
Chapter 7

Coordinate Systems

In this chapter we assume again that all spaces (linear, flat, or Euclidean)
under consideration are finite-dimensional.

71 Coordinates in Flat Spaces

We assume that a flat space E with translation space V is given. Roughly
speaking, a coordinate system is a method for specifying points in E by
means of families of numbers. The coordinates are the functions that as-
sign the specifying numbers to the points. It is useful to use the coordinate
functions themselves as indices when describing the family of numbers that
specifies a given point. For most “curvilinear” coordinate systems, the co-
ordinate functions can be defined unambiguously only on a subset D of E
obtained from E by removing a suitable set of “exceptional” points. Exam-
ples will be considered in Sect.74.

Definition: A coordinate system on a given open subset D of E is

a finite set Γ ⊂ Map (D,R) of functions c : D → R, which are called

coordinates, subject to the following conditions:

(C1) Every coordinate c ∈ Γ is of class C2.

(C2) For every x ∈ D, the family (∇xc | c ∈ Γ) of the gradients of the

coordinates at x is a basis of V∗.

(C3) The mapping Γ : D → R
Γ, identified with the set Γ by self-indexing

(see Sect.02) and term-wise evaluation (see Sect.04), i.e. by Γ(x) :=
(c(x) | c ∈ Γ) for all x ∈ D, is injective.
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278 CHAPTER 7. COORDINATE SYSTEMS

For the remainder of this section we assume that an open subset D
of E and a coordinate system Γ on D are given. Using the identification
V∗Γ = Lin(V,R)Γ ∼= Lin(V,RΓ) (see Sect.14), we obtain

∇xΓ = (∇xc | c ∈ Γ). (71.1)

The condition (C2) expresses the requirement that the gradient of
Γ : D → R

Γ have invertible values. Using the Local Inversion Theorem
of Sect.68 and (C3) we obtain the following result.

Proposition 1: The range D := Rng Γ of Γ is an open subset of

R
Γ, the mapping γ := Γ|D : D → D is invertible and has an inverse

ψ := γ← : D → D that is of class C2.

By (65.11), the family

(ψ,c | c ∈ Γ) ∈ Map (D,V)Γ ∼= Map (D,VΓ)

of partial derivatives of ψ with respect to the coordinates is related to the
gradient ∇ψ : D → Lin(RΓ,V) of ψ by

∇ψ = lnc(ψ,c | c∈Γ), (71.2)

where the value at ξ ∈ D of the right side is understood to be the linear
combination mapping of the family (ψ,c (ξ) | c ∈ Γ). Since ψ = γ←, the
Chain Rule shows that ∇ξψ is invertible with inverse (∇ξψ)−1 = (∇ψ(ξ)Γ) =

∇ψ(ξ)Γ for all ξ ∈ D. In view of (71.2), it follows that (ψ,c (ξ) | c ∈ Γ) is a
basis of V and, in view of (71.1), that

(∇ψ(ξ)c)ψ,d (ξ) = δcd :=

{

0 if c 6= d

1 if c = d

}

(71.3)

for all c, d ∈ Γ and all ξ ∈ D. We use the notation

bc := ψ,c ◦γ, βc := ∇c for all c ∈ Γ. (71.4)

By (C1) and Prop.1, bc : D → V and βc : D → V∗ are of class C1 for all
c ∈ Γ. It follows from (71.3) that

βcbd = δcd for all c, d ∈ Γ. (71.5)

By Prop.4 of Sect.23, we conclude that for each x ∈ D, the family β(x) :=
(βc(x) | c ∈ Γ) in V∗ is the dual basis of the basis b(x) := (bc(x) | c ∈ Γ) of
V. We call b : D → VΓ the basis field and β : D → V∗Γ the dual basis
field of the given coordinate system Γ.
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Remark: The reason for using superscripts rather than subscripts as
indices to denote the terms of certain families will be explained in Sect.73.
The placing of the indices is designed in such a way that in most of the
summations that occur, the summation dummy is used exactly twice, once
as a superscript and once as a subscript.

We often use the word “field” for a mapping whose domain is D or an
open subset of D. If the codomain is R, we call it a scalar field; if the
codomain is V, we call it a vector field; if the codomain is V∗, we call it a
covector field; and if the codomain is LinV, we call it a lineon field. If h
is a vector field, we define the component-family

[h] := ([h]c | c ∈ Γ) ∈ (Map (Domh,R))Γ

of h relative to the given coordinate system by [h](x) := lnc−1
b(x)h(x) for all

x ∈ Domh, so that

h =
∑

d∈Γ

[h]dbd, [h]c = βch for all c ∈ Γ. (71.6)

If η is a covector field, we define the component family [η] := ([η]c | c ∈ Γ)
of η by [η](x) := lnc−1

β(x)
η(x) for all x ∈ Dom η, so that

η =
∑

d∈Γ

[η]dβ
d, [η]c = ηbc for all c ∈ Γ. (71.7)

If T is a lineon field, we define the component-matrix [T] := ([T]cd | (c, d) ∈
Γ2) of T by

[T](x) := (lnc
(bc⊗β

d
| (c,d)∈Γ2)

)−1T(x)

for all x ∈ DomT, so that

T =
∑

(c,d)∈Γ2

[T]cd(bc ⊗ βd). (71.8)

The matrix [T] is given by

[T]cd = βcTbd for all c, d ∈ Γ (71.9)

and characterized by

Tbc =
∑

d∈Γ

[T]dcbd for all c ∈ Γ. (71.10)
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In general, if F is a field whose codomain is a linear space W constructed
from V by some natural construction, we define the component family [F]
of F as follows: For each x ∈ DomF, [F](x) is the family of components
of F relative to the basis of W induced by the basis b(x) of V by the
construction of W . For example, if F is a field with codomain Lin(V∗,V)
then the component-matrix [F] := ([F]cd | (c, d) ∈ Γ2) of F is determined by

F =
∑

(c,d)∈Γ2

[F]cd(bc ⊗ bd). (71.11)

It is given by
[F]cd = βcFβd for all c, d ∈ Γ (71.12)

and characterized by

Fβc =
∑

d∈Γ

[F]dcbd for all c ∈ Γ. (71.13)

A field of any type is continuous, differentiable, or of class C1 if and only
if all of its components have the corresponding property.

We say that Γ is a flat coordinate system if the members of Γ are all
flat functions or restrictions thereof. If also D = E , then γ = Γ : E → R

Γ

is a flat isomorphism. The point q := ψ(0) = γ←(0) ∈ E is then called the
origin of the given flat coordinate system. A flat coordinate system can
be specified by prescribing the origin q ∈ E and a set basis b of V. Then
each member λ of the dual basis b

∗ can be used to specify a coordinate
c : E → R by c(x) := λ(x− q) for all x ∈ E .

The basis field b (or its dual β) is constant if and only if the coordinate
system is flat.

Let ξ ∈ D ⊂ R
Γ and c ∈ Γ be given and let ψ(ξ.c) be defined according

to (04.25). It is easily seen that Domψ(ξ.c) is an open subset of R. We
call Rngψ(ξ.c) the coordinate curve through the point ψ(ξ) cooresponding
to the coordinate c. If Γ is a flat coordinate system, then the coordinate
curves are straight lines.

Pitfall: It is easy to give examples of non-flat coordinate systems which
are “rectilinear” in the sense that all coordinate curves are straight lines.
Thus, there is a distinction between non-flat coordinate systems and “curvi-
linear coordinate systems”, i.e. coordinate systems having some coordinate
curves that are not straight.
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Notes 71

(1) In all discussions of the theory of coordinate systems I have seen in the lit-
erature, the coordinates are assumed to be enumerated so as to form a list
(ci | i ∈ n]), n := dimE . The numbers in n] are then used as indices in all
formulas involving coordinates and components. However, when dealing with a
specific coordinate system, most authors do not follow their theory but instead use
the coordinates themselves as indices. I believe that one should do in theory what
one does in practice and always use the set of coordinates itself as the index set.
Enumeration of the coordinates is artificial and serves no useful purpose.

(2) Many textbooks contain a lengthy discussion about the transformation from one
coordinate system to another. I believe that such “coordinate transformations”
serve no useful purpose and may lead to enormous unnecessary calculations. In a
specific situation, one should choose from the start a coordinate system that fits the
situation and then stick with it. Even if a second coordinate system is considered,
as is useful on rare occasions, one does not need “coordinate transformations”.

72 Connection Components
Components of Gradients

Let a coordinate system Γ on an open subset D of a flat space E with
translation space V be given. As we have seen in the previous section, the
basis field b and the dual basis field β of the system Γ are of class C1.

We use the notations

Cc
d
e := βd(∇bc)be for all c, d, e ∈ Γ (72.1)

and

Dc := div bc for all c ∈ Γ. (72.2)

The functions Cc
d
e : D → R and Dc : D → R are called the connection

components and the deviation components, respectively, of the system
Γ.

The connection components give the component matrices of the gradients
not only of the terms of the basis field b but also of its dual β:

Proposition 1: For each coordinate c ∈ Γ, the component matrices of

∇bc and ∇βc are given by

[∇bc] = (Cc
d
e | (d, e) ∈ Γ2) (72.3)

and

[∇βc] = (−Cdce | (d, e) ∈ Γ2). (72.4)
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Proof: We obtain (72.3) simply by comparing (72.1) with (71.9). To
derive (72.4), we use the product rule (66.6) when taking the gradient of
(71.5) and obtain

(∇βc)⊤bd + (∇bd)
⊤βc = 0 for all d ∈ Γ.

Value-wise operation on be gives

bd(∇βc)be + βc(∇bd)be = 0 for all d, e ∈ Γ.

The result (72.4) follows now from (72.1) and the fact that the matrix [∇βc]
is given by

[∇βc] = (bd(∇βc)be | (d, e) ∈ Γ2).

Proposition 2: The connection components satisfy the symmetry rela-

tions

Cc
d
e = Ce

d
c for all c, d, e ∈ Γ. (72.5)

Proof: In view of the definition βc := ∇c we have ∇βc = ∇∇c. The
assertion (72.5) follows from (72.4) and the Theorem on Symmetry of Second
Gradients of Sect.611, applied to c.

Proposition 3: The deviation components are obtained from the con-

nection components by

Dc =
∑

d∈Γ

Cc
d
d for all c ∈ Γ. (72.6)

Proof: By (72.2), (67.1), and (67.2), we have Dc(x) = tr(∇xbc) for all
x ∈ D. The desired result (72.6) then follows from (72.3) and (26.8).

Let W be a linear space and let F be a differentiable field with domain
D and with codomain W . We use the notation

F;c := (F ◦ ψ),c ◦γ for all c ∈ Γ, (72.7)

which says that F;c is obtained from F by first looking at the dependence of
the values of F on the coordinates, then taking the partial c-derivative, and
then looking at the result as a function of the point. It is easily seen that

(∇F)bc = F;c for all c ∈ Γ. (72.8)

If F := f is a differentiable scalar field, then (72.8) states that the component
family [∇f ] of the covector field ∇f : D → V∗ is given by

[∇f ] = (f;c | c ∈ Γ). (72.9)



72. CONNECTION COMPONENTS 283

The connection components are all zero if the coordinate system is flat.
If it is not flat, one must know what the connection components are in order
to calculate the components of gradients of vector and covector fields.

Proposition 4: Let h be a differentiable vector field and η a differen-

tiable covector field with component-families [h] and [η], respectively. Then

the component-matrices of ∇h and ∇η have the terms

[∇h]cd = [h]c;d +
∑

e∈Γ

[h]eCe
c
d, (72.10)

and

[∇η]cd = [η]c;d −
∑

e∈Γ

[η]eCc
e
d (72.11)

for all c, d ∈ Γ.

Proof: To obtain (72.10), one takes the gradient of (71.6)1, uses the
product rule (66.5), the formula (71.9) with T := ∇h, the formula (72.9)
with f := [h]c and (72.3). The same procedure, starting with (71.7)1 and
using (72.4), yields (72.11).

It is easy to derive formulas analogous to (72.10) and (72.11) for the
components of gradients of other kinds of fields.

Proposition 5: Let η be a differentiable covector field. Then the compo-

nent-matrix of Curl η := ∇η−(∇η)⊤ : Dom η → Lin(V,V∗) (see Sect.611)
is given by

[Curl η]cd = [η]c;d − [η]d;c for all c, d ∈ Γ. (72.12)

Proof: By Def.1 of Sect.611, the components of Curl η are obtained
from the components of ∇η by

[Curl η]cd = [∇η]cd − [∇η]dc for all c, d ∈ Γ.

After substituting (72.11), we see from (72.5) that the terms involving the
connection components cancel and hence that (72.12) holds.

Note that the connection components do not appear in (72.12).
Proposition 6: Let h be a differentiable vector field. The divergence

of h is given, in terms of the component family [h] of h and the deviation

components, by

div h =
∑

c∈Γ

([h]c;c + [h]cDc). (72.13)

Proof: Using (71.6)1 and Prop.1 of Sect.67, we obtain

div h =
∑

c∈Γ

(∇( [h]c)bc + [h]cdiv bc).
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Using (72.8) with F := [h]c and the definition (72.2) of Dc, we obtain the
desired result (72.13).

Proposition 7: Let F be a differentiable field with codomain Lin(V∗,V).
Then the component family of div F : DomF → V (see Def.1 of Sect.67) is

given by

[div F]c =
∑

d∈Γ

([F]cd;d + [F]cdDd) +
∑

(e,d)∈Γ2

[F]edCe
c
d (72.14)

for all c ∈ Γ.

Proof: Let c ∈ Γ be given. Then βcF is a differentiable vector field. If
we apply Prop.2 of Sect.67 with W := V, H := F, and ρ := βc, we obtain

div(βcF) = βcdiv F + tr(F⊤∇βc). (72.15)

It follows from (72.4), Prop.5 of Sect.16, (23.9), and (26.8) that

tr(F⊤∇βc) = −
∑

(e,d)∈Γ2

[F]edCe
c
d,

and from Prop.6 that

div(βcF) =
∑

d∈Γ

([βcF]d;d + [βcF]dDd).

Substituting these two results into (72.15) and observing that [div F]c =
βcdiv F and [βcF]d = [F]cd for all d ∈ Γ, we obtain the desired result
(72.14).

Assume now that the coordinate system Γ is flat and hence that its basis
field b and the dual basis field β are constant. By (72.1) and (72.2), the
connection components and deviation components are zero. The formulas
(72.10) and (72.11) for the components of the gradients of a differentiable
vector field h and a differentiable covector field η reduce to

[∇h]cd = [h]c;d, [∇η]cd = [η]c;d, (72.16)

valid for all c, d ∈ Γ. The formula (72.13) for the divergence of a differen-
tiable vector field h reduces to

div h =
∑

c∈Γ

[h]c;c, (72.17)

and the formula (72.14) for the divergence of a differentiable field F with
values in Lin(V∗,V) becomes

[div F]c =
∑

d∈Γ

[F]cd;d for all c ∈ Γ. (72.18)
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Notes 72

(1) The term “connection components” is used here for the first time. More traditional
terms are “Christoffel components”, “Christoffel symbols”, “three-index symbols”,
or “Gamma symbols”. The last three terms are absurd because it is not the symbols
that matter but what they stand for. The notations {i

j
k} or Γi

j
k instead of our

Cc
d

e are often found in the literature.

(2) The term “deviation components” is used here for the first time. I am not aware
of any other term used in the literature.

(3) The components of gradients as described, for example, in Prop.4 are often called
“covariant derivatives”.

73 Coordinates in Euclidean Spaces

We assume that a coordinate system Γ on an open subset of a (not necessarily
genuine) Euclidean space E with translation space V is given. Since V is an
inner-product space, we identify V∗ ∼= V, so that the basis field b as well as
the dual basis field β of Γ have terms that are vector fields of class C1. We
use the notations

Gcd := bc · bd for all c, d ∈ Γ (73.1)

and

G
cd

:= βc · βd for all c, d ∈ Γ, (73.2)

so that G := (Gcd | (c, d) ∈ Γ2) and G := (G
cd | (c, d) ∈ Γ2) are symmetric

matrices whose terms are scalar fields of class C1. These scalar fields are
called the inner-product components of the system Γ. In terms of the
notation (41.13), G and G are given by

G(x) = Gb(x), G(x) = Gβ(x) (73.3)

for all x ∈ D. Since β(x) is the dual basis of b(x) for each x ∈ D, we obtain
the following result from (41.16) and (41.15).

Proposition 1: For each x ∈ D, the matrix G(x) is the inverse of G(x)
and hence we have

∑

e∈Γ

GceG
ed

= δdc for all c, d ∈ Γ. (73.4)
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The basis fields b and β are related by

bc =
∑

d∈Γ

Gcdβ
d, βc =

∑

d∈Γ

G
cd

bd (73.5)

for all c ∈ Γ.

The following result shows that the connection components can be ob-
tained directly from G and G.

Theorem on Connection Components: The connection components

of a coordinate system on an open subset of a Euclidean space can be obtained

from the inner-product components of the system by

Cc
d
e =

1

2

∑

f∈Γ

G
df

(Gfc;e +Gfe;c −Gce;f ) (73.6)

for all c, d, e ∈ Γ.

Proof: We use the abbreviation

Bcde := bd · (∇bc)be for all c, d, e ∈ Γ. (73.7)

By (72.1) and Prop.1 we have

Cc
d
e =

∑

f∈Γ

G
df
Bcfe, Bcde =

∑

f∈Γ

GdfCc
f
e (73.8)

for all c, d, e ∈ Γ. We note that, in view of (73.8)2 and (72.5),

Bcde = Bedc for all c, d, e ∈ Γ. (73.9)

Let c, d, e ∈ Γ be given. Applying the Product Rule (66.9) to (73.1), we
find that

∇Gcd = (∇bc)
⊤bd + (∇bd)

⊤bc.

Hence, by (72.8), (41.10), and (73.7) we obtain

Gcd;e = (∇Gcd) · be = Bcde +Bdce.

We can view this as a system of equations which can be solved for Bcde
as follows: Since c, d, e ∈ Γ were arbitrary, we can rewrite the system with
c, d, e cyclically permuted and find that

Gcd;e = Bcde +Bdce,

Gde;c = Bdec +Bedc,
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Gec;d = Becd +Bced

are valid for all c, d, e ∈ Γ. If we subtract the last of these equations from
the sum of the first two and observe (73.9), we obtain

Gcd;e +Gde;c −Gec;d = 2Bcde,

valid for all c, d, e ∈ Γ. Using (73.8)1, we conclude that (73.6) holds.
For the following results, we need the concept of determinant, which

will be explained only in Vol.II of this treatise. However, most readers
undoubtedly know how to compute determinants of square matrices of small
size, and this is all that is needed for the application of the results to special
coordinate systems. We are concerned here with the determinant for R

Γ. In
Vol.II we will see that it is a mapping det : Lin R

Γ → R of class C1 whose
gradient satisfies

(∇M det)N = det(M)tr(M−1N) (73.10)

for all M ∈ Lis R
Γ and all N ∈ Lin R

Γ. If M ∈ Lin R
Γ ∼= R

Γ×Γ is a diagonal
matrix (see Sect.02), then det(M) is the product of the diagonal of M , i.e.
we have

det(M) =
∏

c∈Γ

Mcc. (73.11)

We have det(M) 6= 0 if and only if M ∈ Lin R
Γ is invertible. Hence, since

G has invertible values by Prop.1, det ◦G : D → R is nowhere zero.
Theorem on Deviation Components: The deviation components of

a coordinate system on an open subset of a Euclidean space can be obtained

from the determinant of the inner-product matrix of the system by

Dc = 2
(det ◦G); c

det ◦G for all c ∈ Γ. (73.12)

Proof: By (73.10), the Chain Rule, and Prop.1 we obtain

(det ◦G);c = (det ◦G)tr(GG;c). (73.13)

On the other hand, by (73.6) and (72.6), we have

Dc =
1

2

∑

(d,f)∈Γ2

G
df

(Gfc;d +Gfd;c −Gcd;f ). (73.14)

Since the matrices G and G are symmetric we have

∑

(d,f)∈Γ2

G
df
Gfc;d =

∑

(f,d)∈Γ2

G
fd
Gdc;f =

∑

(d,f)∈Γ2

G
df
Gcd;f ,
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and hence, by (73.14), Prop.5 of Sect.16, and (26.8),

Dc =
1

2

∑

(d,f)∈Γ2

G
df
Gfd;c =

1

2
tr(GG;c).

Comparing this result with (73.13), we obtain (73.12).

In practice, it is useful to introduce the function

g :=
√

| det ◦G|, (73.15)

which is of class C1 because det ◦G is nowhere zero. Since det ◦G = ±g2,
(73.12) is equivalent to

Dc =
g;c

g
for all c ∈ Γ. (73.16)

Remark: One can show that the sign of det ◦G depends only on the
signature of the inner product space V (see Sect.47). In fact det ◦G is strictly
positive if sig−V is even, strictly negative if sig−V is odd. In particular, if
E is a genuine Euclidean space, det ◦G is strictly positive and the absolute
value symbols can be omitted in (73.15).

The identification V ∼= V∗ makes the distinction between vector fields
and covector fields disappear. This creates ambiguities because a vector
field h now has two component families, one with respect to the basis field
b and the other with respect to the dual basis field β. Thus, the symbol [h]
becomes ambiguous. For the terms of [h], the ambiguity is avoided by careful
attention to the placing of indices as superscripts or subscripts. Thus, we
use ([h]c | c ∈ Γ) := β · h for the component family of h relative to b and
([h]c | c ∈ Γ) := b · h for the component family of h relative to β (see also
(41.17)). The symbol [h] by itself can no longer be used. It follows from
(73.5) that the two types of components of h are related by the formulas

[h]c =
∑

d∈Γ

G
cd

[h]d, [h]c =
∑

d∈Γ

Gcd[h]d, (73.17)

valid for all c ∈ Γ. To avoid clutter, we often omit the brackets and write
hc for [h]c and hc for [h]c if no confusion can arise.

A lineon field T has four component matrices because of the identifica-
tions LinV ∼= LinV∗ ∼= Lin(V,V∗) ∼= Lin(V∗,V). The resulting ambiguity is
avoided again by careful attention to the placing of indices as superscripts
and subscripts. The four types of components are given by the formulas
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[T]cd = βc ·Tbd, [T]c
d = bc · Tβd,

[T]cd = bc · Tbd, [T]cd = βc · Tβd,
(73.18)

valid for all c, d ∈ Γ. The various types of components are related to each
other by formulas such as

[T]cd =
∑

e∈Γ

G
de

[T]ce =
∑

(e,f)∈Γ2

G
ce
G
df

[T]ef , (73.19)

valid for all c, d ∈ Γ. Again, we often omit the brackets to avoid clutter.
Using (73.16) and the product rule, we see that Props.6 and 7 of Sect.72

have the following corollaries.
Proposition 2: The divergence of a differentiable vector field h is given

by

div h =
1

g

∑

c∈Γ

(g[h]c);c. (73.20)

Proposition 3: The components of the divergence of a differentiable

lineon field T are given by

[div T]c =
1

g

∑

d∈Γ

(g[T]cd);d +
∑

(e,d)∈Γ2

[T]edCe
c
d (73.21)

for all c ∈ Γ.

Using Def.2 of Sect.67 and observing (72.9) and (73.17)1, we obtain the
following immediate consequence of Prop.2.

Proposition 4: The Laplacian of a twice differentiable scalar field f is

given by

∆f =
1

g

∑

(c,d)∈Γ2

(gG
cd
f;d);c. (73.22)

Notes 73

(1) If h is a vector field, the components [h]c of h relative to the basis field b are often
called the “contravariant components” of h, and the components [h]c of h relative
to the dual basis field β are then called the “covariant components” of h. (See also
Note (5) to Sect.41.)

(2) If T is a lineon field, the components [T]cd and T
cd are often called the “covariant

components” and “contravariant components”, respectively, while [T]c
d and [T]cd

are called “mixed components” of T.
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74 Special Coordinate Systems

In this section a genuine Euclidean space E with translation space V is
assumed given.

(A) Cartesian Coordinates: A flat coordinate system Γ is called a
Cartesian coordinate system if (∇c | c ∈ Γ) is a (genuine) orthonormal basis
of V. To specify a Cartesian coordinate system, we may prescribe a point
q ∈ E and an orthonormal basis set e of V. For each e ∈ e, we define a
function c : E → R by

c(x) := e · (x− q) for all x ∈ E . (74.1)

The set Γ of all functions c defined in this way is then a Cartesian coordinate
system on E with origin q. Since e is orthonormal, we have βc = bc for all
c ∈ Γ. The mapping Γ : E → R

Γ defined by Γ(x) := (c(x) | c ∈ Γ) for all
x ∈ E is invertible and its inverse ψ : R

Γ → E is given by

ψ(ξ) = q +
∑

c∈Γ

ξcbc for all ξ ∈ R
Γ. (74.2)

The matrices of the inner-product components of Γ are constant and given
by G = G = 1RΓ . If h is a vector field, then [h]c = [h]c for all c ∈ Γ and if
T is a lineon field, then [T]cd = [T]cd = [T]c

d = [T]cd for all c, d ∈ Γ. Thus,
all indices can be written as subscripts without creating ambiguity. Since
det ◦G = 1 and hence g = 1, the formulas (73.20), (73.22), and (73.21)
reduce to

div h =
∑

c∈Γ

[h]c;c,

∆f =
∑

c∈Γ

f;c;c, (74.3)

[div T]c =
∑

d∈Γ

[T]cd;d,

respectively.

(B) Polar Coordinates: We assume that dim E = 2. We prescribe a
point q ∈ E , a lineon J ∈ SkewV ∩ OrthV (see Problem 2 of Chap.4) and
a unit vector e ∈ V. (J is a perpendicular turn as defined in Sect.87.) We
define h : R → V by

h := expV ◦(ιJ)e = cos e + sinJe (74.4)
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(see Problem 9 of Chap.6). Roughly, h(t) is obtained from e, by a rotation
with angle t. We have

h•(t) = Jh(t) for all t ∈ R, (74.5)

and hence

h · h• = 0, |h| = |h•| = 1. (74.6)

We now consider the mapping Ψ : P
× × R → E defined by

Ψ(s, t) := q + sh(t) for all (s, t) ∈ P
× × R. (74.7)

It is clear that Ψ is of class C1, and, in view of (65.11), its gradient is given
by

∇(s,t)Ψ = lnc(h(t),sh•(t)) for all (s, t) ∈ P
× × R.

It is clear from (74.6) that (h(t), sh•(t)) is a basis of V for every (s, t) ∈
P
× × R and hence that ∇Ψ has only invertible values. It follows from the

Local Inversion Theorem of Sect.68 that Ψ is locally invertible. It is not
injective because Ψ(s, t) = Ψ(s, t+ 2π) for all (s, t) ∈ P

××R. An invertible
adjustment of Ψ with open domain is ψ := Ψ|D

D
, where

D := P
×× ]0, 2π[, D := E \ (q + Pe). (74.8)

We put γ := ψ← and define r : D → R and θ : D → R by (r, θ) := γ|R2
.

Then Γ := {r, θ} is called a polar coordinate system. The function r is
given by

r(x) = |x− q| for all x ∈ D. (74.9)

and the function θ is characterized by Rng θ = ]0, 2π[ and

h(θ(x)) =
x− q

r(x)
for all x ∈ D. (74.10)

The values of the coordinates of a point x are indicated in Fig.1; the argu-
ment x is omitted to avoid clutter.
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If we interpret the first term in a pair as the r-term and the second as
the θ-term of a family indexed on Γ = {r, θ}, then the mappings γ and ψ

above coincide with the mappings denoted by the same symbols in Sect.71.
Since ψ is an adjustment of the mapping Ψ defined by (74.7), it follows from
(71.4)1 that

br = h ◦ θ, bθ = r(h• ◦ θ). (74.11)

By (74.6) we have br ·bθ = 0, |br| = 1, and |bθ| = r (see Fig.1). Hence the
inner-product components (73.1) are

Grθ = 0, Grr = 1, Gθθ = r2. (74.12)

The value-wise inverse G of the matrix G is given by

G
rθ

= 0, G
rr

= 1, G
θθ

=
1

r2
. (74.13)

By (73.11) we have det ◦G = r2, and hence g :=
√

| det ◦G| becomes

g = r. (74.14)

Using the Theorem on Connection Components of Sect.73, we find that the
only non-zero connection components are

Cθ
θ
r = Cr

θ
θ =

1

r
, Cθ

r
θ = −r. (74.15)

The formula (73.20) for the divergence of a differentiable vector field h
becomes

div h =
1

r
(r[h]r);r + [h]θ;θ. (74.16)
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The formula (73.22) for Laplacian of a twice differentiable scalar field f

becomes

∆f =
1

r
(rf;r);r +

1

r2
f;θ;θ. (74.17)

The formula (73.21) for the components of the divergence of a differentiable
lineon field T yields

[div T]r = 1
r
(rTrr);r + Trθ

;θ − rTθθ,

[div T]θ = 1
r
(rTθr);r + Tθθ

;θ + 1
r
(Trθ + Tθr).

(74.18)

(On the right sides, brackets are omitted to avoid clutter.)
Remark: The adjustment of Ψ described above is only one of several

that yield a suitable definition of a polar coordinate system. Another would
be obtained by replacing (74.8) by

D := P
×× ]−π, π[, D := E \ (q − Pe). (74.19)

In this case θ would be characterized by (74.10) and Rng θ = ]−π, π[.
(C) Cylindrical Coordinates: We assume that dim E = 3. We first

prescribe a point q ∈ E and a unit vector f ∈ V. We then put U := {f}⊥
and prescribe a lineon J ∈ SkewU ∩ OrthU and a unit vector e ∈ U . We
define h : R → V by (74.4) and consider the mapping Ψ : P

× × R × R → E
defined by

Ψ(s, t, u) := q + sh(t) + uf . (74.20)

It is easily seen that Ψ is of class C1 and locally invertible but not injective.
An invertible adjustment of Ψ with open domain is ψ := Ψ|D

D
, where

D := P
×× ]0, 2π[ × R, D := E \ (q + Pe + Rf). (74.21)

We put γ := ψ← and define the functions r, θ, z, all with domain D, by
(r, θ, z) := γ|R3

. Then Γ := {r, θ, z} is called a cylindrical coordinate
system. let E be the symmetric idempotent for which RngE = U (see
Prop.4 of Sect.41). Then the functions r and z are given by

r(x) = |E(x− q)|, z(x) = f · (x− q) for all x ∈ D, (74.22)

and θ is characterized by Rng θ = ]0, 2π[ and

h(θ(x)) =
1

r(x)
E(x− q) for all x ∈ D. (74.23)

The values of the coordinates of a point x are indicated in Fig.2; the argu-
ment x is omitted to avoid clutter.
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If we interpret the first term in a triple as the r-term, the second as the
θ-term, and the third as the z-term of a family indexed on Γ = {r, θ, z},
then the notation γ and ψ above is in accord with the one used in Sect.1.
By the same reasoning as used in Example (B), we infer from (74.20) that
the basis field b of Γ is given by

br = h ◦ θ, bθ = r(h• ◦ θ), bz = f . (74.24)

The matrices G and G of the inner-product components of Γ are diagonal
matrices and their diagonals are given by

Grr = 1, Gθθ = r2, Gzz = 1, (74.25)

G
rr

= 1, G
θθ

=
1

r2
, G

zz
= 1. (74.26)

The relation (74.14) remains valid and the only non-zero connection com-
ponents of Γ are again given by (74.15). The formulas (74.16), (74.17), and
(74.18) must be replaced by

div h =
1

r
(rhr);r + hθ ;θ + hz ;z, (74.27)

∆f =
1

r
(rf;r);r +

1

r2
f;θ;θ + f;z;z, (74.28)
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and

[div T]r =
1

r
(rTrr);r + Trθ

;θ + Trz
;z − rTθθ,

[div T]θ =
1

r
(rTθr);r + Tθθ

;θ + Tθz
;z +

1

r
(Trθ + Tθr), (74.29)

[div T]z =
1

r
(rTzr);r + Tzθ

;θ + Tzz
;z.

(Brackets are omitted on the right sides.)

(D) Spherical Coordinates: We assume dim E = 3 and prescribe q,
f , and J as in Example (C). We replace the formula (74.20) by

Ψ(s, t, u) := q + s(cos(t)f + sin(t)h(u)). (74.30)

The definition of D in (74.21) must be replaced by

D := P
× × ]0, π[ × ]0, 2π[, (74.31)

but D remains the same. Then ψ := Ψ|D
D

is invertible, and the functions

r, θ, ϕ, all with domain D, are defined by γ := ψ← and (r, θ, ϕ) := γ|R3
. Then

Γ := {r, θ, ϕ} is called a spherical coordinate system. The functions r
and θ are given by

r(x) = |x− q|, θ(x) = arccos

(

f · (x− q)

r(x)

)

for all x ∈ D (74.32)

and ϕ is characterized by Rngϕ = ]0, 2π[ and

h(ϕ(x)) =
1

r(x) sin(θ(x))
E(x− q) for all x ∈ D (74.33)

where E is defined as in Example (C). The values of the coordinates of a
point x are indicated in Fig.3, again with arguments omitted.
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By the same procedure as used in the previous examples, we find that
the basis field b of Γ is given by

br = (cos ◦ θ)f + (sin ◦ θ)(h ◦ ϕ),

bθ = r(−(sin ◦ θ)f + (cos ◦ θ)(h ◦ ϕ)), (74.34)

bϕ = r(sin ◦ θ)(h• ◦ ϕ).

The matrices G and G of the inner-product components are again diagonal
matrices and their diagonals are given by

Grr = 1, Gθθ = r2, Gϕϕ = r2(sin ◦ θ)2, (74.35)

G
rr

= 1, G
θθ

=
1

r2
, G

ϕϕ
=

1

r2(sin ◦ θ)2 . (74.36)

By (73.11) we have det ◦G = r4(sin ◦ θ)2 and hence g :=
√

| det ◦G| becomes

g = r2(sin ◦ θ). (74.37)

Using (73.6), we find that the only non-zero connection components are

Cθ
θ
r = Cr

θ
θ = Cϕ

ϕ
r = Cr

ϕ
ϕ =

1

r
, Cθ

r
θ = −r, (74.38)

Cϕ
ϕ
θ = Cθ

ϕ
ϕ =

1

tan ◦ θ , Cϕ
r
ϕ = −r(sin ◦ θ)2, Cϕθϕ = −(sin cos) ◦ θ.
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The formulas (73.20) and (73.22) for the divergence and for the Laplacian
specialize to

div h =
1

r2
(r2hr);r +

1

sin ◦ θ ((sin ◦ θ)hθ);θ + hϕ;ϕ (74.39)

and

∆f =
1

r2
(r2f;r);r +

1

r2(sin ◦ θ) ((sin ◦ θ)f;θ);θ +
1

r2(sin ◦ θ)2 f;ϕ;ϕ. (74.40)

the formula (73.21) for the divergence of a lineon field gives

[div T]r =
1

r2
(r2Trr);r +

1

sin ◦ θ ((sin ◦ θ)Trθ);θ + Trϕ
;ϕ

− rTθθ − r(sin ◦ θ)2Tϕϕ,

[div T]θ =
1

r2
(r2Tθr);r +

1

sin ◦ θ ((sin ◦ θ)Tθθ);θ + Tθϕ
;ϕ

+
1

r
(Trθ + Tθr) − ((sin cos) ◦ θ)Tϕϕ, (74.41)

[div T]ϕ =
1

r2
(r2Tϕr);r +

1

sin ◦ θ ((sin ◦ θ)Tϕθ);θ + Tϕϕ
;ϕ

+
1

r
(Trϕ + Tϕr) +

1

tan ◦ θ (Tϕθ + Tθϕ).

(Brackets are omitted on the right sides to avoid clutter.)

Notes 74

(1) Unfortunately, there is no complete agreement in the literature on what letters to
use for which coordinates. Often, the letter ϕ is used for our θ and vice versa. In
cylindrical coordinates, the letter ρ is often used for our r. In spherical coordinates,
one sometimes finds ω for our ϕ.

(2) Most of the literature is very vague about how one should choose the domain D for
each of the curvilinear coordinate systems discussed in this section.

75 Problems for Chapter 7

(1) Let Γ be a coordinate system as in Def.1 of Sect.71 and let β be the
dual basis field of Γ. Let p : I → D be a twice differentiable process
on some interval I ∈ Sub R. Define the component-functions of p• and
p•• by
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[p•]c := (βc ◦ p)p•, [p••]c := (βc ◦ p)p•• (P7.1)

for all c ∈ Γ.

(a) Show that

[p•]c = (c ◦ p)• (P7.2)

and

[p••]c = (c ◦ p)•• +
∑

(d,e)∈Γ2(Cd
c
e ◦ p)(d ◦ p)•(e ◦ p)• (P7.3)

for all c ∈ Γ, where C denotes the family of connection compo-
nents.

(b) Write out the formula (P7.3) for cylindrical and spherical coor-
dinates.

(2) Let Γ be a coordinate system as in Def.1 of Sect.71 and let b be
the basis field and β the dual basis field of Γ. If F is a field whose
codomain is Lin(V,LinV) ∼= Lin2(V2,V), then the component family
[F] ∈ (Map (DomF,R))Γ

3
of F is given by

[F]cde := βcF(be,bd) for all c, d, e ∈ Γ. (P7.4)

(a) Show: The components of the gradient ∇T of a differentiable
lineon field T are given by

[∇T]cde = [T]cd;e +
∑

f∈Γ

(

[T]f d Cf
c
e − [T]cf Cd

f
e

)

(P7.5)

for all c, d, e ∈ Γ.

(b) Show that if the connection components are of class C1, they
satisfy

Cc
d
e;f − Cc

d
f ;e +

∑

g∈Γ

(

Cc
g
e Cg

d
f − Cc

g
f Cg

d
e

)

= 0 (P7.6)

for all c, d, e, f ∈ Γ. (Hint: Apply the Theorem on Symmetry of
Second Gradients to bc and use Part (a).)

(3) Let Γ be a coordinate system on an open subset D of a genuine Eu-
clidean space E with translation space V and let b be the basis field of
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Γ. Assume that the system is orthogonal in the sense that bc •bd = 0
for all c, d ∈ Γ with c 6= d. Define

bc := |bc| for all c ∈ Γ (P7.7)

and

ec := bc

bc
for all c ∈ Γ, (P7.8)

so that, for each x ∈ D, e(x) := (ec(x) | c ∈ Γ) is an orthonormal basis
of V. If h is a vector field with Domh ⊂ D, we define the family 〈h〉 :=
(〈h〉c | c ∈ Γ) of physical components of h by 〈h〉(x) := lnc−1

e(x)h(x)
for all x ∈ D, so that

〈h〉c = h • ec for all c ∈ Γ. (P7.9)

Physical components of fields of other types are defined analogously.

(a) Derive a set of formulas that express the connection components
in terms of the functions bc, and bc;d, c, d ∈ Γ. (Hint: Use the
Theorem on Connection Components of Sect.73.)

(b) Show that the physical components of a vector field h are related
to the components [h]c and [h]c, c ∈ Γ, by

[h]c = bc〈h〉c, [h]c = 1
bc
〈h〉c for all c ∈ Γ (P7.10)

(c) Show that the physical components of the gradient ∇h of a dif-
ferentiable vector field h are given by

〈∇h〉c,d = 1
bd
〈h〉c;d − bd;c

bdbc
〈h〉d if c 6= d,

〈∇h〉c,c = 1
bc
〈h〉c;c +

∑

e∈Γ\{c}

bc;e
bcbe

〈h〉e
(P7.11)

for all c, d ∈ Γ.

(4) Let a 2-dimensional genuine inner-product space E be given. Assume
that a point q ∈ E , an orthonormal basis (e, f) and a number ε ∈ P

×

have been prescribed. Consider the mapping Ψ : (ε+P
×)× ]0, ε[ → E

defined by
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Ψ(s, t) := q + 1
ε
(st e +

√

(s2 − ε2)(ε2 − t2)f). (P7.12)

(a) Compute the partial derivatives Ψ,1 and Ψ,2 and show that Ψ is
locally invertible.

(b) Show that Ψ is injective and hence that D := Rng Ψ is open and
that ψ := Ψ|Rng is invertible.

(c) Put γ := ψ← and define the functions λ, µ from D to R by
(λ, µ) := γ|R2

. Show that Γ := {λ, µ} is a coordinate-system
on D; it is called an elliptical coordinate system.

(d) Show that the coordinate curves corresponding to the coordinates
λ and µ are parts of ellipses and hyperbolas, respectively, whose
foci are q − εe and q + εe. Show that D = q + P

×e + P
×f .

(e) Using Part (a), write down the basis field (bi | i ∈ {λ, µ}) of the
system {λ, µ}, and show that the inner-product components are
given by

Gλ,µ = 0, Gλ,λ = λ2−µ2

λ2−ε2
, Gµ,µ = λ2−µ2

ε2−µ2 . (P7.13)

(f) Show that the Laplacian of a twice differentiable scalar field f

with Dom f ⊂ D is given by

∆f =

√
(λ2−ε2)(ε2−µ2)

λ2−µ2

(

(√

λ2−ε2

ε2−µ2 f;λ

)

;λ
+

(

√

ε2−µ2

λ2−ε2
f;µ

)

;µ

)

. (P7.14)

(g) Compute the connection components of the system {λ, µ}.

(5) Let a 3-dimensional genuine inner-product space E with translation
space V be given. Assume that q, f and J are prescribed as in Example
(C) of Sect.74 and that h : R → V is defined by (74.4). Define Ψ :
P
× × P

× × R → E by

Ψ(s, t, u) := q + 1
2(s2 − t2)f + sth(u). (P7.15)

(a) Compute the partial derivatives of Ψ and show that Ψ is locally
invertible.

(b) Specify an open subset D of P
× × P

× × R and an open subset D
of E such that ψ := Ψ|D

D
is invertible.
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(c) Show that γ := ψ← and (α, β, θ) := γ|R3
define a coordinate sys-

tem Γ := {α, β, θ} on D; it is called a paraboloidal coordinate
system.

(d) Show that the coordinate curves corresponding to the coordinates
α and β are parabolas with focus q.

(e) Using Part (a), write down the basis field (bi | i ∈ {α, β, θ}) of
the system and compute the inner-product components.

(f) Find the formula for the Laplacian of a twice differentiable scalar
field in paraboloidal coordinates.

(g) Compute the connection components of the system {α, β, θ}.

(6) Let Γ be a coordinate system on an open subset D of a Euclidean

space E and let β be the dual basis field of Γ. Let G
cd

, c, d ∈ Γ, be
defined by (73.2) and g by (73.15).

(a) Show that the Laplacian of the coordinate c ∈ Γ is given by

∆c = 1
g

∑

d∈Γ

(gG
dc

);d. (P7.16)

(b) Given c ∈ Γ, show that the components of the Laplacian of βc

are given by

[∆βc]d =

(

1
g

∑

e∈Γ

(

gG
ec)

;e

)

;d

. (P7.17)

(Hint: Use βc = ∇c and Part (a)).

(c) Let h be a twice differentiable vector field with Domh ⊂ D. Show
that the components of the Laplacian of h are given by

[△h]c = △[h]c+

∑

(d,e)∈Γ2





(

1
g
(gG

ed
);e

)

;c
[h]d − 2

∑

f∈Γ

Cc
d
f G

bfe
[h]d;e



 (P7.18)

for all c ∈ Γ, where Cc
d
f , c, d, f ∈ Γ, are the connection compo-

nents of Γ. (Hint: Use Prop.5 of Sect.67.)

(d) Write out the formula (P7.18) for cylindrical coordinates.


