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Appendix A: Notes

p- 5 We read “s € A” as “s is a member of A”, “s belongs to A”, or “A
contains s”. “A C B” (equivalently, “B D A”) is read “A is a subset of
B”, “A is included in B”, or “B includes A”. We say that “A is strictly
included in B” or “B strictly includes A” if A is a subset of B and A # B;
ie, AG B.

p- 95: The symbol “=" denotes logical implication. Thus, we interpret
“P = )" as “if P, then )7, or “P only if Q”.

p- 6: “:<="7 is to be interpreted “means, by definition, that”. Thus,
defining the relation p on N by

mpn <= n=m-+1

for all m,n € N says that m pn means that n = m 4+ 1 whenever m,n € N.

p- 7: “:=” is to be interpreted as “is equal, by definition, to”.

p. 7: Weread “{z € £|zpzx}” as “the set of all members z of £ such that
zpx is valid”. This notation is useful for describing subsets of a given set
whose members satisfy specific conditions.

p- 8: We denote by “N” and “U” the usual set intersection and set union. If
I is some index set, and if (S; |7 € I) is a family of sets indexed on I, then we
denote by “(;c; S;” and “(J;c; S;” the intersection and union, respectively,
of the sets in the given family. If C is a collection of sets, we denote by
“NC” and “(JC” the intersection and union, respectively, of all members of
C. Thus, considering C as a family (S| S € C) indexed on C, we have

c=(1S and [Jc=|Js

sec SecC

p- 8: We use “0)” as a symbol for the empty set.

p- 10: We denote logical equivalence by the symbol “<—=". Thus, we
interpret “P <= Q" as “P if and only if Q)”.
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p- 14: We use the symbol “R” to denote the set of all real numbers, as well
as the symbols “<”, “<” “>”_ and “>” to denote the usual relations on R.
We denote by “P” the set of all positive reals; that is, P := {r € R|r > 0}.
We denote by “P*” the set of all strictly positive reals; that is, we have that
P* := {r € R|r > 0}. We denote by “N” the natural numbers; that is, the
subset of P consisting of the integers which are members of P. We denote
by N* the set of all natural numbers excluding 0.

p- 14, 15: For completeness, we give the following notations for various
types of intervals in R.

[a’ab[ = [aab] \ {b}a ]CI,,OO[ = [a,oo[\{a},
la,b] := [a,b]\ {a}, ] —00,b] :== {c € R|c < b},
]av b[ = [a”b] \ {aab}a ] - Oo’b[ = ] — 00, b] \ {b}’
[a,00[ == {c € R|a <¢}, ]|—o0,00[:=R

(See Note for p. 20 about “\”.)

p. 19: If £ is a set, and P C Sub &£ (see Note for p.30) is such that ) ¢ P,
UP=¢&,and for all S, 7T € P, S # T = SNT =, then P is said to be
a partition of €.

p. 20: The symbol “\” denotes set-difference. Thus,

A\ B:={z € A|z ¢ B}.

p- 21: See the Note for p. 5 for a description of “G”.

p. 21: By f : D — C, we mean a mapping (sometimes referred to as a
function) which assigns to each member of D a member of C. D is called
the domain of f and C is called the codomain of f.

p. 22: The range of w, is denoted by Rng w, := {wg (o) |o € Ar}.
p. 25: We define R? by
R := {(z,y) |2,y € R}.

In an analogous way, when n € N and n > 3, we define R” to be the set of
all lists of length n whose terms are in R.
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p- 30: By “I x §”7, we mean the set of all pairs whose first term belongs to
I and whose second term belongs to S. Thus, I x S = {(i,s) |1 € I,s € S}.

p- 30: “Sub &£” denotes the set of all subsets of £.
p- 39: See the Note for p. 14 for a description of “P”.

p. 41: If A is a nonempty subset of R bounded above (that is, there is
M € R such that ¢ < M for all ¢ € A), we denote by “sup A” the supremum
of A; that is, the least upper bound of A. Thus, if ¢ € R satisfies a < ¢ for
all @ € A, then necessarily sup A < c. Likewise, if A is bounded below, we
denote by “inf A” the infimum of A; that is, the greatest lower bound of A.
See an introductory text on real analysis for more details.

p. 42: “#X” denotes the cardinality of the set \; e.g., #{{1},4,{3,5}} = 3.

p. 42: “m..n” denotes the set {c € N|m < ¢ <n}. Thus, 1.4 ={1,2,3,4}.
We have, from the definition, that m > n implies that m..n = (.

p- 42: If A is a list of length m, we denote by “Rng X\’ the range of A; that
is, Rng A = {A; |7 € 1..m}. Rng X is simply the set of all terms in the list .

. . n
a;” is written “Y " a;”.

p. 42: Often the sum “}

1EM.N

p- 43: See the Note for p.41 for a description of “inf”.
p- 44: See the Note for p. 14 for a description of N.

p- 51: Let a mapping f : D — C be given. f is said to be injective if
flx) = fly) = z=yforall z,y € D. f is said to be surjective if for all
z € C, there is some = € D such that f(z) = z. f is said to be bijective (or
invertible) if f is both injective and surjective.

p. 52: We mean by “I 4+ a” the set {i + a|i € I}.

p- 57: When f is invertible, we denote by “f<” the inverse of f. Thus, if
f : D — C, then for all x € D we have f<(f(x)) = z, and for all y € C we

have f(f(y)) =y

p. 58: If f : D — C and E C D, we write “f<(F)” for the image of E
under f, given by f~(F) := {f(e)|e € E}.
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p- 58: We denote by “o” the usual composition of mappings.

p. 60: By “(t — (f(t),9(t))) : I — R?” we mean the mapping p : I — R?
given by p(t) := (f(t),g(t)) for all t € I. In this case, the notation is used
to avoid introducing a new symbol for a mapping which is referred to only
once.

p- 66: By ls, we mean the identity mapping on §. Thus, 1 : § — S
satisfies 1s(z) =z for all x € S.

p. 72: By “V*”, we mean V\ {0}. The symbol “x” as a superscript denotes
the removal of the zero (relative to the set under consideration). See the
note for p. 14 about “R” for an analogous use of “X” as a superscript.

p- 86: Given a mapping f : D — C and S C D, we define
f>(8) ={f(z)|=z € S}
Analogously, given T' C C, we define

fX(T):={z e D|f(z) € T}

p. 88: See the note for p.8 concerning “(”.

p- 98: Given a mapping f : D — C and a subset £ of D, we denote by
f|g the mapping f|g : E — C given by f|g(z) := f(z) for all z € E. The
mapping f|g is obtained from the mapping f by restricting the domain to
E.

p. 102: See the note for p.8 concerning “|JF”.

p- 145: We use “x” to mean “approximately equal to”. Thus, we have
T~ 3.1416.

p- 179: We use “<” to mean “very much less than”. Thus, we would have
both 0.00001 < 1 and 1 < 1,000, 000.
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ABBREVIATIONS AND SYMBOLS

Appendix B: Abbreviations and Symbols
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C )
< P 5 # p. 42
c p- 5 1.m p- 42
. P- 5 T—0 p. 56
g' 6 o+s p. 56
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@ 8 lg p. 66
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Appendix C: Relations

Consider the statement “Jack is a child of Jill’. We may contrive similar
sentences, such as “John is a child of Susan” or “P; is a child of P,”, where
P; and P, represent arbitrary people. Although not all such sentences are
necessarily true (since Susan might be John’s older sister), each sentence is
meaningful; that is, it makes sense to ask whether each sentence is true. We
say that “is a child of” describes a relation on the set of all people. In other
words, given any two people P; and P, it makes sense to ask, “Is P; a child
of P,?”

CO01 Definition: We say that p describes a relation on a given set D
if x py is a meaningful statement for all z,y € D. In this case, D is called
the domain of the relation.

A frequently encountered relation on a set D is the equality relation, =p,
described by
T=pyY:E=>zT=Yy

for all z,y € D.

Let a set D and a relation p on D be given.

CO02 Definition: We define the graph of p by

Gr(p) := {(z,y) € D x D |z py}.

For example, if we are given the relation “less than or equal to” on R (sym-
bolized by <g), then the graph of <g is the set of pairs (z,y) with z <g y.
We remark that we may also speak of the “less than or equal to” relation on
other sets, such as N; such a relation would be symbolized by <y. Because
it is simpler to write and has become conventional, the symbol “<” is often
used to represent both relations. When the “<” symbol is used in this way,
it is important to specify the domain of the relation so that no ambiguity
arises, such as, “Consider the relation < on R...”. The same convention is
used for the “less than” relation (symbolized by <) on a given set.

CO03 Definition: For any subset S of D, we define the restriction of p
to S to be the relation p|s on S such that for all z,y € S, we have

Tplsy = zpy.
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We note that Gr(p|s) = Gr(p) N (S x S).

For example, consider the relation < on R. Then <|y is a relation on N, and
Gr(<|y) is the set of pairs of natural numbers (p, q) such that p < g; this is
the same as Gr(<) N (N x N). Note that 3 <|y 7 does not make sense since
%,ﬂ' ¢ N. Note that the symbols <|y and <y represent the same relation;
that is, for all m,n € N, m <|yn if and only if m <y n. The difference is
that the former is derived as a restriction of another relation.

C04 Definition: We say that p is:

1. reflexive if for each x € D, we have z p x,
2. irreflexive if for each x € D, z px is false,

3. symmetric if for all z,y € D, we have

Tpy = ypw,

4. antisymmetric if for all x,y € D, we have

zpyandypr = x =y,

5. strictly antisymmetric if for all z,y € D, we have

zpy = not (ypm),

6. transitive if for all z,y,z € D, we have

zpyandypz = zpz,

7. total if for all z,y € D, we have t =y or zpy or y p .
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We note that p is strictly antisymmetric if and only if it is both antisym-
metric and irreflexive. Also, an irreflexive relation p is total if and only if
for all z,y € D, we have £ py or y px. Finally, we note that any transitive
and irreflexive relation is strictly antisymmetric.

Examples.

1. The relation < on N is a reflexive relation; every natural number is
less that or equal to itself.

2. The relation < on N and the relation “is the father of” on the set of
people are irreflexive; no number can be less than itself and no one
can be his/her own father.

3. The relation “is a sibling of” on the set of people is a symmetric
relation; if John is a sibling of Susan, then certainly Susan is a sibling
of John.

4. The relation < on R is antisymmetric; if both » < s and s < r,
then it must be the case that » = s. The relation < on R is strictly
antisymmetric; if r < s, then s < r must be false.

5. The relation “is older than” on the set of all people is a transitive
relation.

6. The relation < on R and the relation “is not older than” on the set
of all people are total. The “divides” (“is a factor of”) relation on
N* | symbolized by div, is not total; neither 7 div3 nor 3div7 are true
statements.

CO05 Definition: We say that p is an order if p is reflexive, antisymmet-
ric, and transitive. If p is strictly antisymmetric and transitive, we say that
p is a strict-order. If p is a [strict-]order and is also total, we say that p
is a total [strict-]order.

If § is a subset of D, we say that S is totally ordered with respect to p
if p|s is a total order. If the context is clear, we often simply say that S is
totally ordered. Note that in this case, p itself need not be an order (see
an example below).
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For example, div on N* is an order which is not total. However, the subset
{2"|n € N} is totally ordered with respect to div. The relation < on R is
a total order. Since < on R is total, then any subset of R is totally ordered
with respect to <.

If p is the relation on R? defined by

(a1,B81) p(ag,B2) = oy < o

for all (a1, B1), (a2, B2) € R?, we see that p is total, although not an order.
However, we see that the set {(a, @) |« € R} is totally ordered with respect
to p.

C06 Definition: For all z,y € D, we define

[z,y],:={2 € D|zpz and z py}.

This set is called the p-interval between z and y. When there is no am-
biguity, we often write [z,y] for [z,y], and refer to this set as the interval
between z and y.

For example, consider the relation < on R. Then for z,y € R, [z,y] is the
closed interval [z,y] between z and y. Considering the relation div on N*|
then [1,n], is the set of all factors of n. Considering the relation < on N,
we see that [1,n]_ is the set of numbers {k € N|1 < k < n} (the numbers
from 1 to n inclusive). The following notation is used to describe such a set:

l.n:={keN|1 <k<n}

CO07 Definition: Let a subset S of D be given. We say that ¢ € S is
minimal in § if
Forallye S, ypr = y==x.

We say that ¢ € S is maximal in § if
Forallye S, zpy = z=y.

We say that x € S is a minimum [maximum] of § if for each y € S, we
have z py [y px].

If the set {zx € D|zps foralls € S} [{z € D|spx forall s € S}] has a
maximum [minimum|, we say that this maximum [minimum)| is an infimum
[supremum]| of S.
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For example, suppose we are given the relation div on N*. For each n € N*|
n is maximal in 1..n. Each prime is minimal in the set 24+ N = {n € N|n >
2}. Thus a set may have more than one minimal (or maximal) element.

Now suppose that we are given a relation p on D. Then if z,y € D are such
that z py, then z is a minimum of ﬂx,y]]p and y is a maximum of ﬂ:c,y]]p.
It should be noted that when p is an order, every subset of D can have
at most one minimum or at most one maximum. In this case, if there is a
minimum [maximum]|, then that minimum [maximum] is the only minimal
[maximal] element in the set. Also, in this case, we use the notation minS
[max S| for the minimum [maximum]. Similarly, we use the notation infS
[sup S] for the infimum [supremum]| of S if there is exactly one such.

Note: The concepts in Defs. C06 and CO7 are used primarily when p is
an order. The concept of an interval is occasionally used when p is only
transitive and not an order.

CO08 Proposition: Let < be a transitive relation with domain D. Suppose
that < is reflexive and total. Then for all z,y,z € D such that x < y and
y < z, we have

[z,9] U [y, 2] = [=,2].
CO09 Definition: Let p and § be two relations on a set D. We say that p
is finer than ¢ (or equivalently, ¢ is coarser than p), if
Tpy = xdy

for all x,y € D. If p is finer than § but is not the same relation as ¢, then
we say that p is strictly finer than § (equivalently, § is strictly coarser
that p).

It is clear that p is finer than ¢ if and only if Gr(p) C Gr(d). As an example,
consider the relations < and < on R. Then < is strictly finer than <, while
< is strictly coarser than <.

C10 Definition: If§ is a relation on D, we define the relation SonD by

4
r=y <= zdyorr=y
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4
for all x,y € D. We also define the relation # on D by

é
£y < zéyandx £y

for all z,y € D.

For example, we often use “<” as an abbreviation for “=7 on R. Note that
0

if 6 on D is antisymmetric, then # is strictly antisymmetric; while if § is

strictly antisymmetric, then 2 s antisymmetric. Thus, if ¢ is an order on

)
D, then # is a strict-order; while if § is a strict-order on D, then 2 isan

order.

C11 Definition: For a relation p on D, we define the reverse of p,
denoted by p, by
TPpY <= Yypx

for all z,y € D.

We see that the greater than or equal to relation on R, >, is the reverse of
< on R

C12 Definition: Let ~ be a relation on D. We say that ~ is an equiva-
lence relation if ~ is reflexive, symmetric, and transitive.

Now let ~ be an equivalence relation on D. For each x € D, = determines
an equivalence class

[z] == [z, 2] ~-

The set of all equivalence classes in D,

{[=] |2 € D},

is a partition of D (see the Note for p. 19 in Appendix A concerning parti-
tions).
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Appendix D: Linear Spaces

In order to provide a summary of those aspects of linear algebra which are
germane to the study of special relativity and to familiarize the reader with
our notation and terminology, the following basic Definitions and Proposi-
tions are provided.

D01 Definition: A linear space is a set V endowed with structure by the
prescription of
1. an operation add : V x V — V, called the addition in V,

2. an operation sm : R x V — V, called the scalar multiplication in
V,

3. an element 0 € V, called the zero of V, and

4. a mapping opp : V — V, called the opposition inV,

provided that the following axioms are satisfied for all€é,n € R andu,v,w € V:

(A1) add(u,add(v,w)) = add(add(u,v),w),
(A2) add(u,v) = add(v,u),

(As) add(u,0) = u,

(A4) add(u, opp(u)) = 0,

(S1) sm(¢,sm(n,u)) = sm(£n, ),
(S2) ) = add(sm(¢, u),sm(n, u)),
ES?:; sm(§, add(uav ; = add(sm(é-a u),sm(§,v)),

The following notational conventions are used in an arbitrary linear space:

u+v = add(u,v) when u,v eV,
éu:=sm(,u) whenée€R uecV,
—u := opp(u) when u € V, and

u—v:=u+(-v) whenu,ve.
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With this notation, the axioms for a linear space become

(A) ut(v+w) = @+v) +w,
(A2) u+v =v+u,

(A3) u+0= u,

(A4) u—u =0,

(S1) £(na) = (),

(52) (€ +nu = fu+u,
(S3) f(u+v) = &u+ v,
(S4) lu = u,

valid for all §,7 € R and u,v,w € V.

Notation: Ifa € R, S, 7 CV,ACR, and u € V, we define

a8 = {av|v e S},

S+T :={v+w|veS, weT}
AS == {Av|X €A, veS}
Au := A{u}.

—Examples

1. If S is any set and V is a linear space, then the set of all mappings
from S into V, denoted by Map(S, V), acquires the structure of a linear
space when the operations in Map(S, V) are defined by value-wise ap-
plications of the operations in V. More explicitly, if f,g € Map(S, V)
and o € R, then 0, —f, f + g and af are defined by

for all s € S.
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2. If V is a linear space and I is a set, then the set V! of all families
indexed on I with terms in V acquires the structure of a linear space
when the operations in V! are defined by term-wise applications of the
operations in V. The zero, opposition, addition, and scalar multipli-
cation in V! are given as follows for u,v € V! and a € R:

0; :=0,
(_u)i = _(ui)7
(u+v); :=u; +v;, and
(au); == au;

for all 4 € I. In particular, V := R and I := 1..n results in the linear
space R™ of lists of length n € N*; V := R and I := (1..n) x (1..m)
gives the linear space R"*™ of n x m matrices when n, m € N*.

——Subspaces

Let V be a linear space.

D02 Definition: A nonempty subset U of V is called a subspace of V if
it is stable under addition and scalar multiplication; i.e., if U + U C U and
RU C U. In this case, U itself may be considered to be a linear space in a
natural way.

D03 Proposition: Given a subset S of V, there is a smallest subspace
(with respect to inclusion) which includes S and which is included in every
subspace which includes §. This smallest subspace is called the linear span
of § and is denoted by Lsp S.

D04 Definition: We say that V is finite-dimensional if V = Lsp § for
some finite subset S of V. The least of the cardinal numbers of such a set S
is called the dimension of V and is denoted by dim V.

Remark: If V is finite-dimensional and U/ is a subspace of V, then U is
also finite-dimensional.
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Assume now that V is finite-dimensional.

D05 Definition: Let a finite subset S of V be given. We say that S is
linearly independent if for all vy € RS,

Y wv=0= (yy=0forallves).
vesS

We say that S is linearly dependent if § is not linearly independent.
IfU is a subspace of V, we say that S spans U if Lsp S =U.
If § is linearly independent and spans V, we say that S is a basis of V.
Ifm € N and b = (b; |i € 1..m) € V™ is such that

bij=b; = i=j

for all i,j € 1..m and {b;|i € 1..m} is a basis of V, we say that b is a
list-basis of V.

D06 Proposition: Let S C V be given, and put n := dim V. If S is
linearly independent, then #S < n. If § spans V), then S includes a linearly
independent set of n members. If S is a basis of V, then #S = n.

D07 Definition: We say that a given pair (Uy,Us) of subspaces of V is
supplementary (in V) if:

(1) Ui +Uy =V, and
(1) Ui NUy = {0}.

In this case, we say that (U;,Us) is a decomposition of V.

D08 Proposition: Let U; and Uy be subspaces of V such that Uy NUy = {0}.
Then
dim U; +dim Uy < dim V.

Equality is obtained if and only if Uy + Us = V; i.e., if and only if U; and
Us are supplementary.
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D09 Proposition: If U; and Uy are subspaces of V, then any two of the
following statements imply the third:

(1) N ={0},
(11) Ur+Us =V,
(#9)  dim Uy +dim Uy = dim V.

—Linear Mappings
Let V and W be finite-dimensional linear spaces.

D10 Definition: A mappingL : V — W is said to be linear if it preserves
addition and scalar multiplication; i.e., if

L(Vl + V2) =Lvy + Lvy

for all vi,vy € V and
L(av) = aLv

foralla € R and v € V.

Let a linear mapping L : V — W be given.

D11 Definition: We define the null space of L and the range of L by
Null L:={v € V|Lv = 0}

and
Rng L := {Lv|v € V},

respectively.

D12 Proposition: Null L is a subspace of ¥V and Rng L is a subspace of
W.

D13 Proposition: L is injective if and only if Null L = {0}.

D14 Proposition: We have

dim Null L +dim Rng L =dim V.
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D15 Proposition: (Linear Pigeonhole Principle): If L is injective
[surjective], then dim V < dim W [dim V > dim W|. Equality holds in either
case if and only if L is invertible.

D16 Proposition: If (U;,Us) is a decomposition of V, then there is exactly
one linear mapping P : V — U; such that Pu = u forallu € Y1 and Pu =0
for all u € Us. P is called the projection of V onto U; along Us.

D17 Definition: The set of all linear mappings from V to W is denoted by
Lin(V,W). We abbreviate Lin V := Lin(V,V). Members of Lin V are called
lineons.

D18 Definition: Let L € Lin V be given. A subspace U of V is said to
be an L-space if L~ (/) C U. IfU is an L-space, we define the mapping
Ly : U = U by Ly/(u) :=Lu for allu € Y.

D19 Proposition: Assume that dim V > 2. Then every lineon in Lin V
admits at least one two-dimensional L-space.

Remark: A proof of this Proposition is non-trivial and depends on the
Fundamental Theorem of Algebra (see, for example, §94 of [7]).

D20 Proposition: Put n := dim V. Let L € Lin V and a list-basis b =
(bi|i € 1..n) of V be given. Then there is exactly one matrix in R"*"
denoted by [L]p, such that

Lb; = Z ([L]b)ij b;

j€el.n

for alli € 1..n. [L]y is called the matrix of L relative to b.

Note that if dim V = 4, then for every list-basis b of V, we have

[y]p =

SO O
oSO = O
o= o o
o o O
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D21 Proposition: Put n:=dim V, and let L € Lin V be given. Then

> (Lb)i

i€l.n

is independent of the choice of list-basis b of V. This common value is called
the trace of L.

——Tensor Products

Assume that V is an inner-product space (see §5.1).

D22 Definition: Let a,b € V be given. The tensor product of a and
b, denoted by a® b : V — V), is defined by

(a®b)(v):=(b-v)a forallve.

D23 Proposition: For alla,b € V, a® b is linear; i.e., a® b € Lin V.
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g-force, 149

absolute space, 103

addition (in a linear space), 227

addition of relative speeds, 143

affine geometry, 90

antisymmetric (relation), 222

apparent angle, 169

apparent length, 169

apparent mass (relative to d), 174

arc length (comparison to timelapse),
39

axiom of choice, 16, 80

axis, 197

axis (of magnetic part), 199

basis, 230
beginning, 9
bijective (mapping), 218

cathode ray tubes, 212

causal precedence, 3, 28
centroid (of a triangle), 91
Ceva’s theorem, 92
chronological precedence, 28
classical eventworld, 18
classical eventworld (timed), 51
classical eventworlds (hierarchy), 108
classical timed eventworld, 51
coarser (relation), 225
coincident, 18

Compton effect, 184

connected (relation), 74
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Conservation of Relative Mass, Law
of, 182

Conservation of Relative Momen-
tum, Law of, 182

Conservation of World-Momentum,
Law of, 181

conversion factors, 137

cyclotron formula, 212

decomposition, 230

diagram (of a relation), 12

dimension (of a flat space), 70

dimension (of a linear space), 229

direction (of electric part), 198

direction cone, 74

direction of motion (relative to world-
directions), 143

direction space, 70

distance (between worldpaths), 97

distance (from an event to a world-
line), 137

distance (relative to a world-direction),
140

distance function, 97

dividing a pair into a ratio, 90

domain (of a mapping), 221

Doppler effect, 177

Doppler effect (in space travel), 180

Einstein, 2, 99
elastic interaction, 184
electric part (relative to d), 198
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electromagnetic field, 205
end, 9

equality relation, 221
equivalence relation, 226
Euclidean space, 115

event, 1

eventworld, 5

eventworld (classical timed), 51
eventworld (classical), 18
eventworld (flat tlmed) 78
eventworld (flat), 7

eventworld (relat1v1st1c) 24
eventworld (timed), 37
exterior product, 195
external translation space, 72

finer (relation), 225
finite-dimensional (linear space), 229
flat (in a flat space), 70

flat eventworld, 76

flat eventworld (timed), 78
flat space, 70

flat-space topology, 82
frame-indifference, 108

free particle, 173

frequency (relative to d), 177
future (of an event), 7

future (relative to a world-direction),

139
future cone, 76

Galilean invariance, 109
Galilean spacetime, 103
Galilean transformation, 106
genuine (Euclidean space), 115
genuine (flat eventworld), 77
genuine (inner product), 114
genuine interval (in I"), 20
genuine interval (in R), 14
graph (of a relation), 221
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Hausdorff’s maximality theorem, 16

hierarchy of classical eventworlds,
108

history of (relation), 3, 4

hyperbolic worldpath, 155

identity mapping, 219

image (under a mapping), 218

infimum, 218, 224

injective (mapping), 218

inner-product, 114

Inner-Product Signature Theorem,
116

inner-product space, 113

inner-product space (non-genuine),
115

instant, 19

instantaneous, 24

intensity (of electric part), 198

intensity (of magnetic part), 199

interaction, 181

intermediate between, 5

Intermediate Event Inequality, 37

intersection, 216

interstellar communication, 156

interstellar travel, 153, 185

interval (in D), 224

interval (in I'), 20

interval (in R), 14, 217

irreflexive (relation), 222

kinetic energy (relative to d), 174

line segment, 71

linear cone, 74

linear dependence, 230
linear independence, 230
linear mapping, 231
linear space, 227

linear span, 229

lineon, 232
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list-basis, 230

locally maximally totally ordered,
8,9

location (of an event relative to a
reference frame), 100

location (relative to a reference frame),

100

location (relative to a world-direction),

140
Lorentz law, 205
Lorentz transformation, 143

Lorentz-Fitzgerald contraction, 146,
148

magnetic part (relative to d), 198

mapping, 217

mass, 174

material particle, 174

material worldpath, 47

material worldpaths (necessity in
classical timed eventworlds),
52

matrix, 232

maximal (element), 224

maximally totally ordered, 8

maximum, 224

median (of a triangle), 91

midpoint (of a pair), 90

minimal (element), 224

minimum, 224

Minkowski, 8, 168

Minkowskian spacetime, 133

momentum (relative to d), 174

natural parameterization, 21

negative-regular (subspace), 115

Newton, 103

Newton’s law of motion (relativis-
tic), 149

Newtonian spacetime, 103

237

non-genuine inner-product space,
115
null space, 231

opposition (in a linear space), 227
order, 223
orthonormal basis, 119

parallelogram, 91

parameterization (of a worldpath),
49

particle decay, 182

particle, free, 173

particle, material, 174

partition, 217

partition (of £), 19

past (of an event), 7

past (relative to a world-direction),
139

payload factor, 187

photon, 176

Planck’s constant, 177

positive-regular (subspace), 115

pre-classical spacetime, 96

precedence, 3

precedence (on events), 3, 5

precedence (on instants), 19

precedence (relative to a world-direction),
138

precedence (relativistic), 24

present (of an event), 7

present (relative to a world-direction),
139

projection, 232

pseudo-angle (between world-directions),
166

range (of a linear mapping), 231
range (of a list), 218
reference frame, 99, 100
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reference frame (Euclidean space
structure), 101

reflexive (relation), 222

reflexive closure, 34

regular (skew lineon), 199

regular (subspace), 115

relation, 221

relative acceleration (of worldpaths),
98

relative acceleration function, 98

relative space, 103
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signed timelapse function, 38

simultaneity, 4

simultaneity (relative to a world-
direction), 139

simultaneity relation, 6

singular (skew lineon), 199

singular (subspace), 115

skew lineon, 193

skew lineons, structure of, 198

smooth mapping, 88

smooth worldpath, 151

relative speed (between world-directions), spacelike vector, 119

143
relative speed (of worldpaths), 98
relative speed function, 98
relative speeds (addition of), 143
relativistic eventworld, 24
relativistic precedence, 24
restriction (of a mapping), 221
reverse (of a relation), 226
Reverse Inner-Product Inequality,
120
Reverse Triangle Inequality, 37
rocket, efficiency, 189
rockets, 185
rockets, emission of material free
particles, 186
rockets, emission of photons, 188

scalar multiplication (in a linear
space), 227

side (of a triangle), 91

side (opposite a vertex), 91

signal, 22

signal relation, 24, 25, 134

signal vector, 119

signal-related, 24, 25

signature (of V), 115

signed timelapse (along a world-
path), 46

spacetime (Galilean), 103

spacetime (Minkowskian), 133

spacetime (Newtonian), 103

spacetime (pre-classical), 96

spacetime decompositions, 138

spacetime diagrams, 126

speed (relative to a reference frame),
152

speed of light, 137, 153

straight line, 70

straight worldpath, 77

strict precedence, 6

strict-order, 223

strictly antisymmetric (relation), 222

strictly coarser (relation), 225

strictly finer (relation), 225

subset, 216

subspace, 229

superadditivity of 7, 132

superadditivity of timelapses, 37

supplementary (subspaces), 230

supremum, 218, 224

surjective (mapping), 218

symmetric (relation), 222

temporal precedence, 3
tensor product, 233
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time-dilation (between world-directions), union, 216

143
time-dilation (relative to a refer-
ence frame), 153

time-parameterization (essential unique-

ness), 50
time-parameterization (of a world-
path), 49
time-parameterization (of classical
worldpaths), 55
timed eventworld, 37
timed flat eventworld, 78
timelapse, 35
timelapse (additivity along world-
paths), 42, 44
timelapse (along a worldpath), 41
timelapse (on instants), 53

timelapse (relative to a world-direction),

138
timelapse (signed, along a world-
path), 46
timelapse function, 37
timelapse function (signed), 38
timelapse function (vectorial), 80
timelike vector, 119
topology (flat-space), 82
total (relation), 222
totally ordered (subset), 223
totally singular (subspace), 115
trace, 233
transitive (relation), 222
transitive closure, 32
translation, 61
translation group, 64
translation space, 70
translation space (external), 72
translation-invariant (relation), 74
triangle, 91
twin paradox, 162

vector, 67

vector, signal, 119

vector, spacelike, 119

vector, timelike, 119

vectorial timelapse function, 80

velocity (relative to a reference frame),
152

world-direction (of a particle), 148
world-momentum, 173

worldline, 9

worldpath, 8, 9

worldpath (hyperbolic), 155
worldpath (material), 47
worldpath (smooth), 151
worldpath (straight), 77
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zero (of a linear space), 227



