The axiom system in \(ZF^- \). For some of the problems, extra axioms are indicated in parentheses. Please use \(\LaTeX \) to type up your solutions!

Problem 1 (AC). In this problem, \(\mathbb{R}^3 := \mathbb{R} \times \mathbb{R} \times \mathbb{R} \) denotes, as usual, the 3-dimensional Euclidean space, i.e., the set of all ordered triples of real numbers.\(^1\) Show that there is a set \(L \) of pairwise disjoint lines in \(\mathbb{R}^3 \) such that \(\bigcup L = \mathbb{R}^3 \) and no two lines in \(L \) are parallel to each other.

Hint: This is a course in set theory, not geometry.

Problem 2 (AC).

(a) Let \((A, <) \) be a linearly ordered set. Show that there is a subset \(B \subseteq A \) such that \(B \) is well-ordered by \(< \) and cofinal in \(A \), meaning that for all \(x \in A \), there is \(y \in B \) with \(x \leq y \).

(b) Let \(F \) be a set that is linearly ordered by the subset relation \(\subset \). Suppose that \(\kappa \) is a cardinal such that \(|A| < \kappa \) for all \(A \in F \). Show that \(|\bigcup F| \leq \kappa \).

(c) Give an example of a set \(F \) that is linearly ordered by the subset relation \(\subset \) such that
\[
|\bigcup F| > \sup\{|A| : A \in F\}.
\]

Problem 3. The purpose of this exercise is to prove the following theorem of Tarski:

Theorem (Tarski). *Suppose that every infinite set \(X \) satisfies \(X \times X \approx X \). Then AC holds.*

Assume that every infinite set \(X \) satisfies \(X \times X \approx X \). Let \(A \) be an arbitrary set. Our goal is to show that \(A \) can be well-ordered, thus proving AC. If \(A \) is finite (i.e., if there is a bijection \(A \to n \) for some \(n < \omega \)), then \(A \) can be well-ordered, so let \(A \) be infinite. Recall that by Hartogs’s theorem, there is a cardinal \(\kappa \) such that \(\kappa \not\leq A \).

(a) Use the assumption of Tarski’s theorem to show that \(A \times \kappa \not\leq A \cup \kappa \).

(b) Use an arbitrary injection \(f : A \times \kappa \to A \cup \kappa \) to construct an injection \(A \to \kappa \).

(c) Conclude that \(A \) can be well-ordered.

Problem 4 (AC). For a set \(X \), let \([X]^{\leq \omega}\) denote the set of all countable subsets of \(X \).

(a) Show that for every infinite cardinal \(\kappa \), \(\kappa^{\aleph_0} = |[\kappa]^{\leq \omega}| \).

(b) Show that for every \(n < \omega \), \(\aleph_{n+1}^{\aleph_0} = \aleph_{n+1} \otimes \aleph_{n}^{\aleph_0} \).

Hint: cf(\(\aleph_{n+1}^{\aleph_0} \)) > \(\omega \).

(c) Conclude that for every \(n < \omega \), \(\aleph_{n+1}^{\aleph_0} = \max\{\aleph_{n}, 2^{\aleph_0}\} \).

Problem 5. Prove the following “uniform” version of Cantor’s theorem:

Theorem (Uniform Cantor’s theorem). *There is a class function \(\Phi : \mathcal{U} \times \mathcal{U} \to \mathcal{U} \times \mathcal{U} \) such that, given any set \(X \) and a function \(f : \mathcal{P}(X) \to X \), we have \(\Phi(X, f) = (\mathcal{A}, \mathcal{B}) \), where \(\mathcal{A} \) and \(\mathcal{B} \) are two distinct subsets of \(X \) such that \(f(\mathcal{A}) = f(\mathcal{B}) \) (thus witnessing the non-injectivity of \(f \)).

Caution: We are not assuming AC!

Hint: Use \(f \) to construct a class function \(\text{Ord} \to X \). This class function cannot be injective.

\(^{1}\)I couldn’t bring myself to write \(^3 \mathbb{R} \) instead.