Chapter 4

Classical Spacetimes

So far in this book, we have only considered mathematical structures in-
volving temporal concepts such as precedence and timelapse. In a classical
eventworld, we have an “absolute time” in the sense that every event takes
place at a particular instant (see §2.4), and hence the question, “How long
ago did an event take place?” is meaningful.

In this chapter, we consider structures which allow us to unambiguously
ask, “At what location did an event take place?” We begin in §4.1 with
structures which involve the concept of distance. In general, we will use
the term “spacetime” for a structure that also involves “spatial” concepts
such as distance and location. With the introduction of reference frames in
§4.2, we may define concepts such as “location” and “motion” relative to a
reference frame. This will allow us to decide at what location an event takes
place. Thus, we see that one does not require a context of “absolute space”
in which to discuss classical physics, contrary to some ideas of Newton. In
§4.3, we consider spacetimes which may be characterized by the singling
out of certain reference frames. Finally, at the end of §4.3, we discuss the
contexts in which the various classical spacetimes presented in this chapter
are appropriate.

4.1 Pre-Classical Spacetimes

Let a classical timed eventworld £ be given. We use the notations as given
in §2.4. Tt is apparent that our familiar ideas about the world go beyond
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96 CHAPTER 4. CLASSICAL SPACETIMES

the consideration of instants and timelapses. We hardly go a day without
making or referring to some kind of length measurement. We infuse this
concept into that of a classical timed eventworld in the following definition.!

4100 Definition: A pre-classical spacetime is a classical timed event-
world £ (with precedence < and timelapse t), with additional structure given
by specifying a function

d:Gr(~)—>P

such that for each instant o € I' the restriction of d to o X, i.e., the mapping
dloxo : 0 X0 — P, endows o with the structure of a finite-dimensional gen-
uine Euclidean space with distance function d|, 4, the dimension of which
is the same for each o € I'. For brevity, we put d, := d|sxe-

Remark: We offer in §5.1 a definition of a genuine Euclidean space. For
now, suffice it to say that a genuine Euclidean space is a space where
the usual rules of Euclidean geometry apply. We recall the following
fact, which will be useful in the proof of Thm. 4201: for all ¢ € T
and for all z,y € o, we have

do(z,y) =0 <= z=y.

(See the discussion following Def. 5103.)

Perhaps it is helpful to imagine how one might measure distance in a clas-
sical, Euclidean sense in order to provide some justification for Def. 4100.
Suppose one wanted to describe the height of a bouncing ball relative to the
floor as a function of time. One might set up a camera to take photographs
of the ball at regular time intervals, and then take measurements from the
photographs (scaling them by an appropriate factor). If the time interval
is short enough, one may get a reasonably accurate approximation to this
function.

The important observation to make is that the measurements in this case
were made at an instant; that is, any particular measurement of the height of
the ball above the floor was made at some instant during the ball’s trajectory.

!This definition was first introduced by W. Noll in 1967, but he used “neo-classical”
rather than “pre-classical”.
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In general, it is only possible to measure distance between locations that
belong to the same instant. A moment’s thought reveals that due to ongoing
changes in temperature, humidity or barometric pressure, objects may alter
their form, if only slightly, from one instant to the next. If we are to measure
the length of a greeting card, for example, we line up one edge of the card
with one end of our ruler. When we glance down at the other end of the
ruler to record the measurement, we of course presume that the edges of the
greeting card and the ruler are still aligned. While in practice satisfactory,
it is important to recognize this as merely a presumption; the card may have
expanded slightly (as the ruler might have, or both) while we were shifting
our glance.

Although the foregoing example may seem a bit contrived, it nevertheless
indicates the necessity for measuring distances between events belonging to
the same instant.

Now that we have some idea of distance and time in a classical context, how
do we get a handle on the concepts of speed and acceleration? Suppose that
you and a friend are travelling along different worldpaths “at the same time”;
that is, the intersections of any particular instant with your worldpath and
your friend’s worldpath are either both empty or each a singleton. At any
given instant during your travel, then, there is exactly one event on your
friend’s worldpath which occurs at that instant — only between two such
simultaneous events may we calculate the distance. Thus, for any event
on your worldpath, you can calculate the distance between that event and
the event occurring at the same instant on your friend’s worldpath. This
motivates the definition given below.

We now assume that a pre-classical spacetime £ (with notations as in Def.
4100) and two worldpaths £ and L' are given. Recall that we may describe
the worldpaths £ and £’ with their natural parameterizations w,; and w,
(see Def. 1406). We further assume that Az = Az, and put A := Af.

4101 Definition: Define the function
0: AP

for each o € A by
d(0) = d(we(0), wer (0)).

d(o) is called the distance from L to L' at o, and § is called the distance
function.
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Since we now know the distance between two worldpaths at any instant, it
is appropriate to ask whether we can determine a relative speed between
two worldpaths.

We may formulate the concept of relative speed in a natural way; that is,
as a limit of average relative speeds.

4102 Definition: Let o € A be given. Suppose that the quotient

d(o+s)—d(o)

has a limit as s tends towards 0. Then we say that § is differentiable at
o, and we write 0,6 for this limit. 0,0 is called the relative speed of L
and L' at the instant o. If § is differentiable at o for each ¢ € A, then
we say that ¢ is differentiable, and the function

v:A-—>R,

defined by v (o) := 0,8 for all o € A, is called the relative speed function.

Analogously, we define the concept of relative acceleration.

4103 Definition: Assume that § is differentiable and let v be the relative
speed function. Let o € A be given, and suppose that v is differentiable at
o; i.e., the quotient

v(o+s) —v(o)

has a limit as s tends towards 0. Then we call this limit the relative
acceleration of £ and L' at o, and we write O,v for this limit. If v is
differentiable at all o € A, we call the function

a: N>R

defined for each o € A by a(o) := 0,v, the relative acceleration func-
tion.
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4.2 Reference Frames and Newtonian Spacetimes

As promised in §1.4, we now make precise the concept of “location”. We
begin with an excerpt from Einstein’s Relativity, [1, pp. 9-10]

It is not clear what is to be understood here by “position” and
“space”. I stand at the window of a railway carriage which is
travelling uniformly, and drop a stone on the embankment, with-
out throwing it. Then, disregarding the influence of the air re-
sistance, I see the stone descend in a straight line. A pedestrian
who observes the misdeed from the footpath notices that the
stone falls to Earth in a parabolic curve. I now ask: Do the
“positions” traversed by the stone lie “in reality” on a straight
line or on a parabola? Moreover, what is meant here by motion
“in space”?...With the aid of this example it is clearly seen that
there is no such thing as an independently existing trajectory,
but only a trajectory relative to a particular body of reference.

Thus, we see that even in the classical case, we can describe motion only
as relative to some reference frame. For example, when we say that we are
driving at 90 km/h, we actually mean that we are travelling at 90 km/h with
respect to the Earth. We often make measurements (like speed) relative to
some reference frame without making the frame explicit. It is, however,
occasionally done: altitude is usually measured in meters above sea level.

In order to make such relativity in classical physics explicit, we formalize the
concept of a reference frame; that is, some set of references relative to which
we make all of our measurements. Usually, scientists make measurements
relative to the walls of the laboratory, while astronomers make measurements
relative to the “fixed stars”; that is, certain stars which, as far as can be
observed during a person’s lifetime, do not move in relation to each other
or to the Sun. Yet it is just as legitimate to make measurements relative to
some other standard reference frame.

Our approach in describing a reference frame is essentially to elucidate what
it means to be “at rest”. If we know what a particle “at rest” looks like
(e.g., a fixed star), then we might be able to describe “motion” wvia speeds
relative to such a particle. In particular, two particles “at rest” should be
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“at rest” relative to each other; that is, the relative distance between two
particles “at rest” should be constant.

It is with these ideas in mind that we propose the following definition. For
the remainder of this section, we assume that £ has the structure of a pre-
classical spacetime.

4200 Definition: A reference frame is a collection F of worldlines, called
locations relative to F, with the following properties:

(F1) The relative distance function of any two worldlines in F is
constant;

(Fy) For every x € £, there is a worldline in F which contains z. In
other words, |JF = €.

Let a reference frame F be given.

Given z € &, then by (F»), we may find some location P relative to F such
that £ € P. Since P is a material worldline, we may employ its natural
parameterization wp : T' — & with Rng wp = P (see Def. 1406); hence, we
may find o € T" such that x = wp (o). Thus, we may assign to z a worldline
P € F and an instant ¢ € I'. Since we may make such assignments to
each event in &£, this suggests that we might represent £ by F x I, assigning
to each event in £ a location relative to F and an instant in I'. That this
assignment can always be carried out unambiguously is demonstrated in the
following Theorem.

4201 Theorem: F is a partition of £. Moreover, given ¢ € &, there is
exactly one P € F and exactly one o € I" such that x = wp (o). We say that
P is the location of z relative to F. We also note that o is the time of x.

Hence, the mapping
d:FxI'=¢&

given by
O(P,0) := wp(o)

for all P € F and o €T is a bijection.
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Proof: Since we know that | JF = &, recall that to show that F is a parti-
tion of &, it is sufficient to show that for all P, Q@ € F, we have

PNQ#0 = P=2Q

(see the Note for p. 19 in Appendix A concerning partitions). To this
end, let P, Q € F be given, and assume that PN Q # (). Then we may
choose £ € PN Q, and hence we may determine o,7 € I' such that
z = wp(o) = wg(r). Since wp(o) € o and wg(7) € 7, it follows from
the fact that I' is a partition of £ that o = 7.

Now since F is a reference frame, it follows that the relative distance
function § : I' = P from P to Q must be constant. Since

d(o) =ds(wp(o),wg(o)) =ds(z,2) =0

(see the remark following Def. 4100), then § is constant and equal to
Z€ero.

Now let v € I' be given. Since 6(y) = dy(wp(y),wao(y)) = 0 and
d, is the distance function of a genuine Euclidean space, we must
have wp(y) = wo(y) (see the remark following Def. 4100), and hence
PNy = QN (see Def. 1406). Since this is true for all v € T,
and since I' is a partition of &, it follows that P = Q. As P, Q were
arbitrary in F, we see that F is a partition of £.

The remainder of the proof follows easily from the fact that F is a
partition of £. The details are left as an Exercise. O

One motivation for calling elements of F “locations” relative to F is that we
may give F the natural structure of a genuine Euclidean space as shown in
the following result.

4202 Theorem: F has exactly one structure of a Euclidean space with
distance function

d:FxFSR

satisfying
d(P, Q) = d(wp(0), wo(0)) (42.1)

forall P,QeFandoel.
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Proof: Assume that F has been given such a Euclidean structure, and
choose o € I'. It follows from Thm. 4201 and (42.1) that the mapping

(P—=wp(o)) : F=o (42.2)

must be a Euclidean-space isomorphism. Hence the Euclidean struc-
ture of F must be the one that is uniquely determined by the Euclidean
structure of o. Conversely, if we define a Fuclidean structure on F via
the bijection (42.2), one can prove that (42.1) holds. 0

Remark: We see from the previous Theorem that F has the natural struc-
ture of a Euclidean space, and hence also the natural structure of a flat
space. We see from Example 1 in §3.1 that I" has a natural flat-space
structure. Hence it follows from the Example 4 of §3.1 that F x I" also
has a flat-space structure. Hence £ may be given the structure of a
flat space via the bijection ® described in Thm. 4201. If we denote
by Z the translation space of F, we see that Z x R is an (external)
translation space of F x I.

We may characterize a worldpath £ via F in a fashion analogous to that
given in Def. 1406. In the following Proposition, we see that the mapping
L assigns to each instant in A not an event in £ (see Def. 1406) but a
location relative to F. This assignment may be done in a natural way via
wy. The proof is left as an Exercise.

4203 Proposition: A subset L of £ is a worldpath if and only if there is
a genuine interval A in I" and a function

L:A—=F

such that
£=|J{Lo)no|o e A}.

If this is the case, then A = A,, and
we(o) = @(L(0),0)

for all o € A (where ® is as in Thm. 4201). (We interpret L(7), roughly,
as the location at the instant T of the particle whose worldpath is L.)

Having developed the concept of a reference frame, we are now in a position
to describe the kind of spacetime considered by Newton.
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Absolute space, in its own nature, without relation to anything
external, remains always similar and immovable. Relative space
is some movable dimension or measure of the absolute spaces;
which our senses determine by its position to bodies; and which
is commonly taken for immovable space; such is the dimension
of a subterraneous, an aerial, or celestial space, determined by
its position in respect of the earth. [4, p. 8]

Note that Newton had formulated a concept of relativity in a classical con-
text. He also, however, believed that there was an “absolute space”. This
motivates the following.

4204 Definition: A Newtonian spacetime is a pre-classical spacetime
endowed with additional structure by the prescription of a distinguished
reference frame, called (absolute) space.

In a Newtonian spacetime, we speak of unqualified locations; these are, in
the terminology of pre-classical spacetimes, “locations relative to absolute
space”.

4.3 Galilean Spacetimes

In §4.1, we introduced the concept of “length” into that of a classical timed
eventworld. Here, we go further in order to include the ideas presented in
§3.3.

4300 Definition: A Galilean spacetime is a pre-classical spacetime
which also has the structure of a timed flat eventworld such that the distance
function is translation-invariant.

Before comparing the structure of a Galilean spacetime with other structures
developed in the previous section, we wish to investigate the structure of the
precedence relation in a Galilean spacetime. The following Theorem gives
us a complete description of the direction cone of such a precedence relation.

4301 Theorem: Let a timed flat eventworld £ (see Def. 3300) be given,
and assume that £ is classical (see Def. 2400). Let V be the translation
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space of £, let I' be the set of all instants, let F be the future cone, and put
n :=dim &. (It follows from Def.2400(3) that n > 1.) Let T be as described
in Thm. 3302, and let F; be as given in Not. 3408. Then there is exactly
one (n — 1)-dimensional subspace U of V with the following properties:

(1) T consists of all flats with direction space U, so that c —o =U
forallc € T';

(2) The future cone F (see Def. 3203) of £ is a closed half-space
with boundary U;

(3) For allz € £, we have Past(z) = z — (F\U), Pres(z) =z + U,
and Fut(z) = z + (F \ U).

Proof: We begin by showing the validity of (2). Since the Intermediate
Event Inequality becomes equality (see Def. 2400(1)), this implies
that Thm. 3302(2) also becomes equality. Moreover, since < is total
(being classical), we see that FU(—F) = V. These observations, along
with Thm. 3302(3), imply that we may uniquely extend 7 to a linear
mapping 7 : V — R such that 7(v) = 7(v) for all v € F. Because
of Thm. 3302(1), one may easily show that 7(v) = t(z,z + v) for all
z € £ and v € V. Hence, it follows from Def. 2102 that

T(v) >0 <= veF.

This implies, however, that F = 7<(P), and hence F is a closed half-
space with boundary U := 7<({0}). With & thus defined, one may
proceed to verify the remainder of the Theorem. Details are left to
the Exercises. O

We now assume that a Galilean spacetime £ with translation space V is
given, and put n := dim £. The set of all instants will be denoted by T (as
in Thm. 4301). Since £ has the structure of a flat eventworld, there are
many reference frames (see Def. 4200) which may be described in a simple
way.

4302 Theorem: Let U be described as in Thm. 4301, and suppose that
v € F is given. Then
Fv:={¢+Rv|qg€ s}

is independent of ¢ € T', and is a reference frame in €.
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Proof: To show that {¢ + Rv |¢ € o} is independent of o is left as an
Exercise.

We proceed to show that Fy is a reference frame in £ (see Def. 4200).
The fact that |JFy = & follows from that fact that Rv +U = V. It
remains to show that the distance function between any two worldlines
in Fy is constant.

To this end, let P, Q € Fy be given. Since {¢+Rv | ¢ € o} is indepen-
dent of 0 € T', we may choose o € T"and ¢, ¢’ € o such that P = g+Rv
and Q@ = ¢ + Rv. Let § : I' — R be the distance function from P to
Q (see Def. 4101).

Now let ¢’ € T be given. Since P is a worldline (being in F), we
may determine w € Rv such that ¢ + w € ¢'. Since < is translation-
invariant and g ~ ¢', we have ¢ + w ~ ¢’ + w, and hence ¢’ + w € ¢’.
Since d is translation-invariant, we have

8(c") = dp(g+w,qd +w)
= d;(¢,¢)

= (o).

Since o/ € T' was arbitrary, then § must be constant. As P,Q € Fy
were arbitrary, we see that F is a reference frame in . O

Remark: Let U be as in Thm. 4301, let ¢ € £ be given, and let v € F;
be given. Then for each z € £, we may determine (u,,t;) € U x R
such that

rT=q+u; +t;v.
We define the mapping Cy : £ = U x R by Cy(z) := (ug,t;) for all
z € €. It is left as an Exercise to show that for each x € £, we have

Uy = (.’L‘ - q) - t(an)va

ty = t(q,:v).
We may think of C, as a means of “locating” events relative to the
reference frame F,. Note that the location of z relative to Fy is the

worldline g + u, + Rv, and the time of z is the instant t,v +U, so that
with the notations given in Thm. 4201 (with F := F), we have

O(g+uy +Rv,t,v+U) =z
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Suppose that v/ € Fj is also given. Then one can show that there is
exactly one mapping

G:UxR—->UXxR

such that
Go Cv = Uy,

G is called the Galilean transformation from the reference frame Fy
to the reference frame F,,. It is left as an Exercise to show that for all
(u,t) €U x R, we have

G(u,t) = (u+t(v —v'),1).

This is the formula for a Galilean transformation which is most often
seen in the literature.

One may also show that when v,v' € Fi, then v — v/ € Y. Since
instants are genuine Euclidean spaces and U/ is the common direction
space of instants in ', then we may induce a genuine inner-product
space structure (see §5.1), and hence a magnitude |-| on Y. In doing so,
we find that the relative speed function between an arbitrary worldline
in F, and an arbitrary worldline in Fy is constant and equal to |[v—v’|.
Details are left to the Exercises.

The following result shows that a Newtonian spacetime structure induces ex-
actly one Galilean spacetime structure. (The converse, however, is not true;
a Galilean spacetime structure is compatible with infinitely many Newtonian
spacetime structures.)

4303 Theorem: Let £ be a Newtonian spacetime with absolute space F
as described in Def. 4204. Then £ has exactly one structure of a Galilean
spacetime, with translation space V, such that F = F, for some v € Fi,
where Fy is defined as in Thm. 4302.

Proof: Let £ be as described with timelapse t and distance function d.

Clearly, £ is a pre-classical spacetime (see Def. 4100). Moreover, &£
has the structure of a flat space with external translation space Z x R
(see the Remark following the proof of Thm. 4202). By examination
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of Defs. 4300 and 3300, to show that £ has the structure of a Galilean
spacetime requires us to show that

(1) < is translation-invariant,

(

2)
(3) t is translation-invariant, and
4)

(

Note that since £ is classical, we have t-(z,y) = t(z,y) for all world-
paths £ and events z,y € L; hence Def. 3300(2) is immediately sat-
isfied.

< is connected,

d is translation-invariant.

We show (4) here; the demonstration of the others is left as an Exercise.

To see that d is translation-invariant, let =,y € £ be given such that
xz ~y, and let v := (z,a) € Z x R be given. Because we may identify
&€ with F x I, and since = ~ y, we may determine P,Q € Fand o € T
such that

‘T:(I)(P,U), y:(I'(QaU)a
where ® is as described in Thm. 4201. Then we also have that

z+v=®P+z,0+a), y+v=2Q+z,0+ ).

Now z ~ y; hence we see from (1) that z + v ~ y + v. We then have
from the definition of @, the definition of d (see Thm. 4202), and the
fact that d is translation-invariant (as it is the distance function of a
genuine Euclidean space), that

dz+v,y+v) =

Since z,y € £ and v € ZxR were arbitrary, we see that d is translation-
invariant.

Finally, let P € F be given, and choose z,y € P such that 7(y—z) = 1;
that is, y — z € F;. With v := y — z, one may show that F = Fy.
Details are left to the Exercises. O
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We summarize the hierarchy of classical eventworlds and spacetimes dis-
cussed thus far in Figure 43a.

classical
eventworld
classical timed classical flat
eventworld eventworld
pre-classical classical timed
spacetime flat eventworld
Galilean
spacetime
Newtonian
spacetime

HIERARCHICAL STRUCTURE OF CLASSICAL EVENTWORLDS

Figure 43a

An arrow pointing downward indicates that the type of structure at the
head of the arrow may be obtained from that at the tail of the arrow by
introducing additional structure. Said in another way, the type of structure
at the tail of an arrow may be obtained by “forgetting” some structural
aspect of the type of structure at the head of that arrow.

As it happens, some physical theories are traditionally modelled using New-
tonian spacetimes when other spacetimes are more appropriate. One such
example occurs in the field of continuum mechanics. An important concept
in this field is that of “frame-indifference”.? This principle is necessary in
order to “compensate” for dealing with continuum mechanics in the context

%It was first made explicit by Walter Noll with the name “principle of objectivity”; see
“A Mathematical Theory of the Mechanical Behavior of Continuous Media”, Archive for
Rational Mechanics and Analysis, Volume 2, pp. 197-226 (1958), p. 209.
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of Newtonian spacetime (i.e., with an “absolute” reference frame), when
pre-classical spacetime would be more appropriate. A similar phenomenon
occurs in classical particle mechanics, where classical spacetime is used when
Galilean spacetime would be more appropriate. The principle of “Galilean
invariance” is used to compensate for the use of Newtonian spacetime.

Exercises

EXERCISES, 1

1. Complete the proof of Thm. 4201.
2. Complete the proof of Thm. 4202.
3. Prove Prop. 4203.
4. Complete the proof of Thm. 4301.
5. Complete the proof of Thm. 4302.
6. Show that for each z € £, we have
u; = (z - q) —t(g, 2)v,
ts = t(q,z)
(see the remark following Thm. 4302).
7. Show that for all (u,t) € U x R, we have
G(u,t) = (u+t(v —v'),1)
(see the remark following Thm. 4302).

8. Let a Galilean spacetime £ (with translation space V) be given, and
let U be as described in Thm. 4301. Let |- | be the magnitude on U
(as described in the Remark following the proof of Thm. 4302). Let
v, v/ € F; be given. Show that v—v' € 4, and that the relative speed
function between an arbitrary worldline in Fy (see Thm. 4302) and
an arbitrary worldline in Fy is constant and equal to |[v — v/|.

9. Complete the proof of Thm. 4303.
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EXERCISES, 11

1. Let £, £, and A be as described immediately before Def. 4101, and
assume that A =T'. Let v € I" be given, and define § : R — £ by

5(r) :==d(y+r)
for all r € R.

(a) Show that if § is differentiable at each 7 € ', then v/(7) = §*(1—7)
forall 7 €T.

(b) Assume that § is differentiable and that v is defined as in Def.
4102. Show that if v is differentiable at each 7 € T', then a(r) =
0**(r —) for all T € T.

EXERCISES, II1

1. Consider £ := R3 with <, t, and d given as follows:
(a,b,¢c) < (d,e, f) <= a <d,
E((aa b, C), (d, ¢, f)) =d—-a

for all (a,b,c),(d,e, f) € R® (note that t is defined on all pairs in
R3 x R? since < is total), and

d((aa b, C)’ (dae’f)) = \/(6 - b)2 + (f - 6)2
for all ((a,b,c),(d,e, f)) € Gr(~).

(a) Show that <, t, and d give £ the structure of a Galilean spacetime.
(b) Show that {(a,0,0)|a € R} is a worldline in &.

2. Let £ be given as in the previous Exercise, and let k € P* be given.
Consider the parameterization p : R — & of the straight worldline
L :={(a,0,0)|a € R} given by

p(s) = (s,0,0)

forall s € R. Let p’ : R — £ be a time-parameterization of a worldline
M such that p(s) ~ p/(s) for all s € R, and suppose that the distance
function of £ and M, §, satisfies

3(p(s),p'(s)) = K
for all s € R. One can show that M := Rng p’ must be confined to
some geometrical figure in £. Describe this figure.



EXERCISES 111

EXERCISES, IV

1. Let £ be a Galilean spacetime, and suppose that £ is a straight world-
line in £. Show that there is exactly one v € F; such that £ is a
location in the reference frame Fy.
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