Please use \LaTeX to type up your solutions!

Problem 1. Show that the dimension of the space of all polynomials in \(n \) variables \(x_1, \ldots, x_n \) of degree at most \(d \) is \(\binom{n+d}{d} - d \). (For simplicity, you may work with polynomials over \(\mathbb{R} \); but your proof will most likely generalize to polynomials over an arbitrary field.)

Problem 2 (Oddtown). Fix \(n \in \mathbb{N}^+ \). An **oddtown** is a family \(\mathcal{F} \) of subsets of \([n]\) such that:

- for all \(A \in \mathcal{F} \), \(|A|\) is odd;
- for all distinct \(A, B \in \mathcal{F} \), \(|A \cap B|\) is even.

(a) Construct an oddtown \(\mathcal{F} \) of size \(n \).
(b) Show that \(|\mathcal{F}| \leq n\) for every oddtown \(\mathcal{F} \).

Hint: Proceed as in the proof of Fisher’s theorem, but over \(\mathbb{Z}_2 \).

Problem 3 (Eventown). Fix \(n \in \mathbb{N}^+ \). An **eventown** is a family \(\mathcal{F} \) of subsets of \([n]\) such that:

- for all \(A \in \mathcal{F} \), \(|A|\) is even;
- for all distinct \(A, B \in \mathcal{F} \), \(|A \cap B|\) is even.

(a) Construct an eventown \(\mathcal{F} \) of size \(2^{\lfloor n/2 \rfloor} \).

Suppose that \(\mathcal{F} \) is an eventown and let \(M \) be the matrix over \(\mathbb{Z}_2 \) whose columns are the characteristic vectors of the members of \(\mathcal{F} \).

(b) Show that \(M^T M = 0 \), where \(M^T \) denotes the transpose of \(M \).

(c) Use the rank–nullity theorem to deduce that the rank of \(M \) is at most \(|n/2|\).

(d) Conclude that \(|\mathcal{F}| \leq 2^{\lfloor n/2 \rfloor}\).

Problem 4. Prove the mod \(p \) version of the Frankl–Wilson theorem:

Theorem 4.1 (Deza–Frankl–Singhi). Let \(p \) be a prime number and let \(L \subseteq \mathbb{Z}_p \) be a set of size \(k \).

Suppose that \(\mathcal{F} \) is a family of subsets of \([n]\) such that:

- for all \(A \in \mathcal{F} \), \(|A| \pmod{p} \neq L");
- for all distinct \(A, B \in \mathcal{F} \), \(|A \cap B| \pmod{p} \in L").

Then \(|\mathcal{F}| \leq \binom{n}{p} + \binom{n}{p} + \cdots + \binom{n}{p} = O(n^k)\).

Problem 5. Fix \(s \in \mathbb{N}^+ \) and let \(G \) be the graph whose vertices are the 3-element subsets of \([s]\) and two distinct vertices \(A, B \) are adjacent if and only if \(|A \cap B| = 1\). Show that \(G \) is \(s \)-Ramsey (i.e., \(G \) contains neither a clique nor an independent set of size strictly greater than \(s \)).

Remark. Note that \(|V(G)| = \binom{s}{3}\) is cubic in \(s \).

Problem 6. Fix positive integers \(k \) and \(s \) such that \(k < s \). By Frankl–Wilson, if \(\mathcal{F} \) is a family of subsets of \([n]\) such that \(|A \cap B| < k\) for all distinct \(A, B \in \mathcal{F} \), then \(|\mathcal{F}| \leq \binom{n}{k} + \binom{n}{k} + \cdots + \binom{n}{k} = O(n^k)\).

We also know that this upper bound is tight and is attained by the family of all subsets of \(\mathcal{F} \) of size less than \(k \). But what if we require every set in \(\mathcal{F} \) to have size exactly \(s \)?

Let \(p \geq s \) be a prime. Show that if \(n = sp \), then there is a family \(\mathcal{F} \) of subsets of \([n]\) such that:

- for all \(A \in \mathcal{F} \), \(|A| = s\);
- for all distinct \(A, B \in \mathcal{F} \), \(|A \cap B| < k\);
- \(|\mathcal{F}| \geq (n/s)^k = \Omega(n^k)\).

Hint: Use that two distinct polynomials of degree less than \(k \) can only agree on fewer than \(k \) inputs.

Date: November 5, 2019.