability stays the same if we condition on the value of $\min \{ X_1, X_2, \ldots, X_M \}$. Thus

$$\Pr(b^* \in B^*_{r} \mid b^* \notin B^*_{r-1}) = \frac{\lambda}{n - r + 1 + \lambda}.$$
Lemma 19.6.

\[P(n, r) = \frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-r+1}. \]

\[(19.8)\]

Proof.

\[
\begin{align*}
\lim_{\lambda \to 0} \lambda^{-1} \Pr(b^* \in B^*_r) &= \lim_{\lambda \to 0} \lambda^{-1} \left(1 - \frac{n}{n + \lambda} \cdot \frac{n-1}{n - 1 + \lambda} \cdot \cdots \frac{n-r+1}{n-r+1 + \lambda} \right) \\
&= \lim_{\lambda \to 0} \lambda^{-1} \left(1 - \left(1 + \frac{\lambda}{n} \right)^{-1} \cdots \left(1 + \frac{\lambda}{n-r+1} \right)^{-1} \right) \\
&= \lim_{\lambda \to 0} \lambda^{-1} \left(\frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-r+1} \right) + O(\lambda^2) \\
&= \frac{1}{n} + \frac{1}{n-1} + \cdots + \frac{1}{n-r+1}.
\end{align*}
\]

\[(19.9)\]

It follows from Lemmas 19.5 and 19.6 that

\[\mathbb{E} C_n = \sum_{r=1}^{\frac{n}{2}} r \sum_{i=1}^{\frac{n-r}{2}} \frac{1}{n-r+i}. \]

It follows that

\[
\mathbb{E}(C_{n+1} - C_n) =
\begin{align*}
&= \frac{1}{n+1} \sum_{i=1}^{n+1} \frac{1}{n-i+2} + \sum_{r=1}^{n} r \sum_{i=1}^{r} \left(\frac{1}{n-i+2} - \frac{1}{n-i+1} \right) \\
&= \frac{1}{(n+1)^2} + \sum_{i=2}^{n+1} \frac{1}{(n+1)(n-i+2)} + \sum_{r=1}^{n} \frac{1}{r} \left(\frac{1}{n+1} - \frac{1}{n-r+1} \right) \\
&= \frac{1}{(n+1)^2}. \quad (19.10)
\end{align*}
\]

\[\mathbb{E}(C_1) = 1 \text{ and so (19.4) follows from (19.10)}. \]

\[\Box\]

19.4 Exercises

19.4.1 Suppose that the edges of the complete bipartite graph \(K_{n,n}\) are given independent uniform \([0, 1]\) edge weights. Show that if \(L_n^{(b)}\) is the length of the minimum spanning tree, then

\[\lim_{n \to \infty} \mathbb{E} L_n^{(b)} = 2 \zeta(3). \]

19.4.2 Let $G = K_{\alpha n, \beta n}$ be the complete unbalanced bipartite graph with bipartition sizes $\alpha n, \beta n$. Suppose that the edges of G are given independent uniform $[0,1]$ edge weights. Show that if $L_n^{(b)}$ is the length of the minimum spanning tree, then

$$
\lim_{n \to \infty} E L_n^{(b)} = \gamma + \frac{1}{\gamma} + \sum_{i_1 \geq 1, i_2 \geq 1} \frac{(i_1 + i_2 - 1)!}{i_1! i_2!} \frac{\gamma^{i_1} i_1^{i_1 - 1} i_2^{i_2 - 1}}{(i_1 + \gamma i_2)^{i_1 + i_2}},
$$

where $\gamma = \alpha/\beta$.

19.4.3 Tighten Theorem 19.1 and prove that

$$
E L_n = \zeta(3) + O \left(\frac{1}{n} \right).
$$

19.4.4 Suppose that the edges of K_n are given independent uniform $[0,1]$ edge weights. Let Z_k denote the minimum total edge cost of the union of k edge-disjoint spanning trees. Show that $\lim_{k \to \infty} Z_k/k^2 = 1$.

19.4.5 Suppose that the edges of $G_{n,p}$ where $0 < p \leq 1$ is a constant, are given exponentially distributed weights with rate 1. Show that if X_{ij} is the shortest distance from i to j then

(a) For any fixed i, j,

$$
\mathbb{P} \left(\frac{X_{ij}}{\log n/n} - \frac{1}{p} \geq \epsilon \right) \to 0.
$$

(b)

$$
\mathbb{P} \left(\frac{\max_j X_{ij}}{\log n/n} - \frac{2}{p} \geq \epsilon \right) \to 0.
$$

19.4.6 The quadratic assignment problem is to

Minimise

$$
Z = \sum_{i,j,p,q=1}^n a_{ijpq} x_{ip} x_{jq}
$$

Subject to

$$
\sum_{i=1}^n x_{ip} = 1 \quad p = 1, 2, \ldots, n
$$

$$
\sum_{p=1}^n x_{ip} = 1 \quad i = 1, 2, \ldots, n
$$

$$
x_{ip} = 0/1.
$$
Suppose now that the a_{ijpq} are independent uniform $[0,1]$ random variables. Show that w.h.p. $Z_{\text{min}} \approx Z_{\text{max}}$ where Z_{min} (resp. Z_{max}) denotes the minimum (resp. maximum) value of Z, subject to the assignment constraints.

19.4.7 The 0/1 knapsack problem is to

Maximise

$$Z = \sum_{i=1}^{n} a_{i} x_{i}$$

Subject to

$$\sum_{i=1}^{n} b_{i} x_{i} \leq L$$

$$x_{i} = 0/1 \quad \text{for } i = 1, 2, \ldots, n.$$

Suppose that the (a_{i}, b_{i}) are chosen independently and uniformly from $[0,1]^2$ and that $L = \alpha n$. Show that w.h.p. the maximum value of Z, Z_{max}, satisfies

$$Z_{\text{max}} \approx \begin{cases} \alpha^{1/2} n & \alpha \leq \frac{1}{4}, \\ \frac{(8\alpha - 8\alpha^2 - 1)n}{2} & \frac{1}{4} \leq \alpha \leq \frac{1}{2}, \\ \frac{n}{2} & \alpha \geq \frac{1}{2} \end{cases}.$$

19.4.8 Suppose that $X_{1}, X_{2}, \ldots, X_{n}$ are points chosen independently and uniformly at random from $[0,1]^2$. Let Z_{n} denote the total Euclidean length of the shortest tour (Hamilton cycle) through each point. Show that there exist constants c_{1}, c_{2} such that $c_{1} n^{1/2} \leq Z_{n} \leq c_{2} n^{1/2}$ w.h.p.

19.4.9 Prove equation (19.11) below. See the preceding paragraph to explain the 3-dimensional assignment problem. The implied lower bound is easy. For the upper bound let $X = V_{1} \times V_{2} \times V_{3}$ and let $\mathcal{N} = \{(i_{t}, j_{t}, k_{t}), t = 1, 2, \ldots, n : V_{1} = \{i_{1}, \ldots, i_{n}\} \text{ etc.}\}$. Let $p = C/n^{2}$ for large C and let $W_{0}, W_{1}, \ldots, W_{t}, \ldots$ be as in Claim 9 of Section 14.3. Show that w.h.p. each W_{i} contributes $O(1/n) \times (1 - \gamma)^{i}$ to the weight of the final assignment.

19.4.10 Prove equation (19.12) below.

19.5 Notes

Shortest paths

There have been some strengthenings and generalisations of Theorem 19.2. For example, Bhamidi and van der Hofstad [90] have found the (random) second-
order term in (i), i.e., convergence in distribution with the correct norming. They have also studied the number of edges in the shortest path.

Spanning trees

Beveridge, Frieze and McDiarmid [89] considered the length of the minimum spanning tree in regular graphs other than complete graphs. For graphs G of large degree r they proved that the length $MST(G)$ of an n-vertex randomly edge weighted graph G satisfies $MST(G) = \frac{r}{r-1}(\zeta(3) + o_r(1))$ w.h.p., provided some mild expansion condition holds. For r-regular graphs of large girth g they proved that

$$
c_r = \frac{r}{(r-1)^2} \sum_{k=1}^{\infty} \frac{1}{k(k+\rho)(k+2\rho)},
$$

then w.h.p. $|MST(G) - c_r n| \leq \frac{3n}{2g}$. Frieze, Ruszinko and Thoma [363] replaced expansion in [89] by connectivity and in addition proved that $MST(G) \leq \frac{n}{r}(\zeta(3) + 1 + o_r(1))$ for any r-regular graph.

Cooper, Frieze, Ince, Janson and Spencer [228] show that Theorem 19.1 can be improved to yield $E_{L_n} = \zeta(3) + c_1 n + c_2 o(n)$ for explicit constants c_1, c_2. Bollobás, Gamarnik, Riordan and Sudakov [149] considered the Steiner Tree problem on K_n with independent random edge weights, $X_e, e \in E(K_n)$. Here they assume that the X_e have the same distribution $X \geq 0$ where $P(X \leq x) = x + o(x)$ as $x \to 0$. The main result is that if one fixes $k = o(n)$ vertices then w.h.p. the minimum length W of a sub-tree of K_n that includes these k points satisfies $W \approx \frac{k-1}{n} \log n$.

Angel, Flaxman and Wilson [37] considered the minimum length of a spanning tree of K_n that has a fixed root and bounded depth k. The edges weights X_e are independent exponential mean one. They prove that if $k \geq \log_2 \log n + o(1)$ then w.h.p. the minimum length tends to $\zeta(3)$ as in the unbounded case. On the other hand, if $k \leq \log_2 \log n - o(1)$ then w.h.p. the weight is doubly exponential in $\log_2 \log n - k$. They also considered bounded depth Steiner trees.

Using Talagrand’s inequality, McDiarmid [583] proved that for any real $t > 0$ we have $P(|L_n - \zeta(3)| \geq t) \leq e^{-\delta_1 n}$ where $\delta_1 = \delta_2(t)$. Flaxman [314] proved that $P(|L_n - \zeta(3)| \leq \varepsilon) \geq e^{-\delta_1 n}$ where $\delta_1 = \delta_2(\varepsilon)$.

Assignment problem

Walkup [751] proved if the weights of edges are independent uniform [0, 1] then $E C_n \leq 3$ (see (19.3)) and later Karp [491] proved that $E C_n \leq 2$. Dyer, Frieze and McDiarmid [279] adapted Karp’s proof to something more general: Let Z be the
optimum value to the linear program:

$$\text{Minimise } \sum_{j=1}^{n} c_j x_j, \text{ subject to } x \in P = \{x \in \mathbb{R}^n : Ax = b, x \geq 0\},$$

where A is an $m \times n$ matrix. As a special case of [279], we have that if c_1, c_2, \ldots, c_n are independent uniform $[0, 1]$ random variables and x^* is any member of P, then $E(Z) \leq m(\max_j x_j^*)$. Karp's result can easily be deduced from this.

The assignment problem can be generalized to multi-dimensional versions: We replace the complete bipartite graph $K_{n,n}$ by the complete k-partite hypergraph $K_n^{(k)}$ with vertex partition $V = V_1 \sqcup V_2 \sqcup \cdots \sqcup V_k$ where each V_i is of size n. We give each edge of $K_n^{(k)}$ an independent exponential mean one value. Assume for example that $k = 3$. In one version of the 3-dimensional assignment problem we ask for a minimum weight collection of hyper-edges such that each vertex $v \in V$ appears in exactly one edge. The optimal total weight Z of this collection satisfies

$$Z = \Theta\left(\frac{1}{n}\right) \text{ w.h.p.} \quad (19.11)$$

(The upper bound uses the result of [468], see Section 14.3).

Frieze and Sorkin [364] give an $O(n^3)$ algorithm that w.h.p. finds a solution of value $\frac{1}{n^{1+o(1)}}$.

In another version of the 3-dimensional assignment problem we ask for a minimum weight collection of hyper-edges such that each pair of vertices $v, w \in V$ from different sets in the partition appear in exactly one edge. The optimal total weight Z of this collection satisfies

$$\Omega(n) \leq Z \leq O(n \log n) \text{ w.h.p.} \quad (19.12)$$

(The upper bound uses the result of [279] to greedily solve a sequence of restricted assignment problems).
Chapter 20

Brief notes on uncovered topics

There are several topics that we have not been able to cover and that might be of interest to the reader. For these topics, we provide some short synopses and some references that the reader may find useful.

Contiguity

Suppose that we have two sequences of probability models on graphs G_1, n, G_2, n on the set of graphs with vertex set $[n]$. We say that the two sequences are contiguous if for any sequence of events A_n we have

$$\lim_{n \to \infty} P(G_1, n \in A_n) = 0 \Leftrightarrow \lim_{n \to \infty} P(G_2, n \in A_n) = 0.$$

This for example, is useful for us, if we want to see what happens w.h.p. in the model G_1, n, but find it easier to work with G_2, n. In this context, $G_{n, p}$ and $G_{n, m = n^2/2}$ are almost contiguous.

Interest in this notion in random graphs was stimulated by the results of Robinson and Wormald [677], [680] that random r-regular graphs, $r \geq 3, r = O(1)$ are Hamiltonian. As a result, we find that other non-uniform models of random regular graphs are contiguous to $G_{n, r}$ e.g. the union rM_n of r random perfect matchings when n is even. (There is an implicit conditioning on rM_n being simple here). The most general result in this line is given by Wormald [761], improving on earlier results of Janson [439] and Molloy, Robalewska, Robinson and Wormald [604] and Kim and Wormald [502]. Suppose that $r = 2j + \sum_{i=1}^{r-1} ik_i$, with all terms non-negative. Then $G_{n, r}$ is contiguous to the sum $jH_n + \sum_{i=1}^{r-1} k_i G_{n, i}$, where n is restricted to even integers if $k_i \neq 0$ for any odd i. Here jH_n is the union of j edge disjoint Hamilton cycles etc.

Chapter 8 of [449] is devoted to this subject.
CHAPTER 20. BRIEF NOTES ON UNCOVERED TOPICS

Edge Colored Random Graphs

Suppose that we color the edges of a graph \(G \). A set of edges \(S \) is said to be rainbow colored if each edge of \(S \) has a different color. Consider first the existence of a rainbow spanning tree. We consider the graph process where the edges are randomly colored using \(q \geq n - 1 \) colors. Let \(\tau_d \) be the hitting time for \(n - 1 \) colors to appear in the process and let \(\tau_c \) be the hitting time for connectivity and let \(\tau^* = \max\{\tau_d, \tau_c\} \). Frieze and McKay [357] showed that w.h.p. \(G_{\tau^*} \) contains a rainbow spanning tree. This is clearly best possible. Bal, Bennett, Frieze and Pralat [48] consider the case where each edge has a choice of \(k \) random colors. This reduces \(\tau_d \), but the result still holds.

The existence of rainbow Hamilton cycles is different. The existence of a rainbow spanning tree can be checked in polynomial time and this leads to a simple criterion for non-existence. This is clearly not likely for Hamilton cycles. Cooper and Frieze [218] proved that if \(m \geq Kn\log n \) and \(q \geq Kn \) then w.h.p. \(G_{n,m} \) contains a rainbow Hamilton cycle. This was improved to \(m \geq \frac{1+o(1)}{2} n\log n \) and \(q \geq (1 + o(1))n \) by Frieze and Loh [352]. Bal and Frieze [50] show that if \(m \geq Kn\log n \) and \(q = n \) and \(n \) is even there is a rainbow Hamilton cycle w.h.p. Ferber [303] removed the requirement that \(n \) be even. Bal and Frieze also considered rainbow perfect matchings in \(k \)-uniform hypergraphs. Janson and Wormald [452] considered random coloring’s of \(r \)-regular graphs. They proved that if \(r \geq 4, r = O(1) \) and the edges of \(G_{n,2r} \) are randomly colored so that each color is used \(r \) times, then w.h.p. there is a rainbow Hamilton cycle. Ferber, Kronenberg, Mousset and Shikhelman [306] give results on packing rainbow structures such as Hamilton cycles. Ferber, Nenadov and Peter prove that if \(p \gg n^{-1/d}(\log n)^{1/d} \) and \(H \) is a fixed graph of density at most \(d \) then w.h.p. \(G_{n,p} \) contains a rainbow copy of \(H \) if it is randomly colored with \((1 + \varepsilon)|E(H)| \) colors, for any fixed \(\varepsilon > 0 \). Cooper and Frieze [215] found the threshold for the following property: If \(k = O(1) \) and \(G_{n,m} \) is arbitrarily edge colored so that no color is used more than \(k \) times, then \(G_{n,m} \) contains a rainbow Hamilton cycle.

Games

Positional games can be considered to be a generalisation of the game of “Noughts and Crosses” or “Tic-Tac-Toe”. There are two players A (Maker) and B (Breaker) and in the context for this section, the board will be a graph \(G \). Each player in turn chooses an edge and at the end of the game, the winner is determined by the partition of the edges claimed by the players. As a typical example, in the connectivity game, player A is trying to ensure that the edges she collects contain a spanning tree of \(G \) and player B is trying to prevent this. See Chvátal and Erdős
for one of the earliest papers on the subject and books by Beck [68] and Hefetz, Krivelevich, Stojaković and Szabó [419]. Most of the analyses have considered \(G = K_n \) and to make the problem interesting [196] introduced the notion of bias. Thus in the connectivity game, player B is allowed to collect \(b \) edges for each edge of \(A \). Now the question becomes what is the largest value of \(b \) for which \(A \) has a winning strategy. There is a striking though somewhat mysterious connection between the optimal values of \(b \) for various games and thresholds for associated properties in random graphs. For example in the connectivity game, the threshold bias \(b \approx \frac{n}{\log n} \) i.e. player A collects about \(\frac{1}{2} n \log n \) edges, see Gebauer and Szabó [376]. Another example is the biased \(H \)-game where Maker wins if she can create a copy of some fixed graph \(H \) with at least two adjacent edges. The optimal threshold bias \(b \) for this game is of order \(\Theta(n^{1/m_2(H)}) \), Bednarska and Łuczak [69]. For sufficiently small constant \(c > 0 \), if \(b \leq cn^{1/m_2(H)} \), then Maker can create \(\Theta(EX_H) \) copies of \(H \) in \(K_n \), where \(X_H \) is the number of copies of \(H \) in \(G_{n,1/b} \). Furthermore, if Maker plays randomly, she achieves this goal w.h.p.

Recently Stojaković and Szabó [727] began research on random boards i.e. where \(G \) is a random graph. Ben-Shimon, Ferber, Hefetz and Krivelevich [81] prove a hitting time result for the \(b = 1 \) Hamilton cycle game on the graph process. Assuming that player A wants to build a Hamilton cycle and player B starts first, player A will have a winning strategy in \(G_m \) iff \(m \geq m_4^* \). This is best possible. Biased Hamiltonicity games on \(G_{n,p} \) were considered in Ferber, Glebov, Krivelevich and Naor [304] where it was shown that for \(p \gg \log n \), the threshold bias \(b_{HAM} \) satisfies \(b_{HAM} \approx \frac{np}{\log n} \) w.h.p. The \(H \)-game where A wins if she can create a copy of some fixed graph \(H \) was first studied by Stojakovic and Szabo [727] in the case of \(H \) is a clique on \(k \) vertices. This was strengthened by Müller and Stojaković [619]. They show that if \(p \leq cn^{-2/(k+1)} \), then w.h.p. B can win this game. For \(p \geq Cn^{-2/(k+1)} \) one can use the results of [681] to argue that A wins w.h.p. This result was generalised to arbitrary graphs \(H \) (satisfying certain mild conditions) by Nenadov, Steger and Stojaković [630] where they showed that the threshold is where one would expect it to be - at the 2-density of \(H \). As we have seen there are other models of random graphs and Beveridge, Dudek, Frieze, Müller and Stojaković [88] studied these games on random geometric graphs.

The game chromatic number \(\chi_g(G) \) of a graph \(G \) can be defined as follows. Once again there are two players A,B and they take it in turns to properly color vertices of \(G \) with one of \(q \) colors. Thus if \(\{u,v\} \) is an edge and \(u \) is colored with color \(c \) and \(v \) is uncolored at the start of any turn, then \(v \) may not be colored with \(c \) by either player. The goal of A is to ensure that the game ends with every vertex colored and the goal of B is to prevent this by using all \(q \) colors in the neighborhood of some uncolored vertex. The game chromatic number is the minimum \(q \) for which A can win. For a survey on results on this parameter see Bartnicki, Grytczuk,
Kierstead and Zhu [66]. Bohman, Frieze and Sudakov [122] studied χ_g for dense random graphs and proved that for such graphs, χ_g is within a constant factor of the chromatic number. Keusch and Steger [499] proved that this factor is asymptotically equal to two. Frieze, Haber and Lavrov [345] extended the results of [122] to sparse random graphs.

Graph Searching

Cops and Robbers

A collection of cops are placed on the vertices of a graph by player C and then a robber is placed on a vertex by player R. The players take turns. C can move all cops to a neighboring vertex and R can move the robber. The cop number of a graph is the minimum number of cops needed so that C can win. The basic rule being that if there is a cop occupying the same vertex as the robber, then C wins. Łuczak and Pralat [566] proved a remarkable “zigzag” theorem giving the cop number of a random graph. This number being n^α where $\alpha = \alpha(p)$ follows a saw-toothed curve. Pralat and Wormald [659] proved that the cop number of the random regular graph $G_{n,r}$ is $O(n^{1/2})$. It is worth noting that Meyniel has conjectured $O(n^{1/2})$ as a bound on the cop number of any connected n-vertex graph. There are many variations on this game and the reader is referred to the monograph by Bonato and Pralat [157].

Graph Cleaning

Initially, every edge and vertex of a graph G is dirty, and a fixed number of brushes start on a set of vertices. At each time-step, a vertex v and all its incident edges that are dirty may be cleaned if there are at least as many brushes on v as there are incident dirty edges. When a vertex is cleaned, every incident dirty edge is traversed (that is, cleaned) by one and only one brush, and brushes cannot traverse a clean edge. The *brush number* $b(G)$ is the minimum number of brushes needed to clean G. Pralat [660], [661] proved that w.h.p. $b(G_{n,p}) \approx \frac{1-e^{-2d}}{4}n$ for $p = \frac{d}{n}$ where $d < 1$ and w.h.p. $b(G_{n,p}) \leq (1+o(1)) \left(d + 1 - \frac{1-e^{-2d}}{2d} \right) \frac{n}{d}$ for $d > 1$. For the random d-regular graph $G_{n,d}$, Alon, Pralat and Wormald [25] proved that w.h.p. $b(G_{n,d}) \geq \frac{d}{4} \left(1 - \frac{\sqrt{d/2}}{d^{1/2}} \right)$.
Acquaintance Time

Let $G = (V, E)$ be a finite connected graph. We start the process by placing one agent on each vertex of G. Every pair of agents sharing an edge are declared to be acquainted, and remain so throughout the process. In each round of the process, we choose some matching M in G. The matching M need not be maximal; perhaps it is a single edge. For each edge of M, we swap the agents occupying its endpoints, which may cause more agents to become acquainted. We may view the process as a graph searching game with one player, where the player’s strategy consists of a sequence of matchings which allow all agents to become acquainted. Some strategies may be better than others, which leads to a graph optimisation parameter. The acquaintance time of G, denoted by $A(G)$, is the minimum number of rounds required for all agents to become acquainted with one another. The parameter $A(G)$ was introduced by Benjamini, Shinkar and Tsur [73], who showed that $A(G) = O(n^2 \log \log n / \log n)$ for an n vertex graph. The loglog n factor was removed by Kinnersley, Mitsche and Pralat [504]. The paper [504] also showed that w.h.p. $A(G_{n,p}) = O(\log n / p)$ for $(1+\varepsilon)\log n / n \leq p \leq 1 - \varepsilon$. The lower bound here was relaxed to $np - \log n \rightarrow \infty$ in Dudek and Pralat [271]. A lower bound, $\Omega(\log n / p)$ for $G_{n,p}$ and $p \geq n^{-1/2+\varepsilon}$ was proved in [504].

H-free process

In an early attempt to estimate the Ramsey number $R(3, t)$, Erdős, Suen and Winkler [294] considered the following process for generating a triangle free graph. Let $e_1, e_2, \ldots, e_N, N = \binom{n}{2}$ be a random ordering of the complete graph K_n. Let \mathcal{P} be a graph property e.g. being triangle free. We generate a sequence of random graphs $\Gamma_0, \Gamma_1, \ldots, \Gamma_N$ where $\Gamma_{i+1} = \Gamma_i + e_{i+1}$ if adding e_{i+1} does not destroy \mathcal{P}, otherwise $\Gamma_{i+1} = \Gamma_i$. In this way we can generate a random graph that is guaranteed to have property \mathcal{P}.

For \mathcal{P} is “bipartite” they show in [294] that Γ_N has expected size greater than $(n^2 - n)/4$. When \mathcal{P} is “triangle free” they show that w.h.p. that Γ_N has size $\Omega(n^{3/2})$ w.h.p. Bollobas and Riordan [153] studied the general H-free process. More recently, Bohman [114] showed in the case of the triangle free process, that w.h.p. Γ_N has size $\Theta(n^{3/2}(\log n)^{1/2})$. This provides an alternative proof to that of Kim [500] that $R(3,t) = \Omega\left(\frac{t^2}{\log t}\right)$. He made use of a careful use of the differential equations method, see Chapter 23. Bohman and Keevash [123] and Fiz Pontiveros, Griffiths and Morris [313] have improved this result and shown that w.h.p. Γ_N has size asymptotically equal to $\frac{1}{2\sqrt{2}}n^{3/2}(\log n)^{1/2}$. They also show that the independence number of Γ_N is bounded by $(1 + o(1))(2n \log n)^{1/2}$. This
CHAPTER 20. BRIEF NOTES ON UNCOVERED TOPICS

shows that $R(3,t) > \left(\frac{1}{4} - o(1) \right) t^2 / \log t$.

Bohman, Mubayi and Picolleli [125] considered an r-uniform hypergraph version. In particular they studied the $T^{(r)}$-free process, where $T^{(r)}$ generalises a triangle in a graph. It consists of $S \cup \{a_i\}, i = 1, 2, \ldots, r$ where $|S| = r - 1$ and a further edge $\{a_1, a_2, \ldots, a_r\}$. Here hyperedges are randomly added one by one until one is forced to create a copy of T^r. They show that w.h.p. the final hypergraph produced has independence number $O((n \log n)^{1/r})$. This proves a lower bound of $\Omega \left(\frac{s^r}{\log s} \right)$ for the Ramsey number $R(T^{(r)}, K^{(r)}_s)$.

The analysis is based on a paper on the random greedy hypergraph independent set process by Bennett and Bohman [78]. There has also been work on the related triangle removal process. Here we start with K_n and repeatedly remove a random triangle until the graph is triangle free. The main question is as to how many edges are there in the final triangle free graph. A proof of a bound of $O(n^{7/4+o(1)})$ was outlined by Grable [396]. A simple proof of $O(n^{7/4+o(1)})$ was proved in Bohman, Frieze and Lubetzky [119]. Furthermore, Bohman, Frieze and Lubetzky [120] have proved a tight result of $n^{3/2+o(1)}$ for the number of edges left. This is close to the $\Theta(n^{3/2})$ bound conjectured by Bollobás and Erdős in 1990.

An earlier paper by Ruciński and Wormald [688] consider the d-process. Edges were now rejected if they raised the degree of some vertex above d. Answering a question of Erdős, they proved that the resulting graph was w.h.p. d-regular.

Logics and Random Graphs

The first order theory of graphs is a language in which one can describe some, but certainly not all, properties of graphs. It can describe G has a triangle, but not G is connected. Fagin [297] and Glebskii, Kogan, Liagonkii and Talanov [386] proved that for any property \mathcal{A} that can be described by a first order sentence, $\lim_{n \to \infty} \mathbb{P}(G_{n,1/2} \in \mathcal{A}) \in \{0, 1\}$. We say that $p = 1/2$ obeys a 0-1 law. One does not need to restrict oneself to $G_{n,1/2}$. Shelah and Spencer [711] proved that if α is irrational then $p = n^{-\alpha}$ also obeys a 0-1 law, while if α is rational, then there are first order sentences such that $\lim_{n \to \infty} \mathbb{P}(G_{n,1/2} \in \mathcal{A})$ does not exist. See the book by Spencer [720] for much more on this subject.

Planarity

We have said very little about random planar graphs. This is partially because there is no simple way of generating a random planar graph. The study begins with the seminal work of Tutte [742], [743] on counting planar maps. The number of rooted maps on surfaces was found by Bender and Canfield [76]. The size of
the largest components were studied by Banderier, Flajolet, Schaeffer and Soria [57].

When it comes to random labeled planar graphs, McDiarmid, Steger and Welsh [58] showed that if \(pl(n) \) denotes the number of labeled planar graphs with \(n \) vertices, then \((pl(n)/n!)^{1/n} \) tends to a limit \(\gamma \) as \(n \to \infty \). Osthul, Prömel and Taraz [63] found an upper bound for \(\gamma \), Bender, Gao and Wormald [77] found a lower bound for \(\gamma \). Finally, Giménez and Noy [383] proved that \(pl(n) \approx cn^{-7/2} \gamma^n n! \) for explicit values of \(c, \gamma \).

Next let \(pl(n,m) \) denote the number of labelled planar graphs with \(n \) vertices and \(m \) edges. Gerke, Schlatter, Steger and Taraz [379] proved that if \(0 \leq a \leq 3 \) then \((pl(n,an)/n!)^{1/n} \) tends to a limit \(\gamma_a \) as \(n \to \infty \). Giménez and Noy [383] showed that if \(1 < a < 3 \) then \(pl(n,an) \approx ca^{-4} \gamma^a n! \). Kang and Łuczak [480] proved the existence of two critical ranges for the sizes of complex components.

Planted Cliques, Cuts and Hamilton cycles

The question here is the following: Suppose that we plant an unusual object into a random graph. Can someone else find it? One motivation being that if finding the planted object is hard for someone who does not know where it is planted, then this modified graph can be used as a signature. To make this more precise, consider starting with \(\mathbb{G}_{n,1/2} \), choosing an \(s \)-subset \(S \) of \([n] \) and then making \(S \) into a clique. Let the modified graph be denoted by \(\Gamma \). Here we assume that \(s \gg \log n \) so that \(S \) should stand out. Can we find \(S \), if we are given \(\Gamma \), but we are not told \(S \). Kucera [536] proved that if \(s \geq C(n \log n)^{1/2} \) for a sufficiently large \(C \) then w.h.p. one can find \(S \) by looking at vertex degrees. Alon, Krivelevich and Sudakov [29] improved this to \(s = \Omega(n^{1/2}) \). They show that the second eigenvector of the adjacency matrix of \(\Gamma \) contains enough information so that w.h.p. \(S \) can be found. Frieze and Kannan [348] related this to a problem involving optimisation of a tensor product. Recently, Feldman, Grigorescu, Reyzin, Vempala and Xiao [300] showed that a large class of algorithms will fail w.h.p. if \(s \leq n^{1/2-\delta} \) for some positive constant \(\delta \).

There has also been a considerable amount of research on planted cuts. Beginning with the paper of Bui, Chaudhuri, Leighton and Sipser [170] there have been many papers that deal with the problem of finding a cut in a random graph of unusual size. By this we mean that starting with \(\mathbb{G}_{n,p} \), someone selects a partition of the vertex set into \(k \geq 2 \) sets of large size and then alters the edges between the subsets of the partition so that it is larger or smaller than can be usually found in \(\mathbb{G}_{n,p} \). See Coja-Oghlan [197] for a recent paper with many pertinent references.

As a final note on this subject of planted objects. Suppose that we start with a Hamilton cycle \(C \) and then add a copy of \(\mathbb{G}_{n,p} \) where \(p = \frac{x}{n} \) to create \(\Gamma \). Broder,
Frieze and Shamir [167] showed that if \(c \) is sufficiently large then w.h.p. one can in polynomial time find a Hamilton cycle \(H \) in \(\Gamma \). While \(H \) may not necessarily be \(C \), this rules out a simple use of Hamilton cycles for a signature scheme.

Random Lifts

For a graph \(K \), an \(n \)-lift \(G \) of \(K \) has vertex set \(V(K) \times [n] \) where for each vertex \(v \in V(K) \), \(\{v\} \times [n] \) is called the fiber above \(v \) and will be denoted by \(\Pi_v \). The edge set of a \(n \)-lift \(G \) consists of a perfect matching between fibers \(\Pi_u \) and \(\Pi_w \) for each edge \(\{u, w\} \in E(K) \). The set of \(n \)-lifts will be denoted \(\Lambda_n(K) \). In a random \(n \)-lift, the matchings between fibers are chosen independently and uniformly at random.

Lifts of graphs were introduced by Amit and Linial in [34] where they proved that if \(K \) is a connected, simple graph with minimum degree \(\delta \geq 3 \), and \(G \) is a random \(n \)-lift of \(K \) then \(G \) is \(\delta(G) \)-connected w.h.p., where the asymptotics are for \(n \to \infty \). They continued the study of random lifts in [35] where they proved expansion properties of lifts. Together with Matoušek, they gave bounds on the independence number and chromatic number of random lifts in [36]. Linial and Rozenman [550] give a tight analysis for when a random \(n \)-lift has a perfect matching. Greenhill, Janson and Ruciński [398] consider the number of perfect matchings in a random lift.

Łuczak, Witkowski and Witkowski [569] proved that a random lift of \(H \) is Hamiltonian w.h.p. if \(H \) has minimum degree at least 5 and contains two disjoint Hamiltonian cycles whose union is not a bipartite graph. Chebolu and Frieze [181] considered a directed version of lifts and showed that a random lift of the complete digraph \(\vec{K}_n \) is Hamiltonian w.h.p. provided \(h \) is sufficiently large.

Random Simplicial Complexes

Linial and Meshulam [549] pioneered the extension of the analysis of \(\mathbb{G}_{n,p} \) to higher dimensional complexes. We are at the beginning of research in this area and can look forward to exciting connections with Algebraic Topology. For more details see the survey of Kahle [476].

Random Subgraphs of the \(n \)-cube

While most work on random graphs has been on random subgraphs of \(K_n \), it is true to say that has also been a good deal of work on random subgraphs of the \(n \)-cube, \(\mathbb{Q}_n \). This has vertex set \(V_n = \{0, 1\}^n \) and an edge between \(x, y \in V_n \) iff they
differ in exactly one coordinate. To obtain a subgraph, we can either randomly delete vertices with probability $1 - p_v$ or edges with probability $1 - p_e$ or both. If only edges are deleted then the connectivity threshold is around $p_e = 1/2$, see Burtin [173] or Saposchenko [698], Erdős and Spencer [293]. If only vertices are deleted then the connectivity threshold is around $p_v = 1/2$, see Saposchenko [699] or Weber [754]. If both edges and vertices and vertices are deleted then the connectivity threshold is around $p_e p_v = 1/2$, see Dyer, Frieze and Foulds [276]. Ajtai, Komlós and Szemerédi [9] showed that if $p_e = (1 + \varepsilon)/n$ then w.h.p. there will be a unique giant component of order 2^n. Their results were tightened in Bollobás, Kohayakawa and Łuczak [150] where the case $\varepsilon = o(1)$ was considered. In further analysis, Bollobás, Kohayakawa and Łuczak [151] established that w.h.p. the hitting time for k-connectivity coincides with that of minimum degree at least k.

The threshold for the existence of a perfect matching at around $p_e = 1/2$ was established by Bollobás [138]. The threshold for the existence of a Hamilton cycle remains an open question.

Random Walks on Random Graphs

For a random walk, two of the most interesting parameters, are the mixing time and the cover time.

Mixing Time

Generally speaking, the probability that a random walk is at a particular vertex tends to a steady state probability $\frac{\deg(v)}{2m}$. The *mixing time* is the time taken for the distribution k-step distribution to get to within variation distance $1/4$, say, of the steady state. Above the threshold for connectivity, the mixing time of $G_{n,p}$ is certainly $O(\log n)$ w.h.p. For sparser graphs, the accent has been on finding the mixing time for a random walk on the giant component. Fountoulakis and Reed [326] and Benjamini, Kozma and Wormald [72] show that w.h.p. the mixing time of a random walk on the giant component of $G_{n,p}, p = c/n, c > 1$ is $O((\log n)^2)$. Nachmias and Peres [622] showed that the mixing time of the largest component of $G_{n,p}, p = 1/n$ is in $[\varepsilon n, (1 - \varepsilon)n]$ with probability $1 - p(\varepsilon)$ where $p(\varepsilon) \to 0$ as $\varepsilon \to 0$. Ding, Lubetzky and Peres [257] show that mixing time for the emerging giant at $p = (1 + \varepsilon)/n$ where $\lambda = \varepsilon^2 n \to \infty$ is of order $(n/\lambda)(\log \lambda)^2$. For random regular graphs, the mixing time is $O(\log n)$ and Lubetzky and Sly [553] proved that the mixing time exhibits a cut-off phenomenon i.e. the variation distance goes from near one to near zero very rapidly.
CHAPTER 20. BRIEF NOTES ON UNCOVERED TOPICS

Cover Time

The covertime C_G of a graph G is the maximum over starting vertex of the expected time for a random walk to visit every vertex of G. For $G = \mathbb{G}_{n,p}$ with $p = \frac{c \log n}{n}$ where $c > 1$, Jonasson [467] showed that w.h.p. $C_G = \Theta(n \log n)$. Cooper and Frieze [222] proved that $C_G \approx A(c)n \log n$ where $A(c) = c \log \left(\frac{c}{c-1} \right)$. Then in [221] they showed that the cover time of a random r-regular graph is w.h.p. asymptotic to $\frac{r-1}{r-2} n \log n$, for $r \geq 3$. Then in a series of papers they established the asymptotic cover time for preferential attachment graphs [222]; the giant component of $\mathbb{G}_{n,p}, p = \frac{c}{n}$, where $c > 1$ is constant [223]; random geometric graphs of dimension $d \geq 3$, [224]; random directed graphs [225]; random graphs with a fixed degree sequence [2], [230]; random hypergraphs [234]. The asymptotic covertime of random geometric graphs for $d = 2$ is still unknown. Avin and Ercal [43] prove that w.h.p. it is $\Theta(n \log n)$. The paper [226] deals with the structure of the subgraph H_t induced by the unvisited vertices in a random walk on a random graph after t steps. It gives tight results on a phase transition i.e. a point where H breaks up into small components. Cerny and Teixeira [178] refined the result of [226] near the phase transition.

Stable Matching

In the stable matching problem we have a complete bipartite graph on vertex sets A,B where $A = \{a_1, a_2, \ldots, a_n\}, B = \{b_1, b_2, \ldots, b_n\}$. If we think of A as a set of women and B as a set of men, then we refer to this as the stable marriage problem. Each $a \in A$ has a total ordering p_a of B and each $b \in B$ has a total ordering p_b of B. The problem is to find a perfect matching $(a_i, b_i), i = 1, 2, \ldots, n$ such that there does not exist a pair i, j such that $b_j > b_i$ in the order p_a and $a_i > b_j$ in the order p_b. The existence of i, j leads to an unstable matching. Gale and Shapley [371] proved that there is always a stable matching and gave an algorithm for finding one. We focus on the case where p_a, p_b are uniformly random for all $a \in A, b \in B$. Wilson [757] showed that the expected number of proposals in a sequential version of the Gale-Shapley algorithm is asymptotically equal to $n \log n$. Knuth, Motwani and Pittel [507] studied the likely number of stable husbands for an element of $A \cup B$. I.e. they show that w.h.p. there are constants $c < C$ such that for a fixed $a \in A$ there are between $c \log n$ and $C \log n$ choices $b \in B$ such that a and b are matched together in some stable matching. The question of how many distinct stable matchings there are likely to be was raised in Pittel [651] who showed that w.h.p. there are at least $n^{1/2 - o(1)}$. More recently, Lennon and Pittel [543] show that there are at least $n \log n$ with probability at least 0.45. Thus the precise growth rate of the number of stable matchings is not
clear at the moment. Pittel, Shepp and Veklerov [655] considered the number \(Z_{n,m} \) of \(a \in A \) that have exactly \(m \) choices of stable husband. They show that

\[
\lim_{n \to \infty} \frac{E[Z_{n,m}]}{(\log n)^{m+1}} = \frac{1}{(m-1)!}.
\]

Universal graphs

A graph \(G \) is *universal* for a class of graphs \(\mathcal{H} \) if \(G \) contains a copy of every \(H \in \mathcal{H} \). In particular, let \(\mathcal{H}(n,d) \) denote the set of graphs with vertex set \([n]\) and maximum degree at most \(d \). One question that has concerned researchers, is to find the threshold for \(G_{n,p} \) being universal for \(\mathcal{H}(n,d) \). A counting argument shows that any \(\mathcal{H}(n,d) \) universal graph has \(\Omega(n^{2-2/d}) \) edges. For random graphs this can be improved to \(\Omega(n^{2-2/(d+1)}(\log n)^{O(1)}) \). This is because to contain the union of \(\left\lfloor \frac{n}{d+1} \right\rfloor \) disjoint copies of \(K_{d+1} \), all but at most \(d \) vertices must lie in a copy of \(K_{d+1} \). This problem was first considered in Alon, Capalbo, Kohayakawa, Rödl, Ruciński and Szemerédi [24]. Currently the best upper bound on the value of \(p \) needed to make \(G_{n,m} \) universal is \(O(n^{2-1/d}(\log n)^{1/d}) \) in Dellamonica, Kohayakawa, Rödl, and Ruciński [242]. Ferber, Nenadov and Peter [307] prove that if \(p \gg \Delta^8 n^{-1/2} \log n \) then \(G_{n,p} \) is universal for the set of trees with maximum degree \(\Delta \).
Part IV
Tools and Methods
Chapter 21

Moments

21.1 First and Second Moment Method

Lemma 21.1 (Markov’s Inequality). Let X be a non-negative random variable. Then, for all $t > 0$,

$$
P(X \geq t) \leq \frac{E(X)}{t}.
$$

Proof. Let

$$I_A = \begin{cases}
1 & \text{if event } A \text{ occurs,} \\
0 & \text{otherwise.}
\end{cases}
$$

Notice that

$$X = XI_{\{X \geq t\}} + XI_{\{X < t\}} \geq XI_{\{X \geq t\}} \geq tI_{\{X \geq t\}}.$$

Hence,

$$E(X) \geq tE(I_{\{X \geq t\}}) = tP(X \geq t).$$

As an immediate corollary, we obtain

Lemma 21.2 (First Moment Method). Let X be a non-negative integer valued random variable. Then

$$P(X > 0) \leq E(X).$$

Proof. Put $t = 1$ in Markov’s inequality.

The following inequality is a simple consequence of Lemma 21.1.
Lemma 21.3 (Chebyshev Inequality). If X is a random variable with a finite mean and variance, then, for $t > 0$,

$$\mathbb{P}(|X - \mathbb{E}X| \geq t) \leq \frac{\text{Var}X}{t^2}. $$

Proof.

$$\mathbb{P}(|X - \mathbb{E}X| \geq t) = \mathbb{P}((X - \mathbb{E}X)^2 \geq t^2) \leq \frac{\mathbb{E}(X - \mathbb{E}X)^2}{t^2} = \frac{\text{Var}X}{t^2}. $$

Throughout the book the following consequence of the Chebyshev inequality plays a particularly important role.

Lemma 21.4 (Second Moment Method). If X is a non-negative integer valued random variable then

$$\mathbb{P}(X = 0) \leq \frac{\text{Var}X}{(\mathbb{E}X)^2} = \frac{\mathbb{E}X^2}{(\mathbb{E}X)^2} - 1$$

Proof. Set $t = \mathbb{E}X$ in the Chebyshev inequality. Then

$$\mathbb{P}(X = 0) \leq \mathbb{P}(|X - \mathbb{E}X| \geq \mathbb{E}X) \leq \frac{\text{Var}X}{(\mathbb{E}X)^2}$$

Lemma 21.5 ((Strong) Second Moment Method). If X is a non-negative integer valued random variable then

$$\mathbb{P}(X = 0) \leq \frac{\text{Var}X}{\mathbb{E}X^2} = 1 - \frac{(\mathbb{E}X)^2}{\mathbb{E}X^2}. $$

Proof. Notice that

$$X = X \cdot I_{\{X \geq 1\}}.$$

Then, by the Cauchy-Schwarz inequality,

$$(\mathbb{E}X)^2 = (\mathbb{E}(X \cdot I_{\{X \geq 1\}}))^2 \leq \mathbb{E}I_{\{X \geq 1\}}^2 \mathbb{E}X^2 = \mathbb{P}(X \geq 1) \mathbb{E}X^2.$$
The bound in Lemma 21.5 is stronger than the bound in Lemma 21.4, since \(E X^2 \geq (E X)^2 \). However, for many applications, these bounds are equally useful since the Second Moment Method can be applied if

\[
\frac{\text{Var} X}{(E X)^2} \to 0, \tag{21.1}
\]

or, equivalently,

\[
\frac{E X^2}{(E X)^2} \to 1, \tag{21.2}
\]

as \(n \to \infty \). In fact if (21.1) holds, then much more than \(P(X > 0) \to 1 \) is true. Note that

\[
\frac{\text{Var} X}{(E X)^2} = \text{Var} \left(\frac{X}{E X} \right) = E \left(\frac{X}{E X} \right)^2 - \left(E \left(\frac{X}{E X} \right) \right)^2
\]

\[
= E \left(\frac{X}{E X} - 1 \right)^2
\]

Hence

\[
E \left(\frac{X}{E X} - 1 \right)^2 \to 0 \text{ if } \frac{\text{Var} X}{(E X)^2} \to 0.
\]

It simply means that

\[
\frac{X}{E X} \xrightarrow{L^2} 1. \tag{21.3}
\]

In particular, it implies (as does the Chebyshev inequality) that

\[
\frac{X}{E X} \xrightarrow{P} 1, \tag{21.4}
\]

i.e., for every \(\varepsilon > 0 \),

\[
P((1 - \varepsilon) E X < X < (1 + \varepsilon) E X) \to 1. \tag{21.5}
\]

So, we can only apply the Second Moment Method, if the random variable \(X \) has its distribution asymptotically concentrated at a single value (\(X \) can be approximated by the non-random value \(E X \), as stated at (21.3), (21.4) and (21.5)).

We complete this section with another lower bound on the probability \(P(X_n \geq 1) \), when \(X_n \) is a sum of (asymptotically) negatively correlated indicators. Notice that in this case we do not need to compute the second moment of \(X_n \).
Lemma 21.6. Let \(X_n = I_1 + I_2 + \cdots + I_n \), where \(\{I_i\}_{i=1}^n \) be a collection of \(0-1 \) random variables, such that for \(i \neq j = 1, 2, \ldots, n \). Here \(\varepsilon_n \to 0 \) as \(n \to \infty \). Then
\[
\Pr(X_n \geq 1) \geq \frac{1}{1 + \varepsilon_n + 1/\mathbb{E}X_n}.
\]

Proof. By the (strong) second moment method (see Lemma 21.5)
\[
\Pr(X_n \geq 1) \geq \frac{(\mathbb{E}X_n)^2}{\mathbb{E}X_n^2}.
\]
Now
\[
\mathbb{E}X_n^2 = \sum_{i=1}^{n} \sum_{j=1}^{n} \mathbb{E}(I_i I_j)
\leq \mathbb{E}X_n + (1 + \varepsilon_n) \sum_{i \neq j} \mathbb{E}I_i \mathbb{E}I_j
= \mathbb{E}X_n + (1 + \varepsilon_n) \left(\left(\sum_{i=1}^{n} \mathbb{E}I_i \right)^2 - \sum_{i=1}^{n} (\mathbb{E}I_i)^2 \right)
\leq \mathbb{E}X_n + (1 + \varepsilon_n)(\mathbb{E}X_n)^2.
\]

\[\square\]

21.2 Convergence of Moments

Let \(X \) be a random variable such that \(\mathbb{E}|X|^k < \infty, k \geq 1 \), i.e., all \(k \)-th moments \(\mathbb{E}X^k \) exist and are finite. Let the distribution of \(X \) be completely determined by its moments. It means that all random variables with the same moments as \(X \) have the same distribution as \(X \). In particular, this is true when \(X \) has the Normal or the Poisson distribution.

The method of moments provides a tool to prove the convergence in distribution of a sequence of random variables with finite moments (see Durrett [274] for details).

Lemma 21.7 (Method of Moments). Let \(X \) be a random variable with probability distribution completely determined by its moments. If \(X_1, X_2, \ldots, X_n, \ldots \) are random variables with finite moments such that \(\mathbb{E}X_n^k \to \mathbb{E}X^k \) as \(n \to \infty \), for every integer \(k \geq 1 \), then the sequence of random variables \(\{X_n\} \) converges in distribution to random variable \(X \), denoted as \(X_n \overset{D}{\to} X \).
21.2. CONVERGENCE OF MOMENTS

The next result, which can be deduced from Theorem 21.7, provides a tool to prove asymptotic Normality.

Corollary 21.8. Let $X_1, X_2, \ldots, X_n, \ldots$ be a sequence of random variables with finite moments and let $a_1, a_2, \ldots, a_n, \ldots$ be a sequence of positive numbers, such that

$$
\mathbb{E}(X_n - \mathbb{E}X_n)^k = \begin{cases}
\frac{(2m)!}{2^m m!} a_n^k + o(a_n^k), & \text{when } k = 2m, \ m \geq 1, \\
o(a_n^k), & \text{when } k = 2m - 1, \ m \geq 2,
\end{cases}
$$

as $n \to \infty$. Then

$$
\frac{X_n - \mathbb{E}X_n}{a_n} \xrightarrow{D} Z, \quad \text{and} \quad \bar{X}_n = \frac{X_n - \mathbb{E}X_n}{\sqrt{\text{Var}X_n}} \xrightarrow{D} Z,
$$

where Z is a random variable with the standard Normal distribution $N(0, 1)$.

A similar result for convergence to the Poisson distribution can also be deduced from Theorem 21.7. Instead, we will show how to derive it directly from the Inclusion-Exclusion Principle.

The following lemma sometimes simplifies the proof of some probabilistic inequalities: A boolean function f of events $A_1, A_2, \ldots, A_n \subseteq \Omega$ is a random variable where $f(A_1, A_2, \ldots, A_n) = \bigcup_{S \in \mathcal{F}_i} \left(\bigcap_{i \in S} A_i \right) \cap \left(\bigcap_{i \not\in S} A_i^c \right)$ for some collection \mathcal{F}_i of subsets of $[r] = \{1, 2, \ldots, r\}$.

Lemma 21.9 (Rényi’s Lemma). Suppose that A_1, A_2, \ldots, A_r are events in some probability space Ω, f_1, f_2, \ldots, f_s are boolean functions of A_1, A_2, \ldots, A_r, and $\alpha_1, \alpha_2, \ldots, \alpha_s$ are reals. Then, if

$$
\sum_{i=1}^s \alpha_i \mathbb{P}(f_i(A_1, A_2, \ldots, A_r)) \geq 0, \quad (21.6)
$$

whenever $\mathbb{P}(A_i) = 0$ or 1, then (21.6) holds in general.

Proof. Write

$$
f_i = \bigcup_{S \in \mathcal{F}_i} \left(\bigcap_{i \in S} A_i \right) \cap \left(\bigcap_{i \not\in S} A_i^c \right),
$$

for some collection \mathcal{F}_i of subsets of $[r] = \{1, 2, \ldots, r\}$. Then,

$$
\mathbb{P}(f_i) = \sum_{S \in \mathcal{F}_i} \mathbb{P} \left(\bigcap_{i \in S} A_i \right) \cap \left(\bigcap_{i \not\in S} A_i^c \right),
$$
and then the left hand side of (21.6) becomes
\[\sum_{S \subseteq [r]} \beta_S \mathbb{P} \left(\left(\bigcap_{i \in S} A_i \right) \cap \left(\bigcap_{i \notin S} A_i^c \right) \right), \]
for some real \(\beta_S \). If (21.6) holds, then \(\beta_S \geq 0 \) for every \(S \), since we can choose \(A_i = \Omega \) if \(i \in S \), and \(A_i = \emptyset \) for \(i \notin S \). \(\square \)

For \(J \subseteq [r] \) let \(A_J = \bigcap_{i \in J} A_i \), and let \(S = | \{ j : A_j \text{ occurs} \} | \) denote the number of events that occur. Then let
\[B_k = \sum_{J : |J| = k} \mathbb{P}(A_J) = \mathbb{E} \left(\binom{S}{k} \right). \]

Let \(E_j = \bigcup_{|S| = j} (\bigcap_{i \in S} A_i) \cap (\bigcap_{i \notin S} A_i^c) \) be the event that exactly \(j \) among the events \(A_1, A_2, \ldots, A_r \) occur.

The expression in Lemma 21.10 can be motivated as follows. For \(\omega \in \Omega \), we let \(\theta_{\omega,i} \in \{0,1\} \) satisfy \(\theta_{\omega,i} = 1 \) if and only if \(\omega \in A_i \). Then
\[\Pr(E_j) = \sum_{\omega \in \Omega} \Pr(\omega) \sum_{|I| = j} \prod_{i \in I} \theta_{\omega,i} \cdot \prod_{i \notin I} (1 - \theta_{\omega,i}), \]
\[= \sum_{\omega \in \Omega} \Pr(\omega) \sum_{|I| = j} \sum_{|J| \geq |I|} (1)^{|J| - |I|} \theta_{\omega,J}, \quad \text{where } \theta_{\omega,J} = \prod_{i \in J} \theta_{\omega,i}, \]
\[= \sum_{|J| \geq j} \sum_{|I| = j} (1)^{|J| - |I|} \Pr(A_J), \quad \text{where } A_J = \bigcap_{i \in J} A_i \]
\[= \sum_{k = j}^{r} (-1)^{k-j} \binom{k}{j} \sum_{|J| = k} \Pr(A_J) \]
\[= \sum_{k = j}^{r} (-1)^{k-j} \binom{k}{j} B_k. \]

More precisely,

Lemma 21.10.

\[\mathbb{P}(E_j) \begin{cases} \leq \sum_{k = j}^{s} (-1)^{k-j} \binom{k}{j} B_k & s - j \text{ even} \\ \geq \sum_{k = j}^{s} (-1)^{k-j} \binom{k}{j} B_k & s - j \text{ odd} \\ = \sum_{k = j}^{s} (-1)^{k-j} \binom{k}{j} B_k & s = r. \end{cases} \]
Proof. It follows from Lemma 21.9 that we only need to check the truth of the statement for
\[P(A_i) = 1 \quad \text{if} \quad 1 \leq i \leq \ell, \]
\[P(A_i) = 0 \quad \ell < i \leq r. \]
where \(0 \leq \ell \leq r \) is arbitrary.

Now
\[P(S = j) = \begin{cases} 1 & \text{if } j = \ell, \\ 0 & \text{if } j \neq \ell, \end{cases} \]
and
\[B_k = \binom{\ell}{k}. \]

So,
\[
\sum_{k=j}^{s} (-1)^{k-j} \binom{k}{j} B_k = \sum_{k=j}^{s} (-1)^{k-j} \binom{k}{j} \binom{\ell}{k} = \binom{\ell}{j} \sum_{k=j}^{s} (-1)^{k-j} \binom{\ell-j}{k-j}. \tag{21.7}
\]
If \(\ell < j \) then \(P(\mathcal{E}_j) = 0 \) and the sum in (21.7) reduces to zero. If \(\ell = j \) then \(P(\mathcal{E}_j) = 1 \) and the sum in (21.7) reduces to one. Thus in this case, the sum is exact for all \(s \). Assume then that \(r \geq \ell > j \). Then \(P(\mathcal{E}_j) = 0 \) and
\[
\sum_{k=j}^{s} (-1)^{k-j} \binom{\ell-j}{k-j} = \sum_{t=0}^{s-j} (-1)^t \binom{\ell-j}{t} = (-1)^{s-j} \binom{\ell-j-1}{s-j}.
\]
This explains the alternating signs of the theorem. Finally, observe that \(\binom{\ell-j-1}{r-j} = 0 \), as required.

Now we are ready to state the main tool for proving convergence to the Poisson distribution.

Theorem 21.11. Let \(S_n = \sum_{i \geq 1} I_i \) be a sequence of random variables, \(n \geq 1 \) and let \(B^{(n)}_k = \mathbb{E}\left(S_n \right) \). Suppose that there exists \(\lambda \geq 0 \), such that for every fixed \(k \geq 1 \),
\[
\lim_{n \to \infty} B^{(n)}_k = \frac{\lambda^k}{k!}.
\]
Then, for every \(j \geq 0 \),
\[
\lim_{n \to \infty} P(S_n = j) = e^{-\lambda} \frac{\lambda^j}{j!},
\]
i.e., \(S_n \) converges in distribution to the Poisson distributed random variable with expectation \(\lambda \) (\(S_n \overset{D}{\to} \text{Po}(\lambda) \)).

Proof. By Lemma 21.10, for \(l \geq 0 \),

\[
\sum_{k=j}^{j+2l+1} (-1)^{k-j} \binom{k}{j} B_k^{(n)} \leq \mathbb{P}(S_n = j) \leq \sum_{k=j}^{j+2l} (-1)^{k-j} \binom{k}{j} B_k^{(n)}.
\]

So, as \(n \) grows to \(\infty \),

\[
\sum_{k=j}^{j+2l+1} (-1)^{k-j} \binom{k}{j} B_k^{(n)} \leq \liminf_{n \to \infty} \mathbb{P}(S_n = j) \leq \limsup_{n \to \infty} \mathbb{P}(S_n = j) \leq \sum_{k=j}^{j+2l} (-1)^{k-j} \binom{k}{j} B_k^{(n)}.
\]

But,

\[
\sum_{k=j}^{j+m} (-1)^{k-j} \binom{k}{j} \frac{\lambda^k}{k!} = \frac{\lambda^j}{j!} \sum_{t=0}^{m} (-1)^t \frac{\lambda^t}{t!} \to \frac{\lambda^j}{j!} e^{-\lambda},
\]

as \(m \to \infty \).

Notice that the falling factorial

\[
(S_n)_k = S_n(S_n - 1) \cdots (S_n - k + 1)
\]

counts number of ordered \(k \)-tuples of events with \(I_i = 1 \). Hence the binomial moments of \(S_n \) can be replaced in Theorem 21.11 by the factorial moments, defined as

\[
\mathbb{E}(S_n)_k = \mathbb{E}[S_n(S_n - 1) \cdots (S_n - k + 1)],
\]

and one has to check whether, for every \(k \geq 1 \),

\[
\lim_{n \to \infty} \mathbb{E}(S_n)_k = \lambda^k.
\]

21.3 Stein–Chen Method

Stein in [724] introduced a powerful technique for obtaining estimates of the rate of convergence to the standard normal distribution. His approach was subsequently extended to cover convergence to the Poisson distribution by Chen [183], while Barbour [59] ingeniously adapted both methods to random graphs.

The Stein–Chen approach has some advantages over the method of moments. The principal advantage is that a rate of convergence is automatically obtained. Also
the computations are often easier and fewer moment assumptions are required. Moreover, it frequently leads to conditions for convergence weaker than those obtainable by the method of moments.

Consider a sequence of random variables \((X_n)_{n=1}^{\infty} \) and let \((\lambda_n)_{n=1}^{\infty} \) be a sequence of positive integers, and let \(\text{Po}(\lambda) \) denote, as before, the Poisson distribution with expectation \(\lambda \). We say that \(X_n \) is Poisson convergent if the total variation distance between the distribution \(\mathcal{L}(X_n) \) of \(X_n \) and \(\text{Po}(\lambda_n) \), \(\lambda_n = \mathbb{E}X_n \), distribution, tends to zero as \(n \) tends to infinity. So, we ask for

\[
d_{TV}(\mathcal{L}(X_n), \text{Po}(\lambda_n)) = \sup_{A \subseteq \mathbb{Z}^+} \left| \mathbb{P}(X_n \in A) - \sum_{k \in A} \frac{\lambda_n^k}{k!} e^{-\lambda_n} \right| \to 0, \tag{21.8}
\]

as \(n \to \infty \), where \(\mathbb{Z}^+ = \{0, 1, \ldots\} \).

Notice, that if \(X_n \) is Poisson convergent and \(\lambda_n \to \lambda \), then \(X_n \) converges in distribution to the \(\text{Po}(\lambda) \) distributed random variable. Furthermore, if \(\lambda_n \to 0 \), then \(X_n \) converges to a random variable with distribution degenerated at 0. More importantly, if \(\lambda_n \to \infty \), then the central limit theorem for Poisson distributed random variables implies, that \(\tilde{X}_n = (X_n - \lambda_n) / \sqrt{\lambda_n} \) converges in distribution to a random variable with the standard normal random distribution \(N(0, 1) \).

The basic feature and advantage of the Stein–Chen approach is that it gives computationally tractable bounds for the distance \(d_{TV} \), when the random variables in question are sums of indicators with a fairly general dependence structure.

Let \(\{I_a\}_{a \in \Gamma} \) be a family of indicator random variables, where \(\Gamma \) is some index set. To describe the relationship between these random variables we define a dependency graph \(L = (V(L), E(L)) \), where \(V(L) = \Gamma \). Graph \(L \) has the property that whenever there are no edges between \(A \) and \(B \), \(A, B \subseteq \Gamma \), then \(\{I_a\}_{a \in A} \) and \(\{I_b\}_{b \in B} \) are mutually independent families of random variables. The following general bound on the total variation distance was proved by Barbour, Holst and Janson [60] via the Stein–Chen method.

Theorem 21.12. Let \(X = \sum_{a \in \Gamma} I_a \) where the \(I_a \) are indicator random variables with a dependency graph \(L \). Then, with \(\pi_a = \mathbb{E}I_a \) and \(\lambda = \mathbb{E}X = \sum_{a \in \Gamma} \pi_a \),

\[
d_{TV}(\mathcal{L}(X), \text{Po}(\lambda)) \leq \min(\lambda^{-1}, 1) \left(\sum_{a \in V(L)} \pi_a^2 + \sum_{ab \in E(L)} \{\mathbb{E}(I_aI_b) + \pi_a\pi_b\} \right),
\]

where \(\sum_{ab \in E(L)} \) means summing over all ordered pairs \((a,b) \), such that \(\{a,b\} \in E(L) \).
Finally, let us briefly mention, that the original Stein method investigates the convergence to the normal distribution in the following metric

\[
d_S(\mathcal{L}(X_n), N(0,1)) = \sup_h ||h||^{-1} \left| \int h(x) dF_n(x) - \int h(x) d\Phi(x) \right|,
\]

where the supremum is taken over all bounded test functions \(h \) with bounded derivative, \(||h|| = \sup |h(x)| + \sup |h'(x)| \).

Here \(F_n \) is the distribution function of \(X_n \), while \(\Phi \) denotes the distribution function of the standard normal distribution. So, if \(d_S(\mathcal{L}(X_n), N(0,1)) \to 0 \) as \(n \to \infty \), then \(X_n \) converges in distribution to \(N(0,1) \) distributed random variable.

Barbour, Karoński and Ruciński [62] obtained an effective upper bound on \(d_S(\mathcal{L}(X_n), N(0,1)) \) if \(S \) belongs to a general class of decomposable random variables. This bound involves the first three moments of \(S \) only.

For a detailed and comprehensive account of the Stein–Chen method the reader is referred to the book by Barbour, Holst and Janson [60], or to Chapter 6 of the book by Janson, Łuczak and Ruciński [449], where other interesting approaches to study asymptotic distributions of random graph characteristics are also discussed.

For some applications of the Stein–Chen method in random graphs, one can look at a survey by Karoński [484].
Chapter 22

22.1 Binomial Coefficient Approximation

We state some important inequalities. The proofs of all but (g) are left as exercises:

Lemma 22.1. (a) \[1 + x \leq e^x, \quad \forall x. \]

(b) \[1 - x \geq e^{-x/(1-x)}, \quad 0 \leq x < 1. \]

(c) \[\binom{n}{k} \leq \left(\frac{ne}{k}\right)^k, \quad \forall n, k. \]

(d) \[\binom{n}{k} \leq \frac{n^k}{k!} \left(1 - \frac{k}{2n}\right)^{k-1}, \quad \forall n, k. \]

(e) \[\frac{n^k}{k!} \left(1 - \frac{k(k-1)}{2n}\right) \leq \binom{n}{k} \leq \frac{n^k}{k!} e^{-k(1-2n)/2}, \quad \forall n, k. \]

(f) \[\binom{n}{k} \approx \frac{n^k}{k!}, \quad \text{if } k^2 = o(n). \]

(g) If \(a \geq b \) then

\[\left(\frac{t-b}{n-b}\right)^b \left(\frac{n-t-a+b}{n-a}\right)^{a-b} \leq \frac{\binom{n-a}{t-b}}{\binom{n}{t}} \leq \left(\frac{t}{n}\right)^b \left(\frac{n-t}{n-b}\right)^{a-b}. \]

Proof. (g)

\[\frac{\binom{n-a}{t-b}}{\binom{n}{t}} = \frac{(n-a)!t!(n-t)!}{n!(t-b)!(n-t-a+b)!}. \]
\[
\begin{align*}
= t(t-1) \cdots (t-b+1) & \times \left(\frac{n-t}{n-b} \right)^{a-b} \\
\leq \left(\frac{t}{n} \right)^b \times \left(\frac{n-t}{n-b} \right)^{a-b}.
\end{align*}
\]

The lower bound follows similarly.

We will need also the following estimate for binomial coefficients. It is a little more precise than those given in Lemma 22.1.

Lemma 22.2. Let \(k = o(n^{3/4}) \). Then
\[
\binom{n}{k} \approx \frac{n^k}{k!} \exp \left\{ -\frac{k^2}{2n} - \frac{k^3}{6n^2} \right\}.
\]

Proof.
\[
\binom{n}{k} = \frac{n^k}{k!} \prod_{i=0}^{k-1} \left(1 - \frac{i}{n} \right)
= \frac{n^k}{k!} \exp \left\{ \sum_{i=0}^{k-1} \log \left(1 - \frac{i}{n} \right) \right\}
= \frac{n^k}{k!} \exp \left\{ -\sum_{i=0}^{k-1} \left(\frac{i}{n} + \frac{i^2}{2n^2} \right) + O \left(\frac{k^4}{n^3} \right) \right\}
= (1 + o(1)) \frac{n^k}{k!} \exp \left\{ -\frac{k^2}{2n} - \frac{k^3}{6n^2} \right\}.
\]

\[\square\]

22.2 Balls in Boxes

Suppose that we have \(M \) boxes and we independently place \(N \) distinguishable balls into them. Let us assume that a ball goes into box \(i \) with probability \(p_i \) where \(p_1 + \cdots + p_M = 1 \). Let \(W_i \) denote the number of balls that are placed in box \(i \) and for \(S \subseteq [M] \), let \(W_S = \sum_{i \in S} W_i \). The following looks obvious and is extremely useful.

Theorem 22.3. Let \(S,T \) be disjoint subsets of \([M]\) and let \(s,t \) be non-negative integers. Then
\[
\begin{align*}
\mathbb{P}(W_S \leq s \mid W_T \leq t) & \leq \mathbb{P}(W_S \leq s). \quad (22.1) \\
\mathbb{P}(W_S \geq s \mid W_T \leq t) & \geq \mathbb{P}(W_S \geq s). \quad (22.2) \\
\mathbb{P}(W_S \geq s \mid W_T \geq t) & \leq \mathbb{P}(W_S \geq s). \quad (22.3) \\
\mathbb{P}(W_S \leq s \mid W_T \geq t) & \geq \mathbb{P}(W_S \leq s). \quad (22.4)
\end{align*}
\]
22.3. FKG INEQUALITY

Proof. Equation (22.2) follows immediately from (22.1). Also, equation (22.4) follows immediately from (22.3). The proof of (22.3) is very similar to that of (22.1) and so we will only prove (22.1).

Let
\[\pi_i = \mathbb{P}(W_S \leq s \mid W_T = i). \]

Given \(W_T = i \), we are looking at throwing \(N - i \) balls into \(M - 1 \) boxes. It is clear therefore that \(\pi_i \) is monotone increasing in \(i \). Now, let \(q_i = \mathbb{P}(W_T = i) \). Then,
\[
\mathbb{P}(W_S \leq s) = \sum_{i=0}^{N} \pi_i q_i.
\]
\[
\mathbb{P}(W_S \leq s \mid W_T \leq t) = \sum_{i=0}^{t} \pi_i \frac{q_i}{q_0 + \cdots + q_t}.
\]

So, (22.1) reduces to
\[
(q_0 + \cdots + q_N) \sum_{i=0}^{t} \pi_i q_i \leq (q_0 + \cdots + q_i) \sum_{i=0}^{N} \pi_i q_i,
\]
or
\[
(q_{t+1} + \cdots + q_N) \sum_{i=0}^{t} \pi_i q_i \leq (q_0 + \cdots + q_i) \sum_{i=t+1}^{N} \pi_i q_i,
\]
or
\[
\sum_{j=t+1}^{N} \sum_{i=0}^{t} q_i q_j \pi_i \leq \sum_{j=0}^{N} \sum_{i=t+1}^{N} q_i q_j \pi_i.
\]

The result now follows from the monotonicity of \(\pi_i \). \(\square \)

The following is an immediate corollary:

Corollary 22.4. Let \(S_1, S_2, \ldots, S_k \) be disjoint subsets of \([M]\) and let \(s_1, s_2, \ldots, s_k \) be non-negative integers. Then
\[
\mathbb{P}\left(\bigcap_{i=1}^{k} \{W_{S_i} \leq s_i\} \right) \leq \prod_{i=1}^{k} \mathbb{P}(\{W_{S_i} \leq s_i\}).
\]
\[
\mathbb{P}\left(\bigcap_{i=1}^{k} \{W_{S_i} \geq s_i\} \right) \leq \prod_{i=1}^{k} \mathbb{P}(\{W_{S_i} \geq s_i\}).
\]

22.3 FKG Inequality

A function \(f : C_N = \{0,1\}^{[N]} \to \mathbb{R} \) is said to be **monotone increasing** if whenever \(x = (x_1, x_2, \ldots, x_N), y = (y_1, y_2, \ldots, y_N) \in C_N \) and \(x \leq y \in C_N \) (i.e. \(x_j \leq y_j, j = \)
1, 2, ..., N) then \(f(x) \leq f(y) \). Similarly, \(f \) is said to be monotone decreasing if \(-f\) is monotone increasing.

An important example for us is the case where \(f \) is the indicator function of some

subset \(\mathcal{A} \) of \(2^\mathbb{N} \). Then

\[
 f(x) = \begin{cases}
 1 & x \in \mathcal{A} \\
 \text{emptyset} & x \notin \mathcal{A}
 \end{cases}.
\]

A typical example for us would be \(N = \binom{n}{2} \) and then each \(G \in 2^\mathbb{N} \) corresponds to a graph with vertex set \([n] \). Then \(\mathcal{A} \) will be a set of graphs i.e. a graph property. Suppose that \(A \) is the set of Hamiltonian graphs then \(A \) is monotone increasing. If \(P \) is the set of planar graphs then \(P \) is monotone decreasing. In other words a property is monotone increasing iff its indicator function is monotone increasing.

Suppose next that we turn \(C_N \) into a probability space by choosing some \(p_1, p_2, \ldots, p_N \in [0, 1] \) and then for \(x = (x_1, x_2, \ldots, x_N) \in C_N \) letting

\[
 \mathbb{P}(x) = \prod_{j: x_j = 1} p_j \prod_{j: x_j = 0} (1 - p_j).
\]

(22.5)

If \(N = \binom{n}{2} \) and \(p_j = p, j = 1, 2, \ldots, N \) then this model corresponds to \(G_{n,p} \).

The following is a special case of the FKG inequality, Harris [412] and Fortuin, Kasteleyn and Ginibre [321]:

Theorem 22.5. If \(f, g \) are monotone increasing functions on \(C_N \) then \(\mathbb{E}(fg) \geq \mathbb{E}(f) \mathbb{E}(g) \).

Proof. We will prove this by induction on \(N \). If \(N = 0 \) then \(\mathbb{E}(f) = a, \mathbb{E}(g) = b \) and \(\mathbb{E}(fg) = ab \) for some constants \(a, b \).

So assume the truth for \(N - 1 \). Suppose that \(\mathbb{E}(f \mid x_N = 0) = a \) and \(\mathbb{E}(g \mid x_N = 0) = b \) then

\[
 \mathbb{E}((f - a)(g - b)) - \mathbb{E}(f - a) \mathbb{E}(g - b) = \mathbb{E}(fg) - \mathbb{E}(f) \mathbb{E}(g).
\]

By replacing \(f \) by \(f - a \) and \(g \) by \(g - b \) we may therefore assume that \(\mathbb{E}(f \mid x_N = 0) = \mathbb{E}(g \mid x_N = 0) = 0 \). By monotonicity, we see that \(\mathbb{E}(f \mid x_N = 1), \mathbb{E}(g \mid x_N = 1) \geq 0 \).

We observe that by the induction hypothesis that

\[
 \mathbb{E}(fg \mid x_N = 0) \geq \mathbb{E}(f \mid x_N = 0) \mathbb{E}(g \mid x_N = 0) = 0
\]
22.4. SUMS OF INDEPENDENT BOUNDED RANDOM VARIABLES

\[\mathbb{E}(fg \mid x_N = 1) \geq \mathbb{E}(f \mid x_N = 1)\mathbb{E}(g \mid x_N = 1) \geq 0 \]

Now, by the above inequalities,

\[
\mathbb{E}(fg) = \mathbb{E}(fg \mid x_N = 0)(1 - p_N) + \mathbb{E}(fg \mid x_N = 1)p_N \\
\geq \mathbb{E}(f \mid x_N = 1)\mathbb{E}(g \mid x_N = 1)p_N.
\] (22.6)

Furthermore,

\[
\mathbb{E}(f)\mathbb{E}(g) = \left(\mathbb{E}(f \mid x_N = 0)(1 - p_N) + \mathbb{E}(f \mid x_N = 1)p_N\right) \times \\
\left(\mathbb{E}(g \mid x_N = 0)(1 - p_N) + \mathbb{E}(g \mid x_N = 1)p_N\right) \\
= \mathbb{E}(f \mid x_N = 1)\mathbb{E}(g \mid x_N = 1)p_N^2.
\] (22.7)

The result follows by comparing (22.6) and (22.7) and using the fact that \(\mathbb{E}(f \mid x_N = 1), \mathbb{E}(g \mid x_N = 1) \geq 0 \) and \(0 \leq p_N \leq 1 \).

In terms of monotone increasing sets \(\mathcal{A}, \mathcal{B} \) and the same probability (22.5) we can express the FKG inequality as

\[\mathbb{P}(\mathcal{A} \mid \mathcal{B}) \geq \mathbb{P}(\mathcal{A}). \] (22.8)

22.4 Sums of Independent Bounded Random Variables

Suppose that \(S \) is a random variable and \(t > 0 \) is a real number. We will be concerned here with bounds on the upper and lower tail of the distribution of \(S \), i.e., on \(\mathbb{P}(S \geq \mu + t) \) and \(\mathbb{P}(S \leq \mu - t) \), respectively, where \(\mu = \mathbb{E}S \).

The basic observation which leads to the construction of such bounds is due to Bernstein [86]. Let \(\lambda \geq 0 \), then

\[\mathbb{P}(S \geq \mu + t) = \mathbb{P}(e^{\lambda S} \geq e^{\lambda(\mu+t)}) \leq e^{-\lambda(\mu+t)}\mathbb{E}(e^{\lambda S}), \] (22.9)

by Markov’s inequality (see Lemma 21.1). Similarly for \(\lambda \leq 0 \),

\[\mathbb{P}(S \leq \mu - t) \leq e^{-\lambda(\mu-t)}\mathbb{E}(e^{\lambda S}). \] (22.10)

Combining (22.9) and (22.10) one can obtain a bound for \(\mathbb{P}(|S - \mu| \geq t) \).

Now let \(S_n = X_1 + X_2 + \cdots + X_n \) where \(X_i, i = 1, \ldots, n \) are independent random variables. Assume that \(0 \leq X_i \leq 1 \) and \(\mathbb{E}X_i = \mu_i \) for \(i = 1, 2, \ldots, n \). Let \(\mu = \mu_1 + \mu_2 + \cdots + \mu_n \). Then for \(\lambda \geq 0 \)

\[\mathbb{P}(S_n \geq \mu + t) \leq e^{-\lambda(\mu+1)}\prod_{i=1}^{n}\mathbb{E}(e^{\lambda X_i}) \] (22.11)
and for \(\lambda \leq 0 \)
\[
\mathbb{P}(S_n \leq \mu - t) \leq e^{-\lambda(\mu - t)} \prod_{i=1}^{n} \mathbb{E}(e^{\lambda X_i}). \tag{22.12}
\]
Note that \(\mathbb{E}(e^{\lambda X_i}) \) in (22.11) and (22.12), likewise \(\mathbb{E}(e^{\lambda S}) \) in (22.9) and (22.10) are the moment generating functions of the \(X_i \)'s and \(S \), respectively. So finding bounds boils down to the estimation of these functions.

Now the convexity of \(e^x \) and \(0 \leq X_i \leq 1 \) implies that
\[
e^{\lambda X_i} \leq 1 - X_i + X_i e^{\lambda}.
\]
Taking expectations we get
\[
\mathbb{E}(e^{\lambda X_i}) \leq 1 - \mu_i + \mu_i e^{\lambda}.
\]
Equation (22.11) becomes, for \(\lambda \geq 0 \),
\[
\mathbb{P}(S_n \geq \mu + t) \leq e^{-\lambda(\mu + t)} \prod_{i=1}^{n} (1 - \mu_i + \mu_i e^{\lambda})
\leq e^{-\lambda(\mu + t)} \left(\frac{n - \mu + \mu e^{\lambda}}{n} \right)^n. \tag{22.13}
\]
The second inequality follows from the fact that the geometric mean is at most the arithmetic mean i.e. \(x_1 x_2 \cdots x_n \) \(\leq (x_1 + x_2 + \cdots + x_n)/n \) for non-negative \(x_1, x_2, \ldots, x_n \). This in turn follows from Jensen's inequality and the concavity of \(\log x \).

The right hand side of (22.13) attains its minimum, as a function of \(\lambda \), at
\[
e^{\lambda} = \frac{(\mu + t)(n - \mu)}{(n - \mu - t) \mu}. \tag{22.14}
\]
Hence, by (22.13) and (22.14), assuming that \(\mu + t < n \),
\[
\mathbb{P}(S_n \geq \mu + t) \leq \left(\frac{\mu}{\mu + t} \right)^{\mu + t} \left(\frac{n - \mu}{n - \mu - t} \right)^{n - \mu - t}, \tag{22.15}
\]
while for \(\mu + t > n - \mu \) this probability is zero.

Now let
\[
\varphi(x) = (1 + x) \log(1 + x) - x, \quad x \geq -1,
\]
and let \(\varphi(x) = \infty \) for \(x < -1 \). Now, for \(0 \leq t < n - \mu \), we can rewrite the bound (22.15) as
\[
\mathbb{P}(S_n \geq \mu + t) \leq \exp \left\{ -\mu \varphi \left(\frac{t}{\mu} \right) - (n - \mu) \varphi \left(\frac{-t}{n - \mu} \right) \right\}. \tag{22.16}
\]
Since $\varphi(x) \geq 0$ for every x, we get
\[\mathbb{P}(S_n \geq \mu + t) \leq e^{-\mu \varphi(t/\mu)}. \] (22.17)

Similarly, putting $n - S_n$ for S_n, or by an analogous argument, using (22.12), we get for $0 \leq t \leq \mu$,
\[\mathbb{P}(S_n \leq \mu - t) \leq \exp \left\{ -\mu \varphi\left(\frac{-t}{\mu} \right) - (n - \mu) \varphi\left(\frac{t}{n - \mu} \right) \right\}. \] (22.18)

Hence,
\[\mathbb{P}(S_n \leq \mu - t) \leq e^{-\mu \varphi(-t/\mu)}. \] (22.19)

We can simplify the expressions (22.17) and (22.19) by observing that
\[\varphi(x) \geq \frac{x^2}{2(1 + x/3)}. \] (22.20)

To see this observe that for $|x| \leq 1$ we have
\[\varphi(x) - \frac{x^2}{2(1 + x/3)} = \sum_{k=2}^{\infty} (-1)^k \left(\frac{1}{k(k-1)} - \frac{1}{2 \cdot 3^{k-2}} \right) x^k. \]
Equation (22.20) for $|x| \leq 1$ follows from $\frac{1}{k(k-1)} - \frac{1}{2 \cdot 3^{k-2}} \geq 0$ for $k \geq 2$. We leave it as an exercise to check that (22.20) remains true for $x > 1$.

Taking this into account we arrive at the following theorem, see Hoeffding [423].

Theorem 22.6 (Chernoff/Hoeffding inequality). Suppose that $S_n = X_1 + X_2 + \cdots + X_n$ where (i) $0 \leq X_i \leq 1$ and $\mathbb{E}X_i = \mu_i$ for $i = 1, 2, \ldots, n$, (ii) X_1, X_2, \ldots, X_n are independent. Let $\mu = \mu_1 + \mu_2 + \cdots + \mu_n$. Then for $t \geq 0$,
\[\mathbb{P}(S_n \geq \mu + t) \leq \exp \left\{ -\mu \frac{t^2}{2(\mu + t/3)} \right\}, \] (22.21)

and for $t \leq \mu$,
\[\mathbb{P}(S_n \leq \mu - t) \leq \exp \left\{ -\mu \frac{t^2}{2(\mu - t/3)} \right\}. \] (22.22)

Putting $t = \varepsilon \mu$, for $0 < \varepsilon < 1$, one can immediately obtain the following bounds.

Corollary 22.7. Let $0 < \varepsilon < 1$, then
\[\mathbb{P}(S_n \geq (1 + \varepsilon)\mu) \leq \left(\frac{e^\varepsilon}{(1 + \varepsilon)^{1+\varepsilon}} \right)^\mu \leq \exp \left\{ -\frac{\mu \varepsilon^2}{3} \right\}, \] (22.23)

while
\[\mathbb{P}(S_n \leq (1 - \varepsilon)\mu) \leq \exp \left\{ -\frac{\mu \varepsilon^2}{2} \right\} \] (22.24)
Proof. The formula (22.24) follows directly from (22.22) and (22.23) follows from (22.16).

One can “tailor” Chernoff bounds with respect to specific needs. For example, for small ratios \(t/\mu \), the exponent in (22.21) is close to \(t^2/2\mu \), and the following bound holds.

Corollary 22.8.

\[
P(S_n \geq \mu + t) \leq \exp\left\{ -\frac{t^2}{2\mu} + \frac{t^3}{6\mu^2} \right\}
\]

(22.25)

\[
\leq \exp\left\{ -\frac{t^2}{3\mu} \right\} \quad \text{for } t \leq \mu.
\]

(22.26)

Proof. Use (22.21) and note that

\[
(\mu + t/3)^{-1} \geq (\mu - t/3)/\mu^2.
\]

For large deviations we have the following result.

Corollary 22.9. If \(c > 1 \) then

\[
P(S_n \geq c\mu) \leq \exp\left\{ \frac{e}{ce^{1/c}} \right\}^{c\mu}.
\]

(22.27)

Proof. Put \(t = (c - 1)\mu \) into (22.17).

We also have the simple easiest to use version:

Corollary 22.10. Suppose that \(X_1, X_2, \ldots, X_n \) are independent random variables and that \(a_i \leq X_i \leq b_i \) for \(i = 1, 2, \ldots, n \). Let \(S_n = X_1 + X_2 + \cdots + X_n \) and \(\mu_i = \mathbb{E}(X_i) \), \(i = 1, 2, \ldots, n \) and \(\mu = \mathbb{E}(S_n) \). Then for \(t > 0 \) and \(c_i = b_i - a_i, i = 1, 2, \ldots, n \), we have

\[
P(S_n \geq \mu + t) \leq \exp\left\{ -\frac{2t^2}{c_1^2 + c_2^2 + \cdots + c_n^2} \right\}.
\]

(22.28)

\[
P(S_n \leq \mu - t) \leq \exp\left\{ -\frac{2t^2}{c_1^2 + c_2^2 + \cdots + c_n^2} \right\}.
\]

(22.29)
Proof. We can assume without loss of generality that $a_i = 0, i = 1, 2, \ldots, n$. We just subtract $A = \sum_{i=1}^{n} a_i$ from S_n. We proceed as before.

$$\mathbb{P}(S_n \geq \mu + t) = \mathbb{P}(e^{\lambda S_n} \geq e^{\lambda (\mu + t)}) \leq e^{-\lambda (\mu + t)} \mathbb{E}(e^{\lambda S_n}) = e^{-\lambda t} \prod_{i=1}^{n} \mathbb{E}(e^{\lambda (X_i - \mu_i)}).$$

Note that $e^{\lambda x}$ is a convex function of x, and since $0 \leq X_i \leq c_i$, we have

$$e^{\lambda (X_i - \mu_i)} \leq e^{-\lambda \mu_i} \left(1 - \frac{X_i}{c_i} + \frac{X_i}{c_i} e^{\lambda c_i}\right)$$

and so

$$\mathbb{E}(e^{\lambda X_i}) \leq e^{-\lambda \mu_i} \left(1 - \frac{\mu_i}{c_i} + \frac{\mu_i}{c_i} e^{\lambda c_i}\right) = e^{-\theta_i p_i} \left(1 - p_i + p_i e^{\theta_i}\right), \quad (22.30)$$

where $\theta_i = \lambda c_i$ and $p_i = \mu_i / c_i$.

Then, taking the logarithm of the RHS of (22.30), we have

$$f(\theta_i) = -\theta_i p_i + \log \left(1 - p_i + p_i e^{\theta_i}\right).$$

$$f'(\theta_i) = -p_i + \frac{p_i}{1 - p_i + p_i e^{\theta_i}},$$

$$f''(\theta_i) = \frac{p_i(1 - p_i)e^{-\theta_i}}{(1 - p_i + p_i e^{\theta_i})^2}.$$

Now $\frac{\alpha \beta}{(\alpha + \beta)^2} \leq 1/4$ and so $f''(\theta_i) \leq 1/4$ anf therefore

$$f(\theta_i) \leq f(0) + f'(0) \theta_i + \frac{1}{8} \theta_i^2 = \frac{\lambda^2 c_i^2}{8}.$$

It follows then that

$$\mathbb{P}(S_n \geq \mu + t) \leq e^{-\lambda t} \exp \left\{ \sum_{i=1}^{n} \frac{\lambda^2 c_i^2}{8}\right\}.$$

We obtain (22.28) by putting $\lambda = \frac{4}{\sum_{i=1}^{n} c_i}$ and (22.29) is proved in a similar manner.

Our next bound incorporates the variance of the X_i’s.
Theorem 22.11 (Bernstein’s Theorem). Suppose that $S_n = X_1 + X_2 + \cdots + X_n$ where (i) $|X_i| \leq 1$ and $\mathbb{E}X_i = 0$ and $\text{Var}X_i = \sigma_i^2$ for $i = 1, 2, \ldots, n$, (ii) X_1, X_2, \ldots, X_n are independent. Let $\sigma^2 = \sigma_1^2 + \sigma_2^2 + \cdots + \sigma_n^2$. Then for $t \geq 0,$

$$
P(S_n \geq t) \leq \exp \left\{ -\frac{t^2}{2(\sigma^2 + t/3)} \right\} \tag{22.31}
$$

and

$$
P(S_n \leq -t) \leq \exp \left\{ -\frac{t^2}{2(\sigma^2 + t/3)} \right\}. \tag{22.32}
$$

Proof. The strategy is once again to bound the moment generating function. Let

$$
F_i = \sum_{r=2}^{\infty} \frac{\lambda^{r-2} \mathbb{E}X_r^2}{r! \sigma_i^2} \leq \sum_{r=2}^{\infty} \frac{\lambda^{r-2} \sigma_i^2}{r! \sigma_i^2} = \frac{e^\lambda - 1 - \lambda}{\lambda^2}.
$$

Here $\mathbb{E}X_r^2 \leq \sigma_i^2$, since $|X_i| \leq 1$.

We then observe that

$$
\mathbb{E}(e^{\lambda X_i}) = 1 + \sum_{r=2}^{\infty} \frac{\lambda^r \mathbb{E}X_r}{r!} \leq e^{\lambda^2 \sigma_i^2} F_i \leq \exp \left\{ (e^\lambda - \lambda - 1)\sigma_i^2 \right\}.
$$

So,

$$
P(S_n \geq t) \leq e^{-\lambda t} \prod_{i=1}^{n} \exp \left\{ (e^\lambda - \lambda - 1)\sigma_i^2 \right\}
$$

$$
= e^{\sigma^2(e^\lambda - \lambda - 1) - \lambda t}
$$

$$
= \exp \left\{ -\sigma^2 \phi \left(\frac{t}{\sigma^2} \right) \right\}.
$$

after assigning

$$
\lambda = \log \left(1 + \frac{t}{\sigma^2} \right).
$$

To obtain (22.31) we use (22.20). To obtain (22.32) we apply (22.31) to $Y_i = -X_i, i = 1, 2, \ldots, n.$ \qed
22.5 Sampling Without Replacement

Let a multi-set \(A = \{a_1, a_2, \ldots, a_N\} \subseteq \mathbb{R} \) be given. We consider two random variables. For the first let \(X = a_i \) where \(i \) is chosen uniformly at random from \([N]\). Let
\[
\mu = \mathbb{E}X = \frac{1}{N} \sum_{i=1}^{N} a_i \quad \text{and} \quad \sigma^2 = \text{Var}X = \frac{1}{N} \sum_{i=1}^{N} (a_i - \mu)^2.
\]

Now let \(S_n = X_1 + X_2 + \cdots + X_n \) be the sum of \(n \) independent copies of \(X \). Next let \(W_n = \sum_{i \in X} a_i \) where \(X \) is a uniformly random \(n \)-subset of \([N]\). We have \(\mathbb{E}S_n = \mathbb{E}W_n = n\mu \) but as shown in Hoeffding [423], \(W_n \) is more tightly concentrated around its mean than \(S_n \). This will follow from the following:

Lemma 22.12. Let \(f : \mathbb{R} \to \mathbb{R} \) be continuous and convex. Then
\[
\mathbb{E}f(W_n) \leq \mathbb{E}f(S_n).
\]

Proof. We write, where \((A)_n\) denotes the set of sequences of \(n \) distinct members of \(A \) and \((N)_n = N(N-1) \cdots (N-n+1) = |(A)_n|\),
\[
\mathbb{E}f(S_n) = \frac{1}{(N)_n} \sum_{x \in (A)_n} g(x_1, x_2, \ldots, x_n) = \mathbb{E}g(X), \tag{22.33}
\]
where \(g \) is a symmetric function of \(x \) and
\[
g(x_1, x_2, \ldots, x_n) = \sum_{k, i, r} \psi(k, i, r) f(r_{i_1} x_{i_1} + \cdots + r_{i_k} x_{i_k}).
\]

Here \(i \) ranges over sequences of \(k \) distinct values \(i_1, i_2, \ldots, i_k \in [n] \) and \(r_{i_1} + \cdots + r_{i_k} = n \). The factors \(\psi(k, i, r) \) are independent of the function \(f \).

Putting \(f = 1 \) we see that \(\sum_{k, i, r} \psi(k, i, r) = 1 \). Putting \(f(x) = x \) we see that \(g \) is a linear symmetric function and so
\[
\sum_{k, i, r} \psi(k, i, r) (r_{i_1} x_{i_1} + \cdots + r_{i_k} x_{i_k}) = K(x_1 + \cdots + x_n),
\]
for some \(K \). Equation (22.33) implies that \(K = 1 \).

Applying Jensen’s inequality we see that
\[
g(x) \geq f(x_1 + \cdots + x_n).
\]

It follows that
\[
\mathbb{E}g(X) \geq \mathbb{E}f(W_n)
\]
and the Lemma follows from (22.33). □

As a consequence we have that (i) \(\text{Var} W_n \leq \text{Var} S_n \) and (ii) \(E e^{\lambda W_n} \leq E e^{\lambda S_n} \) for any \(\lambda \in \mathbb{R} \).

Thus all the inequalities developed in Section 22.4 can a fortiori be applied to \(W_n \) in place of \(S_n \). Of particular importance in this context, is the hypergeometric distribution: Here we are given a set of \(S \subseteq \{1, \ldots, N\} \), \(|S| = m \) and we choose a random set \(X \) of size \(k \) from \(\{1, \ldots, N\} \). Let \(Z = |X \cap S| \). Then

\[
\mathbb{P}(Z = t) = \binom{m}{t} \binom{N-m}{k-t} / \binom{N}{k}, \quad \text{for } 0 \leq t \leq k.
\]

22.6 Janson’s Inequality

In Section 22.4 we found bounds for the upper and lower tails of the distribution of a random variable \(S_n \) composed of \(n \) independent summands. In the previous section we allowed some dependence between the summands. We consider another case where the random variables in question are not necessarily independent. In this section we prove an inequality of Janson [435]. This generalised an earlier inequality of Janson, Łuczak and Ruciński [448], see Corollary 22.14.

Fix a family of \(n \) subsets \(D_i, i \in [n] \). Let \(R \) be a random subset of \(\{1, \ldots, N\} \) such that for \(s \in [N] \) we have \(0 < \mathbb{P}(s \in R) = q_s < 1 \). The elements of \(R \) are chosen independently of each other and the sets \(D_i, i = 1, 2, \ldots, n \). Let \(\mathcal{A}_i \) be the event that \(D_i \) is a subset of \(R \). Moreover, let \(I_i \) be the indicator of the event \(\mathcal{A}_i \). Note that, \(I_i \) and \(I_j \) are independent iff \(D_i \cap D_j = \emptyset \). One can easily see that the \(I_i \)'s are increasing.

We let

\[
S_n = I_1 + I_2 + \cdots + I_n,
\]

and

\[
\mu = \mathbb{E} S_n = \sum_{i=1}^n \mathbb{E}(I_i).
\]

We write \(i \sim j \) if \(D_i \cap D_j \neq \emptyset \). Then, let

\[
\Delta = \sum_{\{i, j\} : i \sim j} \mathbb{E}(I_i I_j) = \mu + \Delta \tag{22.34}
\]

where

\[
\Delta = \sum_{\{i, j\} : i \sim j \atop i \neq j} \mathbb{E}(I_i I_j). \tag{22.35}
\]

As before, let \(\varphi(x) = (1 + x) \log(1 + x) - x \). Now, with \(S_n, \overline{\Delta}, \varphi \) given above one can establish the following upper bound on the lower tail of the distribution of \(S_n \).
Theorem 22.13 (Janson’s Inequality). For any real \(t \), \(0 \leq t \leq \mu \),
\[
\mathbb{P}(S_n \leq \mu - t) \leq \exp \left\{ -\frac{\varphi(-t/\mu)\mu^2}{\Delta} \right\} \leq \exp \left\{ -\frac{t^2}{2\Delta} \right\}.
\]
\[(22.36) \]

Proof. We begin as we did in Section 22.4. Put \(\psi(\lambda) = \mathbb{E}(e^{-\lambda S_n}) \), \(\lambda \geq 0 \). By Markov’s inequality we have
\[
\mathbb{P}(S_n \leq \mu - t) \leq e^{\lambda (\mu - t)} \mathbb{E}[e^{-\lambda S_n}] = \mathbb{E}[e^{-\lambda S_n}],
\]
Therefore,
\[
\log \mathbb{P}(S_n \leq \mu - t) \leq \log \psi(\lambda) + \lambda (\mu - t).
\]
(22.37)

Now let us estimate \(\log \psi(\lambda) \) and minimise the right-hand-side of (22.37) with respect to \(\lambda \).

Note that
\[
-\psi'(\lambda) = \mathbb{E}(S_ne^{-\lambda S_n}) = \sum_{i=1}^{n} \mathbb{E}(I_i e^{-\lambda S_n}).
\]
(22.38)

Now for every \(i \in [n] \), split \(S_n \) into \(Y_i \) and \(Z_i \), where
\[
Y_i = \sum_{j: j \sim i} I_j, \quad Z_i = \sum_{j: j \not\sim i} I_j, \quad S_n = Y_i + Z_i.
\]

Then by the FKG inequality (applied to the random set \(R \) and conditioned on \(I_i = 1 \)) we get, setting \(p_i = \mathbb{E}(I_i) = \prod_{s \in D_i} q_s \),
\[
\mathbb{E}(I_i e^{-\lambda S_n}) = p_i \mathbb{E}(e^{-\lambda Y_i} e^{-\lambda Z_i} \mid I_i = 1) \geq p_i \mathbb{E}(e^{-\lambda Y_i} \mid I_i = 1) \mathbb{E}(e^{-\lambda Z_i} \mid I_i = 1).
\]

Since \(Z_i \) and \(I_i \) are independent we get
\[
\mathbb{E}(I_i e^{-\lambda S_n}) \geq p_i \mathbb{E}(e^{-\lambda Y_i} \mid I_i = 1) \mathbb{E}(e^{-\lambda Z_i}) \geq p_i \mathbb{E}(e^{-\lambda Y_i} \mid I_i = 1) \psi(\lambda).
\]
(22.39)

From (22.38) and (22.39), applying Jensen’s inequality to get (22.40) and remembering that \(\mu = \mathbb{E}S_n = \sum_{i=1}^{n} p_i \), we get
\[
-(\log \psi(\lambda))' = -\frac{\psi'(\lambda)}{\psi(\lambda)} \geq \sum_{i=1}^{n} p_i \mathbb{E}(e^{-\lambda Y_i} \mid I_i = 1)
\]
\[
\geq \mu \sum_{i=1}^{n} \frac{p_i}{\mu} \exp \{-\mathbb{E}(\lambda Y_i \mid I_i = 1)\}
\]

\[
\geq \mu \exp \left\{-\frac{1}{\mu} \sum_{i=1}^{n} p_i \mathbb{E}(\lambda Y_i \mid I_i = 1)\right\}
\]

\[
= \mu \exp \left\{-\frac{\lambda}{\mu} \sum_{i=1}^{n} \mathbb{E}(Y_i I_i)\right\}
\]

\[
= \mu e^{-\lambda \overline{\Delta}/\mu}.
\]

So

\[
-(\log \psi(\lambda))' \geq \mu e^{-\lambda \overline{\Delta}/\mu}
\] (22.41)

which implies that

\[
-\log \psi(\lambda) \geq \int_{0}^{\lambda} \mu e^{-z \overline{\Delta}/\mu} dz = \frac{\mu^2}{\overline{\Delta}} (1 - e^{-\lambda \overline{\Delta}/\mu}).
\] (22.42)

Hence by (22.42) and (22.37)

\[
\log \mathbb{P}(S_n \leq \mu - t) \leq -\frac{\mu^2}{\overline{\Delta}} (1 - e^{-\lambda \overline{\Delta}/\mu}) + \lambda (\mu - t),
\] (22.43)

which is minimized by choosing \(\lambda = -\log(1 - t/\mu) \overline{\Delta} \). It yields the first bound in (22.36), while the final bound in (22.36) follows from the fact that \(\varphi(x) \geq x^2/2 \) for \(x \leq 0 \).

The following Corollary is very useful:

Corollary 22.14 (Janson, Łuczak, Ruciński Inequality).

\[
\mathbb{P}(S_n = 0) \leq e^{-\mu + \Delta}.
\]

Proof. We put \(t = \mu \) into (22.36) giving \(\mathbb{P}(S_n = 0) \leq \exp \left\{-\frac{\varphi(-1)\mu^2}{\overline{\Delta}}\right\} \). Now note that \(\varphi(-1) = 1 \) and \(\frac{\mu^2}{\overline{\Delta}} \geq \frac{\mu^2}{\overline{\mu + \Delta}} \geq \mu - \Delta \).

\[\square\]

22.7 Martingales. Azuma-Hoeffding Bounds

Before we present the basic results of this chapter we have to briefly introduce martingales and concentration inequalities for martingales. Historically, martingales were applied to random graphs for the first time in the context of the chromatic number of \(G_{n,p} \).

Let \((\Omega, \mathcal{F}, \mathbb{P})\) be a probability space. If the sample space \(\Omega \) is finite, then \(\mathcal{F} \) is
the algebra of all subsets of Ω. For simplicity, let us assume that we deal with this case.

Recall that if $\mathscr{D} = \{D_1, D_2, \ldots, D_m\}$ is a partition of Ω, i.e., $\bigcup_{i=1}^m D_i = \Omega$ and $D_i \cap D_j = \emptyset$ if $i \neq j$, then it generates an algebra of subsets $\mathcal{A}(\mathscr{D})$ of Ω. The algebra generated by the partition \mathscr{D} and denoted by $\mathcal{A}(\mathscr{D})$ is the family of all unions of the events (sets) from \mathscr{D}, with \emptyset obtained by taking an empty union.

Let $\mathscr{D} = \{D_1, D_2, \ldots, D_m\}$ be a partition of Ω and A be any event, $A \subset \Omega$ and let $P(A|\mathscr{D})$ be the random variable defined by

$$P(A|\mathscr{D})(\omega) = \sum_{i=1}^m P(A|D_i)I_{D_i}(\omega) = P(A|D_i(\omega)) \text{ where } \omega \in D_i(\omega).$$

Note that if \mathscr{D} a trivial partition, i.e., $\mathscr{D} = \mathscr{D}_0 = \{\Omega\}$ then $P(A|\mathscr{D}_0) = P(A)$, while, in general,

$$\mathbb{P}(A) = \mathbb{E}\mathbb{P}(A|\mathscr{D}). \quad (22.44)$$

Suppose that X is a discrete random variable taking values $\{x_1, x_2, \ldots, x_l\}$ and write X as

$$X = \sum_{j=1}^l x_j I_{A_j}, \quad (22.45)$$

where $A_j = \{\omega : X(\omega) = x_j\}$. Notice that the random variable X generates a partition $\mathscr{D}_X = \{A_1, A_2, \ldots, A_l\}$.

Now the conditional expectation of X with respect to a partition \mathscr{D} of Ω is given as

$$\mathbb{E}(X|\mathscr{D}) = \sum_{j=1}^l x_j P(A_j|\mathscr{D}). \quad (22.46)$$

Hence, $\mathbb{E}(X|\mathscr{D})(\omega_1)$ is the expected value of X conditional on the event $\{\omega \in D_i(\omega_1)\}$.

Suppose that \mathscr{D} and \mathscr{D}' are two partitions of Ω. We say that \mathscr{D}' is finer than \mathscr{D} if $\mathcal{A}(\mathscr{D}) \subseteq \mathcal{A}(\mathscr{D}')$ and denote this as $\mathscr{D} \prec \mathscr{D}'$.

If \mathscr{D} is a partition of Ω and Y is a discrete random variable defined on Ω, then Y is \mathscr{D}-measurable if $\mathscr{D}_Y \prec \mathscr{D}$, i.e., if the partition \mathscr{D} is finer than the partition induced by Y. It simply means that Y takes constant values y_i on the atoms D_i of \mathscr{D}, so Y can be written as $Y = \sum_{i=1}^m y_i I_{D_i}$, where some y_i may be equal. Note that a random variable Y is \mathscr{D}_0-measurable if Y has a degenerate distribution, i.e., it takes a constant value on all $\omega \in \Omega$. Also, trivially, the random variable Y is \mathscr{D}_Y-measurable.
Note that if \mathcal{D}' is finer than \mathcal{D} then
\[
\mathbb{E}(\mathbb{E}(X \mid \mathcal{D}') \mid \mathcal{D}) = \mathbb{E}(X \mid \mathcal{D}). \tag{22.47}
\]
Indeed, if $\omega \in \Omega$ then
\[
\begin{align*}
\mathbb{E}(\mathbb{E}(X \mid \mathcal{D}') \mid \mathcal{D})(\omega) &= \\
&= \sum_{\omega' \in D_i(\omega)} \left(\sum_{\omega'' \in D'_i(\omega')} X(\omega'') \frac{\mathbb{P}(\omega'')}{\mathbb{P}(D'_i(\omega'))} \right) \frac{\mathbb{P}(\omega')}{\mathbb{P}(D_i(\omega))} \\
&= \sum_{\omega'' \in D_i(\omega)} X(\omega'') \frac{\mathbb{P}(\omega'')}{\mathbb{P}(D_i(\omega))} \sum_{\omega' \in D'_i(\omega'')} \frac{\mathbb{P}(\omega')}{\mathbb{P}(D'_i(\omega''))} \\
&= \sum_{\omega'' \in D_i(\omega)} X(\omega'') \frac{\mathbb{P}(\omega'')}{\mathbb{P}(D_i(\omega))} \\
&= \mathbb{E}(X \mid \mathcal{D})(\omega).
\end{align*}
\]
Note that despite all the algebra, (22.47) just boils down to saying that the properly weighted average of averages is just the average.

Finally, suppose a partition \mathcal{D} of Ω is induced by a sequence of random variables $\{Y_1, Y_2, \ldots, Y_n\}$. We denote such partition as $\mathcal{D}_{Y_1, Y_2, \ldots, Y_n}$. Then the atoms of this partition are defined as
\[
D_{y_1, y_2, \ldots, y_n} = \{ \omega : Y_1(\omega) = y_1, Y_2(\omega) = y_2, \ldots, Y_n(\omega) = y_n \},
\]
where the y_i range over all possible values of the Y_i’s. $\mathcal{D}_{Y_1, Y_2, \ldots, Y_n}$ is then the coarsest partition such that Y_1, Y_2, \ldots, Y_n are all constant over the atoms of the partition. For convenience, we simply write $\mathbb{E}(X \mid Y_1, Y_2, \ldots, Y_n)$, instead of $\mathbb{E}(X \mid \mathcal{D}_{Y_1, Y_2, \ldots, Y_n})$.

Now we are ready to introduce an important class of dependent random variables called martingales.

Let $(\Omega, \mathcal{F}, \mathbb{P})$ be a finite probability space and $\mathcal{D}_0 \prec \mathcal{D}_1 \prec \mathcal{D}_2 \prec \ldots \prec \mathcal{D}_n = \mathcal{D}^*$ be a nested sequence of partitions of Ω (a filtration of Ω), where \mathcal{D}_0 is a trivial partition, while \mathcal{D}^* stands for the discrete partition (i.e., $\mathcal{A}(\mathcal{D}_0) = \{ \emptyset, \Omega \}$, while $\mathcal{A}(\mathcal{D}^*) = 2^\Omega = \mathcal{F}$).

A sequence of random variables X_0, X_1, \ldots, X_n is called (a) a martingale, (b) a super-martingale, (c) a sub-martingale, with respect to the partition $\mathcal{D}_0 \prec \mathcal{D}_1 \prec \ldots \prec \mathcal{D}_n = \mathcal{D}^*$, if $\mathbb{E}(X_{i+1} \mid \mathcal{D}_i) = X_i$, respectively $\mathbb{E}(X_{i+1} \mid \mathcal{D}_i) \leq X_i$, respectively $\mathbb{E}(X_{i+1} \mid \mathcal{D}_i) \geq X_i$. The next chapter will further explore these classes of martingales.
If the partition \mathcal{D} of Ω is generated by a sequence of random variables Y_1, \ldots, Y_n then the sequence X_1, \ldots, X_n is called a martingale with respect to the sequence Y_1, \ldots, Y_n. In particular, when $Y_1 = X_1, \ldots, Y_n = X_n$, i.e., when $\mathcal{D}_k = \mathcal{D}_{X_1, \ldots, X_k}$, then we simply say that X is a martingale with respect to itself. Observe also that $E X_k = E X_1 = X_0$, for every k. Analogous statements hold for super- and sub-martingales.

Martingales are ubiquitous, we can obtain a martingale from essentially any random variable. Let $Z = Z(Y_1, Y_2, \ldots, Y_n)$ be a random variable defined on the random variables Y_1, Y_2, \ldots, Y_n. The sequence of random variables $X_k = E(Z | Y_1, Y_2, \ldots, Y_k)$, $k = 0, 1, \ldots, n$ is called the Doob Martingale of Z.

Theorem 22.15. We have (i) $X_0 = E Z$, (ii) $X_n = Z$ and (iii) the sequence X_0, X_1, \ldots, X_n is a martingale with respect to (the partition defined by) Y_1, Y_2, \ldots, Y_n.

Proof. Only (iii) needs to be explicitly checked.

$$E(X_k | Y_1, \ldots, Y_{k-1}) = E(E(Z | Y_1, \ldots, Y_k) | Y_1, \ldots, Y_{k-1})$$

$$= E(Z | Y_1, \ldots, Y_{k-1})$$

$$= X_{k-1}.$$

Here the second equality comes from (22.47).
clique, etc.), we will define a martingale generated by \(X \) and certain sequences of partitions of \(\Omega \).

Let the random variables \(I_1, I_2, \ldots, I_{\binom{n}{2}} \) be listed in a lexicographic order. Define \(\mathcal{D}_0 < \mathcal{D}_1 < \mathcal{D}_2 < \ldots < \mathcal{D}_n = \mathcal{D}^* \) in the following way: \(\mathcal{D}_k \) is the partition of \(\Omega \) induced by the sequence of random variables \(I_1, \ldots, I_{\binom{k}{2}} \), and \(\mathcal{D}_0 \) is the trivial partition. Finally, for \(k = 1, \ldots, n \),

\[
X_k = \mathbb{E}(X \mid \mathcal{D}_k) = \mathbb{E}(X \mid \mathcal{D}_{I_1, I_2, \ldots, I_{\binom{k}{2}}}).
\]

Hence, \(X_k \) is the conditional expectation of \(X \), given that we “uncovered” the set of edges induced by the first \(k \) vertices of our random graph \(G_{n,p} \). A martingale determined through such a sequence of nested partitions is called a vertex exposure martingale.

An edge exposure martingale is defined in a similar way. The martingale sequence is defined as follows

\[
X_k = \mathbb{E}(X \mid \mathcal{D}_k) = \mathbb{E}(X \mid \mathcal{D}_{I_1, I_2, \ldots, I_{\binom{k}{2}}}),
\]

where \(k = 1, 2, \ldots, \binom{n}{2} \), i.e., we uncover the edges of \(G_{n,p} \) one by one.

We next give upper bounds for both the lower and upper tails of the probability distributions of certain classes of martingales.

Theorem 22.16 (Azuma-Hoeffding bound). Let \(\{X_k\}_0^n \) be a sequence of random variables such that \(|X_k - X_{k-1}| \leq c_k \), \(k = 1, \ldots, n \) and \(X_0 \) is constant.

(a) If \(\{X_k\}_0^n \) is a super-martingale then for all \(t > 0 \) we have

\[
\mathbb{P}(X_n \geq X_0 + t) \leq \exp\left\{ -\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right\}.
\]

(b) If \(\{X_k\}_0^n \) is a sub-martingale then for all \(t > 0 \) we have

\[
\mathbb{P}(X_n \leq X_0 - t) \leq \exp\left\{ -\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right\}.
\]

(c) If \(\{X_k\}_0^n \) is a martingale then for all \(t > 0 \) we have

\[
\mathbb{P}(|X_n - X_0| \geq t) \leq 2 \exp\left\{ -\frac{t^2}{2 \sum_{i=1}^{n} c_i^2} \right\}.
\]

Proof. We only need to prove (a), since (b), (c) will then follow easily, since \(\{X_k\}_0^n \) is a sub-martingale iff \(-\{X_k\}_0^n \) is a super-martingale and \(\{X_k\}_0^n \) is a martingale iff it is a super-martingale and a sub-martingale.
Define the martingale difference sequence by \(Y_1 = 0 \) and
\[
Y_k = X_k - X_{k-1}, \quad k = 1, \ldots, n.
\]
Then
\[
\sum_{k=1}^n Y_k = X_n - X_0,
\]
and
\[
\mathbb{E}(Y_{k+1} \mid Y_0, Y_1, \ldots, Y_k) \leq 0. \tag{22.48}
\]
Let \(\lambda > 0 \). Then
\[
\mathbb{P}(X_n - X_0 \geq t) = \mathbb{P}\left(\exp\left(\lambda \sum_{i=1}^n Y_i \right) \geq e^{\lambda t} \right) \leq e^{-\lambda t} \mathbb{E}\left(\exp\left(\lambda \sum_{i=1}^n Y_i \right) \right),
\]
by Markov’s inequality.
Note that \(e^{\lambda x} \) is a convex function of \(x \), and since \(-c_i \leq Y_i \leq c_i\), we have
\[
e^{\lambda Y_i} \leq \frac{1 - Y_i/c_i}{2} e^{-\lambda c_i} + \frac{1 + Y_i/c_i}{2} e^{\lambda c_i} = \cosh(\lambda c_i) + \frac{Y_i}{c_i} \sinh(\lambda c_i).
\]
It follows from (22.48) that
\[
\mathbb{E}(e^{\lambda Y_n} \mid Y_0, Y_1, \ldots, Y_{n-1}) \leq \cosh(\lambda c_n). \tag{22.49}
\]
We then see that
\[
\mathbb{E}\left(\exp\left(\lambda \sum_{i=1}^n Y_i \right) \right) = \mathbb{E}\left(\mathbb{E}(e^{\lambda Y_n} \mid Y_0, Y_1, \ldots, Y_{n-1}) \times \exp\left(\lambda \sum_{i=1}^{n-1} Y_i \right) \right) \leq \cosh(\lambda c_n) \mathbb{E}\left(\exp\left(\lambda \sum_{i=1}^{n-1} Y_i \right) \right) \leq \prod_{i=1}^n \cosh(\lambda c_i).
\]
The expectation in the middle term is over \(Y_0, Y_1, \ldots, Y_{n-1} \) and the last inequality follows by induction on \(n \).
By the above equality and the Taylor expansion, we get
\[
e^{\lambda t} \Pr(X_n - X_0 \geq t) \leq \prod_{i=1}^{n} \cosh(\lambda c_i) = \prod_{i=1}^{n} \sum_{m=0}^{\infty} \frac{(\lambda c_i)^{2m}}{(2m)!} \leq \prod_{i=1}^{n} \sum_{m=0}^{\infty} \frac{(\lambda c_i)^{2m}}{2^m m!} = \exp \left\{ \frac{1}{2} \lambda^2 \sum_{i=1}^{n} c_i^2 \right\}.
\]

Putting \(\lambda = t/\sum_{i=1}^{n} c_i^2 \) we arrive at the theorem. \(\square \)

We end by describing a simple situation where we can apply these inequalities.

Lemma 22.17 (McDiarmid’s Inequality). Let \(Z = Z(W_1, W_2, \ldots, W_n) \) be a random variable that depends on \(n \) independent random variables \(W_1, W_2, \ldots, W_n \). Suppose that
\[
|Z(W_1, \ldots, W_i, \ldots, W_n) - Z(W_1, \ldots, W_i', \ldots, W_n)| \leq c_i
\]
for all \(i = 1, 2, \ldots, n \) and \(W_1, W_2, \ldots, W_n, W_i' \). Then for all \(t > 0 \) we have
\[
\Pr(Z \geq \mathbb{E}Z + t) \leq \exp \left\{ -\frac{t^2}{2\sum_{i=1}^{n} c_i^2} \right\},
\]
and
\[
\Pr(Z \leq \mathbb{E}Z - t) \leq \exp \left\{ -\frac{t^2}{2\sum_{i=1}^{n} c_i^2} \right\}.
\]

Proof. We consider the martingale
\[
X_k = X_k(W_1, W_2, \ldots, W_k) = \mathbb{E}(Z \mid W_1, W_2, \ldots, W_k).
\]
Then
\[
X_0 = \mathbb{E}Z \text{ and } X_n = Z.
\]
We only have to show that the martingale differences \(Y_k = X_k - X_{k-1} \) are bounded. But,
\[
|X_k(W_1, \ldots, W_k) - X_{k-1}(W_1, \ldots, W_{k-1})| \leq \sum_{W'_{k+1}, W_{k+1}, \ldots, W_n} |Z(W_1, \ldots, W_{k+1}, \ldots, W_n) - Z(W_1, \ldots, W_{k+1}', \ldots, W_n)|
\]
\[
\times \Pr(W'_{k+1}) \prod_{i=k+1}^{n} \Pr(W_i)
\]
\[
\leq \sum_{W'_{k+1}, W_{k+1}, \ldots, W_n} c_k \Pr(W'_{k+1}) \prod_{i=k+1}^{n} \Pr(W_i)
\]
\[
= c_k.
\]
\(\square \)
22.8 Talagrand’s Inequality

In this section we describe a concentration inequality that is due to Talagrand [734] that has proved to be very useful. It can often overcome the following problem with using Theorems 22.16, 22.17: If \(\mathbb{E}X_n = O(n^{1/2}) \) then the bounds they give are weak. Our treatment is a rearrangement of the treatment in Alon and Spencer [31].

Let \(\Omega = \prod_{i=1}^n \Omega_i \), where each \(\Omega_i \) is a probability space and \(\Omega \) has the product measure. Let \(A \subseteq \Omega \) and let \(x = (x_1, x_2, \ldots, x_n) \in \Omega \).

For \(\alpha = (\alpha_1, \alpha_2, \ldots, \alpha_n) \) we let

\[
d_\alpha(A, x) = \inf_{y \in A, y_i \neq x_i} \sum \alpha_i.
\]

Then we define

\[
\rho(A, x) = \sup_{|\alpha| = 1} d_\alpha(A, x),
\]

where \(|\alpha| \) denotes the Euclidean norm, \((\alpha_1^2 + \cdots + \alpha_n^2)^{1/2}\).

We then define, for \(t \geq 0 \),

\[
A_t = \{ x \in \Omega : \rho(A, x) \leq t \}.
\]

The following theorem is due to Talagrand [734]:

Theorem 22.18.

\[
\mathbb{P}(A_t)(1 - \mathbb{P}(A_t)) \leq e^{-t^2/4}.
\]

Theorem 22.18 follows from

Lemma 22.19.

\[
\int_{\Omega} \exp \left\{ \frac{1}{4} \rho^2(A, x) \right\} dx \leq \frac{1}{\mathbb{P}(A)}.
\]

Proof. Indeed, fix \(A \) and consider \(X = \rho(A, x) \). Then,

\[
1 - \mathbb{P}(A_t) = \mathbb{P}(X > t) = \mathbb{P}(e^{X^2/4} > e^{t^2/4}) \leq \mathbb{E}(e^{X^2/4}) e^{-t^2/4}.
\]

The lemma states that \(\mathbb{E}(e^{X^2/4}) \leq \frac{1}{\mathbb{P}(A)} \). \(\square \)

The following alternative description of \(\rho \) is important. Let

\[
U(A, x) = \{ s \in \{0, 1\}^n : \exists y \in A \text{ s.t. } s_i = 0 \text{ implies } x_i = y_i \}
\]

and let \(V(A, x) \) be the convex hull of \(U(A, x) \). Then
Lemma 22.20.

\[\rho(A, x) = \min_{v \in V(A, x)} |v|. \]

Here \(|v|\) denotes the Euclidean norm of \(v\). We leave the proof of this lemma as a simple exercise in convex analysis.

We now give the proof of Lemma 22.19.

Proof. We use induction on the dimension \(n\). For \(n = 1\), \(\rho(A, x) = 1_{x \not\in A}\) so that

\[
\int_{\Omega} \exp \left\{ \frac{1}{4} \rho^2(A, x) \right\} = \mathbb{P}(A) + (1 - \mathbb{P}(A))e^{1/4} \leq \frac{1}{\mathbb{P}(A)}
\]

which follows from \(u + (1 - u)e^{1/4} \leq u^{-1}\) for \(0 < u \leq 1\).

Assume the result for \(n\). Write \(\Psi = \prod_{i=1}^{n} \Omega_i\) so that \(\Omega = \Psi \times \Omega_{n+1}\). Any \(z \in \Omega\) can be written uniquely as \(z = (x, \omega)\) where \(x \in \Psi\) and \(\omega \in \Omega_{n+1}\). Set

\[B = \{x \in \Psi : (x, \omega) \in A \text{ for some } \omega \in \Omega_{n+1}\} \]

and for \(\omega \in \Omega_{n+1}\) set

\[A_\omega = \{x \in \Psi : (x, \omega) \in A\}. \]

Then

\[s \in U(B, x) \implies (s, 1) \in U(A, (x, \omega)). \]

\[t \in U(A_\omega, x) \implies (t, 0) \in U(A, (x, \omega)). \]

If \(s \in V(B, x)\) and \(t \in V(A_\omega, x)\) then \((s, 1)\) and \((t, 0)\) are both in \(V(A, (x, \omega))\) and hence for any \(\lambda \in [0, 1]\),

\[((1 - \lambda)s + \lambda t, 1 - \lambda) \in V(A, (x, \omega)). \]

Then,

\[\rho^2(A, (x, \omega)) \leq (1 - \lambda)^2 + |(1 - \lambda)s + \lambda t|^2 \leq (1 - \lambda)^2 + (1 - \lambda)|s|^2 + \lambda |t|^2, \]

where the second inequality uses the convexity of \(|\cdot|^2\).

Selecting, \(s, t\) with minimal norms yields the critical inequality,

\[\rho^2(A, (x, \omega)) \leq (1 - \lambda)^2 + \lambda \rho^2(A_\omega, x) + (1 - \lambda)\rho^2(B, x). \]

Now fix \(\omega\) and bound,

\[
\int_{x \in \Psi} \exp \left\{ \frac{1}{4} \rho^2(A, (x, \omega)) \right\} \leq
\]
22.8. TALAGRAND’S INEQUALITY

\[e^{(1-\lambda)^2/4} \left(\int_{x \in \Psi} \exp \left\{ \frac{1}{4} \rho^2 (A, x) \right\} \right)^{\frac{\lambda}{2}} \exp \left\{ \frac{1}{4} \rho^2 (B, x) \right\} \left(\int_{x \in \Psi} \exp \left\{ \frac{1}{4} \rho^2 (B, x) \right\} \right)^{1-\lambda} \]

By Hölder’s inequality this is at most

\[e^{(1-\lambda)^2/4} \left(\int_{x \in \Psi} \exp \left\{ \frac{1}{4} \rho^2 (A, x) \right\} \right)^{\frac{\lambda}{2}} \left(\int_{x \in \Psi} \exp \left\{ \frac{1}{4} \rho^2 (B, x) \right\} \right)^{1-\lambda}, \]

which by induction is at most

\[e^{(1-\lambda)^2/4} \frac{1}{\mathbb{P}(A)^{\lambda}} \cdot \frac{1}{\mathbb{P}(B)^{1-\lambda}} = \frac{1}{\mathbb{P}(B)} e^{(1-\lambda)^2/4} r^{-\lambda} \]

where \(r = \mathbb{P}(A)/\mathbb{P}(B) \leq 1 \).

Using calculus, we minimise \(e^{(1-\lambda)^2/4} r^{-\lambda} \) by choosing \(\lambda = 1 + 2 \log r \) for \(e^{-1/2} \leq r \leq 1, \lambda = 0 \) otherwise. Further calculation shows that \(e^{(1-\lambda)^2/4} r^{-\lambda} \leq 2 - r \) for this value of \(\lambda \). Thus,

\[\int_{x \in \Psi} \exp \left\{ \frac{1}{4} \rho^2 (A, (x, \omega)) \right\} \leq \frac{1}{\mathbb{P}(B)} \left(2 - \frac{\mathbb{P}(A)}{\mathbb{P}(B)} \right). \]

We integrate over \(\omega \) to give

\[\int_{\omega \in \Omega_{n+1}} \int_{x \in \Psi} \exp \left\{ \frac{1}{4} \rho^2 (A, (x, \omega)) \right\} \leq \frac{1}{\mathbb{P}(B)} \left(2 - \frac{\mathbb{P}(A)}{\mathbb{P}(B)} \right) = \frac{1}{\mathbb{P}(A)} x(2-x), \]

where \(x = \mathbb{P}(A)/\mathbb{P}(B) \leq 1 \). But \(x(2-x) \leq 1 \), completing the induction and hence the theorem.

We call \(h : \Omega \to \mathbb{R} \) Lipschitz if \(|h(x) - h(y)| \leq 1 \) whenever \(x, y \) differ in at most one coordinate.

Definition 22.21. Let \(f : \mathbb{N} \to \mathbb{N} \). \(h \) is \(f \)-certifiable if whenever \(h(x) \geq s \) then there exists \(I \subseteq [n] \) with \(|I| \leq f(s) \) so that if \(y \in \Omega \) agrees with \(x \) on coordinates \(I \) then \(h(y) \geq s \).

Theorem 22.22. Suppose that \(h \) is Lipschitz and \(f \)-certifiable. Then if \(X = h(x) \) for \(x \in \Omega \), then for all \(b \) and for all \(t \geq 0 \),

\[\mathbb{P}(X \leq b - t \sqrt{f(b)}) \mathbb{P}(X \geq b) \leq e^{-t^2/4}. \]
Proof. Set $A = \{x : h(x) < b - t\sqrt{f(b)}\}$. Now suppose that $h(y) \geq b$. We claim that $y \notin A$. Let I be a set of indices of size at most $f(b)$ that certifies $h(y) \geq b$ as given above. Define $\alpha_i = 0$ when $i \notin I$ and $\alpha_i = |I|^{-1/2}$ when $i \in I$. Using Lemma 22.20 we see that if $y \in A$, then there exists a $z \in A$ that differs from y in at most $t|I|^{1/2} \leq t\sqrt{f(b)}$ coordinates of I, though at arbitrary coordinates outside I. Let y' agree with y on I and agree with z outside I. By the certification $h(y') \geq b$. Now y', z differ in at most $t\sqrt{f(b)}$ coordinates and so, by Lipschitz,

$$h(z) \geq h(y') - t\sqrt{f(b)} \geq b - t\sqrt{f(b)},$$

but then $z \notin A$, a contradiction. So, $P(X \geq b) \leq 1 - P(A_i)$ and from Theorem 22.18,

$$P(X < b - t\sqrt{f(b)}) P(X \geq b) \leq e^{-t^2/4}.$$

As the RHS is continuous in t, we may replace “$<$” by “\leq” giving Theorem 22.22.

Next let m denote the median of X so that $P(X \geq m) \geq 1/2$ and $P(X \leq m) \geq 1/2$.

Corollary 22.23.

(a) $P(X \leq m - t\sqrt{f(m)}) \leq 2e^{-t^2/4}$.

(b) Suppose that $b - t\sqrt{f(b)} \geq m$, then $P(X \geq b) \leq 2e^{-t^2/4}$.

22.9 Dominance

We say that a random variable X stochastically dominates a random variable Y if

$$P(X \geq t) \geq P(Y \geq t) \quad \text{for all real } t.$$

There are many cases when we want to use our inequalities to bound the upper tail of some random variable Y and (i) Y does not satisfy the necessary conditions to apply the relevant inequality, but (ii) Y is dominated by some random variable X that does. Clearly, we can use X as a surrogate for Y.

The following case arises quite often. Suppose that $Y = Y_1 + Y_2 + \cdots + Y_n$ where Y_1, Y_2, \ldots, Y_n are not independent, but instead we have that for all t in the range $[A_i, B_i]$ of Y_i,

$$P(Y_i \geq t \mid Y_1, Y_2, \ldots, Y_{i-1}) \leq \Phi(t)$$

where $\Phi(t)$ decreases monotonically from 1 to 0 in $[A_i, B_i]$.

Let X_i be a random variable taking values in the same range as Y_i and such that $P(X_i \geq t) = \Phi(t)$. Let $X = X_1 + \cdots + X_n$ where X_1, X_2, \ldots, X_n are independent of each other and Y_1, Y_2, \ldots, Y_n. Then we have
Lemma 22.24. X stochastically dominates Y.

Proof. Let $X^{(i)} = X_1 + \cdots + X_i$ and $Y^{(i)} = Y_1 + \cdots + Y_i$ for $i = 1, 2, \ldots, n$. We will show by induction that $X^{(i)}$ dominates $Y^{(i)}$ for $i = 1, 2, \ldots, n$. This is trivially true for $i = 1$ and for $i > 1$ we have

$$
\mathbb{P}(Y^{(i)} \geq t \mid Y_1 \ldots, Y_{i-1}) = \mathbb{P}(Y_i \geq t - (Y_1 + \cdots + Y_{i-1}) \mid Y_1 \ldots, Y_{i-1}) \\
\leq \mathbb{P}(X_i \geq t - (Y_1 + \cdots + Y_{i-1}) \mid Y_1 \ldots, Y_{i-1}).
$$

Removing the conditioning we have

$$
\mathbb{P}(Y^{(i)} \geq t) \leq \mathbb{P}(Y^{(i-1)} \geq t - X_i) \leq \mathbb{P}(X^{(i-1)} \geq t - X_i) = \mathbb{P}(X^{(i)} \geq t),
$$

where the second inequality follows by induction. \qed
Chapter 23

Differential Equations Method

Let $D \subseteq \mathbb{R}^2$ be open and bounded and connected. Consider a general random process

$$X(0), X(1), \ldots, X(t), \ldots, X(n) \in \mathbb{Z}.$$

where $X(0)$ is fixed and $\left(0, \frac{X(0)}{n}\right) \in D$.

Let H_t denote the history $X(0), X(1), \ldots, X(t)$ of the process to time t. Let T_D be the stopping time which is the minimum t such that $(t/n, X(t)/n) \notin D$. We further assume

(P1) $|X(t)| \leq C_0 n$, $\forall t < T_D$, where C_0 is a constant.

(P2) $|X(t+1) - X(t)| \leq \beta = \beta(n) \geq 1$, $\forall t < T_D$.

(P3) $|E(X(t+1) - X(t)|H_t, \mathcal{E}) - f(t/n, X(t)/n)| \leq \lambda, \forall t < T_D$. Here \mathcal{E} is some likely event that holds with probability at least $1 - \gamma$.

(P4) $f(t, x)$ is continuous and satisfies a Lipschitz condition

$$|f(t,x) - f(t',x')| \leq L \| (t,x) - (t',x') \|_\infty$$

for $(t,x), (t',x') \in D \cap \{(t,x) : t \geq 0\}$

Theorem 23.1. Suppose that

$$\lambda = o(1) \text{ and } \alpha = \frac{n\lambda^3}{\beta^3} \gg 1.$$

$$\sigma = \inf \{ \tau : (\tau, z(\tau)) \notin D_0 = \{(t,z) \in D : \text{l}^\infty \text{ distance of } (t,z) \text{ from the boundary of } D \geq 2\lambda \} \}$$
Let \(z(\tau), 0 \leq \tau \leq \sigma \) be the unique solution to the differential equation
\[
z'(\tau) = f(\tau, z(\tau)) \tag{23.1}
\]
\[
z(0) = \frac{X(0)}{n} \tag{23.2}
\]
Then,
\[
X(t) = nz(t/n) + O(\lambda n), \tag{23.3}
\]
uniformly in \(0 \leq t \leq \sigma n \), with probability \(1 - O(\gamma + \beta e^{-\alpha}/\lambda) \).

Proof. The \(\gamma \) in the probability of success will be handled by conditioning on \(\mathcal{E} \).

Now let \(\omega = \lceil n \lambda \beta \rceil \).

We study the difference \(X(t + \omega) - X(t) \). Assume that \((t/n, X(t)/n) \in D_0 \). For \(0 \leq k \leq \omega \) we have from (P2) that
\[
\left| \frac{X(t+k)}{n} - \frac{X(t)}{n} \right| \leq \frac{k \beta}{n} \leq \frac{\omega \beta}{n},
\]
so
\[
\left\| \left(\frac{t+k}{n}, \frac{X(t+k)}{n} \right) - \left(\frac{t}{n}, \frac{X(t)}{n} \right) \right\|_\infty \leq 2 \lambda,
\]
and so \(\left(\frac{t+k}{n}, \frac{X(t+k)}{n} \right) \) is in \(D \).

Therefore, using (P3),
\[
\mathbb{E}(X(t+k+1) - X(t+k) | H_{t+k}, \mathcal{E}) = f \left(\frac{t+k}{n}, \frac{X(t+k)}{n} \right) + \theta_k = f \left(\frac{t}{n}, \frac{X(t)}{n} \right) + \theta_k + \psi_k = f \left(\frac{t}{n}, \frac{X(t)}{n} \right) + \rho,
\]
where \(|\rho| \leq (2L + 1) \lambda \), since \(|\theta_k| \leq \lambda \) (by (P3)) and \(|\psi_k| \leq \frac{t \beta k}{n} \) (by (P4)).

Now, given \(H_t \), let
\[
Z_k = \begin{cases}
X(t+k) - X(t) - kf \left(\frac{t}{n}, \frac{X(t)}{n} \right) - (2L + 1)k \lambda & \mathcal{E} \\
\text{emptyset} & \neg \mathcal{E}.
\end{cases}
\]
Then
\[\mathbb{E}(Z_{k+1} - Z_k | Z_0, Z_1, \ldots, Z_k) \leq 0, \]
i.e., \(Z_0, Z_1, \ldots, Z_\omega \) is a super-martingale.
Also
\[|Z_{k+1} - Z_k| \leq \beta + \left| f \left(\frac{t}{n}, \frac{X(t)}{n} \right) \right| + (2L + 1) \lambda \leq K_0 \beta, \]
where \(K_0 = O(1) \), since \(f \left(\frac{t}{n}, \frac{X(t)}{n} \right) = O(1) \) by continuity and boundedness of \(D \).
So, using Theorem 22.16 we see that conditional on \(H_t, \mathcal{E} \),
\[\mathbb{P} \left(X(t + \omega) - X(t) - \omega f(t/n, X(t)/n) \geq (2L + 1) \omega \lambda + K_0 \beta \sqrt{2 \alpha \omega} \right) \]
\[\leq \exp \left\{ -\frac{2K_0^2 \beta^2 \alpha \omega}{2 \omega K_0^2 \beta^2} \right\} = e^{-\alpha}. \quad (23.4) \]
Similarly,
\[\mathbb{P} \left(X(t + \omega) - X(t) - \omega f(t/n, X(t)/n) \leq -(2L + 1) \omega \lambda - K_0 \beta \sqrt{2 \alpha \omega} \right) \]
\[\leq e^{-\alpha}. \quad (23.5) \]
Thus
\[\mathbb{P} \left(|X(t + \omega) - X(t) - \omega f(t/n, X(t)/n)| \geq (2L + 1) \omega \lambda + K_0 \beta \sqrt{2 \alpha \omega} \right) \]
\[\leq 2e^{-\alpha}. \]
We have that \(\omega \lambda \) and \(\beta \sqrt{2 \alpha \omega} \) are both \(\Theta(n^{\lambda^2}/\beta) \) giving
\[(2L + 1) \omega \lambda + K_0 \beta \sqrt{2 \alpha \omega} \leq K_1 \frac{n^{\lambda^2}}{\beta}. \]
Now let \(k_i = i \omega \) for \(i = 0, 1, \ldots, i_0 = [\sigma n/\omega] \). We will show by induction that
\[\mathbb{P} \left(\exists j \leq i : |X(k_j) - z(k_j/n)| \geq B_j \right) \leq 2ie^{-\alpha}, \quad (23.6) \]
where
\[B_j = B \left(1 + \frac{L \omega}{n} \right)^{j+1} - 1 \frac{n \lambda}{L} \quad (23.7) \]
and where \(B \) is another constant.
The induction begins with \(z(0) = \frac{X(0)}{n} \) and \(B_0 = 0 \). Note that
\[B_{i_0} \leq \frac{B e^{\sigma L} \lambda}{L} n = O(\lambda n). \quad (23.8) \]
Now write

\[|X(k_{i+1}) - z(k_{i+1}/n)| = |A_1 + A_2 + A_3 + A_4|, \]
\[A_1 = X(k_i) - z(k_i/n)n, \]
\[A_2 = X(k_{i+1}) - X(k_i) - \omega f(k_i/n, X(k_i)/n), \]
\[A_3 = \omega z'(k_i/n) + z(k_i/n)n - z(k_{i+1}/n)n, \]
\[A_4 = \omega f(k_i/n, X(k_i)/n) - \omega z'(k_i/n). \]

We now bound each of these terms individually.

Figure 23.1: Error terms
Our induction gives that with probability at most $2ie^{-\alpha}$,

$$|A_1| \leq B_i.$$

Equations (23.4) and (23.5) give

$$|A_2| \leq K_1 \frac{n\lambda^2}{\beta},$$

with probability $1 - 2e^{-\alpha}$.

Now

$$A_3 = \omega z'(k_i/n) + z(k_i/n)n - z(k_{i+1}/n)n$$

for some $0 \leq \hat{\omega} \leq \omega$ and so (P4) implies that

$$|A_3| = \omega |z'(k_i/n + \omega/n) - z'(k_i/n + \hat{\omega}/n)| \leq L \frac{\omega^2}{n} \leq 2L \frac{n\lambda^2}{\beta^2}.$$

Finally, (P4) gives

$$|A_4| \leq \frac{\omega L |A_1|}{n} \leq \frac{\omega L}{n} B_i.$$

Thus for some $B > 0$,

$$B_{i+1} \leq |A_1| + |A_2| + |A_3| + |A_4| \leq \left(1 + \frac{\omega L}{n}\right) B_i + Bn \frac{\lambda^2}{\beta}.$$

A little bit of algebra verifies (23.6) and (23.7). Finally consider $k_i \leq t < k_{i+1}$. From “time” k_i to t the change in X and nz is at most $\omega \beta = O(n\lambda).$ \hfill \Box

Remark 23.2. The above proof generalises easily to the case where $X(t)$ is replaced by $X_1(t), X_2(t), \ldots, X_a(t)$ where $a = O(1)$.

The earliest mention of differential equations with respect to random graphs was in the paper by Karp and Sipser [494]. The paper by Ruciński and Wormald [688] was also influential. See Wormald [762] for an extensive survey on the differential equations method.
Chapter 24

Branching Processes

In the Galton-Watson branching process, we start with a single particle comprising generation 0. In general, the nth generation consists of Z_n particles and each member x of this generation independently gives rise to a random number X of descendants in generation $n+1$. In the book we need the following theorem about the probability that the process continues indefinitely: Let
\[p_k = \mathbb{P}(X = k), \quad k = 0, 1, 2, \ldots. \]
Let
\[G(z) = \sum_{k=0}^{\infty} p_k z^k \]
be the probability generating function (p.g.f.) of X. Let $\mu = \mathbb{E}X$. Let
\[\eta = \mathbb{P}\left(\bigcup_{n \geq 0} \{Z_n = 0\} \right) \quad (24.1) \]
be the probability of ultimate extinction of the process.

Theorem 24.1. \(\eta \) is the smallest non-negative root to the equation $G(s) = s$. Here \(\eta = 1 \) if $\mu < 1$.

Proof. If $G_n(z)$ is the p.g.f. of Z_n, then $G_n(z) = G(G_{n-1}(z))$. This follows from the fact that Z_n is the sum of Z_{n-1} independent copies of G. Let $\eta_n = \mathbb{P}(Z_n = 0)$. Then
\[\eta_n = G_n(0) = G(G_{n-1}(0)) = G(\eta_{n-1}). \]
It follows from (24.1) that $\eta_n \nearrow \eta$. Let ψ be any other non-negative solution to $G(s) = s$. We have
\[\eta_1 = G(0) \leq G(\psi) = \psi. \]
Now assume inductively that $\eta_n \leq \psi$ for some $n \geq 1$. Then

$$\eta_{n+1} = G(\eta_n) \leq G(\psi) = \psi.$$
Chapter 25

Entropy

25.1 Basic Notions

Entropy is a useful tool in many areas. The entropy we talk about here was intro-
duced by Shannon in [709]. We need some results on entropy in Chapter 14. We
collect them here for convenience. For more on the subject we refer the reader to
Cover and Thomas [238], or Gray [397] or Martin and England [592].

Let X be a random variable taking values in a finite set R_X. Let $p(x) = P(X = x)$
for $x \in R_X$. Then the entropy of X is given by

$$h(X) = -\sum_{x \in R_X} p(x) \log p(x).$$

We have a choice for the base of the logarithm here. We use the natural logarithm,
for use in Chapter 14.

Note that if X is chosen uniformly from R_X, i.e. $P(X = x) = 1/|R_X|$ for all $x \in R_X$
then then

$$h(X) = \sum_{x \in R_X} \frac{\log |R_X|}{|R_X|} = \log |R_X|.$$

We will see later that the uniform distribution maximises entropy.

If Y is another random variable with a finite range then we define the conditional
entropy

$$h(X \mid Y) = \sum_{y \in R_Y} p(y) h(X_y) = -\sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(y)},$$

(25.1)

where X_y is the random variable with $P(X_y = x) = P(X = x \mid Y = y)$. Here $p(y) = P(Y = y)$. The summation is over y such that $p(y) > 0$. We will use notation like
this from now on, without comment.

Chain Rule:
Lemma 25.1.

\[h(X_1, X_2, \ldots, X_m) = \sum_{i=1}^{m} h(X_i \mid X_1, X_2, \ldots, X_{i-1}). \quad (25.2) \]

Proof. This follows by induction on \(m \), once we have verified it for \(m = 2 \). For then

\[h(X_1, X_2, \ldots, X_m) = h(X_1, X_2, \ldots, X_{m-1}) + h(X_m \mid X_1, X_2, \ldots, X_{m-1}). \]

Now,

\[
\begin{align*}
 h(X_2 \mid X_1) &= - \sum_{x_1, x_2} p(x_1, x_2) \log \frac{p(x_1, x_2)}{p(x_1)} \\
 &= - \sum_{x_1, x_2} p(x_1, x_2) \log p(x_1, x_2) + \sum_{x_1, x_2} p(x_1, x_2) \log p(x_1) \\
 &= h(X_1, X_2) + \sum_{x_1} p(x_1) \log p(x_1) \\
 &= h(X_1, X_2) - h(X_1).
\end{align*}
\]

\[
\square
\]

Inequalities:

Entropy is a measure of uncertainty and so we should not be surprised to learn that \(h(X \mid Y) \leq h(X) \) for all random variables \(X, Y \) – here conditioning on \(Y \) represents providing information. Our goal is to prove this and a little more.

Let \(p, q \) be probability measures on the finite set \(X \). We define the **Kullback-Liebler** distance

\[D(p||q) = \sum_{x \in A} p(x) \log \left(\frac{p(x)}{q(x)} \right) \]

where \(A = \{ x : p(x) > 0 \} \).

Lemma 25.2.

\[D(p||q) \geq 0 \]

with equality iff \(p = q \).

Proof. Let

\[
\begin{align*}
 -D(p||q) &= \sum_{x \in A} p(x) \log \left(\frac{q(x)}{p(x)} \right) \\
 &\leq \log \sum_{x \in A} p(x) \frac{q(x)}{p(x)} \\
 &= (25.3)
\end{align*}
\]
Inequality (25.3) follows from Jensen’s inequality and the fact that log is a concave function. Because log is strictly concave, will have equality in (25.3) iff $p = q$. It follows from this that

$$h(X) \leq \log |R_X|.$$ \hspace{1cm} (25.4)

Indeed, let u denote the uniform distribution over R_X i.e. $u(x) = 1/|R_X|$. Then

$$0 \leq D(p||u) = \sum_x p(x) (\log p(x) + \log |R_X|) = -h(X) + \log |R_X|.$$

We can now show that conditioning does not increase entropy.

Lemma 25.3. For random variables X, Y, Z,

$$h(X \mid Y, Z) \leq h(X \mid Y).$$

Taking Y to be a constant e.g. $Y = 1$ with probability one, we see

$$h(X \mid Z) \leq h(X).$$

Proof.

\[
\begin{align*}
 h(X \mid Y) - h(X \mid Y, Z) \\
 = -\sum_{x,y} p(x,y) \log \frac{p(x,y)}{p(y)} + \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y,z)}{p(y,z)} \\
 = -\sum_{x,y,z} p(x,y,z) \log \frac{p(x,y)}{p(y)} + \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y,z)}{p(y,z)} \\
 = \sum_{x,y,z} p(x,y,z) \log \frac{p(x,y,z)p(y)}{p(x,y)p(y,z)} \\
 = D(p_{x,y,z}||p(x,y)p(y,z)/p(y)) \\
 \geq 0.
\end{align*}
\]

Note that $\sum_{x,y,z} p(x,y)p(y,z)/p(y) = 1$. \hspace{1cm} \square

Working through the above proof we see that $h(X) = h(X \mid Z)$ iff $p(x,z) = p(x)p(z)$ for all x, z, i.e. iff X, Z are independent.
25.2 Shearer’s Lemma

The original proof is from Chung, Frankl, Graham and Shearer [186]. The following proof is from Radakrishnan [666].

Lemma 25.4. Let $X = (X_1, X_2, \ldots, X_N)$ be a (vector) random variable and $\mathcal{A} = \{A_i : i \in I\}$ be a collection of subsets of a set B, where $|B| = N$, such that each element of B appears in at least k members of \mathcal{A}. For $A \subseteq B$, let $X_A = (X_j : j \in A)$. Then,

$$h(X) \leq \frac{1}{k} \sum_{i \in I} h(X_{A_i}).$$

Proof. We have, from Lemma 25.1 that

$$h(X) = \sum_{j \in B} h(X_j \mid X_1, X_2, \ldots, X_{j-1}) \quad (25.5)$$

and

$$h(X_{A_i}) = \sum_{j \in A_i} h(X_j \mid X_\ell, \ell \in A_i, \ell < j). \quad (25.6)$$

We sum (25.6) for all $i \in I$. Then

$$\sum_{i \in I} h(X_{A_i}) = \sum_{i \in I} \sum_{j \in A_i} h(X_j \mid X_\ell, \ell \in A_i, \ell < j)$$

$$= \sum_{j \in B \setminus \bigcup_{i \in I} A_i} h(X_j \mid X_\ell, \ell \in A_i, \ell < j) \quad (25.7)$$

$$\geq \sum_{j \in B \setminus \bigcup_{i \in I} A_i} h(X_j \mid X_1, X_2, \ldots, X_{j-1}) \quad (25.8)$$

$$\geq k \sum_{j \in B} h(X_j \mid X_1, X_2, \ldots, X_{j-1}) \quad (25.9)$$

$$= kh(X). \quad (25.10)$$

Here we obtain (25.8) from (25.7) by applying Lemma 25.3. We obtain (25.9) from (25.8) and the fact that each $j \in B$ appears in at least $k A_i$’s. We then obtain (25.10) by using (25.5).
Bibliography

[73] I. Benjamini, I. Shinkar, G. Tsur, Acquaintance time of a graph, see arxiv.org.

[110] M. Bode, N. Fountoulakis and T. Müller, The probability that the hyperbolic random graph is connected, see arxiv.org.

BIBLIOGRAPHY

[176] E. Candellero and N. Fountoulakis, Clustering and the hyperbolic geometry of complex networks, see arxiv.org.

[201] A. Coja–Oghlan and D. Vilenchik, Chasing the k-colorability threshold, see arxiv.org.

[244] B. DeMarco and J. Kahn, Mantel’s theorem for random graphs, see arxiv.org.

[296] H. van den Esker, A geometric preferential attachment model with fitness, see arxiv.org.

[368] M. Fuchs, The subtree size profile of plane-oriented recursive trees, manuscript.

[372] P. Gao and M. Molloy, The stripping process can be slow, see arxiv.org.

[422] D. Hefetz, A. Steger and B. Sudakov, Random directed graphs are robustly hamiltonian, see arxiv.org.

[427] R. van der Hofstad, S. Kliem and J. van Leeuwaarden, Cluster tails for critical power-law inhomogeneous random graphs, see arxiv.org

[428] C. Holmgren and S. Janson, Limit laws for functions of fringe trees for binary search trees and recursive trees, see arxiv.org

[463] J. Jaworski, M. Karoński and D. Stark, The degree of a typical vertex in
generalized random intersection graph model, *Discrete Mathematics* 30

[465] M.R. Jerrum, Large Cliques Elude the Metropolis Process, *Random Struc-

[467] J. Jonasson, On the cover time of random walks on random graphs, *Com-

[469] J. Jordan, Geometric preferential attachment in non-uniform metric spaces,

[470] J. Jordan and A. Wade, Phase transitions for random geometric preferential

[471] F. Juhász, On the spectrum of a random graph, *in Algebraic methods in
graph theory, (Lovász et al., eds) Coll. Math. Soc. J. Bolyai, North Holland

graphs, see arxiv.org.

[473] J. Kahn, E. Lubetzky and N. Wormald, Cycle factors and renewal theory,
see arxiv.org.

[474] J. Kahn, B. Narayanan and J. Park, The threshold for the square of a Hamil-
ton cycle, see arxiv.org.

[475] J. Kahn and E. Szemerédi, On the second eigenvalue in random regular
graphs - Section 2, *Proceedings of the 21’st Annual ACM Symposium on

[476] M. Kahle, Topology of random simplicial complexes: a survey, *AMS Con-
temporary Volumes in Mathematics*, To appear in AMS Contemporary Vol-

[496] Zs. Katona, Levels of scale-free tree, manuscript

[505] M. Kiwi and D. Mitsche, A bound for the diameter of random hyperbolic graphs, see arxiv.org.

BIBLIOGRAPHY

[539] V. Kurauskas and M. Bloznelis, Large cliques in sparse random intersection graphs, see arxiv.org.

[546] J. Leskovec, J. Kleinberg, and C. Faloutsos, Graphs over time: densification laws, shrinking diameters and possible explanations, in Proc. of ACM SIGKDD Conf. on Knowledge Discovery in Data Mining (2005) 177-187.

[617] T. Müller, Private communication.

[647] N. Peterson and B. Pittel, Distance between two random k-out graphs, with and without preferential attachment, see arxiv.org.

[657] D. Poole, On weak hamiltonicity of a random hypergraph, see arxiv.org.

[674] O. Riordan, Long cycles in random subgraphs of graphs with large minimum degree, see arxiv.org.

[700] D. Saxton and A. Thomason, Hypergraph containers, see arxiv.org.

[701] D. Saxton and A. Thomason, Online containers for hypergraphs with applications to linear equations, see arxiv.org.

[716] S. Sivasubramanian, Spanning trees in complete uniform hypergraphs and a connection to r-extended Shi hyperplane arrangements, see arxiv.org.

Chapter 26

Indices
Author Index

Šilekis, M, 217
Škorić, N., 154, 268
Łuczak, T., vii, 8, 37, 40, 41, 47, 50, 70, 80, 110, 127, 128, 139, 141, 143, 229, 252, 294, 356, 364, 405, 408–410, 424, 436
Achlioptas, D., 47, 137, 229, 294
Aiello, W., 385
Ajtai, M., 48, 89, 94, 410
Albert, R., 367
Aldous, D., 40, 41, 394
Alon, N., 103, 110, 137, 176, 405, 408, 412, 445
Amit, A., 409
Angel, O., 400
Avin, C., 411
Babai, L., 153
Bal, D., 403
Balister, P., 364
Balogh, J., 140, 245, 295
Banderier, C., 408
Barabási, L., 367
Barbour, A., 62, 79, 80, 253, 422–424
Bartnicki, T., 405
Bayati, M., 121
Beck, J., 403
Behrisch, M., 251
Ben-Shimon, S., 108, 404
Bender, E., 41, 200, 408
Benjamini, I., 406, 411
Bennett, P., 403, 407
Berge, C., 278
Bernstein, S., 429
Beveridge, A., 404
Bhamidi, S., 193, 399
Blackbourn, S., 252
Blackwell, P., 254
Bloznelis, M., 252, 253
Bode, M., 255
Boguñá, M., 255
Bohman, T., 47, 154, 295, 356, 405–407
Bonato, A., 385, 405
Borgs, C., 385
Bourgain, J., 19
Bradonjić, M., 254
Brautbar, M., 385
Brightwell, G., 153
Britton, T., 193, 253
Broder, A., 70, 230, 409
Bui, T., 409
Burtin, Y., 111, 410
Callaway, D., 191
Candellero, E., 255
Canfield, R., 41, 200, 408
Capalbo, M., 412
Caro, Y., 71
Catlin, P., 48
Cerny, J., 411
Chakrabarti, D., 185, 194
Chaudhuri, S., 409
Chayes, J., 385
Chebolu, P., 109, 409
Chen, L., 422
Chen, W., 255
Chung, F., 178, 184, 385, 457
AUTHOR INDEX

Chvátal, V., 18, 138, 403
Coja–Oghlan, A., 129, 137, 409
Collevecchio, A., 386
Conlon, D., 140, 143
Cooley, O., 294
Cooper, C., 48, 106, 107, 229, 268, 295, 296, 365, 373, 375, 385, 386, 399, 403, 411
Cover, T., 455
Damarackas, J., 253
Dani, V., 119
de la Vega, W., 94
Deijfen, M., 193, 253
Dellamonica, D., 412
DeMarco, B., 154
Devroye, L., 192
Diaz, J., 245, 254
Diepetro, R., 252
Ding, J., 47, 411
Dudek, A., 106, 136, 217, 230, 275, 404, 406
Durrett, R., 191, 228, 385, 418
Dyer, M., 99, 138, 294, 400, 410
Ebrahimzadeh, E., 386
Edmonds, J., 96
Edmonson-Jones, M., 254
Efthymiou, C., 139
Egorychev, G., 265
Elsässer, R., 254
England, J., 455
Ercal, G., 411
Erdős, P., vi, 3, 20, 40, 48, 60, 62, 64, 68, 74, 79, 80, 83, 85, 94, 125, 154, 295, 403, 406, 407, 410
Eschenauer, L., 252
Füredi, Z., 103, 129
Fagin, R., 407
Falikman, D., 265
Faloutsos, C., 185, 194, 367
Faloutsos, M., 367
Faloutsos, P., 367
Fang, W., 255
Farzad, L., 386
Feldman, V., 408
Fenner, T., 107, 108, 345, 385
Ferber, A., 156
Ferber, A., 265, 267, 268, 275, 293, 403, 404, 412
Fernholz, D., 139
Fill, J., 232
Fiz Pontiveros, G., 406
Flajolet, P., 408
Flaxman, A., 47, 138, 385, 400
Fortuin, C., 428
Foulds, L., 410
Fountoulakis, N., 47, 255, 295, 351, 411
Fraiman, N., 192
Frankl, F., 457
Friedgut, E., 19
Friedman, J., 230
Friedrich, T., 254, 255
Frieze, A., 71
Gale, D., 412
Gamarnik, D., 47, 121, 400
Gao, P., 109, 294, 295, 386
Gao, Z., 408
Gebauer, H., 404
Gerke, S., 110, 143, 252, 408
Gharamani, Z., 194
Gilbert, E., vi, 3
Giménez, O., 408
Ginibre, J., 428
Glebov, R., 107, 108, 404
Glebskii, Y., 407
Gligor, V., 252
Godelhardt, E., 252, 253
Goel, A., 254
Goetze, F., 253
Gowers, T., 140, 143
Goyal, N., 365
Grable, D., 407
Graham, R., 254
Grandoni, F., 254
Gray, R., 455
Greenhill, C., 294, 409
Griffiths, S., 406
Grigorescu, E., 408
Grimmett, G., 125
Groër, C., 194
Grytczuk, J., 405
Gugelmann, L., 255
Gupta, P., 241
Gurevich, Y., 108
Haber, S., 108, 230, 405
Hamm, A., 295
Harris, T., 428
Hatami, H., 137, 229
He, J., 71
Heckel, A., 71
Hefetz, D., 109, 268, 403, 404
Hoeffding, W., 431, 435
Holst, L., 423, 424
Hooghiemstra, G., 193
Hopcroft, J., 191
Horn, P., 187
Hu, G., 255
Ince, N., 399
Ivchenko, G., 62
Jadbabaie, R., 254
Janssen, J., 386
Janson, S., vii, 40, 47, 62, 80, 191–193, 229, 387, 390, 399, 402, 403, 409, 423, 424, 436
Janssen, J., 385
Jaworski, J., 252, 253, 365
Jerrum, M., 138, 229
Jiang, J., 294
Johansson, A., 110, 279
Johansson, T., 365
Jonasson, J., 411
Jordan, 254, 385
Juháasz, F., 129
Kühn, D., 47, 107
Kahle, M., 410
Kahn, J., 109, 110, 154, 230, 279, 295
Kalai, G., 19
Kalikow, S., 191
Kamčev, N., 230
Kang, M., 47, 193, 194, 294, 408
Kannan, R., 408
Karger, D., 190
Karofiski, M., 52, 62, 76, 79, 80, 193, 194, 231, 237, 253, 294, 423, 424
Karp, R., 109, 257, 349, 351, 400, 453
Kasteleyn, P., 428
Keevash, P., 406
Kemkes, G., 230
Keusch, R., 405
Khanna, S., 385
Khosla, M., 295
Kierstead, H., 405
Kim, J., 47, 217, 294, 402, 406
Knoppers, W., 406
Kitsak, M., 255
Kleinberg, J., 185, 191, 194, 382
Kliem, S., 193
<table>
<thead>
<tr>
<th>Author</th>
<th>Pages</th>
</tr>
</thead>
<tbody>
<tr>
<td>Knox, F.</td>
<td>107</td>
</tr>
<tr>
<td>Knuth, D.</td>
<td>40, 47, 97, 412</td>
</tr>
<tr>
<td>Koch, C.</td>
<td>193, 194, 294</td>
</tr>
<tr>
<td>Kogan, D.</td>
<td>407</td>
</tr>
<tr>
<td>Kohayakawa, Y.</td>
<td>143, 278, 410, 412</td>
</tr>
<tr>
<td>Kolda, T.</td>
<td>194</td>
</tr>
<tr>
<td>Komlós, J.</td>
<td>48, 89, 94, 129, 410</td>
</tr>
<tr>
<td>Korošek, W.</td>
<td>62</td>
</tr>
<tr>
<td>Kovalenko, I.</td>
<td>171, 172</td>
</tr>
<tr>
<td>Kozma, G.</td>
<td>385, 411</td>
</tr>
<tr>
<td>Kravitz, D.</td>
<td>47</td>
</tr>
<tr>
<td>Kreuter, B.</td>
<td>143</td>
</tr>
<tr>
<td>Krioukov, D.</td>
<td>255</td>
</tr>
<tr>
<td>Krishnamachari, B.</td>
<td>254</td>
</tr>
<tr>
<td>Krivulin, M.</td>
<td>95</td>
</tr>
<tr>
<td>Krohmer, A.</td>
<td>255</td>
</tr>
<tr>
<td>Kronenberg, G.</td>
<td>265, 267, 403</td>
</tr>
<tr>
<td>Kucera, L.</td>
<td>408</td>
</tr>
<tr>
<td>Kumar, P.</td>
<td>241</td>
</tr>
<tr>
<td>Kurauskas, V.</td>
<td>251, 253</td>
</tr>
<tr>
<td>Lageras, A.</td>
<td>251, 253</td>
</tr>
<tr>
<td>Lavrov, M.</td>
<td>405</td>
</tr>
<tr>
<td>Lee, C.</td>
<td>94, 99, 108, 156</td>
</tr>
<tr>
<td>Leighton, T.</td>
<td>409</td>
</tr>
<tr>
<td>Lelarge, M.</td>
<td>295</td>
</tr>
<tr>
<td>Lennon, C.</td>
<td>412</td>
</tr>
<tr>
<td>Leskovec, J.</td>
<td>185, 194</td>
</tr>
<tr>
<td>Lev, A.</td>
<td>71</td>
</tr>
<tr>
<td>Liagonkii, M.</td>
<td>407</td>
</tr>
<tr>
<td>Liang, H.</td>
<td>71</td>
</tr>
<tr>
<td>Lin, K.</td>
<td>192</td>
</tr>
<tr>
<td>Lindholm, M.</td>
<td>251, 253</td>
</tr>
<tr>
<td>Linial, N.</td>
<td>409, 410</td>
</tr>
<tr>
<td>Linusson, S.</td>
<td>393</td>
</tr>
<tr>
<td>Loh, P.</td>
<td>47, 275, 403</td>
</tr>
<tr>
<td>Long, E.</td>
<td>265, 267</td>
</tr>
<tr>
<td>Lu, L.</td>
<td>178, 184, 385</td>
</tr>
<tr>
<td>Lubetzky, E.</td>
<td>47, 107, 109, 268, 407, 411</td>
</tr>
<tr>
<td>Lucier, B.</td>
<td>385</td>
</tr>
<tr>
<td>Luczak, M.</td>
<td>229</td>
</tr>
<tr>
<td>Müller, T.</td>
<td>241, 245, 254, 255, 404</td>
</tr>
<tr>
<td>Mahdian, M.</td>
<td>186</td>
</tr>
<tr>
<td>Mahoney, M.</td>
<td>255</td>
</tr>
<tr>
<td>Makai, T.</td>
<td>193, 194</td>
</tr>
<tr>
<td>Makowski, A.</td>
<td>252</td>
</tr>
<tr>
<td>Mancini, L.</td>
<td>252</td>
</tr>
<tr>
<td>Marchetti-Spaccemela, A.</td>
<td>254</td>
</tr>
<tr>
<td>Marczewski, E.</td>
<td>231</td>
</tr>
<tr>
<td>Martin, A.</td>
<td>455</td>
</tr>
<tr>
<td>Martin, R.</td>
<td>295</td>
</tr>
<tr>
<td>Martin-Löf, A.</td>
<td>193</td>
</tr>
<tr>
<td>Matoušek, J.</td>
<td>409</td>
</tr>
<tr>
<td>Matula, D.</td>
<td>117, 123</td>
</tr>
<tr>
<td>McCullum, G.</td>
<td>254</td>
</tr>
<tr>
<td>Diarmid, C.</td>
<td>107, 125, 138, 246, 248, 254, 264, 293, 399, 400, 408</td>
</tr>
<tr>
<td>McDowell, A.</td>
<td>110</td>
</tr>
<tr>
<td>McKay, B.</td>
<td>41, 63, 200, 403</td>
</tr>
<tr>
<td>Mehrabian, A.</td>
<td>386</td>
</tr>
<tr>
<td>Mei, A.</td>
<td>252</td>
</tr>
<tr>
<td>Melsted, P.</td>
<td>109, 351</td>
</tr>
<tr>
<td>Meshulam, R.</td>
<td>410</td>
</tr>
<tr>
<td>Micali, S.</td>
<td>96</td>
</tr>
<tr>
<td>Mihail, M.</td>
<td>385</td>
</tr>
<tr>
<td>Miklós, D.</td>
<td>385</td>
</tr>
<tr>
<td>Milgram, S.</td>
<td>381</td>
</tr>
<tr>
<td>Mitsche, D.</td>
<td>136, 245, 406</td>
</tr>
<tr>
<td>Mitzenmacher, M.</td>
<td>294</td>
</tr>
<tr>
<td>Molloy, M.</td>
<td>212, 229, 268, 294, 296, 402</td>
</tr>
<tr>
<td>Montgomery, R.</td>
<td>109, 156</td>
</tr>
<tr>
<td>Moore, C.</td>
<td>119, 137, 229</td>
</tr>
<tr>
<td>Morris, R.</td>
<td>140, 406</td>
</tr>
<tr>
<td>Mossell, E.</td>
<td>139</td>
</tr>
<tr>
<td>Motwani, R.</td>
<td>97, 412</td>
</tr>
</tbody>
</table>
Mousset, F., 403
Mubayi, D., 295, 407
Nachmias, A., 41, 411
Nair, C., 393
Naor, A., 137, 404
Nash-Williams, C., 109
Naves, H., 108
Nenadov, R., 141, 154, 156, 268, 403, 412
Newman, M., 191
Nicoletseas, R., 252, 253
Noever, A., 156, 268
Norros, I., 193
Noy, M., 408
Osthus, D., 47, 107, 408
Pérez-Giménez, X., 109, 230, 245
Pósa, L., 89
Palka, Z., 62, 63, 365
Panagiotou, K., 137, 153, 255, 295, 351
Panconesi, A., 252
Papadimitriou, C., 385
Papadopolous, F., 255
Parisi, G., 393
Pegden, W., 137, 385
Pékóz, R., 385
Penrose, M., 241, 254
Peres, Y., 41, 47, 411
Perkins, W., 47
Person, Y., 154, 278
Peter, U., 156, 255, 268, 403, 412
Petit, J., 254
Picollelli, M., 407
Pikhurko, O., 154
Pinar, A., 194
Pittel, B., 37, 40, 47, 97, 99, 109, 412
Poole, S., 194, 278
Prömel, H., 143, 408
Prabhakar, B., 393
Pralat, P., 106, 136, 385, 386, 403, 405, 406
Preciado, V., 254
Rödl, V., 141, 143, 154, 156, 412
Röllin, A., 385
Rényi, A., vi, 3, 20, 40, 62, 64, 68, 74, 79, 83, 85, 94
Radakrishnan, J., 457
Radcliffe, J., 187, 193
Rademacher, L., 365
Radhakrishnan, J., 252
Rai, S., 254
Ramachandran, V., 139
Raptopoulos, C., 252, 253
Ratsaby, J., 295
Reed, B., 212, 229, 248, 296, 411
Reinert, G., 192, 253
Reittu, H., 193
Reyzin, L., 408
Rinnooy-Kan, A., 349, 351
Robalewska, H., 402
Robinson, R., 229, 402
Roditty, Y., 71
Ross, N., 385
Rozenman, E., 409
Ruszinko, M., 295, 399
Rybarczyk, K., 232, 236, 240, 251–253
Söderberg, B., 191
Sós, V., 154
Samotij, W., 107, 140
Saposhenko, A., 410
Sarkar, A., 364
AUTHOR INDEX

Sato, C., 109, 386
Sauerwald, T., 254
Saxton, D., 140, 141
Schacht, M., 140, 143
Schaeffer, G., 408
Scheinerman, E., 193, 231, 232, 237
Schickinger, T., 143
Schlatter, D., 408
Schmidt, J., 279
Scott, A., 135
Selby, A., 63
Selkow, S., 60
Sen, S., 193
Serna, J., 254
Seshadhri, C., 194
Shamir, E., 279, 409
Shannon, C., 455
Shapley, L., 412
Sharma, M., 393
Shearer, J., 457
Shelah, S., 108, 407
Shepp, L., 412
Shi, L., 230
Shikhelman, C., 403
Shinkar, I., 406
Simonovits, M., 153, 154
Singer-Cohen, K., 231, 232, 237
Sipser, M., 109, 409, 453
Sivasubramanian, S., 270
Sly, A., 139, 411
Smit, I., 365
Smyth, C., 154, 230, 295
Soria, M., 408
Sorkin, G., 47, 401
Speiss, S., 275
Spencer, J., 37, 41, 47, 106, 111, 153, 367, 399, 407, 410, 445
Spirakis, P., 252, 253
Stark, D., 240, 251
Stauffer, A., 254, 255
Steger, A., 156
Steger, A., 137, 141, 143, 153, 154, 405, 408
Stein, C., 190, 422
Stojaković, M., 403, 404
Szabó, T., 109, 403, 404
Szemerédi, E., 48, 89, 94, 146, 230, 410, 412
Suen, S., 70, 230, 406
Sullivan, B., 194
Talagrand, M., 445
Talanov, V., 407
Taraz, A., 251, 408
Teixeira, A., 411
Teng, S., 364
Tetali, P., 121, 294
Thaler, J., 294
Thoma, L., 399
Thomas, J., 455
Thomason, A., 10, 108, 140, 141
Trujić, M., 156
Tsourakakis, C., 71, 230, 386
Tsur, G., 406
Turan, P., 72
Turova, T., 191
Tusnády, G., 367
Tutte, W., 408
Tuza, Z., 71
Ueckerdt, M., 251
Upfal, E., 70, 230
Vahdat, A., 255
van den Esker, H., 385
van der Hofstad, R., 193, 399
van Leeuwaarden, J., 193
Vazirani, V., 96
Veklerov, E., 412
Vempala, S., 365, 408
Vera, J., 385
Vigoda, E., 138
Vilenchik, D., 137
Vince, A., 74
Vohra, R., 349, 351
Voigt, B., 141
Vu, V., 156
Vu, V., 155, 167
Wästlund, J., 393
Wade, A., 385
Walkup, D., 349, 400
Walters, M., 245, 364
Wang, X., 193, 386
Warnke, L., 47
Weber, K., 410
Weiss, B., 191
Welsh, 408
West, 180
Wierman, J., 40, 47
Wigner, E., 131
Wilson, D., 400
Wilson, L., 412
Wilson, R., 386
Winkler, P., 406
Witkowski, M., 409
Witkowski, Ł., 409
Wright, E., 41
Xiao, Y., 408
Xu, Y., 186
Yagan, O., 252
Yan, G., 386
Yao, F., 364
Ycart, B., 295
Young, S., 193
Yuster, R., 71, 110
Zhan, Y., 194
Zhao, L., 71
Zhou, T., 386
Zhu, X., 405
Zung, J., 386
Main Index

H-free process, 406
$G_{n,m}$, 3
$G_{n,p}$, 3
f-certifiable, 447
k-Connectivity, 68
k-out Subgraphs of Large Graphs, 365
Achlioptas Process, 47
Anti-Ramsey Properties, 154
Azuma-Hoeffding Inequality, 125, 128, 371
Balanced Graphs, 74
Balls in Boxes, 426
Bernstein’s Theorem, 434
Binomial Inequalities, 425
Binomial Random Graph, 3
Bipartite G_{k-out}: Perfect matchings, 348
Algorithmic Proof, 351
Existence Proof, 349
Bohman-Frieze Process, 47
Canonical Labelling, 60
Chain Rule for Entropy, 455
Chebyshev’s Inequality, 12
Chen-Stein Method, 422
Chernoff Inequality, 431
Chromatic Index, 61
Chromatic Number, 123
Dense case, 123
Sparse Case, 127
Chromatic Number of Random Regular Graphs, 229
Coarse Threshold, 19
Complex Component, 46
Conditional Entropy, 457
Configuration Model, 195
Containers, 140
Contiguity, 402
Convergence of Moments, 418
Cores, 37
Coupling $G_{n,m}$ and $G_{n,p}$, 5
Critical Window, 39
Dense Case
 Greedy Algorithm, 125
 Depth First Search, 94, 318
 Diameter, 111
 Diameter of Sparse Random Graphs, 139
 Directed k-in, ℓ-out, 365
 Disjoint Paths, 70
 Dominance, 448
Edge Colored Random Graphs, 402
Eigenvalues, 129
 Concentration, 133
Eigenvalues of Random Regular Graphs, 230
Embedding $G_{n,m}$ in $G_{n,r}$, 217
Entropy, 287
Erdős-Ko-Rado, 295
Evolution, 20
First Cycle, 80
First Moment Method, 12
FKG Inequality, 428
Galton-Watson Process, 258
Games, 403
Geometric Preferential Attachment Graphs, 385
Giant Component, 35
Graph Density, 72
Graph Homomorphism, 137
Graph Isomorphism, 60
Graph Minors, 47
Graph Process, 20
Graph Property, 5
Graph Searching, 405
 Acquaintance Time, 406
 Cops and Robbers, 405
 Graph Cleaning, 405
Graph Thickness, 48
Graphs With Large Minimum Degree, 99
Greedy Matching Algorithm, 96
Hall’s Condition, 83
Hamilton Cycles, 89
Hoeffding’s Theorem, 431
Hypergeometric Distribution, 13
Janson’s Inequality, 436
Kleinberg’s Model, 382
Kullback-Liebler Distance, 456
Large Matchings, 109
Logic and Random Graphs, 230, 407
Long Paths and Cycles, 94, 108
Markov Inequality, 12
Martingale Inequalities, 439
Maximum Independent Set, 117
 Dense Case, 117
 Interpolation, 121
 Sparse Case, 119
Monotone Decreasing, 7
Monotone Increasing, 7
Nearest Neighbor Graphs, 364
Orientability of Hypergraphs, 295
Pósa’s Lemma, 90
Parisi Conjecture, 393
Perfect Matchings, 82
 Bipartite Graphs, 83
 Non-Bipartite Graphs, 85
Phase Transition, 37, 39, 47
Planarity, 408
Plane-Oriented Recursive Trees, 316
Planted Objects, 408
Power Law Degree Distribution, 368
Prüfer Code, 299
Preferential Attachment Graph, 367
 Concentration of Degree Sequence, 371
 Maximum Degree, 370
Pseudo-Graphs, 17
Rényi’s Lemma, 419
Rainbow Connection, 71, 230
Rainbow Path, 70
Ramsey Properties, 141
Random Apollonian Networks, 386
Random Assignment Problem, 400
 Multi-Dimensional version, 400
Random Dot Product Graph, 193
Random Euclidean TSP, 399
Random Geometric Graphs, 241
 Chromatic Number, 246
 Connectivity, 241
 Hamiltonicity, 245
Random Knapsack Problem, 398
Random Lifts, 409
Random Minimum Spanning Trees, 399
Random Recursive Tree, 306
Random Regular Graphs, 210
Random Simplicial Complexes, 410
Random Steiner Tree Problem, 400
Random Subgraphs of the n-cube, 410
Random Tournament, 267
Random Walks on Random Graphs, 410
 Cover Time, 411
 Mixing Time, 410
Randomly Coloring Random Graphs, 138
Rank One Model, 193
Resilience, 108, 155

Sampling Without Replacement, 435
Scaling Window, 39
Second Moment Method, 14
Sharp Threshold, 11
Shearer’s Lemma, 457
Small Subgraph Conditioning, 229
SPA Model, 385
Spanning Subgraphs, 103, 108
Spanning Trees, 109
Stable Matching, 411
Stirling’s Formula, 6
Strictly Balanced, 76
Strong Components
 Sub-Critical Region, 256
 Super-Critical Region, 257
Strong Connectivity, 263
Sub-Critical Phase, 20
Super-Critical Phase, 33
Susceptibility, 192
Switching, 200

Talagrand’s Inequality, 445
Threshold Function, 9
Triangle Free Subgraphs, 153
Turán Properties, 143

Unicyclic Components, 28, 45
Uniform Random Graph, 3
Universal graphs, 412

VC-Dimension, 295

With High Probability (w.h.p.), 11
Wright Coefficients, 41