21-355 Advanced Calculus I Fall 2004

Solutions to Assignment 1

3. Let € > 0 be given. Choose N € N with N > % and notice that % <
for all n € N with n > N we have
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5. Assume that {x,}2%, is bounded. Then we may choose M > 0 such that
|z,| < M for all n € N. Let € > 0 be given. Since y,, — 0 as n — 0o we may
choose N € N such that |y,| < §; for all n. € N with n > N. It follows that for
all n € N with n > N we have
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6. Notice that [ = — g [ for all n € N. It follows that
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Let € > 0 be given. Choose N; € N such that
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and choose Ny € N with
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Now put N = max {N; + 1, No}. Then for all n € N with n > N we have
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8. For each n € N we may choose 7, € Q with [ — % <rp <1+ % by virtue of
density of Q in R. Notice that
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Let € > 0 be given. Choose N € N with N > % Then Vn € N with n > N we
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We conclude that r,, — [ as n — oo.



