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SET SYSTEMS WITHOUT A STRONG SIMPLEX∗

TAO JIANG† , OLEG PIKHURKO‡ , AND ZELEALEM YILMA‡

Abstract. A d-simplex is a collection of d + 1 sets such that every d of them have nonempty
intersection and the intersection of all of them is empty. A strong d-simplex is a collection of d + 2
sets A,A1, . . . , Ad+1 such that {A1, . . . , Ad+1} is a d-simplex, while A contains an element of ∩j !=iAj

for each i, 1 ≤ i ≤ d + 1. Mubayi and Ramadurai [Combin. Probab. Comput., 18 (2009), pp. 441–
454] conjectured that if k ≥ d + 1 ≥ 3, n > k(d + 1)/d, and F is a family of k-element subsets
of an n-element set that contains no strong d-simplex, then |F| ≤

(n−1
k−1

)
with equality only when

F is a star. We prove their conjecture when k ≥ d + 2 and n is large. The case k = d + 1 was
solved in [M. Feng and X. J. Liu, Discrete Math., 310 (2010), pp. 1645–1647] and [Z. Füredi, private
communication, St. Paul, MN, 2010]. Our result also yields a new proof of a result of Frankl and
Füredi [J. Combin. Theory Ser. A, 45 (1987), pp. 226–262] when k ≥ d+ 2 and n is large.
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1. Introduction. For any integer k ≥ 2, we denote the family of all k-element
subsets of [n] := {1, . . . , n} by

([n]
k

)
. A family F of sets is a star if there exists an

element x that lies in all the members in F . We say F is an intersecting family if every
two of its members have nonempty intersection. We use |F| to denote the cardinality
of F , i.e., the number of members in F .

The following is one of the most important results in extremal combinatorics.
Theorem 1.1 (Erdős, Ko, and Rado [5]). Let n ≥ 2k and let F ⊆

([n]
k

)
be an

intersecting family. Then |F| ≤
(
n−1
k−1

)
. If n > 2k and equality holds, then F is a

star.
The forbidden configuration in Theorem 1.1 consists of a pair of disjoint sets. A

generalization of this configuration, with geometric motivation, is as follows.
Definition 1.2. Fix d ≥ 1. A family of sets is d-wise-intersecting if every d of

its members have nonempty intersection. A collection of d + 1 sets A1, A2, . . . , Ad+1

is a d-dimensional simplex (or a d-simplex) if it is d-wise-intersecting but not (d+1)-
wise-intersecting (that is, ∩d+1

i=1Ai = ∅).
Note that a 1-simplex is a pair of disjoint edges, and Theorem 1.1 states that if

F ⊆
(
[n]
k

)
with n ≥ 2k and |F| >

(
n−1
k−1

)
, then F contains a 1-simplex. In general,

it is conjectured that the same threshold for F guarantees a d-simplex for every d,
1 ≤ d ≤ k− 1. For d = 2, this was a question of Erdős [4], while the following general
conjecture was formulated by Chvátal.

Conjecture 1.3 (Chvátal [2]). Suppose that k ≥ d+1 ≥ 2 and n ≥ k(d+1)/d. If
F ⊆

(
[n]
k

)
contains no d-simplex, then |F| ≤

(
n−1
k−1

)
. Equality holds only if F is a star.
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Another motivation (see [2, page 358]) is that when we formally let d = k, then
we obtain the famous open problem of finding the Turán function of the hypergraph([k+1]

k

)
, posed by Turán [18] in 1941.

Various partial results on the case d = 2 of the conjecture were obtained in
[1, 2, 3, 7, 8] until this case was completely settled by Mubayi and Verstraëte [16].
Conjecture 1.3 has been proved by Frankl and Füredi [9] for every fixed k, d if n is
sufficiently large. Keevash and Mubayi [13] have also proved the conjecture when k/n
and n/2− k are both bounded away from zero.

Mubayi [14] proved a stability result for the case d = 2 of Conjecture 1.3 and
conjectured that a similar result holds for larger d.

Conjecture 1.4 (Mubayi [14]). Fix k ≥ d+1 ≥ 3. For every δ > 0, there exist
ε > 0 and n0 = n0(ε, k) such that the following holds for all n > n0. If F ⊆

(
[n]
k

)

contains no d-simplex and |F| > (1 − ε)
(n−1
k−1

)
, then there exists a set S ⊆ [n] with

|S| = n− 1 such that |F ∩
(
S
k

)
| < δ

(
n−1
k−1

)
.

Subsequently, Mubayi and Ramadurai [15] proved Conjecture 1.4 in a stronger
form except in the case k = d+ 1, as follows.

Definition 1.5. Fix d ≥ 1. A collection of d + 2 sets A,A1, A2, . . . , Ad+1 is a
strong d-simplex if {A1, A2, . . . , Ad+1} is a d-simplex and A contains an element of
∩j $=iAj for each i ∈ [d+ 1].

Note that a strong 1-simplex is a collection of three sets A,B,C such that A∩B
and B ∩ C are nonempty, and A ∩ C is empty. Note also that if a family F contains
no d-simplex, then certainly it contains no strong d-simplex (but not vice versa).
The main result of Mubayi and Ramadurai [15] can be formulated using asymptotic
notation as follows, where o(1) → 0 as n → ∞.

Theorem 1.6 (Mubayi and Ramadurai [15]). Fix k ≥ d+ 2 ≥ 3. Let F ⊆
([n]

k

)

contain no strong d-simplex. If |F| ≥ (1 − o(1))
(
n−1
k−1

)
, then there exists an element

x ∈ [n] such that the number of sets of F omitting x is o(nk−1).

Corollary 1.7 (Mubayi and Ramadurai [15]). Fix k ≥ d+2 ≥ 3. Let F ⊆
(
[n]
k

)

contain no strong d-simplex. Then |F| ≤ (1 + o(1))
(n−1
k−1

)
as n → ∞.

In [13], a similar stability result was proved when k/n and n/2 − k are both
bounded away from 0, and the result was used to settle Conjecture 1.3 in this range
of n.

Let us describe our contribution. First, we observe that Theorem 1.6 does not
hold when k = d+ 1.

Proposition 1.8. Let k = d + 1 ≥ 2. For every ε > 0 there is n0 such that for
all n ≥ n0 there is a k-graph F with n vertices and at least (1− ε)

(n−1
k−1

)
edges without

a strong d-simplex such that every vertex contains at most εnk−1 edges of F .
The authors of [15] pointed out that that they were unable to use Theorem 1.6 to

prove the corresponding exact result for large n (which would give a new proof of the
result of Frankl and Füredi [9]). They subsequently made the following conjecture,
which is a strengthening of Chvátal’s conjecture.

Conjecture 1.9 (Mubayi and Ramadurai [15]). Let k ≥ d + 1 ≥ 3, n >
k(d + 1)/d, and F ⊆

([n]
k

)
contain no strong d-simplex. Then |F| ≤

(n−1
k−1

)
with

equality only for a star.
In section 4, we will prove Conjecture 1.9 for all fixed k ≥ d+ 2 ≥ 3 and large n.
Theorem 1.10. Let k ≥ d + 2 ≥ 3 and let n be sufficiently large. If F ⊆

([n]
k

)

contains no strong d-simplex, then |F| ≤
(
n−1
k−1

)
with equality only for a star.

The case k = d+1 behaves somewhat differently from the general case k ≥ d+2
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in that by Proposition 1.8 there are almost extremal configurations very different from
a star. In an earlier version of this paper, we were able to prove the case k = d + 1
of Conjecture 1.9 for all n ≥ 5 when k = 3. Very recently, Feng and Liu [6] solved
the case k = d+1, using a weight counting method used by Frankl and Füredi in [9].
Independently, Füredi [10] has obtained the same proof, which is short and follows
readily from the counting method.

Independently of us, Füredi and Özkahya [12] have re-proved our main result,
Theorem 1.10, in a stronger form (for k ≥ d+2 and large n). Namely, they can addi-
tionally guarantee that (in the notation of Definition 1.5) the sets A1 \A, . . . , Ad+1 \A
are pairwise disjoint, while the sets A \ Ai, . . . , A \ Ad+1 partition A and have any
specified nonzero sizes. Füredi and Özkahya’s proof uses a sophisticated version of
the delta system method that has been developed in earlier papers such as [9] and
[11]. Their method is very different from ours.

The problem of forbidding a d-simplex where we put some extra restrictions on
the sizes of certain Boolean combinations of edges has also been studied before, with
one particularly interesting paper being that of Csákány and Kahn [3], which uses a
homological approach.

Frankl and Füredi’s proof [9] of Chvátal’s conjecture for a d-simplex for large n is
very complicated. Together with the stability result in [15], we obtained a new proof
of a stronger result. One key factor seems be that having a special edge A in a strong
d-simplex {A,A1, . . . , Ad+1} that contains an element in every d-wise intersection
in the d-simplex {A1 . . . , Ad+1} facilitates induction arguments very nicely. This
observation, already made in [15], further justifies the interest in strong d-simplices.

2. Some notation and conventions. As is usual in the literature, a collection
F of k-element subsets of a set V is also called a k-uniform hypergraph on V , where
elements of V are called vertices (or points) and members of F are called hyperedges
(or simply edges). We usually identify (hyper)graphs with their edge sets; thus, for
example, |F| denotes the number of edges of F .

Let F ⊆
([n]

k

)
. Recall that a strong d-simplex L in F consists of d+2 hyperedges

A,A1, A2, . . . , Ad+1 such that every d of A1, . . . , Ad+1 have nonempty intersection but
∩d+1
i=1Ai = ∅. Furthermore, A contains an element of ∩j $=iAi for each i ∈ [d+1]. This

means that we can find some d + 1 elements v1, v2, . . . , vd+1 in A such that for each
i ∈ [d+1], vi ∈ ∩j $=iAj . Note that v1, v2, . . . , vd+1 are distinct because no element lies
in all of A1, . . . , Ad+1. We call A the special edge for L and the set {v1, v2, . . . , vd+1} a
special (d+1)-tuple for L. (Note that there may be more than one choice of a special
(d+ 1)-tuple.)

As usual, the degree dF (x) (or simply d(x)) of a vertex x in F is the number of
hyperedges that contain x. For a positive integer p, the p-shadow of F is defined as

∆p(F) = {S ⊆ [n] : |S| = p, S ⊆ D for some D ∈ F}.
Also, we let

Tp+1(F) = {T : T is a special (p+ 1)-tuple for some strong p-simplex in F}.

For each p ∈ [k − 2], let

∂∗
p(F) = |∆p(F)|+ |Tp+1(F)|.

Given a vertex x in a hypergraph F , let

F − x = {D : D ∈ F , x /∈ D},
Fx = {D \ {x} : D ∈ F , x ∈ D}.
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3. Proof of Proposition 1.8. We have to show that if k = d+1, then there is
no stability. Let ε > 0 be given. Choose large m such that

(
m−1
k−1

)
> (1 − ε/2)

(
m

k−1

)
.

Let the complete star H ⊆
([m]

k

)
consist of all k-tuples containing 1. Clearly, H has

no (k − 1)-simplex. Let n → ∞. A result of Rödl [17] shows that we can find an
m-graph F ⊆

([n]
m

)
with at least (1− ε/2)

( n
k−1

)
/
( m
k−1

)
edges such that every two edges

of F intersect in at most k− 2 vertices. Replace every edge of F by a copy of the star
H. Since no k-subset of [n] is contained in two edges of F , the obtained k-graph G is
well defined.

Next, we observe that G has no strong (k−1)-simplex S. Indeed the special k-set
X of S intersects every other edge of S in k−1 vertices; thus ifX belongs to some copy
of the star H, then every other edge of S belongs to the same copy, a contradiction.

The size of G is at least (1−ε/2)
( n
k−1

)
/
( m
k−1

)
×(1−ε/2)

( m
k−1

)
> (1−ε)

( n
k−1

)
. Also,

by the packing property of F , the number of edges of G containing any one vertex is
at most

(
n−1
k−2

)
/
(
m−1
k−2

)
×
(
m−1
k−1

)
< εnk−1 when n is large. This establishes Proposition

1.8.

4. Proof of Theorem 1.10. In order to prove Theorem 1.10, we first establish
a general lower bound on ∂∗

p(F) in Theorem 4.5, which is of independent interest.
Then we will use Theorem 4.5 to prove Theorem 1.10.

We need several auxiliary lemmas. The first follows readily from Corollary 1.7.
Lemma 4.1. For each k ≥ d + 2 ≥ 3, there exists an integer nk,d such that for

all integers n ≥ nk,d if H ⊆
(
[n]
k

)
contains no strong d-simplex, then |H| ≤ 2

(
n−1
k−1

)
.

Lemma 4.2. For every k ≥ p + 2 ≥ 3, there exists a positive constant βk,p such
that the following holds.

Let nk,p be defined as in Lemma 4.1. Let H be a k-uniform hypergraph with

n ≥ nk,p vertices and m > 4
(
n−1
k−1

)
edges. Then |Tp+1(H)| ≥ βk,pm

p
k−1 .

Proof. From m > 4
(n−1
k−1

)
, we get n < λkm

1
k−1 for some constant λk depending

only on k. Since m > 4
(n−1
k−1

)
and n ≥ nk,p, by Lemma 4.1, H contains a strong

p-simplex L with A being its special edge. Let us remove the edge A from H. As
long as H still has more than m/2 > 2

(n−1
k−1

)
edges left, we can find another strong

p-simplex and remove its special edge from the hypergraph. We can repeat this at
least m/2 times. This produces at least m/2 different special edges. Each special
edge contains a special (p + 1)-tuple. Each special (p + 1)-tuple is clearly contained
in at most

(
n−p−1
k−p−1

)
special edges. So the number of distinct (p+1)-tuples in Tp+1(H)

is at least m
2(n−p−1

k−p−1)
. Using n < λkm

1
k−1 , we get |Tp+1(H)| ≥ βk,pm

p
k−1 for some small

positive constant βk,p depending on k and p only.
The next lemma provides a key step to our proof of Theorem 4.5. To some extent,

it shows that the notions of strong simplices and special tuples facilitate induction
very nicely.

Lemma 4.3. Let k ≥ p+ 2 ≥ 3. Let F be a k-uniform hypergraph and x a vertex
in F . Suppose that T ∈ Tp(Fx) ∩∆p(F − x). Then T ∪ {x} ∈ Tp+1(F).

Proof. Note that Fx is (k− 1)-uniform. By our assumption, T is a special p-tuple
for some strong (p−1)-simplex L = {A,A1, . . . , Ap} in Fx, where A is the special edge
and A ⊇ T . By definition, {A1, . . . , Ap} is (p− 1)-wise-intersecting, but ∩p

i=1Ai = ∅.
Suppose that T = {v1, . . . , vp}, where for each i ∈ [p] we have vi ∈ ∩j $=iAj . Since
T ∈ ∆p(F − x), there exists D ∈ F − x such that T ⊆ D.

For each i ∈ [p], let A′
i = Ai ∪ {x}. Let A′

p+1 = D and A′ = A ∪ {x}. Let
L′ = {A′, A′

1, . . . , A
′
p+1} ⊆ F . We claim that {A′

1, . . . , A
′
p+1} is a p-simplex in F .
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Indeed, x ∈ ∩p
i=1A

′
i. Also, for each i ∈ [p], vi ∈ ∩j∈[p+1]\{i}A

′
j . So, {A′

1, . . . , A
′
p+1} is

p-wise-intersecting. Since ∩p
i=1Ai = ∅, the only element in ∩p

i=1A
′
i is x. But x /∈ D

since D ∈ F − x. So ∩p+1
i=1A

′
i = ∅. This shows that {A′

1, . . . , A
′
p+1} is a p-simplex in

F .
Now, let T ′ = T ∪ {x} = {x, v1, . . . , vp}. Then A′ contains T ′. Let vp+1 = x. For

all i ∈ [p+1] we have vi ∈ ∩j∈[p+1]\{i}A
′
j . Since A

′ contains v1, . . . , vp+1, L′ is a strong
p-simplex in F with T ′ being a special (p+ 1)-tuple. That is, T ′ ∈ Tp+1(F).

Lemma 4.4. Let k > j ≥ 2. Let F be a k-graph and let x be a vertex of F . Then

∂∗
j (F) ≥ ∂∗

j (F − x) + ∂∗
j−1(Fx).

Proof. We want to prove that

|∆j(F)|+ |Tj+1(F)| ≥ |∆j(F − x)|+ |Tj+1(F − x)| + |∆j−1(Fx)|+ |Tj(Fx)|.(4.1)

Let T ∈ Tj(Fx); that is, T is a special j-tuple in Fx. If T ∈ ∆j(F − x), we say
that T is of Type 1. If T /∈ ∆j(F−x), we say T is of Type 2. Suppose Tj(Fx) contains
a Type 1 special j-tuples and b Type 2 special j-tuples. Then a+ b = |Tj(Fx)|.

For each Type 1 special j-tuple T of Fx, by Lemma 4.3, T ∪ {x} ∈T j+1(F).
Furthermore, it is not in Tj+1(F − x) since T ∪ {x} contains x. Hence

|Tj+1(F)| ≥ |Tj+1(F − x)|+ a.(4.2)

For each Type 2 special j-tuple T of Fx, we have T ∈ ∆j(F) since T is contained
in some special edge in Fx which in turn is contained in some edge of F . Also, by
our definition of Type 2 special tuples, T /∈ ∆j(F − x). Furthermore, T is not of the
form S ∪ {x} since it does not contain x. Also, for each S ∈ ∆j−1(Fx), S ∪ {x} is an
element in ∆j(F) that is not in ∆j(F − x). Hence,

|∆j(F)| ≥ |∆j(F − x)|+ |∆j−1(Fx)|+ b.(4.3)

When we add (4.2) and (4.3), we obtain the desired inequality (4.1) completing
the proof of Lemma 4.4.

Theorem 4.5. For all k ≥ p + 2 ≥ 3, there exists a positive constant ck,p
such that the following holds: if F is a k-uniform hypergraph and m = |F|, then
∂∗
p(F) ≥ ck,pm

p
k−1 .

Proof. Let us remove all isolated vertices from F . Let n denote the number of
remaining (i.e., non-isolated) vertices of F . Let nk,p be defined as in Lemma 4.1, which
depends only on k and p. Suppose that n < nk,p. Since clearly m ≤

(
n
k

)
<

(nk,p

k

)
,

m
p

k−1 is upper bounded by some function of k and p. Hence, ∂∗
p(F) ≥ αk,pm

p
k−1 for

some small enough constant αk,p. So, as long as we choose ck,p so that ck,p ≤ αk,p,
the claim holds when n ≤ nk,p. To prove the general claim, we use induction on p.
For each fixed p, we use induction on n noting that when n ≤ nk,p, the claim has
already been verified.

For the basis step, let p = 1. Let ck,1 = min{αk,1,βk,1, 1/4}, where βk,1 is defined

in Lemma 4.2. First, suppose that m ≤ 4
(n−1
k−1

)
< 4nk−1. Then n > (m/4)

1
k−1 >

m
1

k−1 /4. We have ∂∗
1 (F) ≥ |∆1(F)| = n ≥ ck,1m

1
k−1 .

Next, suppose that m > 4
(n−1
k−1

)
. By Lemma 4.2, ∂∗

1 (F) ≥ |T2(F)| ≥ βk,1m
1

k−1 ≥
ck,1m

1
k−1 . This completes the proof of the basis step.
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For the induction step, let 2 ≤ j ≤ k − 2. Suppose the claim holds for p < j. We
prove the claim for p = j. We use induction on n. Let

ck,j = min

{
αk,j , βk,j ,

1

8k
ck−1,j−1

}
.

Suppose the claim has been verified for k-uniform hypergraphs on fewer than n
vertices. Let F be a k-uniform on n vertices. Suppose F has m edges. Suppose first

that m > 4
(n−1
k−1

)
. By Lemma 4.2, ∂∗

j (F) ≥ |Tj+1(F)| ≥ βk,jm
j

k−1 ≥ ck,jm
j

k−1 .

Next, suppose that m ≤ 4
(
n−1
k−1

)
< 4nk−1. Then n > m

1
k−1 /4. Hence, the average

degree of F is km/n < 4km
k−2
k−1 . Let x be a vertex in F of minimum degree d. Then

d < 4km
k−2
k−1 .

Note that Fx is (k − 1)-uniform with d edges. By the induction hypothesis, we

have ∂∗
j−1(Fx) ≥ ck−1,j−1d

j−1
k−2 . Also, F − x is a k-uniform hypergraph on fewer

than n vertices (and has m − d edges). By the induction hypothesis, ∂∗
j (F − x) ≥

ck,j(m− d)
j

k−1 . Hence, by Lemma 4.4 we have

∂∗
j (F) ≥ ck,j(m− d)

j
k−1 + ck−1,j−1d

j−1
k−2 .(4.4)

Recall that d ≤ 4km
k−2
k−1 . Also, d ≤ km/n. Since we assume that n is large (as a

function of k), we may further assume that d ≤ m/2.

Claim 1. We have ck,j(m− d)
j

k−1 + ck−1,j−1d
j−1
k−2 ≥ ck,jm

j
k−1 .

Proof of Claim 1. By the mean value theorem, there exists y ∈ (m − d,m) ⊆
(m/2,m) such that ck,jm

j
k−1 − ck,j(m− d)

j
k−1 = ck,jd

j
k−1y

j
k−1−1. It suffices to prove

that ck−1,j−1d
j−1
k−2 ≥ ck,jd

j
k−1y

j
k−1−1, which holds if ck−1,j−1y

k−j−1
k−1 ≥ ck,jd

k−j−1
k−2 .

Since y ≥ m/2, d ≤ 4km
k−2
k−1 , and ck,j ≤ 1

8k ck−1,j−1, one can check that the last
inequality holds.

By (4.4) and Claim 1, we have ∂∗
j (F) ≥ ck,jm

j
k−1 . This completes the proof.

Lemma 4.6. Let k ≥ d + 2 ≥ 3. Let F ⊆
(
[n]
k

)
contain no strong d-simplex. Let

x ∈ [n]. Let C = {u1, . . . , ud} ∈ ∆d(F−x)∩∆d(Fx). Let A,B ∈ F with x ∈ A, x /∈ B
and C ⊆ A ∩B. Let W ⊆ [n] \ (A ∪ B) such that |W | = k − d. For each i ∈ [d], let
Ei

W = ({x} ∪ C ∪W ) \ {ui}. Then for at least one i ∈ [d], we have Ei
W /∈ F .

Proof. Suppose on the contrary that, for all i ∈ [d], Ei
W ∈ F . Consider the

collection {A,B,E1
W , . . . , Ed

W }. We have ∩d
i=1E

i
W = {x} ∪ W . For each i ∈ [d],

∩j $=iE
j
W = {x, ui} ∪ W , and so (∩j $=iE

j
W ) ∩ B = {ui}. This also implies that

(∩d
i=1E

i
W ) ∩ B = ∅. Hence {B,E1

W , . . . , Ed
W } is d-wise-intersecting but not (d + 1)-

wise-intersecting. That is, it is a d-simplex. As A contains an element of each d-wise
intersection among {B,E1

W , . . . , Ed
W }, these d+ 2 sets form a strong d-simplex in F ,

a contradiction.
Now, we are ready to prove Theorem 1.10.
Proof of Theorem 1.10. Given d and k, let n be large. Suppose on the contrary

that F ⊆
(
[n]
k

)
contains no strong d-simplex, |F| ≥

(
n−1
k−1

)
, and F is not a star. We

derive a contradiction. By Theorem 1.6, there exists an element x ∈ [n] such that
|F − x| = o(nk−1) (that is, almost all edges of F contain x). Let

B = F − x,

M =

{
D ∈

(
[n]

k

)
: x ∈ D,D /∈ F

}
.
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We call members of B bad edges and members of M missing edges. So, bad edges
are those edges in F not containing x, and missing edges are those k-tuples containing
x which are not in F . Since

(n−1
k−1

)
≤ |F| =

(n−1
k−1

)
− |M| + |B|, we have |B| ≥ |M|.

Let b = |B|. By the definition of x,

b = o(nk−1).(4.5)

By Theorem 4.5, |∆d(B)| + |Td+1(B)| = ∂∗
d(B) ≥ ck,db

d
k−1 . Since B ⊆ F , B

contains no strong d-simplex. So, |Td+1(B)| = 0. It follows that

|∆d(B)| ≥ ck,db
d

k−1 .

Let

S1 = ∆d(B) \∆d(Fx) and S2 = ∆d(B) ∩∆d(Fx).

We consider two cases.
Case 1. |S1| ≥ |∆d(B)|/2.
For any C ∈ S1 and a set W ⊆ [n] \ (C ∪ {x}) of size k − d − 1, the k-tuple

D = {x}∪C ∪W does not belong to F because C /∈ ∆d(Fx). So D ∈ M. Doing this
for each C ∈ S1 yields a list of

(n−d−1
k−d−1

)
|S1| edges (with multiplicity) in M. An edge

D = {x, y1, . . . , yk−1} may appear at most
(k−1

d

)
times in this list, as it is counted

once for each d-subset of {y1, . . . , yk−1} that appears in S1. Therefore,

b ≥ |M| ≥
(
n−d−1
k−d−1

)
|S1|(

k−1
d

) ≥ c · b
d

k−1nk−d−1(4.6)

for some properly chosen small positive constant c (depending on k only). Solving
(4.6) for b, we get b ≥ c′ · nk−1 for some small positive constant c′. This contradicts
(4.5) for sufficiently large n.

Case 2. |S2| ≥ |∆d(B)|/2.
By Lemma 4.6, for every d-tuple C ∈ S2 we may find two edges A,B ∈ F

such that for every (k − d)-set W ⊆ [n] \ (A ∪ B) there exists u ∈ C such that
({x} ∪ C ∪W ) \ {u} ∈M . So, we obtain a collection of at least

(n−2k
k−d

)
|S2| members

of M. Pick an edge D = {x, y1, . . . , yk−1} in M and consider its multiplicity in this
collection. The edgeD may appear each time a (d−1)-subset of {y1, . . . , yk−1} belongs
to some d-tuple in S2. There are

(
k−1
d−1

)
such subsets, and each may be completed to

form a d-tuple in at most n− d+ 1 ways by picking the vertex u. Thus,

b ≥ |M| ≥
(
n−2k
k−d

)
|S2|

(n− d+ 1)
(
k−1
d−1

) ≥ c′′ · b
d

k−1 · nk−d−1

for some small positive constant c′′. From this, we get b ≥ c′′′ ·nk−1 for some positive
constant c′′′, which again contradicts (4.5) for sufficiently large n. This completes the
proof of Theorem 1.10.
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