Please use \LaTeX{} to type up your solutions!

In what follows, the graph of a function \(f: X \to Y \) is the set
\[
\Gamma_f := \{(x, y) \in X \times Y : f(x) = y\}.
\]

Problem 1. For a real number \(x \in \mathbb{R} \), let \(x \mod 1 \) denote the fractional part of \(x \), i.e., the unique number \(\alpha \in [0; 1) \) such that \(x - \alpha \) is an integer. For \(\alpha, \beta \in [0; 1) \) and \(r \in \mathbb{R} \), define
\[
\alpha \oplus \beta := (\alpha + \beta) \pmod{1} \quad \text{and} \quad r \odot \alpha := (r\alpha) \pmod{1}.
\]

Does this definition make \([0; 1)\) into an \(\mathbb{R} \)-vector space?

Problem 2 (First isomorphism theorem). Let \(V \) and \(W \) be vector spaces over a field \(F \) and let \(\varphi: V \to W \) be a linear function. Show that the space \(\text{im} \varphi \) is isomorphic to \(V / \ker(\varphi) \).

Problem 3 (Direct sums). Fix a field \(F \). The direct sum of two \(F \)-vector spaces \(V \) and \(W \) is the \(F \)-vector space \(V \oplus W \) defined as follows. As a set, \(V \oplus W \) is equal to \(V \times W \), and addition and scalar multiplication on \(V \oplus W \) are defined component-wise:
\[
(v_1, w_1) + (v_2, w_2) := (v_1 + v_2, w_1 + w_2) \quad \text{and} \quad a \cdot (v, w) := (a \cdot v, a \cdot w).
\]

Prove that a function \(f: V \to W \) is linear if and only if its graph is a subspace of \(V \oplus W \).

Problem 4. Let \(V \) be a vector space over a field \(F \) and let \(W \subseteq V \) be a subspace of \(V \).

(a) Show that there is a subspace \(W' \subseteq V \) such that every vector \(v \in V \) can be uniquely expressed as a sum \(v = w + w' \) with \(w \in W \) and \(w' \in W' \).

(b) Show that every subspace \(W' \subseteq V \) as in (a) is isomorphic to \(V/W \).

(c) Conclude that \(V \) is isomorphic to \(W \oplus (V/W) \).

Problem 5 (\(\mathbb{Q} \)-linear functions are weird). Let \(f: \mathbb{R} \to \mathbb{R} \) be a function that is \(\mathbb{Q} \)-linear but not \(\mathbb{R} \)-linear. Show that the graph of \(f \) is dense in \(\mathbb{R}^2 \).

Remark. A set \(S \subseteq \mathbb{R}^2 \) is dense in \(\mathbb{R}^2 \) if for every point \(p \in \mathbb{R}^2 \) and for every positive real number \(\varepsilon \), there is a point \(q \in S \) such that the distance between \(p \) and \(q \) is less than \(\varepsilon \). In other words, \(S \) is dense in \(\mathbb{R}^2 \) if \(S \) intersects every disc \(D \subset \mathbb{R}^2 \) of positive radius:

\[
\text{There is a point of } S \text{ somewhere in here}
\]
If we were to draw a picture of a dense subset of the plane giving each point an arbitrarily small positive thickness, it would look like this:

\[\text{Hint. What is Span}_R(\Gamma_f)? \]

Problem 6. Consider the \(\mathbb{R} \)-vector space \(\mathbb{R}^\mathbb{N} \) of all infinite sequences of reals. For each \(\alpha \in \mathbb{R} \), let
\[e_\alpha := (1, \alpha, \alpha^2, \alpha^3, \ldots). \]
Show that the set \(\{ e_\alpha : \alpha \in \mathbb{R} \} \) is independent.

Remark. This means that you can find as many independent vectors in \(\mathbb{R}^\mathbb{N} \) as there are real numbers!