In this note we define the set ω and prove its existence, assuming the axiom system ZF^- (i.e., all of ZFC except for AF and AC).

A set X is **inductive** if $\emptyset \in X$ and for all $x \in X$, we also have $x \cup \{x\} \in X$. The Axiom of Infinity asserts that there is an inductive set.

Exercise. Let \mathcal{F} be a nonempty set all of whose elements are inductive sets. Show that $\bigcap \mathcal{F}$ is also an inductive set.

Theorem (ZF^-). There is a unique inductive set ω such that for every inductive set X, $\omega \subseteq X$.

Proof. It is clear that such a set ω, if it exists, must be unique. Now, let ω be the following class:

$$\omega := \{ n : \forall X (X \text{ is inductive} \implies n \in X) \}.$$

By Inf, there exists some inductive set X, and since $\omega \subseteq X$ by definition, we see that ω is a set by Comp. The very definition of ω insures that ω is contained in every inductive set. It remains to verify that ω is itself inductive, which is left as an exercise.

We emphasize that ω is **defined** as the smallest inductive set. Hence, any property of natural numbers that you might like to prove must, eventually, be derived from this definition.

Example. How do we prove that for all $n \in \omega$, either $\emptyset = n$ or $\emptyset \in n$? In other words, how to show that every natural number n satisfies $n \geq 0$? Let

$$P := \{ n \in \omega : \emptyset = n \lor \emptyset \in n \}.$$

By Comp, P is a set, and, by definition, $P \subseteq \omega$. We wish to show that $P = \omega$. For this, it necessary and sufficient to prove that P is inductive.

$\emptyset \in P$: This is true by the definition of P (and since $\emptyset \in \omega$).

If $n \in P$, then $n \cup \{n\} \in P$: Since ω is inductive, we have $n \cup \{n\} \in \omega$. Since $n \in P$, we either have $n = \emptyset$ or $\emptyset \in n$. In the first case, $n \cup \{n\} = \{\emptyset\}$ and $\emptyset \in \{\emptyset\}$, so $n \cup \{n\} = \{\emptyset\} \in P$. In the second case, $\emptyset \in n \subseteq n \cup \{n\}$, so $n \cup \{n\} \in P$ again.