Problem 1 (Ranks of groups). The rank of a group G, in symbols $\text{rank}(G)$, is the smallest cardinality of a set $S \subseteq G$ such that $G = \langle S \rangle$. For instance:

- $\text{rank}(G) = 0$ if and only if G is trivial;
- $\text{rank}(G) \leq 1$ if and only if G is cyclic.

(a) (Warm-up; not for credit.) Show that every subgroup of a cyclic group is cyclic. In other words, if G is a group of rank at most 1 and $H \leq G$, then $\text{rank}(H) \leq 1$ as well.

The goal of this problem is to show that, in contrast to the statement in part (a), a group of rank 2 can have a subgroup of infinite rank!

Let $g, h \in \text{Sym}(\mathbb{R})$ denote the functions given by

$$g(x) := x + 1 \quad \text{and} \quad h(x) := x/2 \quad \text{for all } x \in \mathbb{R}.$$

Let $G := \langle g, h \rangle$ be the subgroup of $\text{Sym}(\mathbb{R})$ generated by g and h.

(b) Show that the rank of G is 2.

(c) Show that for all $n, m \in \mathbb{Z}$, the function $f_{n,m} \in \text{Sym}(\mathbb{R})$ is in G, where

$$f_{n,m}(x) := x + \frac{n}{2^m} \quad \text{for all } x \in \mathbb{R}.$$

(d) Show that $H := \{f_{n,m} : n, m \in \mathbb{Z}\}$ is a subgroup of G.

(e) Show that the rank of H is infinite.

Problem 2. Given $n \in \mathbb{N}$, let F_n denote the free group with n generators; that is, $F_n = F_{\{x_1, \ldots, x_n\}}$, where x_1, \ldots, x_n are pairwise distinct elements. Similarly, let F_{∞} denote the free group generated by a countably infinite set of generators: $F_\infty = F_{\{x_1, x_2, x_3, \ldots\}}$. It is immediate from the definition that $\text{rank}(F_n) \leq n$ for all $n \in \mathbb{N}$.

(a) (Warm-up; not for credit.) Show that $\text{rank}(F_0) = 0$, $\text{rank}(F_1) = 1$, and $\text{rank}(F_2) = 2$.

We will later show that in fact $\text{rank}(F_n) = n$ for all $n \in \mathbb{N}$, while $\text{rank}(F_\infty)$ is infinite. This might seem like an obvious observation, but in fact the proof is a bit subtle. I encourage you to attempt it as a challenge! Even the following is somewhat tricky:

(b) (Bonus; not for credit.) Show that the groups F_2 and F_3 are not isomorphic.

To illustrate the difficulties that arise here, consider the free group $F_2 = F_{\{x, y\}}$ with generators x and y and let $H \leq F_2$ be the subgroup defined by $H := \langle x^n y x^{-n} : n \in \mathbb{N} \rangle$.

(c) Show that $H \cong F_\infty$.

In other words, F_2 has a subgroup isomorphic to F_∞!

Problem 3 (Products and coproducts of Abelian groups). In this problem we work in the category Ab of Abelian groups. Suppose that we are given a family of Abelian groups $(G_i)_{i \in I}$ indexed by the elements of some set I (such as $I = \{1, \ldots, n\}$ or $I = \mathbb{N}$). The product of $(G_i)_{i \in I}$ is an Abelian group $\prod_{i \in I} G_i$ together with homomorphisms $p_i: \prod_{i \in I} G_i \to G_i$ satisfying the following
universal property: Whenever H is an Abelian group and $q_i : H \to G_i$ are homomorphisms, there exists a unique homomorphism $\varphi : H \to \prod_{i \in I} G_i$ such that $q_i = p_i \circ \varphi$ for all $i \in I$:

Similarly, the coproduct of $(G_i)_{i \in I}$, also called the direct sum of $(G_i)_{i \in I}$, is an Abelian group $\bigoplus_{i \in I} G_i$ together with homomorphisms $f_i : G_i \to \bigoplus_{i \in I} G_i$ satisfying the following universal property: Whenever H is an Abelian group and $h_i : G_i \to H$ are homomorphisms, there exists a unique homomorphism $\varphi : \bigoplus_{i \in I} G_i \to H$ such that $h_i = \varphi \circ f_i$ for all $i \in I$:

Provide an explicit construction of the groups $\prod_{i \in I} G_i$ and $\bigoplus_{i \in I} G_i$.

Hint: When I is finite, the groups $\prod_{i \in I} G_i$ and $\bigoplus_{i \in I} G_i$ coincide, but they differ when I is infinite.

Problem 4 (Internal direct products). Let G be a group and let $H_1, H_2 \leq G$ be subgroups. Consider the following function $\varphi : H_1 \times H_2 \to G$:

$$\varphi(h_1, h_2) := h_1 h_2 \quad \text{for all } h_1 \in H_1 \text{ and } h_2 \in H_2.$$

We say that G is the internal direct product of H_1 and H_2 if the map $\varphi : H_1 \times H_2 \to G$ is a group isomorphism. Show that G is the internal direct product of H_1 and H_2 if and only if the following conditions are satisfied:

- both H_1 and H_2 are normal in G;
- $H_1 \cap H_2 = \{e\}$, where e is the identity element of G;
- $\langle H_1 \cup H_2 \rangle = G$.

Problem 5. Show that the dihedral group D_{12} is isomorphic to $\text{Sym}\{1, 2, 3\} \times \text{Sym}\{1, 2\}$.

Problem 6. Consider the group $Q := \langle x, y \mid x^4, x^2 y^{-2}, xy^{-1} xy \rangle$.

(a) Show that $|Q| = 8$.

(b) Show that Q is not isomorphic to the dihedral group D_8 (even though $|D_8| = 8$).