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Abstract

The Turán function ex(n, F ) of a graph F is the maximum number of edges in an F -free

graph with n vertices. The classical results of Turán and Rademacher from 1941 led to the

study of supersaturated graphs where the key question is to determine hF (n, q), the minimum

number of copies of F that a graph with n vertices and ex(n, F ) + q edges can have.

We determine hF (n, q) asymptotically when F is color-critical (that is, F contains an edge

whose deletion reduces its chromatic number) and q = o(n2).

Determining the exact value of hF (n, q) seems rather difficult. For example, let c1 be the

limit superior of q/n for which the extremal structures are obtained by adding some q edges to

a maximal F -free graph. The problem of determining c1 for cliques was a well-known question

of Erdős that was solved only decades later by Lovász and Simonovits. Here we prove that

c1 > 0 for every color-critical F . Our approach also allows us to determine c1 for a number of

graphs, including odd cycles, cliques with one edge removed, and complete bipartite graphs

plus an edge.

1 Introduction

The Turán function ex(n, F ) of a graph F is the maximum number of edges in an F -free graph with
n vertices. In 1907, Mantel [12] proved that ex(n,K3) = bn2/4c, where Kr denotes the complete
graph on r vertices. The fundamental paper of Turán [20] solved this extremal problem for cliques:
the Turán graph Tr(n), the complete r-partite graph of order n with parts of size bn/rc or dn/re,
is the unique maximum Kr+1-free graph of order n. Thus we have ex(n,Kr+1) = tr(n), where
tr(n) = |E(Tr(n))|.

Stated in the contrapositive, this implies that a graph with tr(n) + 1 edges (where, by default,
n denotes the number of vertices) contains at least one copy of Kr+1. Rademacher (1941, unpub-
lished) showed that a graph on bn2/4c+ 1 edges contains not just one but at least bn/2c copies of
a triangle. This is perhaps the first result in the so-called “theory of supersaturated graphs” that
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focuses on the function

hF (n, q) = min{#F (G) : |V (G)| = n, |E(G)| = ex(n, F ) + q},

the mininum number of F -subgraphs in a graph G with n vertices and ex(n, F ) + q edges. One
possible construction is to add some q edges to a maximum F -free graph; let tF (n, q) be the
smallest number of F -subgraphs that can be achieved this way. Clearly, hF (n, q) ≤ tF (n, q).

Erdős [3] extended Rademacher’s result by showing that hK3(n, q) = tK3(n, q) = qbn/2c for
q ≤ 3. Later, he [4, 5] showed that there exists some small constant εr > 0 such that hKr (n, q) =
tKr (n, q) for all q ≤ εrn. Lovász and Simonovits [10, 11] found the best possible value of εr,
settling a long-standing conjecture of Erdős [3]. If fact, the second paper [11] completely solved
the hKr (n, q)-problem when q = o(n2). The case q = Ω(n2) of the supersaturation problem for
cliques has been actively studied and proved notoriously difficult. Only recently was an asymptotic
solution found: Razborov [15] (for K3), Nikiforov [14] (for K4), and Reiher [16] (for general Kr).

If F is bipartite, then there is a beautiful (and still open) conjecture of Erdős–Simonovits [19]
and Sidorenko [17] whose positive solution would determine hF (n, q) asymptotically for q = Ω(n2).
We refer the reader to two recent papers on the topic, by Conlon, Fox, and Sudakov [2] and by
Hatami [8], that contain many references.

Obviously, if we do not know ex(n, F ), then it is difficult to say much about the supersaturation
problem for small q. A large and important class of graphs for which the Turán function is well
understood is formed by color-critical graphs, that is, graphs whose chromatic number can be
decreased by removing an edge:

Definition 1.1. A graph F is r-critical if χ(F ) = r + 1 but F contains an edge e such that
χ(F − e) = r.

Simonovits [18] proved that for an r-critical graph F we have ex(n, F ) = tr(n) for all large
enough n ≥ n0(F ); furthermore, Tr(n) is the unique maximum F -free graph. The supersaturation
problem for a color-critical graph that is not a clique was first considered probably by Erdős [7]
who proved that hC5(2m, 1) = 2m(2m− 1)(2m− 2), where Ck denotes the cycle of length k.

Very recently, Mubayi [13] embarked on a systematic study of this problem for color-critical
graphs:

Definition 1.2. Fix r ≥ 2 and let F be an r-critical graph. Let c(n, F ) be the minimum number
of copies of F in the graph obtained from Tr(n) by adding one edge.

Observe that if n is large enough, then c(n, F ) = tF (n, 1).

Theorem 1.3 (Mubayi [13]). For every r-critical graph F , there exists a constant c0 = c0(F ) > 0
such that for all sufficiently large n and 1 ≤ q < c0n we have

hF (n, q) ≥ qc(n, F ). (1)

As it is pointed out in [13], the bound in (1) is asymptotically best possible. Also, (1) is sharp
for some graphs F , including odd cycles and K4 − e, the graph obtained from K4 by deleting an
edge.
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In this paper, we study the function hF (n, q). We show that in order to determine hF (n, q)
asymptotically for q = o(n2), it is enough to consider graphs constructed as follows: V (H) =
X ∪ V1 ∪ . . . ∪ Vr where V1 ∪ . . . ∪ Vr form a Turán graph, |X| = O(q/n), and V1 contains some
extra edges spread uniformly. Determining the asymptotic behavior of hF (n, q) then reduces to
optimizing a function of |X|, the neighborhoods of x ∈ X, and the number of extra edges in V1.
We solve this problem when q/n→∞ (see Theorem 3.4).

Let T qr (n) be the set of graphs obtained from the Turán graph Tr(n) by adding q edges. These
graphs are natural candidates, particularly if q is small, for membership in HF (n, q), the set of
graphs on n vertices and ex(n, F ) + q edges which contain the fewest number of copies of F . Of
particular interest is identifying a threshold for when graphs in T qr (n) are optimal or asymptotically
optimal. It is not hard to show, when n is large and q = o(n2), that

tF (n, q) = (1 + o(1))qc(n, F ).

Formally, we define

c2(F ) = sup
{
c : ∀ε > 0 ∃n0 ∀n ≥ n0 ∀q ≤ cn (H ∈ HF (n, q))⇒

(
#F (H)
qc(n, F )

≥ 1− ε
)}

,

to be the threshold for the asymptotic optimality of T qr (n).
Our Theorem 3.5 determines this parameter for every color-critical F . Its statement requires

some technical definitions so we postpone it until Section 3. Informally speaking, Theorem 3.5
states that c2 is the limit inferior of q/n when the following construction starts beating the bound
(1 − o(1))qc(n, F ): add a new vertex x of degree tr(n) + q − tr(n − 1) to Tr(n − 1) so that the
number of the created F -subgraphs is minimized. For some instances of F and values of q, this
construction indeed wins. On the other hand, there are also examples of F with c2(F ) = ∞; in
the latter case we prove the stronger claim that hF (n, q) = (1+o(1))qc(n, F ) for all q = o(n2) (not
just for q = O(n)).

We then focus on the optimality of T qr (n) and our result qualitatively extends Theorem 1.3 as
follows:

Theorem 1.4. For every r-critical graph F , there exist c1 > 0 and n0 such that for all n > n0

and q < c1n, we have hF (n, q) = tF (n, q) (in fact, more strongly, we have HF (n, q) ⊆ T qr (n) ).

A natural question arises here, namely, how large c1 = c1(F ) in Theorem 1.4 can be. So we
define

qF (n) = max {q : hF (n, q′) = tF (n, q′) for all q′ ≤ q} ,

c1(F ) = lim inf
n→∞

{
qF (n)
n

}
.

In 1955 Erdős [3] conjectured that qK3(n) ≥ bn/2c−1 and observed that, if true, this inequality
would be sharp for even n. This conjecture (and even its weaker version if c1(K3) ≥ 1/2) remained
open for decades until it was finally proved by Lovász and Simonovits [10, 11] whose more general
results imply that c1(Kr+1) = 1/r for every r.

Our approach allows us to determine the value of c1(F ) for a number of other graphs. Here are
some examples.
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Theorem 1.5. Let F be an odd cycle. Then c1(F ) = 1/2.

Theorem 1.6. Let r ≥ 2 and F = Kr+2 − e be obtained from Kr+2 by removing an edge. Then
c1(F ) = (r − 1)/r2.

Also, we can determine c1(F ) if F is obtained from a complete bipartite graph by adding an
edge (see Theorem 4.6) and for a whole class of what we call pair-free graphs. Unfortunately, these
results are rather technical to state so instead we refer the reader to Section 4.

In all these examples (as well as for F = Kr+1), if q < (c1(F ) − ε)n and n ≥ n0(ε, F ), then
not only hF (n, q) = tF (n, q) but HF (n, q) ⊆ T qr (n), that is, every extremal graph is obtained by
adding edges to the Turán graph.

In Theorems 1.5 and 1.6, the c1-threshold coincides with the moment when the number of copies
of F may be strictly decreased by using a non-equitable partition. For example, if F = C3 = K3

and n = 2` is even, then instead of adding q = ` edges to the Turán graph T2(n) = K`,`, one can
add q + 1 edges to the larger part of K`+1,`−1 and get fewer triangles. However, some other and
more complicated phenomena can occur at the c1-threshold. In Section 4 we give an example of a
graph F such that if we start with K`+1,`−1 (resp. K`,`), then all extra edges have to go into the
larger part (resp. have to be divided equally between the parts) and this does affect the value of
c1(F ). This indicates that a general formula for c1(F ) may be difficult to obtain.

Interestingly, the congruence class of n modulo r may also affect the value of qF (n). For
example, if n = 2`+ 1 and we start with K`+2,`−1 instead of T2(n) = K`+1,`, then we need to add
extra q + 2 edges (not q + 1 as it is for even n); so, in fact, qK3(2`+ 1) is about twice as large as
qK3(2`). Hence, we also define the following r constants

c1,i(F ) = lim inf
n→∞

n≡i mod r

{
qF (n)
n

}
, 0 ≤ i ≤ r − 1.

Clearly, we have c1(F ) = min{c1,i(F ) : 0 ≤ i ≤ r − 1}. In some cases, we are able to determine
the constants c1,i(F ) as well.

The rest of the paper is organized as follows. In the next section we introduce the functions
and parameters with which we work. Our asymptotic results on the case q = o(n2), including the
value of c2(F ), as well as some general lower bounds on c1(F ) are proved in Section 3. We use the
last section to determine c1(F ) for some special graphs.

2 Parameters

In the arguments and definitions to follow, F will be an r-critical graph and we let f = |V (F )| be
the number of vertices of F . We identify graphs with their edge set, e.g. |F | = |E(F )|. Typically,
the order of a graph under consideration will be denoted by n and viewed as tending to infinity. We
will use the asymptotic terminology (such as, for example, the expression O(1)) to hide constants
independent of n. We write x = y ± z to mean |x− y| ≤ z.

Let us begin with an expression for c(n, F ).

Lemma 2.1. Let F be an r-critical graph on f vertices. There is a positive constant αF such that

c(n, F ) = αFn
f−2 +O(nf−3).
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This is proved by Mubayi [13] by providing an explicit formula for c(n, F ). If F is an r-critical
graph, we call an edge e (resp., a vertex v) a critical edge (resp., a critical vertex ) if χ(F − e) = r

(resp., χ(F − v) = r).
Given disjoint sets V1, . . . , Vr, letK(V1, . . . , Vr) be formed by connecting all vertices vi ∈ Vi, vj ∈

Vj with i 6= j, i.e., K(V1, . . . , Vr) is the complete r-partite graph on vertex classes V1, . . . , Vr. Let
H be obtained from K(V1, . . . , Vr) by adding one edge xy in the first part and let c(n1, . . . , nr;F ),
where ni = |Vi|, denote the number of copies of F contained in H. Let uv ∈ F be a critical edge
and let χuv be a proper r-coloring of F − uv where χuv(u) = χuv(v) = 1. Let xiuv be the number
of vertices of F excluding u, v that receive color i. An edge preserving injection of F into H is
obtained by picking a critical edge uv of F , mapping it to xy, then mapping the remaining vertices
of F to H so that no two adjacent vertices get mapped to the same part of H. Such a mapping
corresponds to some coloring χuv. So, with Aut(F ) denoting the number of automorphisms of F ,
we obtain

c(n1, . . . , nr;F ) =
1

Aut(F )

∑
uv critical

∑
χuv

2(n1 − 2)x1
uv

r∏
i=2

(ni)xi
uv
, (2)

where (n)k = n(n− 1) · · · (n− k+ 1) denotes the falling factorial. We obtain a formula for c(n, F )
by picking H ∈ T 1

r (n). If r |n, we get a polynomial expression in n of degree f − 2 and αF is the
leading coefficient. Also, if n1 ≤ n2 ≤ · · · ≤ nr and nr − n1 ≤ 1, then

c(n, F ) = min{c(n1, . . . , nr;F ), c(nr, . . . , n1;F )}. (3)

A recurring argument in our proofs involves moving vertices or edges from one class to another,
potentially changing the partition of n. To this end, we compare the values of c(n1, . . . , nr;F ). In
[13], Mubayi proves that

c(n1, . . . , nr;F ) ≥ c(n, F ) +O(anf−3)

for all partitions n1 + . . . + nr = n where bn/rc − a ≤ ni ≤ dn/re + a for every i ∈ [r]. We need
the following, more precise estimate:

Lemma 2.2. There exists a constant ζF such that the following holds for all δ > 0 and n >

n0(δ, F ). Let c(n, F ) = c(n′1, . . . , n
′
r;F ) as in (3). Let n1 + . . . + nr = n, ai = ni − n′i and

M = max{|ai| : i ∈ [r]}. If M < δn, then

c(n, F )− c(n1, . . . , nr;F ) = ζFa1n
f−3 +O(M2nf−4).

Proof. We bound c(n1, . . . , nr;F ) using the Taylor expansion about (n′1, . . . , n
′
r). We first note

that c(n1, . . . , nr;F ) is symmetric in the variables n2, . . . , nr. Hence,

∂c

∂ni
(n/r, . . . , n/r) =

∂c

∂nj
(n/r, . . . , n/r) (4)

for all 2 ≤ i, j ≤ r. Furthermore, as |n′i − n/r| ≤ 1 for all 1 ≤ i ≤ r,∣∣∣∣ ∂c∂ni (n′1, . . . , n′r)− ∂c

∂ni
(n/r, . . . , n/r)

∣∣∣∣ = O(nf−4).

We have

c(n1, . . . , nr;F )− c(n′1, . . . , n′r;F ) =
r∑
j=1

aj
∂c

∂nj

(n
r
, . . . ,

n

r

)
+O(M2nf−4).
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As
∑r
i=1 ai = 0, the lemma follows from (4) with ζF being the coefficient of nf−3 in ∂c

∂n2
(n/r, . . . , n/r)−

∂c
∂n1

(n/r, . . . , n/r).

Definition 2.3. For an r-critical graph F , let πF =

 αF

|ζF | if ζF 6= 0

∞ if ζF = 0.

To give a brief foretaste of the arguments to come, we compare the number of copies of a
2-critical graph F in some H ∈ T q2 (n) and a graph H ′ with K(V1, V2) ⊆ H ′ where n = 2` is even,
|V1| = `+ 1, and |V2| = `− 1. While H contains q ‘extra’ edges, (`+ 1)(`− 1) = `2− 1 implies that
the number of ‘extra’ edges in H ′ is q + 1. Ignoring, for now, the copies of F that use more than
one ‘extra’ edge, we compare the quantities qc(n, F ) ≈ qαFn

f−2 and (q + 1)(αFnf−2 − ζFnf−3).
It becomes clear that the ratio αF /ζF will play a significant role in bounding c1(F ).

Another phenomenon of interest is the existence of a vertex with large degree in each part.
Let d = (d1, . . . , dr) and let #F (n1, . . . , nr;d) be the number of copies of F in the graph H =
K(V1, . . . , Vr) + z where |Vi| = ni and the extra vertex z has di neighbors in Vi. Let #F (n,d)
correspond to the case when n1 + . . .+ nr = n− 1 are almost equal and n1 ≥ . . . ≥ nr.

We have the following formula for #F (n1, . . . , nr;d). An edge preserving injection from F to
H is obtained by choosing a critical vertex u, mapping it to z, then mapping the remaining vertices
of F to H so that neighbors of u get mapped to neighbors of z and no two adjacent vertices get
mapped to the same part. Such a mapping is given by an r-coloring χu of F − u. Thus

#F (n1, . . . , nr;d) =
1

Aut(F )

∑
u critical

∑
χu

r∏
i=1

(ni − yi)xi
(di)yi

where yi is the number of neighbors of u that receive color i and xi is the number of non-neighbors
that receive color i. We find it convenient to work instead with the following polynomial. For
ξ = (ξ1, . . . , ξr) ∈ Rr, let

PF (ξ) =
1

Aut(F )

∑
u critical

∑
χu

r∏
i=1

1
rxi

ξyi

i .

As a first exercise, let us characterize all connected graphs for which deg(PF ) = r (we will later
treat such graphs separately).

Lemma 2.4. If F is a connected r-critical graph and deg(PF ) = r, then F = Kr+1 or r = 2 and
F = C2k+1 is an odd cycle.

Proof. The degree of PF is determined by the largest degree of a critical vertex. Therefore,
deg(u) ≤ r for each critical vertex u ∈ F . However, any r-coloring χu of F − u must assign all r
colors to the neighbors of u. Thus, deg(u) = r and yi = 1 for all i ∈ [r]. Therefore, every edge
incident to u is a critical edge and, by extension, every neighbor of u is a critical vertex. As F
is connected, it follows that every vertex is critical and has degree r. The lemma follows from
Brooks’ Theorem [1].

So, if F is r-critical and deg(PF ) = r, then F contains a connected r-critical component
isomorphic to Kr+1 or C2k+1 and some (possibly none) connected components that are r-colorable.

We now state a few easy properties of the polynomial PF (ξ).
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Lemma 2.5. PF (ξ) is a symmetric polynomial with nonnegative coefficients.

Lemma 2.6. For every ε > 0, there exists δ > 0 satisfying the following: if n =
∑r
i=1 ni >

1/δ and if, for all i ∈ [r], we have 0 ≤ di ≤ ni, |ni − n/r| ≤ δn and |ξi − di/n| ≤ δ, then
|#F (n1, . . . , nr;d)− nf−1PF (ξ)| < εnf−1.

Let us now restrict the domain of PF to those ξ which may arise as the density vector of some
vertex. Note that if d corresponds to the degrees of a vertex and we let ξ = d/n, it would follow
that ξi ≥ 0 for all i ∈ [r]. Furthermore, as

∑r
i=1 di ≤ n − 1, we have

∑r
i=1 ξi ≤ 1. However, we

mostly encounter equitable partitions and, therefore, use the more restrictive set

S = {ξ ∈ Rr : ∀i ∈ [r] 0 ≤ ξi ≤ 1/r}.

Most of the arguments that follow involve minimizing PF , usually over some subset of S. One such
subset is Sρ = {ξ ∈ S :

∑r
i=1 ξi = ρ} where ρ ∈ [0, 1]. Let

p(ρ) = min{PF (ξ) : ξ ∈ Sρ}.

Definition 2.7. If deg(PF ) ≥ r+1, let ρF = inf
{
ρ ∈ ( r−1

r , 1) : p(ρ) ≤ αF (ρ− r−1
r )
}

. If deg(PF ) =
r or p(ρ) > αF (ρ− (r − 1)/r) for all ρ ∈ ( r−1

r , 1), then ρF =∞.

Definition 2.8. If deg(PF ) ≥ r+1, let ρ̂F = inf
{
ρ ∈ ( r−1

r , 1) : p(ρ) < αF (ρ− r−1
r )
}

. If deg(PF ) =
r or p(ρ) ≥ αF (ρ− (r − 1)/r) for all ρ ∈ ( r−1

r , 1), then ρ̂F =∞.

We restrict ρ to the interval ( r−1
r , 1) in the definitions above as p(ρ) = 0 whenever ρ ≤ r−1

r

and it is easily checked that p(1) > αF /r unless deg(PF ) = r. Clearly, ρF ≤ ρ̂F . Let us show that
ρF is strictly greater than 1− 1/r.

Lemma 2.9. ρF − (1− 1/r) > 0.

Proof. Assume that deg(PF ) ≥ r + 1 for otherwise the stated inequality holds by the definition of
ρF . Given F , choose sufficiently small positive δ and then ε� δ. Let us show that ρF − r−1

r ≥ ε.
Take any ξ ∈ Sρ with 0 < ρ− r−1

r < ε. As PF is symmetric, assume without loss of generality
that ξ1 ≤ ξi for all i ∈ [r]. Also, we may assume that ξ1 < δ for otherwise, since PF has non-
negative coefficients, we are done:

PF (ξ) ≥ PF (δ, . . . , δ) > εαF > (ρ− (1− 1/r))αF .

Fix some index i with 2 ≤ i ≤ r. Since
∑r
j=1 ξj = ρ > r−1

r , we have that 0 ≤ 1/r − ξi ≤
ξ1 < δ. Also, the i-th partial derivative of PF at x0 = (0, 1

r , . . . ,
1
r ) is 0. (This follows from

the combinatorial fact that if the special vertex u from the definition of F (n1, . . . , nr;d) has no
neighbors in the first part, then the number of F -subgraphs at u is identically 0.) Thus, as
∂
∂ξ1

PF (x0) = αF > 0 and δ is small, we have that

∂

∂ξ1
PF (ξ) >

∂

∂ξi
PF (ξ) +

αF
2
.

If follows that, if we increase ξi to 1/r and decrease ξ1 by the same amount, then the value of PF
does not go up.
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Iteratively repeating the above perturbation for each i ≥ 2, we obtain the required:

PF (ξ) ≥ PF
(
ρ− r − 1

r
,

1
r
, . . . ,

1
r

)
>

(
ρ− r − 1

r

)
∂

∂ξ1
PF (x0) = (ρ− (1− 1/r))αF .

Here the second inequality follows from the fact that at least one derivative ∂j

ξj
1
PF (x0) with j ≥ 2

is positive (in view of deg(PF ) ≥ r + 1).

To give a better picture of proceedings, let us recall some previous parameters. First, consider
starting with the Turán graph and ‘growing’ the graph by adding extra edges. Loosely speaking,
the number of copies of F grows ‘linearly’ with q with a slope of αF . On the other hand, if we
start with a slight perturbation of the partition sizes, we have a slope slightly smaller than αF

(but a higher intercept). The ratio πF gives the intersection of these two curves. Alternatively, we
may start with a Turán graph on one fewer vertices and grow the graph by introducing a vertex of
appropriate degree. The number of copies then grows according to p(ρ). In this scenario, ρF and
ρ̂F identify the first time when this curve, respectively, intersects and crosses the line of slope αF .
In a sense, the values ρF and ρ̂F signify critical densities when comparing H ∈ T qr (n) with those
graphs obtained by altering the neighborhood of a vertex.

r!1
r

ΡF Ρ#
F

1

p(ρ) 

αF(ρ-(r-1)/r) 

Figure 1: ρF and ρ̂F .

The values ρF and ρ̂F in Figure 1 do not coincide. However, ρF = ρ̂F for all graphs we have
thus far encountered, and it may be possible that equality holds for all graphs. In some instances,
this would imply that c1(F ) = c2(F ).

3 Results

In this section we determine hF (n, q) asymptotically for q = o(n2). We then proceed to prove our
results on the optimality and asymptotic optimality of graphs in T qr (n). A key step is a lemma on
the structure of F -optimal graphs which we prove by building upon the method of Mubayi [13].
As was the case in Mubayi’s result, the graph removal lemma (see [9, Theorem 2.9]) and the
Erdős-Simonovits Stability Theorem are key components of our proof.

Theorem 3.1 (Graph Removal Lemma). Let F be a graph with f vertices. Suppose that an n-
vertex graph H has at most o(nf ) copies of F . Then there is a set of edges of H of size o(n2)
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whose removal results in a graph with no copies of F .

Theorem 3.2 (Erdős [6] and Simonovits [18]). Let r ≥ 2 and F be a graph with chromatic number
r + 1. Let H be a graph with n vertices and tr(n)− o(n2) edges that contains no copy of F . Then
H can be obtained from Tr(n) by adding and deleting o(n2) edges.

Let us start by defining some constants. Given an r-critical graph F , pick constants satisfying
the following hierarchy:

δ0 � δ1 � δ2 � δ3 � δ4 � δ5 � δ6 � δ7 � 1/n0,

each being sufficiently small depending on the previous ones. Let H ∈ HF (n, q) where n ≥ n0 and
1 ≤ q < δ7n

2. We fix a max-cut r-partition V = V1 ∪ . . .∪ Vr of the vertex set V = V (H). We call
the edges of H that intersect two parts good and those that lie within one part bad and denote
the sets of good and bad edges by G and B, respectively. Let M = K(V1, . . . , Vr) \G be the set of
missing edges. Observe that |B| ≥ |M |+ q.

Note that every copy of F in H must contain at least one bad edge. To this end, we denote by
#F (uv) the number of copies of F that contain the bad edge uv ∈ B but no other bad edges. In
addition, for u ∈ V (H), the number of copies of F that use the vertex u is denoted by #F (u) .

As an arbitrary graph in T qr (n) has at most 2αF δ7nf copies of F , it follows that hF (n, q) ≤
tF (n, q) ≤ 2αF δ7nf . Thus the Removal Lemma applies to H and gives an F -free subgraph H ′ ⊆ H
with at least tr(n) − δ6n

2 edges. We then apply the Erdős-Simonovits Stability Theorem and
obtain an r-partite subgraph H ′′ ⊆ H ′ with at least tr(n) − δ5n2 edges. We observe here that
ni = |Vi| = n/r ± δ4n and |B| ≤ 2δ5n2.

Lemma 3.3. If M 6= ∅, then there exists a vertex x with dB(x) ≥ δ1n and dH(x) ≥
(
r−1
r + δ2

)
n.

Proof of Lemma 3.3 Assume that M 6= ∅. We first show that ∆(B) ≥ δ1n.
Assume, for contradiction, that dB(u) < δ1n for all u ∈ V . Let uv ∈M and let

#F ′(uv) = #F (H + uv)−#F (H)

be the number of potential copies of F associated with uv, that is, the number of copies of F
introduced by including the edge uv. As dB(u)+dB(v) < 2δ1n, it follows that #F ′(uv) < 2δ1nf−2.
However, note that

#F (xy) ≤ #F ′(uv) (5)

for all xy ∈ B, as otherwise we may reduce the number of copies of F by removing xy and replacing
it by uv. As

#F (xy) ≥ αFnf−2 − (dM (x) + dM (y))Cnf−3 − δ1nf−2 (6)

for some C = C(F ) > 0, (5) implies that dM (x) + dM (y) ≥ (αF − 3δ1)n/C. Now, counting in two
ways the number of adjacent pairs (e, e′) with e ∈ B and e′ ∈M , we obtain

2∆(B)|M | ≥ (αF − 3δ1)n|B|/C,

contradicting the fact that |B| ≥ |M |.
Let x be a vertex with dB(x) = ∆(B) ≥ δ1n. As we picked a max-cut partition, |N(v)∩Vi| ≥ δ1n

for all i ∈ [r], it follows that #F (x) ≥ PF (δ1, . . . , δ1)nf−1 − δ3nf−1 ≥ PF (δ1, . . . , δ1)nf−1/2. As
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PF (ξ) is continuous and PF (1/r, . . . , 1/r, 0) = 0, we have PF (1/r, . . . , 1/r, δ2) ≤ PF (δ1, . . . , δ1)/4.
Hence, unless dH(x) ≥ ( r−1

r +δ2)n, we can strictly reduce the number of copies of F by connecting
x to all vertices in other classes and to at most δ2n vertices in its own class.

We now apply Lemma 3.3 to provide a lower bound on the value of hF (n, q). In so doing, we
describe a class of graphs that allow us to determine hF (n, q) asymptotically. If the first case of
Lemma 3.3 holds (i.e., M = ∅), then we have the inequality

#F (H) ≥ |B|c(n1, . . . , nr;F ) ≥ (1− δ3)qc(n, F ).

On the other hand, if M 6= ∅, we build a sequence (Hi, qi, xi) as follows. Initially, set i = 0,
H0 = H, and q0 = q. We iterate by picking a vertex xi in Hi satisfying Lemma 3.3 and let qi+1 =
|Hi−xi|−tr(n−i). Finally, we pick Hi+1 ∈ HF (n−i−1, qi+1), i.e., Hi+1 is a graph of the same order
and size as Hi−xi that minimizes the number of F -subgraphs. If #F (Hi+1) ≥ (1−δ3)qi+1c(n, F ),
and, in particular, if qi+1 ≤ 0, we let k = i+ 1 and stop.

Note that, by construction,

#F (H) ≥ #F (Hk) +
k−1∑
i=0

#F (xi). (7)

As dBi(xi) ≥ δ1(n − i), it follows that #F (xi) ≥ δ2(n − i)f−1 for all i < k. In particular, as
#F (H) ≤ 2αF δ7nf , we have that k ≤ δ6q/n. Rewrite (7) as

#F (H) ≥ (1− δ3)qkc(n, F ) + nf−1
k−1∑
i=0

p

(
dHi

(xi)
n

)
− k δ3nf−1. (8)

On the other hand, given the vector (dH0(x0), . . . , dHk−1(xk−1), qk), one can construct a graph
that achieves (8) asymptotically. Specifically, we can start with the graph Tr(n − k) and, for
each i ∈ [0, k − 1], add a vertex ui whose density vector is in Sρi

and minimizes F (ui), where
ρi = dHi

(xi)/n. Next, we add qk (plus up to k2) edges uniformly into one part. The number of
copies of F that use more than one vertex ui may be bounded from above by k2f !nf−2. Therefore,
this new graph contains at most

(1 + δ3)qkc(n, F ) + (n− k)f−1
k−1∑
i=0

p

(
dHi(xi)

n

)
+ k2c(n, F ) + k2f !nf−2 (9)

copies of F . Note that the sum of the last two terms in (9) is dominated by the sum of the first
two terms.

The above discussion provides us with asymptotically optimal graphs for q = o(n2) and, in
some cases, allows us to determine hF (n, q) asymptotically. Let βF be the infimum of the ratio

p(ρ)
ρ−(1−1/r) (observe that βF = αF if ρ̂F =∞ and βF < αF otherwise).

Theorem 3.4. If q = o(n2) and q/n→∞, then

hF (n, q) = (βF + o(1))qnf−2.

Proof of Theorem 3.4 It follows, by (8) and the definition of βF , that hF (n, q) ≥ (βF −o(1))qnf−2.
On the other hand, we may construct a graph as above where each vertex ui has density vector ξ
with PF (ξ) = βF + o(1), thereby proving the upper bound.
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If q = O(n), then k = O(1) and determining hF (n, q) reduces to an optimization problem. To
be more precise, for fixed c > 0 and q = (c + o(1))n, we have that hF (n, q) = (1 + o(1))φ(c)nf−1

where

φ(c) = min
k

min
s

(
skαF +

k−1∑
i=0

p(si)

)
,

with the minimum taken over all k ∈ Z and all s ∈ Rk+1 satisfying
∑k
i=0 si = c + k(r − 1/r),

sk ≥ 0, and si ≥ (r− 1)/r+ δ2 for 0 ≤ i ≤ k− 1. We can now compute c2(F ) as the supremum of
c for which φ(c) = αF c.

Theorem 3.5. c2(F ) = ρ̂F−(1−1/r). Furthermore, if ρ̂F =∞, then hF (n, q) = (1+o(1))qc(n, F )
for all q = o(n2).

Proof of Theorem 3.5 Let us first show that c2(F ) ≤ ρ̂F − (1− 1/r). We may assume that ρ̂F is
finite, for otherwise the upper bound holds vacuously. Let c > ρ̂F − (1 − 1/r) be arbitrary. Take
ξ ∈ Sρ such that ρ̂F < ρ < c+ r−1

r and λ > 0, where λ = αF (ρ− r−1
r )− PF (ξ).

Let n be large. Let H be obtained from Tr(n−1) by adding a new vertex u that has (ξi+o(1))n
neighbors in each part Vi. Thus H has tr(n) + q edges, where q = (ρ− r−1

r + o(1))n. Then

#F (H) = (PF (ξ) + o(1))nf−1 <

(
αF

(
ρ− r − 1

r

)
− λ/2

)
nf−1 < (1− λ/3)qc(n, F ),

This infinite sequence of graphs implies the stated upper bound on c2(F ).
Now assume that q ≤ cn where c < (ρ̂F − (1− 1/r)) or that ρ̂F =∞ and q = o(n2). We apply

Lemma 3.3 to some H ∈ HF (n, q) and obtain the sequence (Hi, xi, qi) as in the discussion above.
First, if M = ∅ (in other words, k = 0 and qk = q), then #F (H) ≥ (1−δ3)qc(n, F ) and we are done.
So, suppose now thatM 6= ∅ and k ≥ 1. If there exists some xi with dHi(xi) ≥ (ρ̂F−(1−1/r))(n−i),
then, by monotonicity of p(ρ), we have that

#F (xi) ≥ (p(ρ̂F )− δ3)(n− i)f−1 > (1− δ2)qc(n, F ).

Finally, if dHi(xi) < (ρ̂F − (1− 1/r))(n− i) for all i ≤ k, then

#F (xi) ≥ αF (dHi
(xi)− (1− 1/r)n)nf−2 − δ3nf−1.

We get the required inequality by summing this quantity over all vertices xi as in (7).

We now prove Theorem 1.4 in a stronger sense. Recall that the sign of x ∈ R, denoted sgn(x),
is 0 if x is 0 and x/|x| otherwise. For notational convenience define

θF = ρF − (1− 1/r).

Theorem 3.6. Let F be an r-critical graph. Then, c1(F ) > 0. Specifically,

• if deg(PF ) = r, then c1(F ) ≥ 1/r,

• if deg(PF ) ≥ r + 1, then c1,i(F ) ≥ c1(F ) ≥ min(πF , θF ) for all i ∈ [r].
Furthermore, c1,t(F ) ≥ min(2πF , θF ) for t = sgn(ζF ).
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Proof of Theorem 3.6 As stated in the Introduction, we prove the theorem by showing something
stronger; namely, for n large, c ∈ R in the appropriate range, and q < cn, not only is hF (n, q) =
tF (n, q) but, in fact, H(n, q) ⊆ T qr (n).

Let c(n, F ) = c(n′1, . . . , n
′
r;F ) as in (2). Pick some c > 0 and consider H ∈ HF (n, q) where

q < cn. Let V (H) = V1∪ . . .∪Vr be a max-cut partition with |V1| ≥ |V2| ≥ . . . ≥ |Vr|, let G,B and
M be the sets of good, bad and missing edges, respectively, and recall the sequence of constants
δi. Consider the following cases:

Case 1: M = ∅.

Let a = max(|V1| − dn/re, bn/rc − |Vr|). We have

q +
a2r

2(r − 1)
≤ |B| ≤ q +

a2r

2
.

As a ≤ δ4n, Lemma 2.2 implies that

#F (H) ≥
(
q +

a2r

2(r − 1)

)(
c(n, F )− |ζF |anf−3 − a2nf−4

δ0

)
≥ qc(n, F ) + anf−2

(
αF

ar

2(r − 1)
− c |ζF | − δ1a

)
.

So, if a ≥ 2(c|ζF | + 1)/(αF − δ1), we have #F (H) > qc(n, F ) + anf−2. On the other hand,
tF (n, q) ≤ qc(n, F )+O(nf−2), which is demonstrated by adding extra q edges to one part of Tr(n)
so that they form a graph of bounded maximum degree. Since H is optimal, we have a = O(1).

We now refine the argument to show that if c < πF − δ0, then all optimal graphs are contained
in the set T qr (n). In other words, if |H| = tr(n) + q and H contains the complete r-partite graph
on parts of size n1, . . . , nr where n = n1 + . . .+ nr and n1 ≥ nr + 2, then H is not optimal.

For i ∈ [r], let Bi = B[Vi] be the set of bad edges contained in Vi.

Claim 3.7. If |Vj | = |Vk|+ s, where s > 1, then

(|Bj | − |Bk|)ζF ≥ (s− 1)(1− δ3)αFn. (10)

Proof of Claim. Assume otherwise. Consider H ′ obtained from H by moving one vertex from Vj

to Vk. Namely, pick a vertex v ∈ Vj with dB(v) ≤ dB(u) for all u ∈ Vj . We replace v with a vertex
v′ such that uv′ ∈ H ′ for all u ∈ V \Vk. Next, we pick dB(v) vertices in Vk with low bad degrees as
neighbors of v′. Then, as (|Vj | − 1)(|Vk|+ 1) = |Vj ||Vk|+ s− 1, we remove s− 1 bad edges chosen
arbitrarily.

The change in the cardinalities of Vj and Vk alters the number of copies of F for each bad
edge. However, by Lemma 2.2, the difference between #FH(e) and #FH′(e) is O(nf−4) unless
e ∈ Bj ∪Bk or e is one of the s− 1 edges that were deleted. So,

#F (H)−#F (H ′) = (s− 1)c(n, F ) +
∑

e∈Bj∪Bk

(#FH(e)−#FH′(e)) +O(nf−3)

= (s− 1)αFnf−2 − (|Bj | − |Bk|)ζFnf−3 +O(nf−3),

where the second identity follows, once again, from Lemma 2.2. As H is optimal, (10) must hold.
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Note that if t = 0, then ζF = 0 and Claim 3.7 cannot be satisfied. Therefore, |Vj | − |Vk| ≤ 1
for all 1 ≤ j, k ≤ r, that is, H ∈ T qr (n).

Suppose that t ∈ {−1, 1} and H 6∈ T qr (n). Then there exist j, k such that |Vj | − |Vk| ≥ 2.
Hence, |B| ≥ max(|Bj |, |Bk|) ≥ (1− δ3)πFn, and q ≥ |B| − a2 ≥ (1− δ0)πFn as required. Next, if
n ≡ t (mod r), then there exist j, k, l with |Vj |− |Vk| ≥ 3 or j 6= k and |Vj |− |Vl| = |Vk|− |Vl| = 2t.
In the first case, we apply Claim 3.7 directly to obtain q ≥ 2(1− δ0)πF . On the other hand, if the
second case holds with tζF > 0, we have, by applying Claim 3.7 twice, that |Bj |, |Bk| ≥ (1−δ3)πF ,
again implying that q ≥ 2(1− δ0)πF .

Case 2: M 6= ∅.

As M 6= ∅, it follows from Lemma 3.3 that X 6= ∅, where we define

X =

{
x ∈ V (H) : dB(x) ≥ δ1n and dH(x) ≥

(
r − 1
r

+ δ2

)
n

}
. (11)

We will now handle the two cases deg(PF ) = r and deg(PF ) ≥ r+1 separately. Let us first consider
the case deg(PF ) ≥ r + 1.

Claim 3.8. If deg(PF ) ≥ r + 1, then d(x) ≥ (ρF − δ2)n for all x ∈ X.

Proof of Claim. Let, for example, x ∈ X ∩ V1 contradict the claim. By the definition of ρF , we
have p(ρ) > αF (ρ− r−1

r ) for ρ ∈ ( r−1
r , ρF ). Since p is a continuous function, we can assume that

p
(
d(x)
n

)
− αF

(
d(x)
n −

r−1
r

)
≥ 5δ3.

Let us replace x with a vertex u whose neighborhood is V (H) \ V1. Clearly, #F (u) ≤ δ3nf−1.
Next, we distribute the remaining d(x)− d(u) edges evenly among vertices in V1 with bad degree
at most δ4n. This creates at most (d(x) − r−1

r n)c(n, F ) + 2δ3nf−1 copies of F . Comparing with
the old value #F (x) ≥ p(d(x)/n) − δ3nf−1, we see that the number of F -subgraphs decreases, a
contradiction to the optimality of H.

Note that, by Claim 3.8 and Definition 2.7, we have

ρF < 1 (12)

and θF = ρF − (r − 1)/r ∈ (0, 1/r). Furthermore, if x ∈ X, then

#F (x) ≥ nf−1(p(ρF − δ2)− δ3) > nf−1(αF θF − δ1) > (θF − δ0)nc(n, F ) + δ1n
f−1.

Thus, if c ≤ θF − δ0, the number of copies of F at some vertex x ∈ X exceeds the bound of
qc(n, F ) +O(nf−2), contradicting our assumption that #F (H) = hF (n, q).

This completes the proof of Theorem 3.6 for r-critical graphs with deg(PF ) ≥ r + 1.
We now consider the case when deg(PF ) = r. We will first show that tF (n, q) = qc(n, F ) for

q ≤ bn/rc − 1. This value is obtained by the graph H∗(n, q) ∈ T qr (n) constructed as follows:
V (H∗) = U1 ∪ . . . ∪ Ur where |Ui| = ni is either dn/re or bn/rc, c(n, F ) = c(n1, . . . , nr;F ) and
E(H∗) = K(U1, . . . , Ur) ∪ K({u∗},W ), where u∗ ∈ U1, W ⊆ U1 \ {u∗} and |W | = q. That is,
H∗(n, q) is obtained from Tr(n) by adding (the edges of) a star of size q in U1. Observe that any
copy of F in H∗ must use the vertex u∗. Furthermore, u∗ is contained in the r-critical component,
which, in this case, is isomorphic to Kr+1 or C2k+1. So, each copy of F uses exactly one bad edge
incident to u∗ and #F (H∗(n, q)) = tF (n, q) = qc(n, F ).

Now let H ∈ HF (n, q) where q ≤ (1/r − δ0)n. Recall the set X defined in (11).
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Claim 3.9. Every x ∈ X is incident to at most (r − 1)δ2n missing edges.

Proof of Claim. Let x ∈ X ∩ V1 with di neighbors in each part Vi. By the max-cut property we
have d1 ≤ di for all i ∈ [r]. In particular, each di is at least δ1n.

If, for example, x has at least δ2n non-neighbors in V2, then we can move δ2n/2 edges at x
from V1 to V2, decreasing the product d1d2 by at least 3δ3n2. Since PF (ξ) = CF

∏r
i=1 ξi for some

constant CF > 0, this would strictly decrease #F (x), a contradiction to the extremality of H. The
claim follows.

Claim 3.10. Every missing edge intersects X.

Proof of Claim. Assume there exists uv ∈ M with u, v 6∈ X. As both endpoints have bad degree
of at most δ1n, it follows that #F ′(uv) ≤ 2δ1nf−2. On the other hand, consider a vertex x ∈ X.
There is a bad edge xw such that dM (w) < δ3n (otherwise, |B| ≥ |M | > 2δ4n2). By Claim 3.9, we
have #F (xw) ≥ αFnf−2 − δ1nf−2 > #F ′(uv), resulting in a contradiction.

As #F (x) ≥ δ2n
f−1 for all x ∈ X and #F (H) ≤ 2αF δ7nf , it follows that |X| = o(n) < δ4n.

Thus, by Claims 3.9 and 3.10 we have for every u ∈ V (H) that

dM (u) ≤ max
(
|X|, (r − 1)δ2n

)
= (r − 1)δ2n.

It follows that #F (u′v′) ≥ (1− δ1)c(n, F ) for every bad edge u′v′ ∈ B. That is,

|B| ≤ q

1− δ1
< (1/r − δ0/2)n. (13)

Now pick some vertex u∗ and consider a graph H ′ where all |B| bad edges and |M | missing pairs
are incident to u∗. This procedure removes all copies of F using multiple bad edges. Furthermore,
observe that if a missing pair uv and a bad edge u′v′ are disjoint, then we can increase the
number of potential copies that contain both by making them adjacent. Therefore, by choosing
u∗ appropriately, we have #FH(u′v′) ≥ #FH′(u∗w) for every u′v′ ∈ B(H) and u∗w ∈ B(H ′).
However, as H ∈ HF (n, q), we have #F (H) = #F (H ′) and #FH′(u∗w) ≥ (1 − δ2)c(n, F ). Now,
by construction,

#F ′H′(u
∗v) ≤ rαFnf−3dB(u∗) + δ2n

f−2

for all u∗v ∈M(H ′). It follows that

|B(H)| = |B(H ′)| = dB(u∗) > (1/r − δ2)n,

contradicting (13).
This completes the proof of Theorem 3.6.

4 Special Graphs

In this section we obtain upper bounds on c1,i(F ) for a class of graphs and compute the exact
value for some special instances. We also give an example of a graph with c1(F ) strictly greater
than min(πF , θF ).
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4.1 Kr+2 − e.

Here we prove Theorem 1.6.
Let r ≥ 2 and let F = Kr+2 − e be obtained from the complete graph Kr+2 by deleting one

edge. Clearly, F is r-critical. In addition, if uv is the edge removed from Kr+2, we may further
reduce the chromatic number by removing an edge xy where {x, y} ∩ {u, v} = ∅. It follows that

c(n1, . . . , nr;F ) =
r∑
i=2

(
ni
2

) ∏
2≤j≤r
j 6=i

nj =
(n− n1 − r + 1)

2

r∏
i=2

ni.

Therefore, αF = r−1
2rr , ζF = 1

2rr−2 , and πF = r−1
r2 .

On the other hand,

PF (ξ) =
1
2

r∑
i=1

ξ2i
∏

1≤j≤r
j 6=i

ξj =
1
2

(
r∑
i=1

ξi

)
r∏
i=1

ξi.

Therefore, if
∑r
i=1 ξi = ρ is fixed, then by convexity PF (ξ) is minimized by picking ξ = (ρ −

r−1
r , 1/r, . . . , 1/r), implying that ρF =∞.

Theorem 3.6 now implies that c1(F ) ≥ πF , so we only prove the upper bound c1(F ) ≤ πF . In
fact, it suffices to show that c1,0(F ) ≤ πF and we consider only large n that are multiples of r (to
simplify computations, we will actually require that n be divisible by 2r). As ρF = ∞, it follows
that M(H) = ∅ for any H ∈ HF (n, q); otherwise, (12) is violated. Therefore, we need only to
compare graphs obtained from a complete r-partite graph by adding extra edges.

First, for q ≤ n/r, we identify a graph H∗ ∈ T qr (n) for which #F (H) = tF (n, q). We then
show that this value may be beaten by using a non-equitable partition. A key observation is that
all the bad edges in H∗ are contained in one part.

Let us now estimate the number of copies of F formed by pairs of bad edges in a graph
H ∈ T qr (n). Let V (H) = V1 ∪ . . . ∪ Vr with |Vi| = n/r for all i ∈ [r] and let Bi be the set of bad
edges both of whose endpoints lie in the part Vi. Let u1v1 ∈ Bi and u2v2 ∈ Bj .

1. If i = j and the edges u1v1 and u2v2 have a common endpoint, we may create a copy of F
by picking one vertex each from Vk where k 6= i. Therefore, we have (n/r)r−1 copies of F
containing both bad edges.

2. If i 6= j, we form a copy of Kr+2 by picking a vertex from each of the parts Vk where
k 6∈ {i, j}. We may then choose any of the

(
r+2
2

)
− 2 edges (except for u1v1 and u2v2) to be

the one missing in F . In addition, for any choice of k1, k2 6∈ {i, j}, we may pick 2 vertices
from Vk1 , no vertices from Vk2 and one vertex each from Vl where l 6∈ {i, j, k1, k2} to form a
copy of F . So, the number of copies of F containing both edges is((

r + 2
2

)
− 2
)

(n/r)r−2 + (r − 2)
(
n/r

2

)
(r − 3)(n/r)r−4.

We now form H∗ ∈ T qr (n) by placing all q bad edges in V1 as follows: enumerate the bad
edges as e1, e2, . . . , eq and the vertices in V1 as v1, v2, . . . , vn/r. Then, H∗ contains the bad edges
ei = v2i−1v2i for i ≤ n/(2r) and en/2r+j = v2jv2j+1 for 1 ≤ j ≤ q−n/(2r). That is, if possible, all
bad edges in H∗ form a matching. However, if q > n/(2r), the bad edges form a path and disjoint
edges.
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Claim 4.1. If q ≤ n/r, then tF (n, q) = #F (H∗).

Proof of Claim. We need to show that #F (H∗) ≤ #F (H) for all H ∈ T qr (n). If q ≤ n/(2r), we
note that #F (H∗) = qc(n, F ), which is a trivial lower bound for all H ∈ T qr (n). So we consider the
case n/(2r) ≤ q ≤ n/r. In this case, we observe that #F (H∗) = qc(n, F ) + 2(q− (n/2r))(n/r)r−1.

Now assume #F (H) = tF (n, q) for some graph H ∈ T qr (n). Assume, without loss of generality,
that |B1| ≥ |Bi| for al i ∈ [r]. If |B1| ≤ n/(2r) − 1, then B \ B1 6= ∅. Say B2 6= ∅, and consider
removing an edge in B2 and adding an isolated edge in B1. Then, the number of copies of F is
reduced by at least (|B1| − |B2|+ 1)(n/r)r−2(

(
r+2
2

)
− 2), contradicting optimality of H.

On the other hand, if |B1| ≥ n/(2r), then every edge uv ∈ B \B1 forms at least

c(n, F ) +
((

r + 2
2

)
− 2
)

(n/r)r−2|B1| ≥ c(n, F ) + 2(n/r)r−1

copies of F . In addition, by convexity,
∑
v∈V1

(
dB(v)

2

)
is minimized when there are exactly 2|B1| −

n/r vertices of degree 2 and all remaining vertices have degree 1. As each vertex of degree 2 gives
(n/r)r−1 copies of F that use both edges incident to it. It follows that

#F (H) ≥ qc(n, F ) + 2(n/r)r−1 (|B \B1|+ |B1| − n/(2r))

= qc(n, F ) + (2q − n/r)(n/r)r−1

= #F (H∗).

Now consider a graph H on partition n = n1 + n2 + . . .+ nr where n1 = n/r+ 1, n2 = n/r− 1
and ni = n/r for i ≥ 3 with K(V1, . . . , Vr) ⊆ H and all q + 1 bad edges contained in V1 as in H∗.
Then

#F (H) ≤ (q + 1)(c(n, F )− ζFnr−1) + (2q + 2− n/r)(n/r)r−1 + δ0n
r−1.

In particular, if q ≥ (πF + δ0)n, then

#F (H)− tF (n, q) ≤ αFnr − (πF + δ0)ζFnr + o(nr) < −δ0ζFnr/2,

thus proving the upper bound c1,0(F ) ≤ πF , as required.

4.2 Non-tightness of Theorem 3.6

We now exhibit a graph for which c1(F ) > min(πF , θF ). Let F be the graph in Figure 2. Inter-
estingly, for this graph, ρF = ρ̂F =∞, so we only have to show that c1(F ) > πF . This inequality
is strict because, for not too large q, we can reduce the number of copies of F by distributing the
bad edges among the two parts of Kn/2,n/2 instead of placing them all into one part.

Theorem 4.2. c1,0(F ) = 3−
√

5
4 > 1/6 = πF and c1,1(F ) = 1/3.

Proof. First note that F is 2-critical and ab is the unique critical edge. There is a unique (up to
isomorphism) 2-coloring χ of F − ab with χ−1(1) = {a, b, f} and χ−1(2) = {c, d, e, g}. It readily
follows that

c(n1, n2;F ) =
(
n2

3

)
(n1 − 2)(n2 − 3)

and αF = (3! · 25)−1. Taking derivatives, we observe that ζF = 2−5 and πF = 1/6.
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Figure 2: Example for non-tightness of Theorem 3.6.

We also have
PF (ξ) =

1
4 · 3!

(ξ1ξ32 + ξ31ξ2),

which, if we fix ξ1 + ξ2, is minimized by maximizing the difference. Hence, ρF =∞.
However, note that there exists a 2-coloring χ∗ of F − ab − fg with χ∗(a) = χ∗(b) = χ∗(f) =

χ∗(g) = 1. In fact, if u1v1, u2v2 are two distinct edges in F , there is no 2-coloring χ′′ of F −
u1v1 − u2v2 with χ′′(u1) = χ′′(v1) and χ′′(u2) = χ′′(v2) unless {u1v1, u2v2} = {ab, fg} and χ′′ is
isomorphic to χ∗. That is, for any H ∈ T qr (n), the only copies of F in H that use exactly two bad
edges correspond to χ∗.

Once again, as ρF =∞, (12) is violated unless M(H) = ∅ for any H ∈ HF (n, q). In addition,
by Claim 3.7, if H ⊇ K(V1, V2) with |V1| ≥ |V2|, then

|B1| ≥ |B1| − |B2| ≥ (1− δ0)(|V1| − |V2| − 1)πFn.

In fact, we will show if n is even, |V1| ≥ |V2|+ 2, and q < n/5 then B2 = ∅.
As a result of Claim 3.7 we may initially assume that |B1| ≥ (1 − δ0)n/6. Now, if B2 6= ∅,

an edge uv ∈ B2 is contained in at least c(n2, n1;F ) > c(n1, n2;F ) + 2(ζF − δ0)n4 copies of F .
However, if we remove uv and replace it with an edge xy where x, y ∈ V1 have dB(x), dB(y) < 3,
we form at most c(n1, n2;F ) + 4q

(
n/2
3

)
+ δ0n

4 copies of F . As

2ζFn4 = 2−4n4 > n4/60 ≥ qn3/12,

this alteration reduces the number of copies of F . So, #F (H) is minimized by making B2 = ∅.
Therefore, we have at least (1− 2δ0)q2/2 disjoint pairs of edges in B1, each of which forms 4

(|V2|
3

)
copies of F . It follows that

#F (H) ≥ (q + a2)(c(n, F )− aζFn4) + q2
n3

24
− δ0n5, (14)

where a = |V1| − n/2 = n/2− |V2| ≥ 1. We note that (14) is minimized when a = 1.
On the other hand, if H∗ ∈ T q2 (n), we may place q/2 edges in each of B1 and B2, thereby

forming at most q2/4 pairs of bad edges that lie in the same part. Thus,

#F (H∗) ≤ qc(n, F ) + q2
n3

48
+ δ0n

5. (15)

Comparing the above quantities, and solving the resulting quadratic inequality, we see that c1,0(F ) ≥
3−
√

5
4 .
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The upper bound follows by noting that inequalities (14) and (15) may be changed to equations
by replacing the last term with ±δ0n5.

On the other hand, if n is odd, and H ∈ T qr (n) contains q1 bad edges in B1 and q2 edges in
B2, we have

#F (H) = (q1 + q2)αFn5 + q2ζFn
4 + (q21 + q22)

(
n/2
3

)
± δ0n5.

For q = q1 + q2 < 3n/8, this is minimized by letting q2 = 0. By a similar argument as above, it
follows that c1,1(F ) ≤ 2πF = 1/3, thereby completing the proof.

4.3 Pair-free graphs

One property of the graph in Figure 2 is that there exists a 2-coloring of the vertices that would
be a proper 2-coloring with the deletion of exactly two edges. We now consider graphs which do
not have this property.

Definition 4.3. Let F be an r-critical graph. We say that F is pair-free if there do not exist two
(different, but not necessarily disjoint) edges u1v1, u2v2 and a proper r-coloring χ of F−u1v1−u2v2

such that χ(u1) = χ(u2) = χ(v1) = χ(v2).

Many interesting graphs belong to this class, e.g., odd cycles and cliques. In addition, graphs
obtained from the complete r-partite graph Ks1,...,sr by adding an edge to the part of size s1 are
pair-free if si ≥ 3 for all i ≥ 2.

Theorem 4.4. Let F be pair-free and let t = sgn(ζF ). Then c1,t(F ) ≤ 2πF and c1,i(F ) ≤ πF for
i 6≡ t (mod r).

Proof. Let n be large and q = (πF + δ0)n. We prove the case n 6≡ t (mod r); the other case follows
in a similar manner. Write n = n1 + . . . + nr, where c(n, F ) = c(n1, . . . , nr;F ) and consider the
partition n = n′1 + n′2 + . . . + n′r where n′1 = n1 + t, n′2 = n2 − t and n′i = ni for i = 3, . . . r.
Construct H ′ as follows: H ′ ⊇ K(V ′1 , . . . , V

′
r ) with |V ′i | = n′i. Next place q + 1 bad edges in V ′1 to

form an almost regular bipartite graph. We claim that #F (H ′) < #F (H) for any H ∈ T qr (n).
First of all, each bad edge in H ′ is contained in at most c(n, F ) − |ζF |nf−3 + O(nf−4) copies

of F that contain only one bad edge. As F is pair-free, no copy of F contains exactly two bad
edges. In addition, we may bound the number of copies of F that use at least three bad edges by
O(nf−3).

On the other hand, #F (H) ≥ qc(n, F ). Therefore,

#F (H ′)−#F (H) ≤ (q + 1)
(
c(n, F )− |ζF |nf−3

)
+O(nf−3)− qc(n, F )

< αFn
f−2 − (πF + δ0)n|ζF |nf−3 +O(nf−3) < 0,

proving the theorem.

For odd cycles, this implies that c1,0(C2k+1) = 1/2. In fact, with more effort, it is possible to
show that c1,1(C2k+1) = 1. However, the proof is quite involved as one has to account for copies
of C2k+1 that may appear in various configurations. We direct the interested reader to [21].

If deg(PF ) ≥ r+ 1, Theorem 3.5 implies that c1,i(F ) ≤ ρ̂F − (1− 1/r). So, if F is pair-free and
ρF = ρ̂F , we have the exact value of c1,i(F ). This is the case for F = K+

s,t where t ≥ 3.
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Lemma 4.5. Let s, t ≥ 2 and F = K+
s,t be obtained from the complete bipartite graph Ks,t by

adding an edge to the part of size s. Then ρF = ρ̂F .

Proof. Clearly, F = K+
s,t is 2-critical and

c(n1, n2;K+
s,t) =

(
n2

t

)(
n1 − 2
s− 2

)
.

It readily follows that

αF =
2−(t+s−2)

t!(s− 2)!
, ζF = (t− s+ 2)

2−(t+s−3)

t!(s− 2)!
, and

πF =

∞, if t = s− 2,

(2(t− s+ 2))−1, otherwise.

On the other hand,

PF (ξ) =
2−s+2

t!(s− 2)!
(ξ1ξt2 + ξt1ξ2).

As PF is a homogeneous polynomial, we restrict ourselves to ξ1 + ξ2 = 1. Namely, let

ϕs,t(y) = PF (1/2 + y, 1/2− y) =
2−s+2

t!(s− 2)!

(
(1/2 + y)(1/2− y)t + (1/2 + y)t(1/2− y)

)
.

We observe that ϕs,t(y) is an even function with ϕs,t(1/2) = ϕs,t(−1/2) = 0 and ϕs,t(0) = αF .
Routine calculations show that the coefficient sk of yk in ϕ′s,t(y) is(

(−1)k − 1
)

(2k + 1− t)
(
t

k

)
2(s−2)+(k−t)

t!(s− 2)!
.

It follows that sk = 0 when k = (t − 1)/2 or k is even. Otherwise, if k < (t − 1)/2 (resp.
k > (t− 1)/2), then sk is positive (resp. negative).

That is, for t ≥ 4, the coefficients of ϕ′s,t(y) change sign exactly once. So, ϕ′s,t(y) has exactly
one positive root and, by symmetry, exactly one negative root. As ϕ′′s,t(0) = 2−s+2

t!(s−2)!
4t(t−3)

2t > 0 for
t ≥ 4, it follows that (0, αF ) is the unique local minimum for φs,t with the two roots of p′t providing
local maxima.

In addition, if t = 2, 3, φ′s,t(y) is a decreasing odd polynomial. So, (0, α) is the unique maximum
point of φs,t(y) and no other local maxima or minima exist. It follows that ρ̂F = ρF =∞ in these
two cases.

If t ≥ 4, we may solve for ρF as the root of a polynomial equation. In particular, if ξ ∈ Sρ
with ξ1 = ξ2 = ρ/2, we have PF (ξ) = αF ρ

t+1. Comparing this quantity with αF (ρ − (1 − 1/r)),
we observe that ρF is the smallest positive root of the equation ρt+1 = ρ − 1/2. We also obtain
the bounds 2−t−1 < θF < 2−t on θF for t ≥ 4.

Now, if ρF 6= ρ̂F , then the two curves αF ρt+1 and αF (ρ − (1 − 1/2)) must be tangent at ρF .
Therefore, ρF is not only a root of g1(ρ) = ρt+1 − ρ + 1/2, but also of its derivative g′1(ρ) =
(t+ 1)ρt − 1. However, as (t+ 1) < (5/3)t and 2−t < 1/10 for t ≥ 4, we have

ρF = (t+ 1)−1/t > 3/5 > (1/2 + 2−t),

resulting in a contradiction. Hence, ρF = ρ̂F .
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Theorem 4.6. Let s, t ≥ 2 and F = K+
s,t. Then c1(F ) = c1,0(F ) = min(πF , θF ) and c1,1(F ) =

min(2πF , θF ).

Proof. Theorems 3.6 and 4.4 and Lemma 4.5 imply the result for t ≥ 3. On the other hand, if
t = 2, we note that K+

s,2 is not pair-free. However, the case K+
2,2 = K4− e is covered in Section 4.1

and the argument in Claim 4.1 can be extended to the cases where s ≥ 3.
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