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Abstract
This paper considers a general setting for structured procurement and the problem a buyer

faces in designing a procurement mechanism to maximize profit. This brings together two
agendas in algorithmic mechanism design, frugality in procurement mechanisms (e.g., for paths
and spanning trees) and profit maximization in auctions (e.g., for digital goods). In the standard
approach to frugality in procurement, a buyer attempts to purchase a set of elements which
satisfy a feasibility requirement as cheaply as possible. For profit maximization in auctions, a
seller wishes to sell some number of goods for as much as possible. We unify these objectives
by endowing the buyer with a decreasing marginal benefit per feasible set purchased and then
considering the problem of designing a mechanism to buy a number of sets which maximize the
buyer’s profit, i.e., the difference between their benefit for the sets and the cost of procurement.
For the case where the feasible sets are bases of a matroid, we follow the approach of reducing
the mechanism design optimization problem to a mechanism design decision problem. We give
a profit extraction mechanism that solves the decision problem for matroids and show that
a reduction based on random sampling approximates the optimal profit. We also consider
the problem of non-matroid procurement and show that in this setting the approach does not
succeed.
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†Microsoft Research
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1 Introduction

The design of protocols for resource allocation and electronic commerce among parties with diverse
and selfish interests has spawned a great deal of recent research at the boundary between economics,
game theory, and theoretical computer science. In many settings, a natural way to assign resources
to, or obtain goods and services from, such selfish agents is by means of an auction, in which the
parties submit bids to an auctioneer, who then chooses one or more winners and purchases their
services (or sells them resources).

An important recent direction in this line of research has been to show that it is possible to
maximize auctioneer profit (to within a constant factor) even in worst case settings. Digital goods
auctions [9, 8] are the canonical example in this area. These results rely crucially on the flexibility
that the auctioneer has in choosing the number of items to sell. The present paper explores the
question of how this kind of flexibility can improve the auctioneer’s profit in more complicated
settings, specifically structured procurement auctions.

Consider, for example, path auctions [16, 1, 6, 12, 4, 18]. In this setting, selfish agents own
edges of a publicly known network. An agent e can transmit data along her link at some cost c(e)
known only to her, and the auctioneer wants to hire a team of agents whose links form a path
between two given nodes s and t (so that, for example, they route data on his behalf from s to t).
Each agent submits a bid, and based on these bids, the auctioneer chooses a path and pays each
selected agent e some amount pe, according to the rules of the auction. The aim of each agent is
to maximize her utility, the difference pe − c(e). The aim of the auctioneer is to minimize the total
payment made.

In the very special case where the network is simply a set of parallel links connecting s and t,
the truthful1 and celebrated2 VCG mechanism [20, 3, 10] reduces to simply choosing the cheapest
edge and paying that edge the cost of the second cheapest edge. On the other hand, if paths can
consist of multiple edges, as in the example of Figure 1, then not only the VCG mechanism but any
truthful mechanism may overpay greatly to buy a single path, where this overpayment is measured
relative to the second cheapest path [1, 6, 12]. For example, in Figure 1, the leftmost path (from
Florida to Panama) will be chosen by the VCG mechanism and will result in payments of 2 to each
of the six edges in the path, so that the total payment (of 12) is much more than the cost of the
second cheapest path. It is possible that procuring multiple paths could lower the per-path cost. In
our example, buying two paths has a per-path cost of only 91/2, and three paths are even cheaper,
82/3 per path. This raises the question as to whether, like in the digital good auction problem, the
freedom to choose the number of paths procured can alleviate the necessarily high over-payments
in the single-path procurement problem.

To formalize this setting, let B(k) be a function specifying the auctioneer’s value for procuring
k paths. For example, this may reflect the resale value for k paths. Then the auctioneer’s profit, if
he purchases k paths at a total price of Pk, is B(k)−Pk. One class of problems we consider in this
paper is that of designing a truthful mechanism to achieve a target profit. For example, suppose
the auctioneer of Figure 1, with a value of 14 per path (i.e., B(k) = 14 · k), has a profit goal of
10. A prescient auctioneer could run the VCG mechanism specifically to procure three paths, and

1A desirable property in auction design is for it to be in each agent e’s best interest to report her actual cost c(e)
as her bid, no matter how other agents bid. This property of truthfulness obviates the need for agents to perform
complex computations or gather data about their competition, and at the same time simplifies the design and analysis
of auction protocols as there is no need for assumptions about agents’ knowledge of each other or the distributions.

2Nobody ever mentions the VCG mechanism without first saying “celebrated”. Just like nobody every says Manuel
Noriega without the prefix “Panamanian strongman”.
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k Benefit VCG cost Profit
1 14 12 2
2 28 19 9
3 42 26 16
4 56 60 -4

Figure 1: Multi-Unit Procurement

would make a profit of 16. The challenge is that absent foreknowledge, it is not clear how many
paths to procure; and furthermore, a truthful mechanism that determines the number k of paths
to procure on-the-fly will not generally be able purchase them with the same payments as the VCG
mechanism for k paths.

A mechanism that solves this decision problem (“Is it possible to get a profit of R?”) is called
a profit extractor [5]. In this paper, our first contribution is to explore necessary and sufficient con-
ditions on the structure of the procurement problem that ensure the existence of a truthful profit
extractor. Profit extraction is interesting in its own right, but it is also an important subroutine
in the design of mechanisms for solving the corresponding optimization problem, the profit maxi-
mization problem. As in the case of the digital good auction problem (and classical optimization)
a natural approach to solving an optimization problem is via reduction to the decision problem,
that is, profit extraction.

The next contribution of this paper is to design a mechanism to maximize the auctioneers profit.
For path auctions on a graph with s and t connected by a set of parallel links (or equivalently, the
procurement version of the digital goods auction problem), there are known truthful reductions
from the approximate profit maximization problem to the profit extraction problem. One such
reduction [7] first randomly samples some of the agents to come up with an estimate R of OPT =
maxk(B(k)−Pk), and then uses profit extraction on unsampled agents to try to extract a profit of
R. We call an auction of this type a random sampling profit extraction auction. The success of this
approach depends on the accuracy of the estimate OPT via random sampling, and on the existence
of a truthful profit extractor. The second contribution of this paper is to identify a large class of
problems for which random sampling provides a good estimate of OPT. Thus, the results of this
paper constitute a systematic development of our understanding of how broadly this paradigm for
algorithmic mechanism design applies.

Results
We explore the paradigm of random sampling profit extraction auctions in the setting of a class
of structured procurement problems often referred to as hiring a team of agents [1, 19, 12]. An
auctioneer is intent on hiring a team of agents to perform a complex task. Each agent e can
perform a simple task at some cost c(e) known only to himself. Based on the agents’ bids be, the
auctioneer must select a feasible set – a set of agents whose combined skills are sufficient to perform
the complex task – and pay each selected agent individually some amount pe. In the absence of the
agents’ costs and bids, the problem is defined entirely by the set system of feasible sets. Two special
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cases of this have been studied extensively in the past [16, 1, 19, 6, 12, 4, 18, 2]: path auctions,
discussed above, where the agents correspond to edges in a graph and the feasible sets are all s-t
paths, and spanning tree auctions, where the agents again correspond to edges in a graph, and the
feasible sets are spanning trees.

In this paper we generalize this procurement setting by considering the possibility of having
the auctioneer purchase multiple disjoint feasible sets, obtaining a total profit equal to B(k), his
benefit for k sets, minus the payments he makes to procure those sets. The benchmark profit we
will consider is OPT = maxk(B(k) − Pk) where Pk is the cost incurred by VCG for procuring k
disjoint feasible sets. Our goal is to solve the mechanism design decision and optimization problems
for this benchmark OPT.

Our main results are the following.

1. We give a natural profit extractor for the case that feasible sets are maximal independent
sets in a matroid.

2. We show that for all set systems where feasible sets are not maximal independent sets in a
matroid, this profit extraction technique does not give a truthful mechanism.

3. We exhibit a profit extractor for a simple non-matroid set systems and show that for rich
enough non-matroid set systems no profit extractors exist.

4. We show that for matroid set systems, the profit benchmark OPT, on a random sample,
approximates the OPT on the full set.

5. Combining 1 with 4 we show that a random sampling profit extraction auction gives a truthful
mechanism that approximates the profit benchmark OPT.

A theorem due to Karger [11] shows that if a matroid has k disjoint bases, and k is not too
small, then a random sample of half the elements will have about k/2 bases. A significant challenge
for proving 4, above, is in using this result is to show that the VCG payments on a sample are
about half of what they would be in the full set. This constitutes the most technically challenging
part of the paper, and requires understanding in detail the fine structure of optimal replacement
for unions of disjoint independent sets of a matroid. We expect that the technical lemmas that we
prove in this context will be useful in tackling other problems involving matroids.

This paper is organized as follows. In Sections 2 and 3 we give preliminary definitions and
review relevant material from mechanism design, procurement, and matroid theory. Our approach
to profit maximization is via reduction to the decision problem. Several reduction approaches are
detailed in Section 2. In Section 4, we propose a solution to the decision problem; we prove that
this candidate solution does indeed solve the procurement decision problem if and only if we are
trying to procure bases of a matroid; and we show that for non-matroids, profit extractors do not
generally exist. In Section 5 we prove the correctness of the random sampling based reduction to
the decision problem for matroid procurement. We conclude in Section 6.

2 Mechanism Design Preliminaries

We are in a binary single-parameter agent setting considering direct revelation mechanisms. Agents
correspond to elements of set E = {1, . . . , N}. The auctioneer, or buyer, would like to purchase
feasible sets from a set system F defined over 2E . Let Fk be the set of feasible sets generated by
taking the union of k disjoint feasible sets from F . I.e., E′ ∈ Fk iff E′ =

⋃
j E′

j with E′
j ∩ E′

j′ = ∅
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for 1 ≤ j, j′ ≤ k and E′
j ∈ F . A mechanism takes bids from each agent, b = (b1, . . . , bN ) and

selects a set of winning agents S and payments p = (p1, . . . , pN ). Each agent incurs a private cost
c(e) of being selected, i.e., if e ∈ S, otherwise their cost is zero. We will consider only mechanisms
where there are no payments made to unselected agents.3 Each agent’s objective is to maximize
their utility, which is the difference between a payment made to them by the mechanism and their
cost, i.e., pe − c(e) for e ∈ S and zero otherwise.

A mechanism is truthful if each agent maximizes their utility by declaring a bid equal to their
true cost irrespective of the actions of the other agents. A randomized mechanism is truthful if it
is a randomization over deterministic truthful mechanisms. It is standard to show (see, e.g., [14])
that a truthful mechanism is characterized by a threshold that exists for each agent e when all other
bids b−e are held fixed. If e bids under this threshold, e is selected, and is paid that threshold.

The truthful Vickrey-Clarke-Groves (VCG) mechanism [20, 3, 10] is defined to:

1. Select agents: S = argminS′∈F
∑

e∈S′ c(e).

2. Make payments: p with pe = minS′∈F : e6∈S′
∑

e∈S′ c(e)−
∑

e∈S\{e} c(e) for agent e.

Notice that the set that maximizes the social welfare is the one that minimizes the combined cost
of its elements, and this is precisely the set selected by VCG. We denote the VCG mechanism that
procures a set from Fk as VCGk. We denote by Sk the set selected by VCGk and by Pk the total
VCGk payments,

∑
e pe. Notice that Sk is the cheapest cost feasible set from Fk.

We assume our buyer has decreasing marginal benefit per disjoint set from F procured. If B(k)
is the benefit for procuring k disjoint feasible sets from F , then this assumption means that B(·)
satisfies B(k +1)−B(k) ≤ B(k)−B(k−1). (In the notation of the previous section, B(S) = B(k),
if S ∈ Fk.) An interesting special case of decreasing marginal benefit is the case where the marginal
benefit is constant, i.e., B(k) = kB(1).

Suppose our buyer ran VCGk on E to obtain outcome Sk with total payments Pk. Their profit
would be B(k) − Pk. Our buyer would be especially happy if they happened to pick the k that
maximized B(k) − Pk. This motivates Definition 1, below. Notice that this profit benchmark
de-emphasizes frugality issues along the lines of “what is the overpayment for procuring k disjoint
sets?” which has been considered extensively in algorithmic mechanism design literature (e.g.,
[1, 6, 12]) and places the emphasis instead on the orthogonal issue of “how do we determine how
many sets to procure?” which is more in tune with the optimal auction design literature (e.g., for
digital goods [9, 8]).
Definition 1 (OPT). The profit benchmark for a set E and benefit function B(·) (and implicit set
system F and agent costs c(·)) is

OPT(E) = maxk B(k)− Pk(E),

where Pk(E) is total payment made by VCGk for E.
We would like the mechanism to obtain a profit close to OPT(E) as defined above. The

mechanism-design decision problem for objective OPT is to give a truthful mechanism, parame-
terized by a target profit R, that gives an outcome and payment with profit at least R whenever
R ≤ OPT(E). A solution to this decision problem is called a profit extractor. The following shows
how a profit extractor can be used for the optimization problem.

3This is a combination of the standard assumptions of ex post individual rationality and no positive transfers.
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Definition 2 (RSPE). The Random Sampling Profit Extraction auction (RSPE) on E:

1. Randomly partition the agents E into two parts E′ and E′′.

2. Compute the optimal benchmark on each part: R′ = OPT(E′) and R′′ = OPT(E′′).

3. Run the profit extractor with R′′ on E′ and likewise with R′ on E′′.

Clearly, RSPE is truthful for bidders in E′ (likewise for E′′) as no bidder in E′ can affect
the value of R′′ = OPT(E′′) and because the profit extractor with R′′ on E′ is truthful. The
profit of this auction is at least min(R′, R′′). Thus if there exists a profit extractor for OPT and
the expected minimum of OPT(E′) and OPT(E′′) is a good approximation to OPT(E) then this
reduction approach gives a good approximation [7].

3 Matroid Preliminaries

A matroid M is a set system (E, I) such that if I ∈ I, then for all J ⊂ I, J ∈ I (subset
independence); and if I, J ∈ I with |I| > |J |, then there exists an x ∈ I \ J such that J ∪ x ∈ I
(set augmentation). (For a comprehensive treatment, see e.g. [17]). The sets in I are called
the independent sets of the matroid. A base of M is an independent set of maximal size. The
set augmentation axiom implies that all bases are of the same size. The rank, ρ(A), of a set of
elements, A ⊆ E, is the size (number of elements) of the maximum independent set it contains.

It is well known that Mk, defined as the set system whose sets are the union of k disjoint
independent sets in M is itself a matroid. We will abuse notation below and sometimes use Mk to
denote the collection of sets in the matroid Mk. We denote by ρk(A) the rank of set A ⊂ E in Mk

(e.g., ρ1(·) = ρ(·).)
The following facts will be useful to us:

Fact 3. If S and T are two independent sets of equal size in some matroid M , then there is a
bijection π : S \ T → T \ S such that for any e ∈ S \ T , (S \ e) ∪ π(e) is an independent set of M .
Fact 4. Matroids have the single exchange property: if S is a minimum cost set of Mk for some
k, then for any e ∈ S, there is a y such that (S \ {e}) ∪ {y} is a minimum cost set of Mk \ {e}.

We will use the following results due to Karger and Nash-Williams, respectively.
Lemma 5. [11, Theorem A.7] Let M(p) be the matroid obtained by sampling the elements of a
matroid M independently with probability p. If k is the maximum number of disjoint bases contained
in M then the maximum number of disjoint bases in M(p) is at least pk(1− ε) with probability at
least 1− ρ(M) · e−ε2pk/2.
Lemma 6. [15] For any set A ⊂ E of matroid M = (E, I),

ρi(A) = min
Y ⊂A

i · ρ(Y ) + |A \ Y | . (1)

Definition 7. For an implicit matroid M = (E, I), costs c, and any explicit set A ⊂ E we define
the following:

• Sk(A) is maximal cheapest cost independent set in Mk,

• ∆k(A) = Sk(A) \ Sk−1(A), the maximal cheapest cost set that whos union with Sk−1(A) is
independent in Mk, and

• δk(A) = |∆k(A)|.
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The spokes of the wheel form a spanning tree,
and when augmented with the rim will form two
disjoint spanning trees as illustrated by the solid
and dashed lines. However, the rim by itself is
not a spanning tree.

Figure 2: The Wheel

When A is implicit from the context, we write Sk, ∆k, and δk.
Notice from this definition that ρk(A) =

∑k
i=1 δi(A). We will use the following additional facts.

We omit the proofs.
Lemma 8. For matroid M = (E, I) and A ⊂ E,

1. Sk(A) ⊆ Sk+1(A),

2. |∆k(A)| ≥ |∆k+1(A)|.

3. there is a decomposition of Sk(A) into k disjoint independent sets T1, . . . , Tk with |Ti| =
|∆i(A)| for all i.

4. δk(·) is monotone, i.e., for A′ ⊂ A, δk(A′) ≤ δk(A).

Notice that it is not necessarily the case that the set ∆k (which augments Sk−1 to Sk) is
independent. An example of disjoint spanning trees where ∆2 is not independent is shown in
Figure 2.

The following lemma describes more explicity the structure of the matroid Mk as implied by
Nash-Williams (Lemma 6).
Lemma 9. For a matroid M = (E, I), any set A ⊂ E, and any k, there exists a set Y such that:

1. ρ(Y ) ∈ {δk−1(A), . . . , δk(A)},

2. ρk(Y ) = ρ(Y )k (so δi(Y ) = ρ(Y ) for i ≤ k),

3. Y \ Sk(Y ) = A \ Sk(A).

The last condition implies that the dependent elements in Mk for Y and A are the same.

Proof. Take Y to be a set which minimizes (1) for A (from Lemma 6). The proof proceeds in three
parts.

1. ρk(Y ) = k · ρ(Y ) (i.e., part 2 of the lemma).

If Y = ∅, then ρk(A) = |A| and A ∈ Mk. If Y is nonempty, we argue that ρk(Y ) = kρ(Y ) by
contradiction.
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If ρk(Y ) < kρ(Y ), then let T be a set which minimizes (1) for Y , and so we have kρ(T )+ |Y \
T | < kρ(Y ). As |A \ T | = |A \ Y |+ |Y \ T |, we have that kρ(T ) + |A \ T | < kρ(Y ) + |A \ Y |,
contradicting the minimality of Y .

If ρk(Y ) > kρ(Y ), then Y contains an independent set U ∈ Mk of size exceeding kρ(Y ). By
definition, this means U can be decomposed into k disjoint independent sets of M with average
size exceeding ρ(Y ). Thus there must exist a Z ⊂ Y with ρ(Z) > ρ(Y ), a contradiction.

2. Let D = A \ Sk(A) then D = Y \ Sk(Y ) (part 3 of the lemma).

Let S = Sk(A), the maximal cheapest independent set in Mk, and D = A \ S, the set of
dependent elements in Mk. Recall that |S| = ρk(A) and add |Y | − |S| to both sides of
equation (1).

|Y | = kρ(Y ) + |A| − |S|
= kρ(Y ) + |D| . (2)

Clearly,

|Y | = |A ∩ Y |+ |D ∩ Y | (3)

It is easy to see that |S ∩ Y | ≤ kρ(Y ) as

|S ∩ Y | = ρk(S ∩ Y ) ≤ ρk(Y ) = kρ(Y ).

Of course, |D ∩ Y | ≤ |D|. Therefore, the only way that equations (2) and (3) can hold is for
D = D ∩ Y and S ∩ Y = kρ(Y ) (which implies that S ∩ Y = Sk(Y )).

3. ρ(Y ) ∈ {δk−1, . . . , δk(A)} (i.e., part 1).

First, ρ(Y ) ≥ δk+1(A). To see this, recall that Sk+1(A) can be partitioned into trees
T1, . . . , Tk+1 with |Ti| = δi(A). From the previous arguments we can divide A in to S and
D with S = T1 ∪ · · · ∪ Tk and independent in Mk and D equal to the set of elements de-
pendent on S in Mk. Clearly, then Tk+1 ⊂ D. As shown above, D ⊂ Y which implies that
ρ(Y ) ≥ ρ(D) ≥ |Tk+1| = δk+1(A).

Second, ρ(Y ) ≤ δk(A). The above arguments imply that ρ(Y ) = δk(Y ). The fact that
δk(A) ≤ δk(Y ) follows from the monotonicity of δk(·).

The Greedy Algorithm
We will use the fact that the greedy algorithm (the algorithm which myopically adds the element
of lowest cost such that the set selected remains independent) finds a base of minimum total cost.

Since Mk is a matroid for every k, the greedy algorithm finds the cheapest base of Mk, for all
k simultaneously. For matroid M = (E, I) and cost c, let E(t) be the set of t cheapest elements
of E. With E implicit, we extend our definition of Sk, ∆k, and δk to let Sk(t) = Sk(E(t)),
∆k(t) = ∆k(E(t)), and δk(t) = δk(E(t)).

7



4 Profit Extraction for Procurement

The problem considered by this paper is in designing a truthful mechanism for approximating OPT.
We approach this problem via reduction to the decision problem. We will consider the following
algorithm as a candidate solution to the decision problem. This algorithm is a generalization of
one given in [5] for the double auction problem which is based on a cost sharing mechanism due to
Moulin and Shenker [13] that gives a profit extractor for the digital good auction problem [7].
Definition 10 (OPT-profit Extraction). The OPT-profit Extraction algorithm with target R and
input E works as follows:

1. Find the largest k such that the the payments Pk of VCGk(E) satisfy B(k)− Pk ≥ R.

2. If such a k exists, output S = Sk and the VCGk payments.

3. Otherwise, output S = ∅ and zero payments.

It is easy to see that this algorithm gives a profit of at least R if and only if R ≤ OPT(E). Next
we show that this algorithm gives a truthful mechanism if and only if F are the bases of a matroid.
Theorem 11. The OPT-profit extractor is truthful for matroid set systems.

This straightforward proof is given in the appendix.
Theorem 12. The OPT-profit extraction algorithm does not give a truthful mechanism for non-
matroid set systems. In other words, for any set system that is not a matroid and any marginally
decreasing B(·), there is a set of private values c and a choice of R for which the profit extractor is
not truthful.

We first establish two claims, whose proofs are given in the appendix.
Claim 13. There is a cost vector c, feasible sets A and B and distinct elements e and u in A \B
such that OPT1(A, c) = A and OPT1(A \ u, c) = B for some integer cost vector c, with e 6∈ B. In
other words, the best replacement set for u replaces e as well.

Before the next claim, we modify the cost vector c. Let S be a union of two disjoint feasible sets
that minimizes |S \ (A ∪ B)|. Raising the costs of elements outside of A ∪ B ∪ S does not change
the properties of A and B, so we may change c so that the cost of any such element is very large;
C = 1 + K ·

(
|A| · c(S) + c(A ∪B ∪ S)

)
will suffice. The the following holds.

Claim 14. Under the cost vector c, VCGk > k · VCG1 for all k > 1. In addition, A = OPT1(A)
and S = OPT2(A).

Proof of Theorem 12. Armed with the cost vector from these two claims, we can now contradict
truthfulness by showing that e can raise its bid and cause VCG1 to go down. We will choose the
revenue goal and benefit function so that if all elements bid truthfully, the buyer can nearly but
not quite meet the goal. In particular, e will receive no utility from the canceled auction. However,
e’s overbidding and subsequent reduction in VCG1 will cause the buyer to meet the goal at k = 1,
and provide e with positive utility, and thus incentive to bid nontruthfully.

Note that the chosen cost vector is integral, and that c(e) is at least one less than its threshold
to be included in the optimal set. Hence if e bids c(e) + 1/2, e will remain in the optimal set. Let c′

be this cost vector, that is, c′(e′) = c(e′) for e′ 6= e and c′(e) = c(e)+ 1/2. Furthermore, as the bid of
e is increased, e will still be excluded from OPT(A\u, c′). Define p1(v, c) to be the VCG1 payment
to v under c. Then p1(u, c)−p1(u, c′) =

(
c(B)−c(A)+c(u)

)
−

(
c′(B)−c′(A)+c(u)

)
= −1/2, so that

the payment to u decreases. For any other element v ∈ A, the threshold for e to be in OPT(A\v, c)
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is an integer, so e ∈ OPT(A\v, c) if and only if e ∈ OPT(A\v, c′), and so p1(v, c)−p1(v, c′) is either
0 or −1/2. Summing these payment differences over all v ∈ A thus gives VCG1(c′) ≤ VCG1(c)− 1/2.

Now choose L0 > 1 such that VCG1(c′) < L0 and L0 · k < VCGk(c) for all k ≥ 1; such an
L0 exists as c is an integer cost vector and VCGk(c) > k · VCG1(c) for all k > 1. If the resale
function were B0(k) = L0 ·k, then choosing a revenue target R as R = B0(k)−VCG1(c)+1/4 would
suffice. If all elements bid their values, revenue R cannot be extracted, as B(k) − VCGk(c) < 0.
On the other hand, e raises her bid to 1/2, then revenue at least R + 1/4 can be extracted at k = 1.
Hence there is incentive for e to overbid. Given B(·) from the lemma of the statement, choose L
so that B(k) ≤ L · k; such an L exists as B(·) is marginally decreasing. Then scaling the costs of
all elements by L/L0 gives the required cost vector.

In the appendix we further clarify the picture by showing that there exists a profit extractor
for a simple non-matroid set system, and that for rich enough non-matroid set systems no profit
extractors exist. Both results are from set systems for path procurement.

5 Random Sampling, Matroids, and VCG payments

As discussed in Section 2 the random sampling reduction to the decision problem requires that the
value of OPT on a random sample of the elements in the ground set be close to that of the full
set. In this section we prove that with high probability OPT of a random sample is a constant
fraction of OPT on the full set. This shows that the Random Sampling Profit Extraction auction
is a constant approximation.

With the following two technical lemmas we prove our main theorem.
Lemma 15. Let (E,F) be a set system whose feasible sets are the bases of a matroid M . Let
m = b(1 − ε)k/2c for some constant ε > 0 and k ≥ 8

ε2 log n, where n = ρ(M). With probability
1− 1/n, P ′

m, the VCGm payments for m disjoint bases in the sample E′ satisfies:

P ′
m ≤ mc(∆k).

Lemma 16. Let (E,F) be a set system whose feasible sets are the bases of a matroid M . The cost
Pk paid by VCGk satisfies

Pk ≥ k · c(∆k).

These enable our main theorem.
Theorem 17. Let (E,F) be a set system whose feasible sets are the bases of a matroid M . Let
k? = argmaxk B(k)− Pk and R = B(k?)− Pk?. For any ε > 0, the RSPE procurement mechanism
obtains a profit that is at least α = (1 − ε)/2 of R with probability 1 − 2/n, where n = ρ(M),
provided k? ≥ 8

ε2
log n.

Proof. Sample to get E′ and E′′, and compute the optimal revenues R′ and R′′. We claim that
both R′ and R′′ are at least αR. To see this, observe that by Lemma 15, with probability at least
1 − 1/n, P ′

αk? ≤ αk?c(∆k?) and by Lemma 16, k?c(∆k?) ≤ Pk? . Thus P ′
αk? ≤ αPk? . It is easy to

show that if B(·) is marginally decreasing, then B(αk) ≥ αB(k), so that with probability at least
1−1/n, B(αk?)−P ′

αk? ≥ αB(k?)−αPk? = α(B(k?)−Pk?) = αR, and so R′ ≥ αR. Similarly, with
probability at least 1− 1/n, R′′ ≥ αR. Thus, by a union bound we see that the RSPE mechanism
will obtain a profit of min{R′, R′′} ≥ αR with probability at least 1− 2/n.

9



5.1 Proof of Lemma 15
Lemma 5 shows that if we sample each element of Sk with probability 1/2, then the sampled set
will contain at least m = b(1− ε)k/2c disjoint bases with high probability. The main challenge we
face is to show that the VCG replacement costs for a base of Mm of this size in the sampled set is
not too large. Our starting point is the following lemma.
Lemma 18. For matroid M = (E, I) and cost c, for A ⊂ E there are k · δk+1(A) points in Sk(A)
whose total replacement cost is at most k · c(∆k+1(A)).

Proof. Fix the set A as implicit. Consider any decomposition of Sk+1 into k+1 disjoint independent
sets T1, . . . , Tk+1 of M . Define Uj = Sk+1 \ Tj . By the decomposition of Sk+1, Uj ∈ Mk for all
j. Therefore, by the maximality of Sk, |Uj | ≤ |Sk|. We will now perform k + 1 rounds of point
exchange, one between each Uj and Sk. First augment Uj with points of Sk to create U ′

j with
|U ′

j | = |Sk|. Then use Fact 3 to associate each point of U ′
j \ Sk with a point of Sk \ U ′

j . Note that
U ′

j \ Sk ⊂ ∆k+1, so that if Rj = Sk \ U ′
j , each point of Rj has been replaced with an element of

∆k+1. Furthermore, each point y ∈ ∆k+1 is used for replacement exactly k times, once for each j
such that y 6∈ Tj .
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Tj

Uj U ′
j

Sk

The dark areas represent points in ∆k+1. The diagonally hashed areas are the points
of Sk used to extend Uj to U ′

j . The dark area in Uj , Uj ∩ ∆k+1, will replace Rj ,the
vertically hashed points in Sk, which comprise the remaining part of Tj .

Figure 3: The construction of Lemma 18

Let R =
⋃

Rj . A point is in R iff it is in Tj \U ′
j for some j, for in this case is it in Sk \U ′

j . Let
d = |∆k+1| and let |Tj | = d + tj ; we have that tj ≥ 0 as |Uj | ≤ |Sk| = |Sk+1| − d implying |Tj | ≥ d.
Exactly tj points in Sk are added to Uj to form U ′

j , so at most
∑k+1

j=1 tj points of Sk are disqualified
from being in R. Thus, |R| ≥ |Sk| −

∑k+1
j=1 tj ≥ kd. Furthermore, each point x ∈ R is involved in

exactly one exchange, with Uj when x ∈ Tj . Hence the d points of ∆k+1 each replace k different
points in R with total cost k · c(∆k+1), as required.

Consider sampling as we run the greedy algorithm for finding Sk. We would like to show that
by the time vi, the i-th element of ∆k, is considered, say at time t, in the sampled set, |∆′

m(t)| ≥ i
for all m ≤ (1− ε)k/2. If this is the case, since all the elements of S′

m(t) have cost at most vi, we
can apply Lemma 18 and show that at least i(m− 1) elements of S′

m−1(t) can be replaced at cost
no more than the cost of c(vi). The trick to doing this is to show that there is a large set I ⊂ Sk(t)
of size (k − 1)i whose rank in M is |∆k(t)|, and that sampling it will preserve approximately half
of it.

We can now get the main lemma we need to bound the replacement costs.
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Lemma 19. Let m = (1− ε)k/2 for some constant ε > 0. Let t be the time that the i-th cheapest
element vi of ∆k is added to ∆k. Then with probability 1 − n · exp(−ε2k/2), S′

m−1(t) has at least
(m− 1) · i points that can each be replaced by a point of cost at most c(vi).

Proof. We first use Lemma ?? to find an incompressible set R ⊂ Sk(t) in Mk−1 such that ρ(R) =
|∆k| = i. Let R′ be the sampled portion of R. By applying Karger’s theorem (Lemma 5) to the
matroid M |i, the matroid whose bases are all independent sets of M of cardinality at most i, we find
that with the desired probability there is a subset S′ of R′ of cardinality m · i that is independent
in Mm. Moreover, since ρ(S′) ≤ ρ(R′) ≤ ρ(R) = i, it must be that ρ(S′) = i, otherwise it could
not contain as many as m · i points that are independent in Mm. Thus, |∆m(S′)| = i.

Notice however that the cheapest base of Mm in E′ may not include all the elements of S′.
However, it is not difficult to show that in the process of improving S′ with elements of E′ to form
the cheapest base of Mm in the sample, |∆′

m| does not decrease. Finally, we apply Lemma 18 to
show that (m− 1) · i points of S′

m−1 can be replaced at cost at most (m− 1) · i · c(vi).

Finally, we can put it all together:

Proof of Lemma 15. Using a union bound, if k ≥ 8
ε2 log n, we have that Lemma 19 holds with

probability at least 1− 1/n for all 1 ≤ i ≤ n. Taking i = n, we have that P ′
m−1 ≤ n(m− 1)c(vn).

Now considering i = n − 1, we have at least (n − 1)(m − 1) points in S′
m−1 that can be replaced

with cost at most c(vn−1), so that P ′
m−1 ≤ (n− 1)(m− 1)c(vn−1) + (m− 1)c(vn). Induction shows

that P ′
m−1 ≤

∑n
i=1(m− 1)c(vi) = (m− 1)c(∆k), as required.

5.2 Proof of Lemma 16
Finally, we prove our lower bound on the VCG payments of OPT.

Recall that a circuit in a matroid is a dependent set that is independent after removing any
element, and that if a element d is dependent on an independent set A, there is a unique circuit in
{d} ∪A.
Lemma 20. Let vj be the j-th least expensive element in ∆k. Then the total number of elements
in Sk that can be replaced by elements cheaper than vj is at most (j − 1)k.

Proof. Let vj be added to Sk just after time t. Let E(t) be all elements at time t, and let D(t) =
E(t) \ Sk(t). D(t) is the set of possible replacement elements at time t, and each element of D(t)
is dependent on Sk(t) in Mk. In addition, as elements are ordered in increasing cost by time, D(t)
is also the set of all possible replacements of cost at most that of vj for the final Sk. Note that
no element of D(t) can ever replace a element of Sk added at time greater than t, as that would
contradict the correctness of the greedy algorithm.

Apply Lemma 9 with A = E(t) to get a the set Y . Let R = Y ∩ Sk(t). From the lemma we
have ρ(Y ) ≤ δk(t), D(t) ∈ Y , D(t) dependent on R in Mk, and |R| = ρ(y)k. Observe that the only
elements from Sk(t) that can be replaced by an element of d ∈ D(t) are those in R. This follows
from the fact that d is dependent on R which implies it forms a unique circuit in R ∪ {d}. Only
the elements of this circuit can be replaced by d and no others. By our choice of t, δk(t) = j − 1.
So, D(t) replaces at most |R| ≤ (j − 1)k elements of Sk(t). As D(t) is the set of all possible
replacements with cost at most that of vj , this proves the corollary.

The main lemma of the section now follows quickly.
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Proof of Lemma 16. Let v1, . . . , vn be the elements of ∆k. For any 1 ≤ j ≤ n, by Lemma 20, at
least (n − j + 1)k elements in Sk have replacement cost ≥ c(vj). Hence we can partition Sk into
L1, . . . , Ln, where |Lj | = k and the replacement cost for any x ∈ Lj is at least c(vj). Summing over
all Lj proves the lemma.

6 Conclusions

We have presented a truthful mechanism for matroid procurement that approximates the optimal
profit. Our mechanism uses random sampling in conjunction with profit extraction. We have also
showed that our profit extractor is not truthful for set systems which are not matroids. While there
does exist a profit extractor for a simple non-matroid set system, there is none for a slightly richer
non-matroid set system. In particular, there is no profit extractor in general for procuring paths
in a graph. This leaves open two interesting questions with regard to profit extraction.

1. What is the structural characterization of the set systems for which profit extractors exist?

2. What is the general profit extraction mechanism for non-matroid set systems that are profit
extractable?

It is worth noting that positive profit maximization results for the benchmark OPT = B(k)−Pk

are compelling for matroid problems because Pk is in some sense the best possible payment for
procuring k bases (due to frugality results). However, if positive results were to exist for this
benchmark for paths, they would not be as compelling, as Pk can be much more than “what we
would like to pay” to procure k feasible sets. In essence, even if we knew the optimal k we might still
not be happy just running VCGk. Thus, it would be very interesting to come up with impossibility
results for path procurement with respect to this benchmark.
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A Appendix

A.1 Proofs
Proof of Theorem 11. We first fix b−e and show that the threshold bid pk(e) of agent e in VCGk

is increasing with k. Suppose not. Then for some set system (E,F), Sk ⊆ Sk+1 for all k, but for
some k and some bid vector b−e, pk(e) > pk+1(e). Let pk+1(e) < be < pk(e). Then e ∈ Sk, but not
in Sk+1, contradicting part 1 of Lemma 8.
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We now show that if we fix the winners Sk of VCGk and the bids of all losers in T = E \ Sk

then the payment Pk of VCGk is also fixed. The single exchange property suggests that if Sk is the
cheapest feasible set in Fk then there is some element y ∈ T that we would replace agent e ∈ Sk

with if we were to choose the cheapest feasible set from E \ {e}. Since the bids of the agents in T
are fixed, this replacement y of minimal cost is fixed. By the definition of the VCG payment rule,
the payment of edge e is

pk(e) = minS′∈Fk : e6∈S′
∑

e∈S′
c(e)−

∑
e∈Sk\{e}

c(e) = c(y),

which is fixed. Of course Pk is the sum over all of these fixed payments so it is also fixed. This
implies that no winner can change the profit Pk of VCGk without losing.

These two facts imply the theorem as follows. Fix the bids b−e of all agents except e. Let k?

be the maximum k such that B(k)− Pk ≥ R, when e bids truthfully and the other agents bid b−e.
Suppose e ∈ Sk? . Then c(e) ≤ pe(k?). As the thresholds for e are increasing, if e lowers his bid,
his payment can only decrease. On the other hand, if e increases his bid, he will be rejected, since
for any k > k?, and fixed b−e, for all be ≤ pe(k), Pk is constant, and therefore, B(k) − Pk < R by
definition of k?. Suppose that e 6∈ Sk? when e bids truthfully. Then c(e) > pe(k?). Raising his bid
won’t change the outcome, since for all k > k?, the profit extracted is less than R, while lowering
his bid could cause him to win, but only at a net loss.

Proof of Claim 13. To show this, as A is not a matroid, there are sets S and T with an element
x ∈ S \ T such that for all y ∈ T , S \ x∪ y is not feasible. Let C be a minimum cardinality feasible
set in S ∪ T such that x 6∈ C.

Case 1: S \ C contains at least one element other than x. In this case, let A := S, B := C,
u := x and let e be any other point in S \ C, with the cost vector

c(z) =


0 if z ∈ A,

1 if z ∈ B \A,
|B \A|+ 1 otherwise.

Case 2: S \ C contains only x. Let X = S ∩ C = S \ x and Y = C \ S. Note |Y | ≥ 2 by our
initial (non-matroid derived) assumption on S and T . Then as feasible sets do not nest, the only
possible feasible sets in S ∪ C aside from S and C are of the form x ∪W ∪ Z where W and Z are
strict subsets of X and Y , respectively, and Z is nonempty. Define the cost vector c to be

c(z) =


0 if z ∈ X,
1 if z ∈ Y ,
|Y |+ 1 if z = x,
2|Y |+ 3 otherwise.

Then C = OPT(A, c), and for any y ∈ Y , S = OPT(A \ y, c). To see the latter, observe that
c(x ∪W ∪Z) ≥ |Y |+ 2 where W and Z are as above. Thus with A := C, B := S and u and e two
elements from Y , we have what we need.

Proof of Claim 14. It is clear that A = OPT1(A). We first show that for any k > 1, OPTk(c)
is not strictly contained in A ∪ B. Let OPTk(c) = S1 + S2 + · · · + Sk, where Si, 1 ≤ i ≤ k
are disjoint feasible sets, and labeled so that u 6∈ S1. Then c(S1) ≥ c(B), as B is an optimal
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Figure 4: Allocation Regions

feasible set among those not containing u, and c(S2) ≥ c(A), as A is an overall optimal feasible set.
Hence, c

(
OPTk(c)

)
≥ c(S1) + c(S2) ≥ c(A) + c(B) ≥ c(A ∪ B). As costs are all positive, either

OPTk(c) = A ∪B, or OPTk(c) \ (A ∪B) 6= ∅. In particular, this shows that S = OPT2(A).
We next upper bound VCG1. Let S1 and S2 be a decomposition of S into two disjoint feasible

sets. Given any x ∈ A, at least one of S1 or S2 does not contain x, so by our choice of M ,
c
(
OPT1(A \ x)

)
≤ c(S). As the payment to x is c

(
OPT1(A \ x)

)
− c(OPT1) + c(x), c(S) also

(loosely) bounds the payment to x as well. Hence VCG1 ≤ |A| · c(S).
We can now finish the claim. Let Z = OPTk(c). If Z contains a element outside of A ∪B ∪ S,

then as payments are greater than costs, we have that VCGk ≥ M > K ·VCG1, and we are done.
The second possibility is that Z ⊆ S ∪ A ∪ B and contains an element x ∈ S \ (A ∪ B). Let
r = |S \ (A∪B)|, so that A\ x contains only r− 1 elements outside A∪B of cost less than M . As
OPTk(A\x) contains at least two disjoint feasible sets, and S is such a pair of sets that minimizes
the number of elements outside A ∪B, OPTk(A \ x) must also contain at least r elements outside
of A ∪B, and so must contain an element of cost M . Thus we have that the payment to any such
element is at least M − c(Z) + c(x) > K · VCG1 ≥ k · VCG1. The final possiblity, as Z is not
strictly contained in A ∪ B, is that Z = A ∪ B. Then for any x ∈ Z, OPTk(A \ x) \ (A ∪ B) 6= ∅,
otherwise strict containment would be violated. Hence we again have that the payment to x is at
least M − c(Z) + c(x) > K ·VCG1 ≥ k ·VCG1.

A.2 Profit Extraction on Non-Matroids
Lemma 21. There exists non-matroid set system for which there is a truthful profit extractor.

Proof. Define a set system A =
{
{a, b}, {c}

}
. Note that it is possible to procure at most one set

from A with the VCG mechanism, so that the benefit function is expressed simply as a single
number B. Given target profit R, our proposed profit extractor buys from agent c if an only if
OPT ({a, b, c}) ≥ R. This gives two constraints on the region of allocation:

1. When va + vb > vc then OPT meets the target R when va + vb < B −R.
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2. When va + vb < vc then OPT meets the target R when vc ≤ 1
2(va + vb + B −R).

Notice that this region is monotone for c (See Figure 4(a)). That is if for some values of va, vb, and
vc, the mechanism buys from c then for lower values of c the mechanism continues to buy from c.
Furthermore, the threshold bid for c is given by (va + vb + B −R)/2.

By construction this mechanism allocates whenever OPT({a, b, c}) ≥ R. It remains to show
that the our profit is at least R whenever we allocate. The payment of c when we allocate is
pc = (va + vb + B −R)/2. We show that B − pc > R whenever we are in the region of allocation.

B − pc = B − 1
2(va + vb + B −R)

= 1
2(B − va − vb + R)

However, in the region of allocation a + b < B −R which implies that R < B − va − vb, so

B − pc ≥ R.

Lemma 22. There exists a non-matroid set system and benefit such that there is no truthful profit
extractor for OPT.

Proof. Let A =
{
{a, b}, {c, d}

}
. As before, it is only possible for the VCG mechanism to procure

one set. If va +vb < vc +vd, then VCG1 = 2(vc +vd)−(va +vb), and conversely for vc +vd < va +vb.
Thus to compete with the omniscient VCG extractor, an extractor must produce revenue over the
allocation region defined by B − 2(vc + vd) + (va + vb) > R and B − 2(va + vb) + (vc + vd) > R, as
shown in Figure 4(b).

Consider the point x at
(

5
6(B − R), 5

6(B − R)
)
. It cannot be allocated to {c, d}, as then the

allocation would not be monotone as vc + vd varies. For similar reasons, it cannot be allocated to
{a, b}. However, as x is in the region of allocation, this means no truthful extractor is possible.

A.3 Cost Sharing
A cost-sharing scheme or mechanism is a set of rules defining how to share the cost of a service
amongst the serviced customers (or agents), where each agent i has an associated value for receiving
service vi. For example, in a setting in which the cost of providing service is independent of the
number or set of customers receiving service, the Shapley value cost-sharing scheme divides the
cost of the service equally among the largest set of customers that can afford to equally share the
cost. Designing fair, budget-balanced and efficient cost-sharing schemes is a central problem in
cooperative game theory.

At this time, the primary technique known for designing truthful cost-sharing mechanisms is
to define a cross-monotonic cost sharing method ξ. The formula ξ associates with each subset S
of consumers an allocation of the cost c(S) in the form of nonnegative cost-shares ξ(i, S), such
that

∑
i∈S ξ(i, S) = c(S). The cost shares are cross-monotonic if for any S ⊂ T and i ∈ S,

ξ(i, T ) ≤ ξ(i, S). Given cross-monotonic ξ the following mechanism is group strategyproof and
budget balanced: Provide service to the largest subset S of customers such that for each i ∈ S,
ξ(i, S) ≥ vi, and charge customer i ∈ S ξ(i, S).

The cross-monotonicity of the cost shares guarantees that the set S selected is unique, and that
this mechanism is truthful (in fact, group-strategyproof).
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