Chapter 7

Electromagnetism

In this chapter, we discuss the worldpaths of charged particles in constant
electromagnetic fields. We will see that skew lineon fields provide a suit-
able context in which to discuss electromagnetism. We begin with some
basic definitions and algebraic preliminaries in §7.1, and proceed in §7.2
to analyze in some detail skew lineons in an inner-product space of signa-
ture (3,1). Finally, we apply these ideas in §7.3 in describing worldpaths of
charged particles.

7.1 Skew Lineons

We will see later that skew lineon fields are useful for describing electromag-
netic fields in a relativistic world. Although we will not yet offer a formal
justification for this observation, it will be beneficial to address at this point
some basic properties of skew lineons.

Let a finite-dimensional inner-product space V be given.
7100 Definition: We say that W € Lin V is skew if

b-Wa=-a-Wb foralla,be).

We denote by Skew V the set of all skew lineons; i.e., all members of Lin V
that are skew.
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7101 Theorem: Let W € Lin V be given. Then W is skew if and only if
a-Wa=0 forallaeV.

Proof: Suppose that W is skew. Then for all a € V, we have
Wa:a=—a-Wa,

and hence a- Wa = (.
Now suppose that ¢- We =0 for all ¢ € V, and let a,b € V be given.

Then
0=(a+b)-W(a+Db)
=a-Wa+a-Wb+b-Wa+b-Wb
- a- Wb + b . Wa
Hence,
b-Wa =—-a-Whb.
As a,b € V were arbitrary, we see that W is skew. O

7102 Proposition: If W is skew, and if Uy and Uy are given subspaces of

V that satisfy
W>(U1) C Us,

then
W (Us-) C Uit

Proof: Suppose that Uy and Uy satisfy W~ (U1) C Us, and let u € W (Us-)
be given. The we may choose b € U3" such that Wb = u. Then for

all v € Uy, we have
u-v=Wb-v=-b-Wv=0

since b € Uy- and Wv € W (U;) C Us. Since v € Uy was arbitrary,
we have u € Uf-; as u was arbitrary, we have W (UQJ‘) C Llf-. O

7103 Corollary: Let W € Skew V be given. If a given subspace U of V is
a W-space (see Def. D18 of Appendix D), then so is U+,



7.1. SKEW LINEONS 195

Proof: If a subspace U of V is a W-space, we may put Uy :=Us :=U in
the previous Proposition. The result is immediate. O

7104 Proposition: Let W € Skew V be given. Then Null W = (Rng W)=,
and hence Rng W = (Null W)+,

Proof: We apply Prop. 7102 with f; := V and Us := Rng W. Clearly,
W- (V) C Rng W, and hence we conclude that

W ((Rng W)*) C V* = {0},
and therefore (Rng W)+ C Null W.

Applying Prop. 7102 again with U := Null W and Us := {0}, we see
that W (Null W) C {0} implies

Rng W = W. (V) = Ws ({0}4) € (Null W),

and hence, by Prop. 5102, Null W = (Null W)+, As a result, we
have Null W C (Rng W)L. Thus, we have Null W = (Rng W)+, from
which it immediately follows, again by Prop. 5102, that Rng W =
(Null W)~ 0

7105 Definition: For all a,b € V, we define the exterior product of a
and b, denoted by a A b, by

aAb:=a®b-bQ®a.
(See Def. D22 of Appendix D for a definition of “a® b”).

7106 Proposition: Let a,b € V be given. Then a A b is a skew lineon.

Proof: The proof of the linearity of a A b follows immediately from Prop.
D23 of Appendix D.

Now let v € V be given. Then

v (@a@b-boa)v) =v-((b-v)
=(b-v)(v-

a—(a-v)b)
a) —(a-v)(v-b)

Since v € V was arbitrary, we conclude from Prop. 7101 that a®@ b —
b ® a is skew. O
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7107 Theorem: Assume that dim V = 2, and let W € Skew V be given.
Also, let an orthonormal list-basis (b1, bs) in the sense of Prop. 5110 be
given. Then there is w € R such that Wb = wbs.

IfsigV = (1,1), the matrix of W relative to (b1, bs) is

wi=[) o] (71.1)

and we have W2 = w?1y, and W = w(b1 A by).
If sigV = (2,0), the matrix of W relative to (b, bs) is

(W] = [ 0 "’], (71.2)

—w 0

and we have W2 = —w?1y, and W = w(by A by).

Proof: Since W is skew, we have b;-Wb; = 0 and hence Wb € {bl}J- =
Rbs. Hence we can determine w € R such that Wby = wbs. Similarly,
we can determine w’ € R such that Wby = w'b;. We have

wbg . b2 == b2 . Wb1 = —b1 - Wb2 = —w'b1 - b1. (713)

If sigV = (1,1), we have by - b; = —1 and by - by = 1, and then (71.3)
yields w’ = w, so that the the matrix of W is (71.1). If sigV = (2,0)
we have by - b; = by - by = 1 and (71.3) yields w’ = —w, so that the
matrix of W is given by (71.2).

The remainder of the proof is left as an Exercise. ¢

Remark: IfsigV = (1,1) and (d, e) is an orthonormal list-basis of V such
that the matrix of W relative to this list-basis is given by

wi=|) o]

then the matrix of W relative to the orthonormal list-basis (d, —e) or
(—d, e) is given by
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7108 Proposition: Suppose that V is a three-dimensional genuine inner-
product space. Let a non-zero H € Skew V be given. Then dim Null H = 1;
we call Null H the axis of H. Also, Rng H = (Null H)* and dim Rng H = 2.
Moreover, for every u € Rng H with |u| = 1, there is exactly one v € Rng H
with |v| = 1 and exactly one o € P* such that u-v =0 and

H=a(vAu).

Further, given b € {u,v}! such that |b| = 1, so that (b,u,v) is an or-
thonormal basis, the matrix of H relative to this basis is given by

0 0 O
H =0 0 —«
0 o O
Finally, a is independent of u € Rng H, and is given by a = —%tr (H?)

(see Prop. D21 of Appendix D).

Proof: Let u € Rng H with |u| = 1 be given (since Rng H # (), such u do
exist). Choose w € V such that u = Hw. Since H is skew, we have

w-Hu=-u-Hw=—-u-u=-1
and hence Hu # 0. We put

1 1
= — = —H .
(87 ‘Hul, v . u

Then |v| =1, and v-u = 2(Hu)-u = 0 as H is skew. Since dimV =3,
we may determine b € V such that (b,u,v) is an orthonormal list-
basis of V.

We have (Hb) -b =0 and (Hb) -u=—b-Hu= —ab-v =0. Hence
we have Hb € {b,u}* = Rv, i.c., we may choose v € R such that
Hb = vyv. It follows that

yw-v=w-Hb=-b-Hw=-b-u=0.

On the other hand, we have
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and henve w - v # 0. We conclude that v = 0 and hence Hb = 0.

Since b-Hv =0, u-Hv = —v-Hu = —a, and v- Hv = 0, and
since (b, u,v) is an orthonormal list-basis of V, we have Hv = —au.
Recalling that Hu = av and Hb = 0, it follows that the matrix of
H has the form given in the Proposition. Moreover, it is clear that
Null H = Rb and Rng H = Lsp {u,v}. The remaining assertions of
the Proposition easily follow. O

7.2 The Structure of Skew Lineons

In this section, we assume that V is a given inner-product space of signature
(3,1). We also assume that F € Skew V is given. Below, we analyze the
structure of F' in some detail. We use a terminology that suggests the inter-
pretation of F' as the value of an electromagnetic field, as will be explained
in the next section.

7200 Definition: Let d € F; be given, and put W := {d}*. We define
the electric part of F relative to d, denoted by Eq, by

Ed = Fd.
We define the magnetic part of F relative to d, denoted by Hq, by
Hd = PF‘W,

where P : V — W is the orthogonal projection of V onto W (i.e., the
projection of V onto W along W+; see Def. D16 of Appendix D) so that
P(d+w)=w forall§ € R and w € W.

Now assume that d € Fj is given and put W := {d}*. When confusion is
not likely, we write “E” for “Eq” and “H” for “Hgq”. We also use “electric
part” for “electric part of F relative to d” and “magnetic part” for “magnetic
part of F relative to d” when unambiguous. We adopt these conventions at
this point.

Since F is skew, we must have d-Fd = 0 by Thm. 7101, and hence d-E = 0.
Thus, we see that E € W, and consequently the electric part is spacelike or
zero. |E| is called the intensity of the electric part, and when |E| # 0, E/|E|
is called the direction of the electric part.
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Although it is simple to see what the direction of the electric part of F is
relative to d, some additional work is needed to formulate the definition of
an axis of the magnetic part of F relative to d. Our first task will be to
show that H is skew. To this end, let a € W be given. Since a € W, we
have Pa = a and Ha = PFa. Now F is skew and P is a projection, so that

0=a-Fa=Pa-Fa=a-PFa=a-Ha.
Since a € VW was arbitrary, it follows from Thm. 7101 that H is skew.

Since H is skew, we may consider H in light of the results in §7.1. Assume
that H # 0. Since dim W = 3, we see from Prop. 7108 that dim Null H = 1.
We say that the one-dimensional subspace of V, Null H, is the axis of
the magnetic part. The number « (as given in Prop. 7108) is called the
intensity of the magnetic part.

Our next task is to describe F in greater detail. With Prop. D19 of Ap-
pendix D in mind, we offer the following.

7201 Definition: We say that F is regular if there is a regular two-
dimensional F-space, and singular if no two-dimensional F-space is regular
(i.e., all two-dimensional F-spaces are singular). (See Def. 5104 for defini-
tions of regular and singular subspaces.)

As is happens, being able to distinguish whether F is regular or singular is
as fine a distinction as is necessary in order to obtain a useful description of
F. We assume that F is not zero.

7202 Theorem: Assume that F is regular. Then there is exactly one
two-dimensional positive-regular F-spaced C V. Given a world-direction d
belonging to U+, we may determine an orthonormal list-basis (d,E, f,g) of
V so that the matrix of F relative to this basis is given by

¥ =

SO MmO
S OO M
S O O
O3 © O

-n

where ¢ is the intensity of the electric part of the field relative to d and 7 is
the intensity of the magnetic part of F relative to d. We have Hq = n(f Ag)
(in W := {d}!), and hence E belongs to the axis of the magnetic part. &
and 1 do not depend on the choice of d € U+ N F;.
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Remark: In this Theorem, and wherever appropriate, we interpret the ex-
terior product “A” (see Def. 7105) as relative to W := {d}+. Strictly
speaking, both g and f belong to V, and hence n(f A g) belongs to
Skew V, while Hq belongs to Skew W. In such instances, we consider
g and T to be members of W (which they are), and therefore consider
the exterior product “n(f A g)” to be a member of Skew W.

Proof: We proceed with a proof of this Theorem in some detail. We first
choose a two-dimensional regular F-space, say . By Cor. 7103, U is
also a two-dimensional F-space. We leave as an Exercise to show that
one of Y and Y must be positive-regular and the other must have
signature (1,1). We assume without loss, then, that U is positive-
regular and that &/ has signature (1,1). We also leave as an Exercise
that with these restrictions, ¢/ is uniquely determined by F.

Since U is an F-space, we may consider the linear mapping F, :
U — U as given in Def. D18 of Appendix D. Now sigif = (2,0), and
evidently F);, is skew since F is skew. Hence by Thm. 7107, we may
determine 1 € P such that FIM = —1?1y. We apply a similar analysis

to U, yielding € € P such that FIuL =e21,..

We denote the electric and magnetic parts of F relative to d by E and
H, respectively. Since E = Fd (see Def. 7200) and FIUL =211, we

have that E € U+ (since d € U+ and U+ is an F-space), and
|E?=Fd -Fd = —d-F?d = —d - £’d = €%,

and hence |E[ = ¢ is the intensity of the electric part. As a result, we
may determine E € U+ such that E = ¢E and (d, E) is an orthonormal
list-basis of L{L (Note that when ¢ # 0, E is uniquely determined.
When ¢ = 0, E may be replaced by —E) An application of Thm.
7107 yields that the matrix of F,. relative to (d,E) is given by

Fasd= |0 5]

By applying a similar analysis to F;;, we may determine an orthonor-

mal list-basis (f,&) of U such that the matrix of F relative to this
list-basis is given by
0
[Ful = [_ TI] :

n 0
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It is readily seen that (d, E, ?, g) is an orthonormal list-basis of V. The
above calculations reveal that the matrix of F with respect to this
list-basis is given by

o O O

7] =

S o m O
SO O M
O3 © <O

-n

It may be shown that H = fr](?/\ g), and hence that 7 is the intensity
of the magnetic part. Moreover, we have E € Null H; i.e., E belongs
to the axis of H. Note that the intensities of the electric and magnetic
parts do not depend on d as long as d € Y. O

Remark: Ifd € F; does not belong to U+, then the electric and magnetic
parts of F have a more complicated form and E does not necessarily
belong to the axis of the magnetic part.

The following Theorem deals with the case when F is singular. Although we
will not apply this Theorem in the present book, it is very important when
analyzing electromagnetic waves because they are given by non-constant
fields whose values are singular skew lineons.

7203 Theorem: Assume that F is singular. Then Rng F and Null F are
singular two-dimensional subspaces of V and § := Rng F N Null F is a
one-dimensional totally singular subspace of V. For every e € Rng F with
e-e =1, we have

n:=FeecS, n-n=0, (72.1)
and

F=nAe. (72.2)

If d is any given world-direction, we can determine o € P* and an or-
thonormal list-basis (d, e, f,g) of V such that the matrix of F relative to it
is

O o 0 O
a 0 —a 0

[F] = 0 a 0 0 (72.3)
0O 0 0 O
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The intensity of the electric part and the intensity of the magnetic part of
F relative to d are both equal to a and the electric part Ey is perpendicular
to the axis of the magnetic part Hg; i.e., Eq € (Null H)' = Rng Hgq.

7204 Lemma: Let a two-dimensional F-spaceld C V be given. Then T :=
UNU"L is the only totally singular subspace of U, and we have dim T = 1,
F.(U) CT,Fs(U*+) C T. Also, we have dim (U +U*L) =3. U +U" is an
F-space and Fs (U +U) C T.

Proof: The fact that 7 is totally singular and dim 7 = 1 follows from
Prop. 5209. It follows from Prop. 5102 that dim Y+ =4 — 2 = 2
and from Cor. 7103 that &/ is also an F-space.

Now let u € U* be given. Since F is skew, we have u-Fu = 0 and
hence Fu € {u}L. Since U is an F-space, we also have Fu € I and
hence Fu € {u}* NU. In the case when u € 7, we have Fu € T
because & and Y+ and hence 7 = U NU~* are F-spaces. In the case
when u € Y \ T, we can apply Prop. 5209 to conclude that Fu € T
also. Since u € U was arbitrary, it follows that F (i) C 7. Applying
the same argument to U+ instead of U, we also obtain Fs (U*) C T.
The rest of the Lemma is an easy consequence. O

Proof of Theorem: Inview of Prop.D19 of Appendix D, we may choose
a two-dimensional F-space U. Since U is singular, the Lemma can be
applied to it. Put W := U + U+. Then Fs (W) C T is equivalent
to Rng F)yy C 7. Since dim 7 = 1, it follows from Prop. D14 that
1 > dim Rng F)y = 3 — dim Null F}) and hence dim Null F),, > 2.
Since Null Fyy C Null F, we also have dim Null F > 2. Since every
subspace of Null F is an F-space and since all two-dimensional F-spaces
must be singular, it follows from Cor. 5210 that dim Null F = 2.

We now apply the Lemma to Null F. Since Rng F = (Null F)* by
Prop. 7104, the first statement of the Theorem is proved.

Now let e € Rng F with e-e = 1 be given and put n := Fe. Since
e € Rng F, it follows from the Lemma that n € F5(Rng F) C § and
hence n - n = 0. We cannot have n = 0, because otherwise we would
have e € Rng F N Null F = &, which is incompatible with e - e = 1.
Since dim Rng F = 2, {e, n} must be a basis of Rng F. We now choose
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w € V such that e = Fw. We have e-w = e-n = 0 because F is
skew.

Now let v € V be given. Since Fv € Rng F, we can determine A, u € R
such that
Fv = An + pe. (72.4)

Taking the inner product with e gives
p=e-Fv=—-v-Fe=—v-n.
Taking the inner product of (72.4) with w gives
A(n-w)=w-Fv=—-v-Fw=—-v-e.
Since
n-w=Fe-w=—-e-Fw=—-e-e=-1,
we conclude that A = v - e. Therefore, (72.4) gives
Fv=(v-eln—(v-nje=(n®e—e®n)v.
Since v € V was arbitrary, we conclude, using Def. 7105, that (72.1)
and (72.2) are valid.

Now let a world-direction d € F; be given. Since Null F is singular,
it follows from Prop. 5209 that F; N Null F = (), and hence Fd # 0.
Therefore we may determine o € P* and e € Rng F withe-e =1
such that

Fd = «e. (72.5)

We have d - e = 0 and that « is the intensity of the electric field ae
relative to d. Applying the part of the Theorem already proved, we
find that (72.1) and (72.2) are valid for this choice of e.

Put f := én—d. Since n - e = 0, we have f - e = (. Since
n-d=Fe-d=-e-Fd=—e- (ae) = —q,
we have

fod=—Ya—d-d=-141=0

and hence,
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Substituting n = a(d + f) into (72.2) yields
F=a(dAe)+a(f Ae). (72.6)

We may choose g € {d,e,f}* such that |g| = 1. Then (d,e,f,g) is
an orthonormal list-basis of V. It easily follows from (72.6) that the
matrix of F relative to this basis is given by (72.3). Also, (e,f,g) is
an orthonormal list-basis of W := {d}* and Hq = a(f A e) € Skew W
is the magnetic part of F relative to d. The intensity of the magnetic
part of F relative to d is @ (dependent on the choice of d), and the
axis of Hy is Null Hy = Rg. The electric part Eq = ae belongs to
(Null Hg)* = Rng Hg. 0

7.3 Particles in Constant Electromagnetic Fields

We now begin an investigation of particles in a constant electromagnetic
field. In other words, we endeavor to describe the worldpaths of charged
particles which are injected into constant electromagnetic fields. Although
we do not offer a formal definition of a “charged particle”, suffice it to say
that charged particles are those particles whose paths can be altered by the
presence of an electromagnetic field.

We first offer an informal justification for using skew lineons to model elec-
tromagnetic fields. Given z € £ and a world-direction d € Fj, an elec-
tromagnetic field should assign a force per unit mass which would be the
force on each charged particle whose worldpath passes through = and whose
world-direction at x is d. Moreover, this force per unit mass should be
proportional to the charge of the particle.

In light of the discussion in §5.6, this force must also belong to {d}*. As
a result, the electromagnetic field at z should be a mapping which assigns
to each world-direction a corresponding force per unit mass; i.e., a mapping
¢ : F1 — V such that p(d) € {d}* c VU {0} for all d € F;. We see that
d-p(d)=0foralld € F;.

Now assume that there is a lineon F € Lin V whose restriction F|, is ¢; that
is, Fd = ¢(d) for all d € F;. One can show that this is impossible unless
v-Fv =0 for all v € V; i.e., unless F is skew (see Thm. 7101). Hence,
rather than specifying a mapping such as ¢, we might as well consider the
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electromagnetic field at = as a skew lineon. This motivates the following
definition.

7300 Definition: An electromagnetic field on £ is given by a mapping
F : &€ — Skew V; i.e., a skew lineon field.

Let an electromagnetic field F be given. For simplicity, we assume that F
is constant, and determine F € Skew V such that F = F(z) for all z € £.
Although this restriction may seem severe, many interesting problems may
still be discussed.

Now let a charged particle be given whose worldpath L is described by a
smooth time-parameterization p : I — £ (where I is a genuine interval in
R), and whose world-momentum is given by a smooth mappingp : I — V
so that the world-momentum of the particle at p(t) is p(¢t) € P*p*(t) for
all t € I. We put u := p*, and recall that Rng u C F; (see Prop. 3409).
Given the above remarks and considering the disucssion in §5.6, it seems
reasonable to require that
p’ = eFu,

where e is the charge of the particle. This relationship is often referred to
as the Lorentz law.

Remark: We emphasize that this is only an approximation, as the charged
particle itself generates its own electromagnetic field, the effects of
which are too complicated to be included in our discussion.

We now assume that the particle’s charge and mass are constant throughout
the life of the particle, and we denote them by e and m, respectively. Since
we assume that the mass of the particle is constant, we see that p = mu
and hence p* = mu*. Hence, we may rewrite the Lorentz law as

p* =u* =Fu, where ~:=e/m. (73.1)

For this discussion, we assume that F is regular and non-zero. Recall from
the previous section that we may determine a two-dimensional positive-
regular subspace U of V and ¢,7 € P such that Fs(4) C U, F~(U') Cc UL,
and

F|2u =-—n*1y and F|2L{L = e21y1. (73.2)
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Note that € and 7 are not both zero; otherwise, (73.2) would imply that F
is the zero mapping.

We begin with a few observations. Since U is regular, then (U,U') is a
decomposition of V (see Def. D07 of Appendix D). We may therefore de-
termine v,w : I — V such that u = v + w, Rng v C U, and Rng w C U+,
and hence Rng v* C U and Rng w* C U*.

Now u* = yFu = yFv + yFw. Since Rng Fv C U and Rng Fw € U1, it
follows from the fact that (i,4") is a decomposition of V that

uw=v'+w', v =q9Fv, and w'=~Fw. (73.3)

If it were the case that v = 0, then it is easily seen that u would be constant,
and hence the particle would be a free particle. But v = 0 means that the
particle has zero charge, and thus an electromagnetic field would have no
effect on its path. So we assume, from now on, that v # 0.

We have from (73.2) that F2v = —n?v and F?w = ¢2w. By differentiating
(73.3) and using (73.2) and (73.3), we see that

v = yFv" = 4 F?v = —y2ply, (73.4)
w" = 7Fw*' =V’ F’w = y?’w. (73.5)

Assume for convenience that 0 € I, and suppose that the values of u and u*
at 0 € I are prescribed; that is, given ug € F; and uj, € V* U {0}, we put

u(0) :=uy, u*(0):= uy. (73.6)
Note that ug is the world-direction of the charged particle at 0 € 1.

Since (U,U') is a decomposition of V, we may determine u,,,u), € U and
U, u, € U such that

u =u, +u, uj=u,, +u. (73.7)

Here, the subscripts “m” and “e” denote the relationships to the magnetic
and electric parts of F, respectively, as indicated in (73.2) with the relation-
ships between 7 and U/, and ¢ and U*.

Since ugy € F1, we see that

—1=u, -y, +u.- u.
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Since u,, € U and U is positive-regular, we must have u,, - u,, > 0, and
hence ue - ue < —1. Put pp:= 7(ue) = v/—ue-ue and v := /1 — u=2. Then
we may deduce from the remarks above that

p>1, vel0,1], and |uy|=pv. (73.8)
Since 4 = 7(u), we may choose 1, € U with 7(ft,) = 1 such that

u = pi,. (73.9)

Assume now that v # 0. Then |u,| # 0 (see (73.8)), and thus we may
determine @, € U with |@,| = 1 such that

Uy, = plly,. (73.10)
Since up = v(0) + w(0) and uf = v*(0) + w*(0), it follows from (73.7) that

v(0) =up, v°(0)=ul, (73.11)
w(0) =u, w*(0)=nul. (73.12)

Evaluating the middle equation in (73.3) at 0 and using (73.11) yields
u,, = yFu,,. (73.13)
We use this and (73.4) to see that

u, -u,, = ~’Fu,, Fu,
= _72F2um U,

=771 Unp Uy,
and hence (see (73.8)) that
[ug| = ynlum| = ynurv. (73.14)
Since F is skew, it follows from (73.13) that
u;n-umzyFum-umzo.
We may similarly consider (73.12) to conclude that

lul| = yue, u,-u,=0. (73.15)
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From now on, whenever we refer to the electric or magnetic part of F, we
will be referring to the magnetic or electric part of F relative to the world-
direction @,. We put W := {#i.}*. Recall that H = PF|yy, where P is the
orthogonal projection of V onto W (see Def. 7200).

Now that some preliminary observations have been made, we proceed to
an explicit description of the worldpath of the charged particle. We first
consider the case when 1 # 0 and € # 0. Since 5 # 0, then we may, as a
result of (73.14), choose @), € U with |@],| = 1 such that

Uy, = YNpviy,.

It may easily be shown that both Ha,, = na/, and Ha,, = —ni,,, and
hence 7 is the intensity of the magnetic part of F relative to .

Solving (73.4) with the data given in (73.11) yields
v(s) = pv(cos(yns) iy, + sin(yns)iy, )

for all s € I.
Since ¢ # 0, we see from (73.15) that we may choose @}, € U+ with |a]| =1
such that

u, = yuet,. (73.16)
Evaluating the right equation of (73.3) at 0 and using (73.12) results in

u, = yFu,.

Recall that the electric part (i.e., the electric part of F relative to ) is
given by Fii.. Thus, it follows from (73.9) and (73.16) that
1 1

E=Fi, = —Fu, = —ul =¢itl.
I o[t

Recall that € is the intensity of the electric part.

It is clear that (G, 0., Gy, 0),) is an orthonormal list-basis for V. We see
by comparing the above analysis with the case when F is regular in Thm.
7202 that the matrix of F relative to this basis is given by

0 0

0
[F) = 8

S oo~

€
0
0

o3 O

)
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Solving (73.5) with the information provided in (73.12) results in
w(s) = p(cosh(yes)le + sinh(yes)il)

for all s € I.

We combine the above descriptions of v and w to yield

u(s) = v(s) +w(s)
= p(cosh(yes)l, + sinh(yes)il, + v(cos(yns) b, + sin(yns)il,))

forall s e I.

We may proceed to solve for p (recall that u = p*) and obtain

1
p(s) =q+ % (E (sinh(vyes)t, + cosh(yes)d)

v, N R
+ 0 (sin(yns) i, — cos(fyns)u'm))

for all s € I, where

moy BV
qg=p(0) — —ua, + —u,,.
v ¢ oy ™

We now describe geometrically the worldpath of the particle given by p in
g+ W. We proceed as in §5.7, using the notation explained there. We put

J:=Rngtl = {ﬂsinh('yes) |s € I}.
€ IYE

Thena : I - J and p; : J — g+ W are given by

_
as) = e sinh(~yes) (73.17)

for all s € I and

pL(t) =g+ % cosh(yea™ ()t + %(Sin(vna“(t))ﬁm — cos(yna’™ (t))iy,)
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for all t € J. We first note that

v, . A T
g+ 2 sinat (0) i — costrma* (0),)

describes a circle with center ¢ and radius p := pv/vyn. Thus, the path
described by p, lies on the surface of a cylinder in ¢ + W of radius p.

If we define 6 : J — R by

0(t) == yna* (t)

for all ¢t € J, we see that

= ﬁ(:os £ i sin U, — Cos a
polt) =g+ 22 cosh (Z010) ) -+ 22 im0 — con(O(0))

for all ¢ € J, and hence the particle describes a path which can be likened
to wrapping a catenary around a cylinder of radius p.

Assuming that [0,50] C J, and with mappings z,y,z : J — R given by

x(t) := —pcos(6(t)),
y(t) := psin(0(t)), and

#(0) = L comn (000

for all ¢ € J, we see that

pL(t) =q+ z(t), + y(t) b, + z(t)a,

for all t € J. We may graphically describe p| as in the following figure,
where values of v :=1/2, v := 1, ¢ := 0.03, and 7 := 1 have been assigned,
and where ¢ ranges over the interval [0, 50].
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60

y
50
40
0
-0.5
-0.5
X 0 0.5
Figure 73a

If we define r,w : J — R by

and

w(t) == 0°(t)

for all t € J, where r can be interpreted as the rate that the particle travels
along the direction of the axis of the cylinder and w can be interpreted as
the angular velocity with which the particle moves “around” the cylinder,
it can be shown that
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for all ¢ € J, and hence this ratio is independent of the mass and the charge
of the particle.

In the case where n # 0 and ¢ = 0, we find that
B ~ 122 ~ ~/
p(s) =g+ pstie + o (sin(yns)am — cos(yns)iy,)

for all s € I, where

uv .,
qg=p(0)+ —u,,.
yn "

The details of the calculations are left to the Exercises.

The path that the particle makes in ¢ + W is described by the parameteri-

zation
pi(t)=q+ it (sin (ﬂt> U, — CoS (ﬂt> ﬁ;n>
m © 2

for all t € J (where J and p, are as in §5.7), which is easily seen to describe
a circle centered at ¢ with radius p := pv/yn. This relationship is sometimes
written

e 1 v
m npy1-v%
or equivalently,

enp = mpuv,

and is referred to in this form as the cyclotron formula because it is useful
in the design of cyclotrons. One may easily verify that |p* (¢)] = v for all
t € J, so that the speed of the charged particle relative to t, is v.

In the event that n = 0 and ¢ # 0, we see that
p(s) =q+ %(sinh('yss)ﬁe + cosh(yes)l)) + pvsiy,

for all s € I, where

| Y
=p(0) — —u,.
q = p(0) &_ue

The details of the calculations are left to the Exercises.
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The path of this particle in g + W is a catenary; this is useful in the design
of cathode ray tubes like the ones used in television sets. Note that « is
again as in (73.17), and thus

pi(t) =q+ % cosh(yea® ()bl + pra (t) i,

forallt € J. When z,y : J — R satisfy p, (t) = ¢+ y(¢)dl + z(¢)a, for all

t € J, we see that
p Ve
t) = — cosh [ —z(t
y(t) e °O8 (uyw( ))

for all t € J. Hence p;, may be graphically described by a catenary as in
the following figure.

p1(0)

(=33
S~

_—e—— e e = - e = = o = ———

B I I
B I I
B I I

Figure 73b

Finally, we examine the case when v = 0. We have from (73.8) that |u,,| = 0,
and from (73.14) that |ul,| = 0. Since u,,,u,, € U and U is positive-regular,
it follows that u,, = u}, = 0. Thus, we see that uyp = u, and uj = u,. We
also see that (73.4) and (73.11) reduce to

v = %y, v(0) =v*(0) = 0.
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The solution to this differential equation is simply v(s) = 0 for all s € I, and
hence Rng u = Rng w C U*. Since Rng H C U, we see that the magnetic
part of F in this case has no effect on the path of the particle.

We proceed to examine the two possible cases.

1. e=0.

We see from (73.15) that |ul| = 0, and since u, = uj, € V* U{0}, that
u, = 0. Then (73.5) and (73.12) become (since v = 0 yields p = 1)

for all s € I. We may solve for p to get
p(s) =p(0) + st

for all s € I. In this case, we see that the particle behaves as a free
particle (with zero charge).

2. e #0.
In this case, we solve (73.5) with (73.12) to yield

u(s) = cosh(yes)i, + sinh(yes)al,

for all s € I. Solving for p yields
L . N s
p(s) = g + —(sinh(yes)ae + cosh(yes)a,)
for all s € I, where

— p(0) — —i.
q = p(0) ol

Again using the notation of §5.7, we find that

pi(t) = q+ yet
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for all t € J. Thus, we see that the particle moves along a straight line
with direction @,. However, the speed relative to G, varies; in fact, we
have

. velt|
P (t)] =

V1 + (yet)?

for all t € J. Note that as |t| gets larger, |p* (¢)| approaches 1. Also,
recall that @, is the direction of the electric part, so that the charged
particle always moves in the direction of the electric part.

Exercises

Let a Minkowskian spacetime £ be given. Assume that sig) = (3, 1).

EXERCISES, 1

1. Complete the proof of Thm. 7107.
2. Prove Prop. 7108.

3. Suppose that F € Skew V is regular, and that I/ is a two-dimensional
F-space. Show that of i and U, one is positive-regular and the other
has signature (1,1) (see §7.2).

4. Show that when F is regular, the F-space U is uniquely determined
by F (see §7.2).

5. Show that 7 := U NU"' is a one-dimensional totally singular subspace
of V and that T =UNV? =U+ NP (see §7.2).

6. Show that dim ) # 1, where ) is given as in §7.2.
7. Complete the calculations in the case when 1 # 0 and € = 0 (see §7.3).

8. Complete the calculations in the case when n = 0 and ¢ # 0 (see §7.3).
EXERCISES, II

1. Show that H = (F —d AFd)))y (see Def. 7200).



216

CHAPTER 7. ELECTROMAGNETISM

2. Show that H = (g /\A), where 7, f, and g are as described in §7.2.

3. Show that H = a(/f?/\ E), where «, ?, and E are given as in §7.2.

4. Let p : I — £ be a smooth time-parameterization of the worldpath of

a particle with constant mass m € P* and constant charge e € R in a
constant electromagnetic field with value F € Skew V.

Let a world-direction d € F; be given. Determine py : I — P*,
v:I—=P* andf : I — {d} such that

p°(s) = p(s)(d + v(s)f(s)) and [f(s)] =1

for all s € I. Prove that

for all s € I.



