LINDENBAUM’S THEOREM

The axiom system is ZFC.

Theorem (Lindenbaum). Let \(f: \mathbb{R} \to \mathbb{R} \) be an arbitrary function. Then there exist injective functions \(g, h: \mathbb{R} \to \mathbb{R} \) such that \(f = g + h \) (i.e., \(f(r) = g(r) + h(r) \) for every \(r \in \mathbb{R} \)).

Proof. Use AC to fix a bijection \(2^{\aleph_0} \to \mathbb{R}: \alpha \mapsto r_\alpha \) (so \(\mathbb{R} = \{ r_\alpha : \alpha < 2^{\aleph_0} \} \)). A crucial observation is that for each \(\alpha < 2^{\aleph_0} \), the set \(\{ r_\beta : \beta < \alpha \} \) has cardinality \(|\alpha| \leq \alpha < 2^{\aleph_0} = |\mathbb{R}| \); i.e., it is “small” compared to the entire set \(\mathbb{R} \).

We define the values \(g(\alpha) \) and \(h(\alpha) \) for \(\alpha < 2^{\aleph_0} \) recursively. Suppose that \(\alpha \) is an ordinal \(< 2^{\aleph_0} \) and that the values \(g(\beta) \) and \(h(\beta) \) for all \(\beta < \alpha \) are already determined. Let

\[
A_\alpha := \{ g(\beta) : \beta < \alpha \} \quad \text{and} \quad B_\alpha := \{ f(\alpha) - h(\beta) : \beta < \alpha \}.
\]

To ensure that the function \(g \) is injective, we must assign to \(g(\alpha) \) a value not in \(A_\alpha \); similarly, to ensure that \(h \) is injective, we must assign to \(g(\alpha) \) a value not in \(B_\alpha \) (since \(f(\alpha) \) should be equal to \(g(\alpha) + h(\alpha) \)). Now we use our crucial observation to see that

\[
|A_\alpha \cup B_\alpha| \leq |A_\alpha| + |B_\alpha| \leq |\alpha| + |\alpha| < 2^{\aleph_0},
\]

and hence \(\mathbb{R} \neq A_\alpha \cup B_\alpha \) and \(\mathbb{R} \setminus (A_\alpha \cup B_\alpha) \neq \emptyset \). Therefore, we can fix an arbitrary choice function \(c: \mathcal{P}(\mathbb{R}) \setminus \{ \emptyset \} \to \mathbb{R} \) and set

\[
g(\alpha) := c(\mathbb{R} \setminus (A_\alpha \cup B_\alpha));
\]

\[
h(\alpha) := f(\alpha) - g(\alpha).
\]