
21-355 Advanced Calculus I Fall 2004

Solutions to Assignment 1

3. Let ε > 0 be given. Choose N ∈ N with N > 2
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and notice that 1
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for all n ∈ N with n ≥ N we have
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5. Assume that {xn}∞n=1 is bounded. Then we may choose M > 0 such that
|xn| ≤ M for all n ∈ N. Let ε > 0 be given. Since yn → 0 as n → ∞ we may
choose N ∈ N such that |yn| < ε

M
for all n ∈ N with n ≥ N . It follows that for

all n ∈ N with n ≥ N we have
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l for all n ∈ N. It follows that
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Let ε > 0 be given. Choose N1 ∈ N such that
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∀k ∈ N, k ≥ N1.
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Now put N = max {N1 + 1, N2}. Then for all n ∈ N with n ≥ N we have
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8. For each n ∈ N we may choose rn ∈ Q with l − 1
n

< rn < l + 1
n

by virtue of
density of Q in R. Notice that

|rn − l| < 1

n
∀n ∈ N.

Let ε > 0 be given. Choose N ∈ N with N > 1
ε
. Then ∀n ∈ N with n ≥ N we

have

|rn − l| < 1

n
≤ 1

N
< ε.

We conclude that rn → l as n →∞. ¤


