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Abstract

Let F (n, r, k) denote the maximum number of edge r-colorings without a monochromatic

copy of Kk that a graph with n vertices can have.

Addressing two questions left open by Alon, Balogh, Keevash, and Sudakov [J. London

Math. Soc., 70 (2004) 273–288], we determine F (n, 4, 3) and F (n, 4, 4) and describe the ex-

tremal graphs for all large n.

1 Introduction

Given a graph G and integers k ≥ 3 and r ≥ 2, let F (G, r, k) denote the number of distinct edge
r-colorings of G that are Kk-free, that is, do not contain a monochromatic copy of Kk, the complete
graph on k vertices. Note that we do not require that these edge colorings are proper (that is,
we do not require that adjacent edges get different colors). We consider the following extremal
function:

F (n, r, k) = max{F (G, r, k) : G is a graph on n vertices },

the maximum value of F (G, r, k) over all graphs of order n.
One obvious choice for G is to take a maximum Kk-free graph of order n. The celebrated

theorem of Turán [15] states that ex(n,Kk), the maximum size of a Kk-free graph of order n, is
attained by a unique (up to isomorphism) graph, namely the Turán graph Tk−1(n) which is the
complete (k − 1)-partite graph on n vertices with parts of size b n

k−1c or d n
k−1e. Thus

ex(n,Kk) = tk−1(n), for all n, k ≥ 2, (1)

where tk−1(n) denotes the number of edges in Tk−1(n). This gives the following trivial lower bound
on our function:

F (n, r, k) ≥ F (Tk−1(n), r, k) = rtk−1(n). (2)
∗Partially supported by the National Science Foundation, Grant DMS-0758057, and the Alexander von Humboldt

Foundation.
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Erdős and Rothschild (see [5, 6]) conjectured that this is best possible when r = 2 and k = 3.
Yuster [16] proved that, indeed, F (n, 2, 3) = 2t2(n) = 2bn

2/4c for large enough n. Both sets of
authors further conjectured that this holds for all k when we have r = 2 colors. Alon, Balogh,
Keevash, and Sudakov [1] not only settled this conjecture for large n but also showed that it holds
for 3-colorings as well, i.e., we have equality in (2) when r = 2, 3, k ≥ 3, and n > n0(k).

The generalization of the problem where one has to avoid a monochromatic copy of a general
graph F was also studied in [1]. The papers [8, 10, 11, 12] studied H-free edge colorings for
general hypergraphs H. In particular, Lefmann, Person, and Schacht [12] proved that, for every
k-uniform hypergraph F and r ∈ {2, 3}, the maximum number of F -free edge r-colorings over
n-vertex hypergraphs is rex(n,F )+o(nk). Interestingly, this result holds for every F even though the
value of the Turán function ex(n, F ) is known for very few hypergraphs F . Also, Balogh [3] studied
a version of the problem where a specific coloring of a graph F is forbidden. Alon and Yuster [2]
considered this problem for directed graphs (where one counts admissible orientations instead of
edge colorings).

Let us return to the original question. Surprisingly, Alon et al. [1] showed that one can do
significantly better than (2) for larger values of r. In two particular cases, they were also able to
obtain the best possible constant in the exponent. Namely they proved that

F (n, 4, 3) = 18n2/8+o(n2), (3)

F (n, 4, 4) = 34n2/9+o(n2). (4)

Let us briefly show the lower bounds in (3) and (4), which are given by F (T4(n), 4, 3) and
F (T9(n), 4, 4) respectively. Let W1, . . . ,Wk denote the parts of Tk(n). Consider T4(n) first. Fix a
function π that assigns to each pair {i, j} of {1, . . . , 4} a list π({i, j}) of two or three colors so that
each color appears in exactly four lists with the corresponding four pairs forming a 4-cycle. Up to
a symmetry, such an assignment is unique and we have two lists of size 2 and four lists of size 3.
Generate an edge coloring of T4(n) by choosing for each edge {u, v} with u ∈ Wi and v ∈ Wj

an arbitrary color from π({i, j}). Every obtained coloring is K3-free and, if we assume that e.g.
n = 4m, there are 34m2 · 22m2

= 18n2/8 such colorings. We proceed similarly for T9(n) except we
fix the (unique up to a symmetry) assignment where each pair from {1, . . . , 9} gets a list of three
colors while every color forms a copy of T3(9).

The goal of this paper is determine F (n, 4, 3) and F (n, 4, 4) exactly and describe all extremal
graphs for large n. Specifically, we will show the following results.

Theorem 1.1 There is N such that for all n ≥ N , F (n, 4, 3) = F (T4(n), 4, 3) and T4(n) is the
unique graph achieving the maximum.

Theorem 1.2 There is N such that for all n ≥ N , F (n, 4, 4) = F (T9(n), 4, 4) and T9(n) is the
unique graph achieving the maximum.

Thus a new phenomenon occurs for r ≥ 4: extremal graphs have many copies of the forbidden
monochromatic graph Kk. This makes the problem more interesting and difficult.

Similarly to [1], our general approach is to establish the stability property first: namely, that
all graphs with the number of colorings close to the optimum have essentially the same structure.
However, additionally to the approximate graph structure, we also have to describe how typical
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colorings look like. This task is harder and we do it in stages, getting more and more precise
description of typical colorings (namely, the properties called satisfactory, good, and perfect in our
proofs). We then proceed to show that the Turán graphs are, indeed, the unique graphs that
attain the optimum. It is not surprising that our proofs are longer and more complicated than
those in [1]. The case of r ≥ 4 colors seems to be much harder than the case r ≤ 3. It is not even
clear if there is a simple closed formula for F (T4(n), 4, 3) and F (T9(n), 4, 4). Our proofs imply that

F (T4(n), 4, 3) = (C + o(1)) · 18t4(n)/3, (5)

F (T9(n), 4, 4) = (20160 + o(1)) · 3t9(n), (6)

where C = (214 · 3)1/3 if n ≡ 2 (mod 4) and C = 36 otherwise.
Unfortunately, we could not determine F (n, r, k) for other pairs r, k, which seems to be an

interesting and challenging problem. Hopefully, our methods may be helpful in obtaining further
exact results.

This paper is organized as follows. In Section 2 we state a version of Szemerédi’s Regularity
Lemma and some auxiliary definitions and results that we use in our arguments. Theorem 1.1 is
proved in Section 3 and Theorem 1.2 is proved in Section 4.

2 Notation and Tools

For a set X and a non-negative integer k, let
(
X
k

)
(resp.

(
X
≤k

)
) be the set of all subsets of X with

exactly (resp. at most) k elements. Also, we denote
(

n
≤k

)
=
∑k

i=0

(
n
i

)
and [k] = {1, 2, . . . , k}. We

will often omit punctuation signs when writing unordered sets, abbreviating e.g. {i, j} to ij.
As it is standard in graph theory, we use V (G) and E(G) to refer to the vertex and edge set,

respectively, of a graph G. Also, v(G) = |V (G)| and e(G) = |E(G)| denote respectively the order
and size of G. In addition, for disjoint A,B ⊆ V (G), we use G[A] to refer to the subgraph induced
by A and G[A,B] for the induced bipartite subgraph with parts A and B. Let

NG(x) = {y ∈ V (G) : xy ∈ E(G)}

be the neighborhood of a vertex x in G. Let K(V1, . . . , Vl) denote the complete l-partite graph with
parts V1, . . . , Vl.

It will be often convenient to identify graphs with their edge sets. Thus, for example, |G| = e(G)
denotes the number of edges while G 4 H is the graph on V (G) ∪ V (H) whose edge set is the
symmetric difference of E(G) and E(H).

As we make use of a multicolor version of Szemerédi’s Regularity Lemma [14], we remind the
reader of the following definitions. Let G be a graph and A,B be two disjoint non-empty subsets
of V (G). The edge density between A and B is

d(A,B) =
e(G[A,B])
|A| |B|

.

For ε > 0, the pair (A,B) is called ε-regular if for every X ⊆ A and Y ⊆ B satisfying |X| > ε|A|
and |Y | > ε|B| we have

|d(X,Y )− d(A,B)| < ε.
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An equitable partition of a set V is a partition of V into pairwise disjoint parts V1, . . . , Vm of
almost equal size, i.e., | |Vi|−|Vj | | ≤ 1 for all i, j ∈ [m]. An equitable partition of the set of vertices
of G into parts V1, . . . , Vm is called ε-regular if |Vi| ≤ ε|V | for every i ∈ [m] and all but at most
ε
(
m
2

)
of the pairs (Vi, Vj), 1 ≤ i < j ≤ m, are ε-regular.

The following more general result can be deduced from the original Regularity Lemma of
Szemerédi [14] (cf. Theorems 1.8 and 1.18 in Komlós and Simonovits [9]).

Lemma 2.1 (Multicolor Regularity Lemma) For every ε > 0 and an integer r ≥ 1, there is
M = M(ε, r) such that for any graph G on n > M vertices and any (not necessarily proper) edge
r-coloring χ : E(G)→ [r], there is an equitable partition V (G) = V1 ∪ . . .∪Vm with 1/ε ≤ m ≤M ,
which is ε-regular simultaneously with respect to all graphs (V (G), χ−1(i)), i ∈ [r].

Also, we will need the following special case of the Embedding Lemma (see e.g. [9, Theo-
rem 2.1]).

Lemma 2.2 (Embedding Lemma) For every η > 0 and an integer k ≥ 2 there exists ε > 0,
such that the following holds for all large n. Suppose that G is a graph of order n with an equitable
partition V (G) = V1∪ . . .∪Vk such that every pair (Vi, Vj) for 1 ≤ i < j ≤ k is ε-regular of density
at least η. Then G contains Kk.

While we have tk(n) = (1− 1/k + o(1))
(
n
2

)
for n→∞, the following easy bound holds for all

k, n ≥ 1:

max{e(G) : v(G) = n, G is k-partite} = tk(n) ≤
(

1− 1
k

)
n2

2
. (7)

We will also use the following stability result for the Turán function (1).

Lemma 2.3 (Erdős [4] and Simonovits [13]) For every α > 0 and an integer k ≥ 1, there
exist β > 0 and n0 such that, for all n > n0, any Kk+1-free graph G on n vertices with at
least (1 − 1/k)n2/2 − βn2 edges admits an equitable partition V (G) = V1 ∪ . . . ∪ Vk with |G 4
K(V1, . . . , Vk) | < αn2.

3 Proof of Theorem 1.1

In this section we prove Theorem 1.1. Here we have to overcome many new difficulties that are
not present for 2 or 3 colors. So, unfortunately, the proof is long and complicated. In order to
improve its readability we split it into a sequence of lemmas. Since we use the Regularity Lemma,
the obtained value for N in Theorem 1.1 is very large and is of little practical value. Therefore we
make no attempt to determine or optimize it.

First, let us state some important definitions that are extensively used in the whole proof. Fix
positive constants

c0 � c1 � . . .� c10,

each being sufficiently small depending on the previous ones. Let M = 1/c9 and n0 = 1/c10.
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Typically, the order of a graph under consideration will be denoted by n and will satisfy n ≥ n0.
We will view n as tending to infinity with c0, . . . , c9 being fixed and use the asymptotic terminology
(such as, for example, the expression O(1) or the phrase “almost every”) accordingly.

Let Gn consist of graphs of order n that have many K3-free edge 4-colorings. Specifically,

Gn =
{
G : v(G) = n, F (G, 4, 3) ≥ 18n2/8 · 2−c8n2

}
.

Let G = ∪n≥n0Gn. The lower bound in (3) (whose proof we sketched in the Introduction) shows
that Gn is non-empty for each n ≥ n0.

Next, for an arbitrary graph G with n ≥ n0 vertices and a K3-free 4-coloring χ of the edges of G,
we will define the following objects and parameters. As the constants c8 and M satisfy Lemma 2.1
(namely, we can assume that M is at least the function M(c8, 4) returned by Lemma 2.1), we can
find a partition V (G) = V1 ∪ . . . ∪ Vm with 1/c8 ≤ m ≤M that is c8-regular with respect to each
color. Next, we define the cluster graphs H1, H2, H3, and H4 on vertex set [m], where H` consists
of those pairs ij ∈

(
[m]
2

)
such that the pair (Vi, Vj) is c8-regular and has edge density at least c7

with respect to the `-color subgraph χ−1(`) of G. For 1 ≤ s ≤ 4, let Rs be the graph on vertex set
[m] where ab ∈ E(Rs) if and only if ab ∈ E(H`) for exactly s values of ` ∈ [4]. Let R = ∪4

s=1Rs be
the union of the graphs Rs. Let rs = 2e(Rs)/m2.

We view m,Vi, Hi, Ri, R, ri as functions of the pair (G,χ). Although we may have some freedom
when choosing the c8-regular partition V1, . . . , Vm, we fix just one choice for each input (G,χ). We
do not require any “continuity” property from these functions: for example, it may be possible
that χ1 and χ2 are two colorings of the same graph G that differ on one edge only but ri(G,χ1)
and ri(G,χ2) are quite far apart.

By Lemma 2.2, each cluster graph Hi is triangle-free and, by Turán’s theorem (1), has at most
t2(m) edges. By (7),

r1 + 2r2 + 3r3 + 4r4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
≤ 2. (8)

In addition, note that R3∪R4 is triangle-free because a triangle in R3∪R4 gives a triangle in some
Hi. Therefore, by (1) and (7),

r3 + r4 ≤ 1/2. (9)

We also need the following “converse” procedure for generating all K3-free edge 4-colorings
of G. Our upper bounds on F (G, 4, 3) and some structural information about typical colorings
is obtained by estimating the possible number of outputs. Since the parameters r1, . . . , r4 play
crucial role in these estimates, some guesses of the functions m, Vi, and Hi (and thus of Ri, R,
and ri) are also generated. The procedure is rather wasteful in the sense that it can generate a
lot of “garbage”. But the obtained inequalities (8) and (9) imply the crucial property that every
K3-free edge 4-coloring of G with the correct guess of m, Vi, and Hi is generated at least once
provided v(G) ≥ n0.

The Coloring Procedure

1. Choose an arbitrary integer m′ between 1/c8 and M .

2. Choose an arbitrary equitable partition V (G) = V ′1 ∪ · · · ∪ V ′m′ .
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3. Choose arbitrary graphs H ′1, . . . ,H
′
4 with vertex set [m′] such that we have

r′1 + 2r′2 + 3r′3 + 4r′4 ≤ 2, (10)

r′3 + r′4 ≤ 1/2, (11)

where R′i, and r′i are defined by the direct analogy with Ri and ri. (For example, for i ∈ [4],
R′i is the graph on [m′] whose edges are those pairs of

(
[m′]
2

)
that are edges in exactly i graphs

H ′1, . . . ,H
′
4.)

4. Assign arbitrary colors to all edges of G that lie inside some part V ′i .

5. Select at most 4c8
(
m′

2

)
elements of

(
[m′]
2

)
and, for each selected pair ij, assign colors to

G[V ′i , V
′
j ] arbitrarily.

6. For every color l ∈ [4] and every ij ∈
(
[m′]
2

)
color an arbitrary subset of edges of G[V ′i , V

′
j ] of

size at most c7|V ′i | |V ′j | by color l.

7. For every edge xy of G that is not colored yet, let us say x ∈ V ′i and y ∈ V ′j , pick an arbitrary
color from the set Cij = {s ∈ [4] : ij ∈ H ′s}. If Cij = ∅, then we color xy with Color 1.

Lemma 3.1 For every graph G of order n ≥ n0, the number of choices in Steps 1–6 of the Coloring
Procedure is at most 2c6n2

.

Proof. Clearly, the number of choices in Steps 1–3 is at most

M · nM ·
(

2(M
2 )
)4

= 2O(log n). (12)

Fix these choices. Since m′ ≥ 1/c8, the number of edges that lie inside some part V ′i is at most
m′
(dn/m′e

2

)
≤ c6n

2/8; so the number of choices in Step 4 is at most 4c6n2/8. In Step 5 we have at

most 2(m′
2 ) · 44c8(m′

2 ) dn/m′e2 < 2c6n2/4 options. The number of choices in Step 6 is at most(
dn/m′e2

≤ c7dn/m′e2

)4(m′
2 )

< 2c6n2/4.

By multiplying these four bounds, we obtain the required.

The number of options in Step 7 can be bounded from above by(
2e(R′2) · 3e(R′3) · 4e(R′4)

)dn/m′e2

≤
(

2r′2 · 3r′3 · 4r′4

)n2/2+O(n)

= 2Ln2/2+O(n), (13)

where L = r′2 + log2(3) r′3 + 2r′4. One can easily show that the maximum of L given (10) and (11)
(and the non-negativity of r′1, . . . , r

′
4) is (log2 18)/4. When combined with Lemma 3.1, this allows

one to conclude that, for example,

F (n, 4, 3) ≤ 18n2/8 · 22c6n2
, for all n ≥ n0. (14)

This is essentially the argument from [1]. We need to take this argument further. As the first
step, we derive some information about r2 and r3 for a typical coloring χ. We call a pair (G,χ)
(or the coloring χ) satisfactory if

r2 > 1/4− c5/2 and r3 > 1/2− c5. (15)
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Otherwise, (G,χ) is unsatisfactory. Next, we establish some results about satisfactory colorings.
Later, this will allow us to define two other important properties of colorings (namely, being good
and being perfect).

Lemma 3.2 For every graph G with n ≥ n0 vertices the number of unsatisfactory K3-free edge
4-colorings is less than 18n2/8 · 2−c6n2

. In particular, if G ∈ Gn then almost every coloring is
satisfactory.

Proof. We use the Coloring Procedure and bound from above the number of outputs that give
unsatisfactory colorings. By Lemma 3.1, the number of choices in Steps 1–6 is at most 2c6n2

. We
use (13) to estimate the number of choices in Step 7.

The value of L under constraints (10), (11), and

r′3 ≤ 1/2− c5, (16)

(as well as the non-negativity of the variables r′i) is at most

Lmax = (1/4 + 3c5/2) + (1/2− c5) log2 3 < (1/4− c25) log2 18.

This can be seen by multiplying (10), (11), and (16) by respectively y1 = 1/2, y2 = 0, and
y3 = log2 3 − 3/2 > 0, and adding these inequalities. The obtained inequality has Lmax in the
right-hand side while each coefficient of the left-hand is at least the corresponding coefficient of
L, giving the required bound. (In fact, these reals yi are the optimal dual variables for the linear
program of maximizing L.)

Likewise, when we maximize L under constraints (10), (11), and

r′2 ≤ 1/4− c5/2 (17)

then we have the same upper bound Lmax (with the optimal dual variables for (10), (11), and (17)
being respectively y1 = 2 − log2 3 > 0, y2 = 4 log2 3 − 6 > 0, and y3 = 2 log2 3 − 3 > 0). Since in
Step 7 we have only two (possibly overlapping) cases depending on which of (17) or (16) holds,
the total number of choices in Step 7 is by (13) at most

2 · 2Lmaxn2/2+O(n) < 18(1/8−c2
5/3) n2

.

By multiplying this by 2c6n2
, we obtain the required upper bound on the number of unsatis-

factory colorings.

For each satisfactory coloring of G ∈ G we record the vector ν(χ) = (m,Vi, Hi) of parameters.
Call a vector (m,Vi, Hi) popular if

|ν−1((m,Vi, Hi))| ≥ 18n2/8 · 2−3c8n2
,

that is, if it appears for at least 18n2/8 · 2−3c8n2
satisfactory colorings, where n = v(G). As the

number of possible choices of vectors is bounded by (12), the number of satisfactory colorings for
which the corresponding vector is not popular is at most

2O(log n) · 18n2/8 · 2−3c8n2
≤ 18n2/8 · 2−2c8n2

,
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that is, o(1)-fraction of all colorings. Let Pop(G) be the set of all popular vectors and let

S(G) = ν−1(Pop(G)) (18)

be the set of satisfactory K3-free edge 4-colorings of G for which the corresponding vector is
popular. By Lemma 3.2, S(G) is non-empty.

Our next goal is to exhibit a stability property, namely, that every graph G ∈ G is almost
complete 4-partite. To this end, for every input graph G we fix a max-cut 4-partition V (G) =
W1∪W2∪W3∪W4, that is, one that maximizes the number of edges of G across the parts. First we
show that, for every popular vector (m,Vi, Hi) ∈ Pop(G), the cluster graph R is almost complete
4-partite. Then we extend this result to G.

Lemma 3.3 Let n ≥ n0, G ∈ Gn, and (m,Vi, Hi) ∈ Pop(G). Then there exist equitable partitions
[m] = A ∪B, A = U1 ∪ U2, and B = U3 ∪ U4 such that∣∣R3 4K(A,B)

∣∣ < c4m
2, (19)∣∣R2[A]4K(U1, U2)

∣∣ < 2c3m2, (20)∣∣R2[B]4K(U3, U4)
∣∣ < 2c3m2, (21)∣∣R4K(U1, U2, U3, U4)
∣∣ < 5c3m2. (22)

Proof. We have already proved that R3 is triangle-free. As (m,Vi, Hi) is associated with a sat-
isfactory coloring, (15) is satisfied; in particular, r3 > 1/2 − c5. Therefore, e(R3) = r3m

2/2 >

t2(m) − c5m2/2. As c5 � c4, we can apply Lemma 2.3 to partition V (R3) = [m] into two sets A
and B such that |A| = bm/2c, |B| = dm/2e, and (19) holds.

Since R2∩R3 = ∅, we have |R2∩K(A,B)| ≤ |K(A,B)\R3| < c4m
2. This and (15) imply that

e(R2[A]) + e(R2[B]) > e(R2)− c4m2 = r2m
2/2− c4m2 > m2/8− 2c4m2. (23)

What we show in the following sequence of claims is that R2[A] and R2[B] are both close to
being triangle-free and have roughly m2/16 edges each; then we can apply Lemma 2.3 to these
graphs, obtaining the desired partitions of A and B.

For a vertex a ∈ A, let Ba = NR3(a)∩B be the set of R3-neighbors of a that lie in B. Similarly,
for a vertex b ∈ B, let Ab = NR3(b) ∩A.

Claim 3.3.1 For every a ∈ A we have K5 6⊆ R2[Ba].

Proof of Claim. Assume that a set {b1, b2, . . . , b5} ⊆ Ba spans a K5 in R2. Each edge abi is
contained in R3 and, by definition, is labeled with a 3-element subset of [4]. As there are five edges
and only four 3-element subsets of [4], at least two edges, say ab1 and ab2, receive identical labels,
say {1, 2, 3}. However, b1b2, being an edge in R2, is labeled with a 2-element subset of [4] which
has a non-empty intersection with {1, 2, 3}. This implies the existence of a triangle in some Hi, a
contradiction.

Claim 3.3.2 If a1a2 ∈ E(R2[A]), then K3 6⊆ R2[Ba1 ∩Ba2 ].
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Proof of Claim. Suppose on the contrary that we have an edge a1a2 in R2[A] and a triangle in
R2[Ba1∩Ba2 ] with vertices b1, b2, and b3. Let S be the multiset produced by the union of the labels
of the edges a1a2, aibj , and bibj . As each edge aibj is labeled with a 3-element subset of [4] and
the remaining four edges are labeled with a 2-element subset of [4], we have |S| = 6 · 3 + 4 · 2 = 26.
By the pigeonhole principle, some member of [4] belongs to S with multiplicity at least 7. But this
corresponds to some Hi having at least 7 edges among the 5 vertices a1, a2, b1, b2, b3. By Turán’s
result (1), this implies that Hi has a triangle, a contradiction.

Define
B′ = {b ∈ B : |Ab| > |A| −

√
c4m}.

As each vertex of B \ B′ contributes at least
√
c4m to |K(A,B) \ R3|, there are less than

√
c4m

such vertices by (19). Thus |B′| > |B| −√c4m ≥ (1/2−√c4)m. Similarly, we can define A′ to be
the set of vertices a ∈ A for which |Ba| > |B| −

√
c4m and note that |A′| > |A| − √c4m > 0.

Claim 3.3.3 e(R2[B]) < 3m2/32 +
√
c4m

2.

Proof of Claim. Consider Ba for some a ∈ A′. By definition, |Ba| > |B|−
√
c4m and, by Claim 3.3.1,

Ba contains no 5-clique. By Turán’s Theorem (1) (and (7)), the number of edges in R2[B] is at
most (3/4) |Ba|2/2 +

√
c4m|B|, giving the required.

Claim 3.3.4 K3 6⊆ R2[B′].

Proof of Claim. Suppose on the contrary that b1, b2, b3 form aK3 inR2[B′]. LetX = Ab1∩Ab2∩Ab3 .
By definition, |A \ Abi | <

√
c4m. So, |X| > |A| − 3

√
c4m. By Claim 3.3.2, there are no edges

within X. So, e(R2[A]) ≤ |A \X| · |A| < 3
√
c4m

2. However, when coupled with Claim 3.3.3, this
contradicts (23).

In particular, R2[B] may be made triangle-free by the removal of at most |B \B′| · |B| < √c4m2

edges. Hence, we can improve the bound from Claim 3.3.3:

e(R2[B]) < (1− 1
2

)|B|2/2 +
√
c4m

2 ≤ m2/16 + 2
√
c4m

2. (24)

By (23) and (24), e(R2[A]) > m2/16−2c4m2−2
√
c4m

2. As above, by removing at most
√
c4m

2

edges, we can form a graph R′2 on vertex set A, which is triangle-free. We can now apply Lemma
2.3 to R′2, to find a partition A = U1 ∪ U2 such that |R′2 4K(U1, U2)| < c3m

2. As R′2 and R2[A]
differ in at most

√
c4m

2 edges, we derive (20). The existence of an equitable partition B = U3∪U4

satisfying (21) is proved similarly.
By (19)–(21), we have |(R2 ∪R3)4K(U1, U2, U3, U4)| < 4c3m2 + c4m

2. Also, by (8) and (15),
we have r1+r4 ≤ 4c5 and |R1∪R4| ≤ 2c5m2. Now (22) follows, finishing the proof of Lemma 3.3.

For a graph G ∈ G and a popular vector (m,Vi, Hi) ∈ Pop(G), fix the sets A,B,U1, . . . , U4

given by Lemma 3.3. For i ∈ [4], let Ũi = ∪j∈Ui
Vj be the blow-up of Ui. Let F̃ = K(Ũ1, Ũ2, Ũ3, Ũ4).

Lemma 3.4 For every n ≥ n0, G ∈ Gn and (m,Vi, Hi) ∈ Pop(G), we have |G4 F̃ | < 12c3n2.

Proof. It routinely follows that the size of G \ F̃ is at most the sum of the following terms:
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• m
(dn/me

2

)
, the number of edges of G inside parts Vi;

• 4c8
(
[m]
2

)
· dn/me2, edges between parts which are not c8-regular for at least one color graph;

• 4c7
(
n
2

)
, edges between parts of density at most c7 for at least one color;

• |R \K(U1, U2, U3, U4)| · dn/me2 ≤ 5c3m2 · dn/me2, where we used (22).

Adding up, this gives less than 6c3n2.
Next, we estimate |F̃ \ G| by bounding the number of satisfactory colorings of G that give

our fixed vector (m,Vi, Hi). Again, we use the Coloring Procedure to generate all such colorings,
where m,Vi, Hi are fixed in advance. By Lemma 3.1, we have at most 2c6n2

options in Steps 4–6.
Once we have fixed the choices in these steps, the remaining uncolored edges of G are restricted to
those between the parts while the graphs R1, . . . , R4 specify how many choices of color each edge
has. Thus the number of options in Step 7 is at most

4∏
f=2

∏
ij∈Rf

fdn/me2−|K(Vi,Vj)\G| ≤
(

22c6n2
· 18n2/8

) ∏
ij∈R2∪R3

2−|K(Vi,Vj)\G|,

where we used a version of (14). Let us look at the last factor. If we replace the range of ij in the
product by K(U1, U2, U3, U4) instead of R2 ∪R3, this will affect at most (c4 + 4c3)m2 pairs ij by
(19)–(21) and we get an extra factor of at most 25c3n2

. Thus∏
ij∈R2∪R3

2−|K(Vi,Vj)\G| ≤ 2−|F̃\G| · 25c3n2
.

Since the vector (m,Vi, Hi) is popular, we conclude that

|F̃ \G| ≤ 5c3n2 + 2c6n2 + 3c8n2 ≤ 6c3n2,

giving the required.

Lemma 3.5 (Stability Property) Let n ≥ n0, G ∈ Gn, and W ′1 ∪W ′2 ∪W ′3 ∪W ′4 be a partition
of V (G) with ∣∣G ∩K(W ′1,W

′
2,W

′
3,W

′
4)
∣∣ ≥ ∣∣G ∩K(W1,W2,W3,W4)

∣∣− c3n2.

Then we have ∣∣G4K(W ′1,W
′
2,W

′
3,W

′
4)
∣∣ ≤ 15c3n2 (25)

and for every popular vector (m,Vi, Hi) ∈ Pop(G) there is a relabeling of W ′1, . . . ,W
′
4 such that for

each i ∈ [4], ∣∣W ′i 4 Ũi

∣∣ ≤ 2000c3n. (26)

It follows that | |Wi|−n/4 | ≤ c2n for each i ∈ [4] and that
∣∣G4K(W1,W2,W3,W4)

∣∣ ≤ 15c3n2.

Proof. Let F ′ = K(W ′1,W
′
2,W

′
3,W

′
4) and F = K(W1,W2,W3,W4). As the max-cut partition

W1∪. . .∪W4 maximizes the number of edges across parts, we have |F ′∩G|+c3n2 ≥ |F∩G| ≥ |F̃∩G|.
Since the partitions [m] = U1 ∪ · · · ∪ U4 and [n] = V1 ∪ · · · ∪ Vm are equitable, we have

| |Ũi| − n/4 | ≤ m+ n/m. (27)
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Thus we have |F̃ | ≥ |F ′| − c8n2 and, by Lemma 3.4,

|F ′ 4G| = |F ′|+ |G| − 2 |F ′ ∩G|

≤ (|F̃ |+ c8n
2) + |G| − 2( |F̃ ∩G| − c3n2) (28)

= |F̃ 4G|+ c8n
2 + 2c3n2 ≤ 15c3n2,

proving the first part of the lemma.
We look for a relabeling of W ′1, . . . ,W

′
4 such that |Ũi \W ′i | < 500c3n for each i ∈ [4]. Suppose

that no such relabeling exists. Then, since c3 � 1 and e.g. each |W ′i | ≤ n/3, there is i ∈ [4] such that
for every j ∈ [4] we have that |Ũi \W ′j | ≥ 500c3n. Take j ∈ [4] such that |Ũi ∩W ′j | ≥ |Ũi|/4 and let
X = Ũi∩W ′j and Y = Ũi\W ′j . However, X,Y ⊆ Ũi and Lemma 3.4 imply that e(G[X,Y ]) < 12c3n2

whereas X ⊆ W ′j , Y ∩W ′j = ∅, and (28) imply that e(G[X,Y ]) ≥ |X| |Y | − 15c3n2 > 12c3n2, a
contradiction. So take the stated relabeling. Then (26) follows from the observation that

W ′i \ Ũi ⊆
⋃

j∈[4]\{i}

(Ũj \W ′j).

The last two claims of Lemma 3.5 can be derived by taking W ′i = Wi for i ∈ [4] (and using (27)).

Define a pattern as an assignment π :
(
[4]
2

)
→
(
[4]
2

)
∪
(
[4]
3

)
(to every edge of K4 we assign a list of

2 or 3 colors) such that π−1(i) forms a 4-cycle for every i ∈ [4]. Up to isomorphism (of colors and
edges) there is only one pattern. We say that an edge 4-coloring χ of G ∈ Gn follows the pattern
π if for every ij ∈

(
[4]
2

)
we have∣∣χ−1([4] \ π(ij)) ∩G[Wi,Wj ]

∣∣ ≤ c2n2,

that is, at most c2n2 edges of G[Wi,Wi] get a color not in π(ij).
Recall that the set S(G) consists of all satisfactory colorings whose associated vector is popular.

Lemma 3.6 For every graph G ∈ Gn with n ≥ n0, every coloring χ ∈ S(G) follows a pattern.

Proof. Take any χ ∈ S(G). Recall that A,B,U1, . . . , U4 are the sets given by Lemma 3.3. Let

R′ =
(
R3 ∩K(A,B)

)
∪
(
R2 ∩K(U1, U2)

)
∪
(
R2 ∩K(U3, U4)

)
.

Let the label of an edge uv in R be χ̂(uv) = {i ∈ [4] : uv ∈ E(Hi)}. So, for all edges uiuj ∈ R′

across Ui × Uj , we have

|χ̂(uiuj)| =

2, if {i, j} ∈ {{1, 2}, {3, 4}},

3, otherwise.
(29)

We show next that χ̂ has a very simple structure: with the exception of a small fraction of edges,
χ̂ behaves as the blow up of some labeling on K4. Furthermore, the latter labeling is isomorphic
to some pattern π, as defined above.

Claim 3.6.1 Let the sets {v1, v2, v3, v4} and {w, v2, v3, v4} both span a K4-subgraph in R′, where
w ∈ U1 and each vi ∈ Ui. Then χ̂(v1vi) = χ̂(wvi) for all i ∈ {2, 3, 4}.
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Proof of Claim. First consider the restriction of χ̂ to X = {v1, v2, v3, v4}. Let S be the multi-set
produced by the union of χ̂(vivj), 1 ≤ i < j ≤ 4. So, |S| = 2·2+4·3 = 16. As each Ht[X] is triangle-
free, it follows by the uniqueness of the Turán graph that χ̂−1(t) forms a 4-cycle on X for each
t ∈ [4]. When taking (29) into consideration, we see that there is only one possible configuration
(up to isomorphism). A nice property of this configuration is that χ̂(vivj) = χ̂(vkv`) whenever
{i, j, k, `} = [4], i.e., edges that form a matching on X receive identical labels. As {w, v2, v3, v4}
also spans a copy of K4, we have χ̂(wvj) = χ̂(vkv`) = χ̂(v1v`), where {j, k, `} = {2, 3, 4}, proving
the claim.

Now choose X = {v1, v2, v3, v4}, where vi ∈ Ui, such that R′[X] ∼= K4 and, for each vertex
vi ∈ X, we have

|NR′(vi) ∩ Uj | > |Uj | − 2
√
c3m for all j ∈ [4] \ {i}. (30)

We may build such a set iteratively by picking v1 ∈ U1 satisfying (30), then v2 ∈ U2 ∩ N(v1)
satisfying (30), and so on. We are guaranteed the existence of such vertices as at most 2c3m2

edges across a pair Ui, Uj are missing from R′. In fact, the number of vertices u ∈ Ui that fail
condition (30) is less than 3

√
c3m.

Let Ai ⊆ Ui consist of those vertices that lie in NR′(vj) for all vj ∈ X with j ∈ [4] \ {i}. As
all vertices vj satisfy (30), we have |Ai| > |Ui| − 6

√
c3m. If aiaj ∈ R′[Ai, Aj ], then all three sets

X, {ai, vj , vk, v`}, and {ai, aj , vk, v`} form 4-cliques in R′, where {i, j, k, `} = [4]. By Claim 3.6.1
we have that χ̂(vivj) = χ̂(aivj) = χ̂(aiaj). Thus, the labeling on X determines the labeling on
all edges of R′ with the possible exception of at most m · 24

√
c3m edges incident to vertices of⋃4

i=1(Ui \ Ai). As |R \R′| < 5c3m2, we have a pattern π such that χ̂(uiuj) = π(ij) for all but at
most 25

√
c3m

2 edges in R.
Now, (26) implies that for some relabeling of W1, . . . ,W4, we have

|K(W1,W2,W3,W4) \K(Ũ1, Ũ2, Ũ3, Ũ4)| < 4n · 2000c3n.

Then, including at most 4c7n2 edges that disappear without a trace in anyHi during the application
of the Regularity Lemma and at most 12c3n2 edges lost in Lemma 3.4, we have that χ(wiwj) ∈ π(ij)
for all but at most

4c7n2 + 12c3n2 + 25
√
c3m

2 · dn/me2 + 8000c3n2 < c2n
2

edges wiwj in G[Wi,Wj ], proving the lemma.

Since c2 and c3 are small, Lemma 3.5 implies that the pattern π in Lemma 3.6 is unique. This
allows us to make the following definition. A coloring χ ∈ S(G) of a graph G ∈ Gn is good if for
every ij ∈

(
[4]
2

)
, every subsets Xi ⊆ Wi and Xj ⊆ Wi with |Xi| ≥ c1n and |Xj | ≥ c1n, and every

color c ∈ π(ij) there is at least one edge xy in G[Xi, Xj ] with χ(xy) = c, where π is the pattern of
χ. Otherwise χ is called bad.

Lemma 3.7 The number of bad colorings of any G ∈ Gn, n ≥ n0, is at most 18n2/8 · 2−c2
1n2/8.

Proof. The following procedure generates each bad coloring of G at least once.

1. Pick an arbitrary pattern π, a pair ij ∈
(
[4]
2

)
, and a color c ∈ π(ij).
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2. Choose up to 6c2n2 edges and color them arbitrarily.

3. Pick subsets Xi ⊆Wi and Xj ⊆Wj of size dc1ne each.

4. Color edges inside a part Wi arbitrarily.

5. Color all edges in Xi ×Xj using the colors from π(ij) \ {c}.

6. For each k` ∈
(
[4]
2

)
color all remaining edges of G[Wk,W`] using colors in π(k`).

The number of choices in Steps 1–3 is bounded from above by

O(1)
( (

n
2

)
≤ 6c2n2

)
46c2n2

(
|Wi|
|Xi|

)(
|Wj |
|Xj |

)
< 2c3

1n2
.

The number of choices at Step 4 is at most 415c3n2
by Lemma 3.5. The number of choices in

Steps 5–6 is at most(
|π(ij)| − 1
|π(ij)|

)|Xi| |Xj | ∏
k`∈([4]

2 )
|π(k`)||Wk| |W`| ≤ (2/3)c2

1n2

(22 34)n2/16+c2n2
,

where we used Lemma 3.5. We obtain the required result by multiplying the above bounds.

Call a good coloring χ of a graph G ∈ G perfect if χ(vivj) ∈ π(ij) for every ij ∈
(
[4]
2

)
and every

edge vivj ∈ G[Wi,Wj ], where π is the pattern of χ. Let P(G) denote the set of perfect colorings
of G.

The following lemma provides a key step of the whole proof.

Lemma 3.8 Let G be a graph of order n ≥ n0 + 2 such that F (G, 4, 3) ≥ 18n2/8 · 2−c9n2
and for

every distinct v, v′ ∈ V (G) we have

F (G, 4, 3)
F (G− v, 4, 3)

≥ (18− c3)n/4, (31)

F (G, 4, 3)
F (G− v − v′, 4, 3)

≥ (18− c3)(n+(n−1))/4. (32)

Then the following conclusions hold.

1. G is 4-partite.

2. Almost every coloring of G is perfect; specifically,

|P(G)| ≥ (1− 2−c9n)F (G, 4, 3).

3. If G 6∼= T4(n), then there is a graph G′ of order n with F (G′, 4, 3) > F (G, 4, 3).

Proof. Since F (G− v− v′, 4, 3) > F (G− v, 4, 3)/4n > F (G, 4, 3)/16n for any v, v′ ∈ V (G), we have
G − v,G − v − v′ ∈ G and the notion of a good coloring with respect to G − v or G − v − v′ is
well-defined.

Claim 3.8.1 For any distinct v, v′ ∈ V (G), there is a good coloring χ of G−v (resp. of G−v−v′)
such that the number of ways to extend it to the whole of G is at least (18− c2)n/4 (resp. at least
(18− c2)n/2).
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Proof of Claim. By Lemma 3.7 the number of bad colorings of G− v is at most 2−c2
1n2/9F (G, 4, 3).

If the claim fails for all good colorings of G− v, then

F (G, 4, 3) ≤ 4n · 2−c2
1n2/9F (G, 4, 3) + (18− c2)n/4F (G− v, 4, 3),

contradicting (31). The claim about G− v − v′ is proved in an analogous way.

Claim 3.8.2 For all i ∈ [4] and v ∈Wi, we have |N(v) ∩Wi| < 8c1n.

Proof of Claim. Suppose on the contrary that some vertex v contradicts the claim. Take the good
coloring χ of G− v given by Claim 3.8.1.

For each class Wj (defined with respect to G), let nj = |N(v) ∩Wj |. Note that

nj ≤ |Wj | ≤ n/4 + c2n, for all j ∈ [4], (33)

by Lemma 3.5. Let W ′1 ∪W ′2 ∪W ′3 ∪W ′4 be the selected max-cut partition of G− v. As∣∣G ∩K(W ′1 ∪ {v},W ′2,W ′3,W ′4)
∣∣ > ∣∣G ∩K(W1,W2,W3,W4)

∣∣− n,
it follows again from Lemma 3.5 that, after a relabeling of W ′1, . . . ,W

′
4, we have

|Wi 4W ′i | ≤ 4000c3n+ 1, for all i ∈ [4]. (34)

Also, let π be the pattern (with respect to W ′1, . . . ,W
′
4) associated with the good coloring χ of

G− v.
For each extension χ̄ of χ to G, record the vector x whose i-th component is the number of

colors c such that at least 2c1n edges of G between v and Wi get color c. Let x = (x1, . . . , x4) be
a vector that appears most frequently over all extensions χ̄. Fix some χ̄ that gives this x. For a
color c and a class Wj , let

Zj,c = {u ∈Wj : χ̄(uv) = c}.

(Thus xj is the number of colors c with |Zj,c| ≥ 2c1n.) Analogously, for a color c, let yc be the
number of classes Wj for which |Zj,c| ≥ 2c1n. By (34), we have |Zj,c ∩ W ′j | > c1n whenever
|Zj,c| > 2c1n.

Let us show that yc ≤ 2 for each c ∈ [4]. Indeed, if some yc ≥ 3, then among the three
corresponding indices we can find two, say p and q, such that c ∈ π(pq). Since χ is good, there is
an edge uw ∈ (Zp,c ∩W ′p)× (Zq,c ∩W ′q) such that χ(uw) = c, giving a χ̄-monochromatic triangle
on {u, v, w}, a contradiction. In particular, we have

x1 + x2 + x3 + x4 = y1 + y2 + y3 + y4 ≤ 8. (35)

Since there are at most 54 choices of (x1, . . . , x4) and we fixed a most frequent vector, the total
number of extensions of χ to G is at most

54
∏

j∈[4]

(
4
xj

)(
nj

≤ 2c1n

)4−xj

max(xj , 1)nj < 2c0n
∏

j∈[4]
xj 6=0

x
nj

j . (36)
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As W1∪W2∪W3∪W4 is a max-cut partition, we have |N(v)∩Wj | ≥ 8c1n for all j ∈ [4]. By the
pigeonhole principle, we have that xj ≥ 1 for all j ∈ [4]. This and (35) imply that x1x2x3x4 ≤ 16.
By (33) and (36), the total number of extensions of χ is at most

2c0n · (x1x2x3x4)n/4 · 44c2n < 22c0n · 16n/4 < (18− c2)n/4,

contradicting the choice of χ.

We will now strengthen Claim 3.8.2 and prove Part 1 of the lemma.

Claim 3.8.3 For all i ∈ [4] and distinct v, v′ ∈Wi, we have vv′ 6∈ E(G).

Proof of Claim. Suppose on the contrary that the claim fails for some v and v′. Assume without
loss of generality that v, v′ ∈W1.

Let χ be the good coloring of G−v′−v ∈ Gn−2 with at least (18− c2)n/2 extensions to G given
by Claim 3.8.1. Let us recycle the definitions of Claim 3.8.2 that formally remain unchanged even
though χ is undefined on edges incident to v′. On top of them, we define a few more parameters.

Specifically, we look at all extensions χ̄ that give rise to the fixed most frequent vector x. For
each such χ̄, we define Z ′j,c = {u ∈Wj : χ̄(uv′) = c} and let x′j be the number of colors c such that
|Z ′j,c| ≥ 2c1n. Then we fix a most popular vector x′ = (x′1, . . . , x

′
4) and take any extension χ̄ that

gives both x and x′ and, conditioned on this, such that the color χ̄(vv′) assumes its most frequent
value, which we denote by s. We define yc as before and let y′c be the number of j ∈ [4] such that
|Z ′c,j | ≥ 2c1n. This is consistent with the definitions of Claim 3.8.2 because there we did not have
any restriction on χ̄ except that it gives the vector x.

Claim 3.8.2, the upper bounds on ni and n′i = |N(v′) ∩Wi| of Lemma 3.5, and the argument
leading to (36) show that the total number of extensions of χ to G is at most

(54)2 · 4 · 2c0n · (48c1n+3c2n)2 ·
4∏

i=2

(
max(xi, 1) ·max(x′i, 1)

)n/4
. (37)

If some |Zj,c| ≥ 2c1n but c 6∈ π({1, j}), say j = 3, then the 4-cycle formed by Color c visits
indices 1, 2, 3, 4 in this order and, since χ is good, we have |Z2,c| < 2c1n and |Z4,c| < 2c1n (otherwise
χ̄ contains a color-c triangle via v). Thus yc contributes at most 1 to x2+x3+x4. Since each yi ≤ 2,
we have that x2 + x3 + x4 ≤ 7. It follows that

∏4
i=2 max(xi, 1) ≤ 12. Since x′2 + x′3 + x′4 ≤ 8, we

have
∏4

i=2 max(x′i, 1) ≤ 18. Thus the expression in (37) is at most 22c0n · (12 ·18)n/4, contradicting
the choice of χ.

Thus xi ≤ |π({1, i})| for each i ∈ {2, 3, 4} and all these inequalities are in fact equalities
(otherwise

∏4
i=2 max(xi, 1) ≤ 12, giving a contradiction as before). We conclude for j ∈ {2, 3, 4}

that |Zj,c| ≥ 2c1n if and only if c ∈ π({1, j}). The same applies to the parameters x′i and Z ′j,c.
Let the special color s = χ̄(vv′) appear in, say π({1, 2}). Then for all w ∈ W2 ∩N(v) ∩N(v′)

there are at most x2x
′
2 − 1 choices for the colors of vw and vw′ when extending χ to G because s

cannot occur on both edges. Also, if w 6∈ N(v) ∩N(v′) then trivially there are at most 4 choices
per this vertex w. This allows us to reduce the bound in (37) by factor (8/9)n/4, giving the desired
contradiction.

Thus we have proved Part 1 of the lemma. Next, we prove Part 2. If it is false, then by
Lemma 3.7 there are there are at least (1/2) · 2−c9n · F (G, 4, 3) coloring of G that are good but
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not perfect. For each such coloring there is a wrong edge vv′ whose color does not conform to the
pattern. Pick an edge vv′ that appears most frequently this way, say v ∈ W1 and v′ ∈ W4, and
then a most frequent wrong color s of vv′.

By a version of (34), it is not hard to show that the number of good colorings χ of G− v − v′

for which there is an extension χ̄ which a good coloring of G but with a different pattern than that
of χ is at most, for example, 2−c2

1n2/9 · F (G, 4, 3), which is also an upper bound on the number of
bad colorings of G− v − v′.

It follows that there is a good coloring χ of G − v − v′ that has at least (18 − c2)n/2 pattern-
preserving extensions to G with vv′ getting the wrong color s. Indeed, if this is false, then by an
argument of Claim 3.8.1, we would get a contradiction to (32):

(1/2) · 2−c9n · F (G, 4, 3)
4 ·
(
n
2

) ≤ 2 · 16n · 2−c2
1n2/9 · F (G, 4, 3) + (18− c2)n/2F (G− v − v′, 4, 3),

Defining π, xi, x
′
i, Zj,c, Z

′
j,c, yi, y

′
i as in Claim 3.8.3, one can argue similarly to (37) that the

number of pattern-preserving extensions of χ is at most

2c0n

 4∏
j=2

max(xj , 1) ·
3∏

j=1

max(x′j , 1)

n/4

, (38)

where all smaller terms are swallowed by 2c0n. Moreover, as before, |Zj,c| ≥ 2c1n if and only if
c ∈ π({1, j}) while |Z ′j,c| ≥ 2c1n if and only if c ∈ π({4, j}).

Since s 6∈ π({1, 4}), we have s ∈ π({1, 3}) ∩ π({3, 4}). But then the number of choices per
w ∈W3 ∩N(v) ∩N(v′) is at most x3x

′
3 − 1 (instead of x3x

′
3) because we cannot assign color s to

both vw and vw′. Also, if vw or vw′ is not an edge, then we have at most 4 choices per w. This
allows us to improve (38) by factor (8/9)n/4. This contradicts the choice of χ and proves Part 2
of Lemma 3.8.

Let H = K(W1, . . . ,W4). Suppose first that G 6∼= H, that is, G is not complete 4-partite.
We know that almost every coloring χ of G is perfect. Moreover, if we start with a perfect
coloring χ of G and color all remaining edges in E(H) \ E(G) according to the pattern of χ
then we get at least 2|H\G| ≥ 2 extensions to H none containing a monochromatic K3. Thus
|P(H)| ≥ 2|P(G)| > F (G, 4, 3) and we can take G′ = H.

Finally, suppose that G = H but G 6∼= T4(n). Let di = |Wi| for i ∈ [4]. Assume, without loss
of generality, that d1 ≥ d2 ≥ d3 ≥ d4 with d1 ≥ d4 + 2. Let G′ be the complete 4-partite graph
with parts of size d1− 1, d2, d3, d4 + 1. We already know that almost every coloring of G is perfect.
Thus, in order to finish the proof it is enough to show that, for example, |P(G′)| > 1.1 |P(G)|.

The number of perfect colorings of G is given by the following expression:

|P(G)| = (12 + o(1)) (S1 + S2 + S3), (39)

where

S1 = 2d1d2+d3d43d1d3+d1d4+d2d3+d2d4 ,

S2 = 2d1d3+d2d43d1d2+d1d4+d2d3+d3d4 ,

S3 = 2d1d4+d2d33d1d2+d1d3+d2d4+d3d4 .
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Note that we have an error term in (39) because some (degenerate) colorings are overcounted in
the right-hand side. Also,

|P(G′)| = (12 + o(1))
(

2−d2+d33d1−d4−1+d2−d3 · S1

+ 2d2−d33d1−d4−1−d2+d3 · S2 + 2d1−d4−1 · S3

)
.

But, as d1 − d4 ≥ max{2, d2 − d3}, the coefficient in front of each Si is at least 4/3. Therefore
|P(G′)| > 1.1 |P(G)|, finishing the proof of Lemma 3.8.

Routine calculations (omitted) show that

|P(T4(n))| = (C + o(1)) · 18t4(n)/3, (40)

where C = (214 · 3)1/3 if n ≡ 2 (mod 4) and C = 36 otherwise.

Proof of Theorem 1.1. Let e.g. N = n2
0. Let G be an extremal graph on n ≥ N vertices. Suppose

on the contrary that G 6∼= T4(n). Let Gn = G.
We iteratively apply the following procedure. Given a current graph Gm on m ≥ n0 +2 vertices

with F (Gm, 4, 3) ≥ 18m2/8 · 2−c9m2
we apply Lemma 3.8. If (31) fails for some vertex v ∈ V (Gm),

we let Gm−1 = Gm − v, decrease m by 1, and repeat. Note that

F (Gm−1, 4, 3) ≥ F (Gm, 4, 3)/(18− c3)m/4 ≥ 18(m−1)2/8 · 2−c9(m−1)2 .

Likewise, if (32) fails for some distinct v, v′ ∈ V (Gm), we let Gm−2 = G − v − v′, decrease m by
2, and repeat. If both (31) and (32) hold and Gm 6∼= T4(m), replace Gm by the graph G′ returned
by Lemma 3.8 and repeat the step (without decreasing m).

Note that for every m for which Gm is defined we have

F (Gm, 4, 3) ≥ F (G, 4, 3) · (18− c3)−(n+(n−1)+...+(m+1))/4. (41)

It follows that we never reach m < n0 + 2 for otherwise, when this happens for the first time, we
get the contradiction

F (Gm, 4, 3) ≥ 18n2/8 · 2−c9n2

(18− c3)(
n
2)−(m

2 )
> 4(m

2 ).

Thus we stop for some m ≥ n0 + 2, having Gm
∼= T4(m). We cannot have m = n, for otherwise

T4(n) strictly beats G. By Lemma 3.8, almost every coloring of Gm
∼= T4(m) is perfect. Thus,

by (41),

2 · |P(T4(m))| > F (T4(m), 4, 3) ≥ F (G, 4, 3) · (18− c3)−(n+(n−1)+···+(m+1))/4. (42)

Also, note that t4(`) − t4(` − 1) = b3`/4c. Thus, (40) implies that, for example, |P(T4(`))| ≥
18`/4−1|P(T4(`− 1))| for all ` ≥ n0. We conclude that

F (G, 4, 3) ≥ |P(T4(n))| ≥ 18(n+···+(m+1))/4

18n−m
|P(T4(m))|. (43)

But (42) and (43) give a contradiction to m ≥ 1, proving Theorem 1.1.

Remark. If we set G = T4(n) with n ≥ N in the above argument, then we conclude that m = n

(otherwise we get a contradiction as before). Thus we do not perform any iterations at all, which
implies that (31) and (32) hold for T4(n). By Part 2 of Lemma 3.8 almost every coloring of T4(n)
is perfect. Thus the estimate (5) that was claimed in the Introduction follows from (40).
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4 Proof of Theorem 1.2

In this section we prove Theorem 1.2. Some parts of the proof closely follow those of Theorem 1.1.
We omit many details that have already been presented or are obvious modifications of those in
Section 3. We start by fixing positive constants

c0 � c1 � . . .� c10.

Let M = 1/c9 and n0 = 1/c10. Define

Gn =
{
G : v(G) = n, F (G, 4, 4) ≥ 34n2/9 · 2−c8n2

}
.

and let G =
⋃

n≥n0
Gn. The lower bound in (4) shows that Gn is non-empty for every n ≥ n0.

Using exactly the same definitions as before, we define the parameters (m,Vi, Hi, Ri, R, ri)
arising from an arbitrary graph G and a K4-free 4-coloring χ of the edges of G and fix one such
vector for each pair (G,χ).

By Lemma 2.2, each cluster graph Hi is K4-free and, by Turán’s theorem (1), has at most
t3(m) edges. Thus by (7)

r1 + 2r2 + 3r3 + 4r4 =
e(H1) + e(H2) + e(H3) + e(H4)

m2/2
≤ 8

3
. (44)

We also have a procedure for generating all K4-free edge 4-colorings of G at least once. This
procedure is identical to the Coloring Procedure provided in Section 3 with the only difference
being that in Step 3 the parameters ri (where we omit primes for convenience) now satisfy (44)
instead of (10) and (11). So, Lemma 3.1 that bounds the number of choices in Steps 1–6 still holds.

The number of options in Step 7 is again bounded by (13), i.e., the expression 2Ln2/2+O(n),
where L = r2 + log2(3) r3 + 2r4. Under the constraint (44) and the non-negativity of the ri’s, the
maximum of L is (8/9) log2 3. We conclude that

F (n, 4, 4) ≤ 34n2/9 · 22c6n2
,

as it was also shown in [1].
We will now obtain structural information about the cluster graphs (and, indirectly, about G).

We call a pair (G,χ) (or the coloring χ) unsatisfactory if

r3 ≤ 8/9− c4. (45)

Otherwise, (G,χ) is satisfactory.

Lemma 4.1 For every graph G with n ≥ n0 vertices the number of unsatisfactory K3-free edge
4-colorings is less than 34n2/9 · 2−c6n2

.

Proof. The maximum of L under constraints (44) and (45) (and the non-negativity of ri’s) is

Lmax = (8/9− c4) log2(3) + 3c4/2 < (8/9) log2(3)− c5

with the optimal dual variables for (44) and (45) being y1 = 1/2 and y2 = log2(3) − 3/2 > 0
respectively. Therefore, the total number of choices is at most 2c6n2 · 2Ln2/2+O(n), giving the
required upper bound on the number of unsatisfactory colorings.
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Call a vector (m,Vi, Hi) popular if it appears for at least 34n2/9 · 2−3c8n2
satisfactory K4-free

edge 4-colorings of G. As before, (12) guarantees that the number of colorings for which the
associated vector is not popular is at most 34n2/9 · 2−2c8n2

. Let Pop(G) be the set of all popular
vectors and let S(G) consist of all satisfactory colorings for which the associated vector is popular.

Lemma 4.2 For any n ≥ n0, a graph G ∈ Gn, and a popular vector (m,Vi, Hi) ∈ Pop(G), there
exists an equitable partition [m] = U1 ∪ . . . ∪ U9 such that∣∣R3 4K(U1, . . . , U9)

∣∣ < c3m
2, (46)∣∣R4K(U1, . . . , U9)

∣∣ < 2c3m2. (47)

Proof. Suppose that some Y ⊆ [m] induces a clique of order 10. Then R3[Y ] contains
(
10
2

)
= 45

edges, each of which, by definition, belongs to exactly 3 cluster graphs Hi. Each Hi is K4-free so,
by Turán’s Theorem (1), Hi[Y ] has at most t3(10) = 33 edges. But 4 · 33 < 3 · 45, a contradiction.

Thus K10 6⊆ R3. Since e(R3) ≥ (8/9 − c4)m2/2, Lemma 2.3 gives an equitable partition
[m] = U1 ∪ . . . ∪ U9 satisfying (46). This partition also satisfies (47) because r1 + r2 + r4 ≤ 3c4
by (44) and the negation of (45).

For a graph G and a popular vector (m,Vi, Hi) ∈ Pop(G), fix the equitable 9-partition [m] =
U1 ∪ · · · ∪ U9 given by Lemma 4.2. For i ∈ [9], let Ũi = ∪j∈UiVj be the blow-up of Ui. Let
F̃ = K(Ũ1, . . . , Ũ9).

Lemma 4.3 For any n ≥ n0, G ∈ Gn, and (m,Vi, Hi) ∈ Pop(G), we have |G4 F̃ | < 6c3n2.

Proof. First consider G\F̃ . Up to 4c7n2 edges may be lost by application of the Regularity Lemma.
In addition, at most |R \K(U1, . . . , U9)| · dn/me2 edges are missing in F̃ . Overall, |G \ F̃ | < 3c3n2.

On the other hand, we may estimate |F̃ \G| by bounding the number of colorings of G associated
with our vector (m,Vi, Hi). We revert to the Coloring Procedure and compute the number of
options in Step 7:

4∏
f=2

∏
ij∈Rf

fdn/me2−|K(Vi,Vj)\G| ≤
(

34n2/9 · 22c6n2
) ∏

ij∈R3

2−|K(Vi,Vj)\G|

≤
(

34n2/9 · 22c6n2
)
· 2−|F̃\G|+2c3n2+O(n).

Since the vector (m,Vi, Hi) is popular, we have

| F̃ \G | ≤ 2c3n2 + 2c6n2 + 3c8n2 +O(n) ≤ 3c3n2,

as required.

For each graph G fix a max-cut partition V (G) = W1 ∪ · · · ∪W9.

Lemma 4.4 (Stability Property) Let n ≥ n0, G ∈ Gn, and V (G) = W ′1∪. . .∪W ′9 be a partition
with ∣∣G ∩K(W ′1, . . . ,W

′
9)
∣∣ ≥ ∣∣G ∩K(W1, . . . ,W9)

∣∣− c3n2.

Then |G4 K(W ′1, . . . ,W
′
9) | ≤ 9c3n2 and, for any (m,Vi, Hi) ∈ Pop(G), there is a relabeling of

W ′1, . . . ,W
′
9 such that ∣∣W ′i 4 Ũi

∣∣ ≤ 12000 c3n, for each i ∈ [9]. (48)

It follows that | |Wi| − n/9 | ≤ c2n for each i ∈ [9] and that |G4K(W1, . . . ,W9) | ≤ 9c3n2.
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Proof. Let F ′ = K(W ′1, . . . ,W
′
9) and F = K(W1, . . . ,W9). As W1 ∪ . . . ∪ W9 is a max-cut

partition, we have |F ′ ∩ G| + c3n
2 ≥ |F ∩ G| ≥ |F̃ ∩ G|. In addition, both [m] = U1 ∪ · · · ∪ U9

and [n] = V1 ∪ · · · ∪ Vm are equitable partitions, so | |Ũi| − n/9 | < m + n/m. It follows that
|F̃ | ≥ |F ′| − c8n2, and

|F ′ 4G | ≤ | F̃ 4G |+ c8n
2 + 2c3n2 ≤ 9c3n2, (49)

where we used Lemma 4.3. This proves the first part of the lemma.
To prove the next part, we look for a relabeling of W ′1, . . . ,W

′
9 such that |Ũi \W ′i | < 1250c3n

for each i ∈ [9]. If no such relabeling exists, we have some i ∈ [9] such that |Ũi \W ′j | ≥ 1250c3n
for all j ∈ [9]. However, for some j, |Ũi ∩W ′j | ≥ |Ũi|/9. Let X = Ũi ∩W ′j and Y = Ũi \W ′j .
Then, by Lemma 4.3, we have e(G[X,Y ]) < 6c3n2 while X ⊆W ′j , Y ∩W ′j = ∅ and (49) imply that
e(G[X,Y ]) > |X||Y | − 9c3n2 > 6c3n2, a contradiction.

The desired estimate (48) follows from the observation that

W ′i \ Ũi ⊆
⋃

j∈[9]\{i}

(Ũj \W ′j).

The last two claims of the lemma follow by taking W ′i = Wi.

A pattern is an assignment π :
(
[9]
2

)
→
(
[4]
3

)
(to every edge of K9 we assign a list of 3 colors)

such that π−1(i) is isomorphic to T3(9) for each i ∈ [4]. It is easy to check that up to isomorphism
(of colors and edges) there is only one pattern. It can be explicitly described as follows. Identify
the 9-point vertex set with (F3)2, the 2-dimensional vector space over the 3-element finite field F3.
There are 4 non-parallel directions of 1-dimensional subsets. Let the color i ∈ [4] be present in the
pattern in those pairs whose difference is not parallel to the i-th direction.

We say that an edge 4-coloring χ of G ∈ Gn follows the pattern π if for every ij ∈
(
[9]
2

)
we have∣∣χ−1([4] \ π(ij)) ∩G[Wi,Wj ]

∣∣ ≤ c2n2.

Lemma 4.5 Let n ≥ n0 and G ∈ Gn. Then every coloring χ ∈ S(G) follows a pattern.

Proof. Let χ ∈ S(G) and (m,Vi, Hi) be the associated popular vector. Let [m] = U1 ∪ . . .∪U9, be
the partition given by Lemma 4.2.

Let the label of an edge uv ∈ R3 be χ̂(uv) = {i ∈ [4] : uv ∈ E(Hi)}. So, |χ̂(uv)| = 3 for all
edges uv ∈ R3.

Claim 4.5.1 Let Y = {v1, . . . , v9} be a subset of [m] such that R3[Y ] ∼= K9 and vi ∈ Ui for each
i ∈ [9]. Let v′j ∈ Uj be such that Y ′ = Y \{vj}∪{v′j} also spans K9 in R3. Then χ̂(vjvi) = χ̂(v′jvi)
for all i ∈ [9] \ {j}.

Proof of Claim. The identity 3 ·
(
9
2

)
= 4 · t3(9) and Turán’s theorem imply that each K4-free graph

Hi[Y ] has exactly t3(9) vertices and thus is isomorphic to the Turán graph T3(9). Let Yi,1, Yi,2,
and Yi,3 be the parts of Hi[Y ]. The family of 3-sets {Yi,j : i ∈ [4], j ∈ [3]} forms a Steiner triple
system on Y , that is, every pair is covered exactly once. Thus if we delete a vertex from Y , then
the four triples that contain it are uniquely reconstructible. It follows that if we know Hi[Y ]− vj
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for each i ∈ [4], then the labels of the eight pairs containing vj are uniquely determined. This and
the analogous statement for Y ′ imply the claim.

We can iteratively build a set Y = {v1, . . . , v9} such that R3[Y ] ∼= K9 and for all i ∈ [9] we
have vi ∈ Ui and

|NR3(vi) ∩ Uj | > |Uj | −
√
c3m for all j ∈ [9] \ {i}. (50)

Let Ai ⊆ Ui consist of those vertices that lie in NR3(vj) for all j ∈ [9] \ {i}. As all v1, . . . , v9
satisfy (50), we have |Ai| > |Uj |−8

√
c3m. Now, if aiaj ∈ R3[Ai, Aj ] (without loss of generality as-

sume that (i, j) = (1, 2)), then all three sets {v1, v2, . . . , v9}, {a1, v2, . . . , v9}, and {a1, a2, v3, . . . , v9}
form 9-cliques. By Claim 4.5.1 we have χ̂(vivj) = χ̂(aivj) = χ̂(aiaj). Therefore the labeling on Y

determines the labeling on all edges of R3 with the possible exception of at most 72
√
c3m

2 edges
incident to vertices of

⋃9
i=1(Ui \ Ai). We, therefore, have a pattern π such that χ̂(uiuj) = π(ij)

for all but at most 73
√
c3m

2 edges in R.
By applying (48) to W ′i = Wi and arguing as in the proof of Lemma 3.6, one can show that χ

follows the pattern π.

A coloring χ ∈ S(G) is called good if for every distinct i, j, k ∈ [9], every sets Xi ⊆ Wi, Xj ⊆
Wj , Xk ⊆ Wk each of size at least c1n, and a color c ∈ π(ij) ∩ π(ik) ∩ π(jk), we can find a
monochromatic triangle in color c with one vertex in each of Xi, Xj , Xk. Otherwise, call χ bad.

We make use of the following result [1, Lemma 3.1].

Lemma 4.6 Let G be a graph and let V1, . . . , Vk be subsets of vertices of G such that, for every
i 6= j and every pair of subsets Xi ⊆ Vi and Xj ⊆ Vj with |Xi| ≥ 10−k|Vi| and |Xj | ≥ 10−k|Vj |,
there are at least 1

10 |Xi||Xj | edges between Xi and Xj in G. Then G contains a copy of Kk with
one vertex in each set Vi.

As a consequence of this lemma, a coloring fails to be good only if there are c, i, j such that
c ∈ π(ij) but for some sets Xi ⊆Wi and Xj ⊆Wj with |Xi|, |Xj | ≥ c1n/1000, χ−1(c) has at most
|Xi||Xj |/10 edges between Xi and Xj . The proof of Lemma 3.7 with obvious modifications gives
the following.

Lemma 4.7 The number of bad colorings is at most 34n2/9 · 2−c2
1n2/107

.

A good coloring χ of G is perfect if χ(vivj) ∈ π(ij) for every pair ij ∈
(
[9]
2

)
and every edge

vivj ∈ G[Wi,Wj ]. Let P(G) consist of all perfect colorings of G.

Lemma 4.8 Let G ∈ Gn be a graph of order n ≥ n0 + 2 such that F (G, 4, 4) ≥ 34n2/9 · 2−c9n2
and

for every distinct v, v′ ∈ V (G) we have

F (G, 4, 4)
F (G− v, 4, 4)

≥ (3− c3)8n/9, (51)

F (G, 4, 4)
F (G− v − v′, 4, 4)

≥ (3− c3)(8/9)(n+(n−1)). (52)

Then the following conclusions hold.

1. G is 9-partite.
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2. |P(G)| ≥ (1− 2−c9n)F (G, 4, 4).

3. If G 6∼= T9(n), then there is a graph G′ with v(G′) = n and F (G′, 4, 4) > F (G, 4, 4).

Proof. As in the proof of Lemma 3.8, the notion of a good coloring is well-defined for G − X

provided |X| ≤ 2.

Claim 4.8.1 For each i ∈ [9] and every v ∈Wi, |N(v) ∩Wi| < 8c1n.

Proof of Claim. Suppose that a vertex v violates the claim. Let W ′1 ∪ · · · ∪W ′9 be the selected
max-cut partition of G − v. Similarly to Claim 3.8.1 there is a good coloring χ of G − v with
at least (3 − c2)8n/9 extensions to G. Let π be the pattern of χ (with respect to W ′1, . . . .W

′
9)

and ni = |N(v) ∩Wi| for i ∈ [9]. As in the proof of Lemma 3.8, we take an extension χ̄ of χ
that gives a most frequent vector x = (x1, . . . , x9), where xi is the number of colors c such that
Zi,c = {u ∈Wi : χ̄(uv) = c} has at least 2c1n elements. Also, let yc be the number of j ∈ [4] such
that |Zj,c| ≥ 2c1n. We have

x1 + x2 + . . .+ x9 = y1 + y2 + y3 + y4. (53)

By the max-cut property, each xi ≥ 1. The argument of (36) shows that the number of extensions
of χ to G is at most 2c0n

∏9
i=1 x

ni
i .

Suppose that yc ≥ 7 for some color c. Any 7 vertices of the color-c graph that is isomorphic to
T3(9) span a triangle. The three c-neighborhoods of v in the corresponding parts W ′i have at least
|Zi,c| − 24000c3n > c1n vertices each by (48). Since χ is good, this gives a copy of K4 of color c in
χ̄, a contradiction.

Thus yc ≤ 6 for every c ∈ [4] and the sum of xi’s is at most 24. Since each xi is a positive integer,
their product is at most 2336 (it is clearly maximized when the factors are nearly equal). Also, each
ni ≤ n/9 + c2n by Lemma 4.4. Thus the number of extensions of χ is at most 22c0n(2336)n/9 <

(3− c2)8n/9, a contradiction that proves the claim.

Claim 4.8.2 If x1, . . . , x8 are positive integers with sum 24 then
∏8

i=1 max(xi, 1) ≤ 38 with equal-
ity if and only if each xi equals 3.

Proof of Claim. Indeed, if t is the number of non-zero xi’s then for t = 8, 7, . . . , 1 the maximum of
the product is respectively 38 = 6561, 34 ·43 = 5184, 46 = 4096, 4 ·54 = 2500, 64 = 1296, 83 = 512,
122 = 144, and 24.

Claim 4.8.3 For all i ∈ [9] and all v, v′ ∈Wi, we have vv′ 6∈ E(G).

Proof of Claim. Assume for a contradiction that vv′ ∈ E(G), where without loss of generality
v, v′ ∈ W9. As in Claim 3.8.1, one can find a good coloring χ of G − v − v′ ∈ Gn−2 with at least
(3 − c2)16n/9 extensions to G. Define the parameters π, ni, Zi,c, xi, yi, n

′
i, Z
′
i,c, x

′
i, y
′
i, χ̄ and a most

frequent color s of vv′, as it was done in Claim 3.8.3. Then a version of (37), states that the total
number of extensions of χ is at most

(59)2 · 4 · 2c0n · (48c1n+8c2n)2 ·
8∏

i=1

(max(xi, 1) ·max(x′i, 1))n/9. (54)
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Since each yc ≤ 6, we have
∑8

i=1 xi ≤ 24. By Claim 4.8.2 we have that xi = x′i = 3 for each i ∈ [8],
for otherwise the bound in (54) is strictly less than (3− c2)16n/9, a contradiction to the choice of
χ.

Assume that the parts of Hs
∼= T3(9) are A1 = {1, 2, 3}, A2 = {4, 5, 6}, and A3 = {7, 8, 9}.

Suppose first that there is j ∈ [8] such that |Zj,s| ≥ 2c1n but s 6∈ π({j, 9}), say j = 8. By (48),
we have |Z8,s ∩W ′8| ≥ c1n. Since χ is good, in order to avoid a color-c K4 in χ̄ we must have
|Zi,s| < 2c1n for all i ∈ A1 or for all i ∈ A2. Thus ys contributes at most 5 to

∑8
i=1 xi and (since

any other yt is at most 6) this sum is at most 23, giving a contradiction by Claim 4.8.2 and (54).
In particular, this implies that |Zj,s| ≥ 2c1n for all j ∈ [6]. The same claim applies to |Z ′j,s|.

Let y1z1, . . . , ymzm be a maximal matching formed by color-s edges between W1 and W4. Since χ
is good, we have that

m ≥ min(|W1|, |W4|)− c1n/1000 ≥ n/9− 2c2n.

When we extend the coloring χ to G, the number of choices to color the edges of G[vv′, yizi] is
at most 34 − 1 for every i ∈ [m] because, if all 4 pairs are present in G, then we are not allowed to
color all of them with color c while otherwise we have at most 43 < 34 choices. This allows us to
improve the bound in (54) by factor (80/81)n/10, giving the desired contradiction.

Thus we have proved Part 1 of the lemma.
Suppose on the contrary that the conclusion of Part 2 does not hold. As in the proof of

Lemma 3.5, we can find an edge vv′ ∈ G, say with v ∈ W1 and v′ ∈ W9, a color s, and a good
coloring χ of G− v − v′ such that there are at least (3− c2)16n/9 good extensions of χ to G that
preserve the pattern π of χ and assign the “wrong” color s to vv′. Defining xi, x

′
i, Zj,c, Z

′
j,c, yi, y

′
i

by the direct analogy with the definitions of Claim 3.8.3, one can argue similarly to (37) that the
total number of extensions of χ is at most

2c0n ·

(
9∏

i=2

max(xi, 1) ·
8∏

i=1

max(x′i, 1)

)n/9

. (55)

By Claim 4.8.2, we have xi = 3 for each 2 ≤ i ≤ 9 and x′i = 3 for each i ∈ [8]. Thus each yi

and y′i is equal to 6. It follows that, for any 2 ≤ j ≤ 9 and c ∈ [4], we have |Zj,c| ≥ 2c1n if
and only if c ∈ π({1, j}). Also, the analogous claim hods for |Z ′j,c|. Since s 6∈ π({1, 9}), we can
find distinct i, j ∈ {2, . . . , 8} such that s belongs to the π(ij) as well as to the label of each pair
in {1, 9} × {i, j}. As before, by considering a maximal color-s matching in G[Wi,Wj ], we can
improve (55) by a factor (80/81)n/10, getting a contradiction and proving Part 2 of the lemma.

Let us prove Part 3. If G is not complete 9-partite, then by Part 2 we can take G′ =
K(W1, . . . ,W9): indeed, |P(G′)| ≥ 3|P(G)| > F (G, 4, 4). So suppose that G is complete 9-partite.

Let us determine the number of possible patterns (with distinguishable colors and vertices). For
the color-1 graph we have

(
8
2

)
·
(
5
2

)
choices (there are

(
8
2

)
choices for the part A1 ∈

(
[9]
3

)
containing

1, then
(
5
2

)
choices for the part A2 containing the smallest element of [9] \A1.) Then we have 9 · 4

choices for Color 2, then 2 choices for Color 3, and one choice for Color 4. Thus the total number
of patterns is 20160 = 9!/18. The same answer can be obtained by noting that, when we permute
[9], then we have a transitive action on patterns and every pattern is fixed by 18 permutations.
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It follows that G has (9!/18 + o(1)) 3e(G) perfect colorings in total, since every edge of G has
exactly 3 choices for a given pattern. Since G 6∼= T9(n), we have |P(T9(n))| ≥ (3 + o(1))|P(G)| and
we can take G′ = T9(n). This completes the proof of Lemma 4.8.

Now, Theorem 1.2 can be deduced from Lemma 4.8 in the same way (modulo some obvious
modifications) as Theorem 1.1 was deduced from Lemma 3.8.
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