21-355 Principles of Real Analysis I Fall 2004
VI. Riemann Integration
A. Definitions

Let a,b € R with a < b be given. By a partition of [a,b] we mean a finite set
P C [a,b] with a,b € P. The set of all partitions of |a,b] will be denoted by Pla, b].
The set of all bounded functions f : [a,b] — R will be denoted by Bla, b].

Given P € Pla,b] and f € Bla,b] we write P = {x¢, x1, X2, ... 2, } where a =z <
1 <Ty<...<x,=0,and put Ax; = z; —x;_1, m(f) =inf{f(x): z;, 1 <x <z}
and M;(f) = sup{f(z) : ;-1 <z < x;}. We define the lower and upper sums of f
for the partition P by

= zn:ml(f)A$Z and

i=1
Notice that for every P € Pla,b] we have
m(f)(b—a) < L(f, P) < U(f, P) < M(f)(b— a), where

m(f) =inf{f(z) : x € [a,b]} and
M(f) = sup{f(x) & € [, ]}
Definition 1: Let f € [a,b] be given. The lower integral of f is defined by

b
/ f=sup{L(f,P): P € Pla,bl}.

The upper integral of f is defined by

/ f—inf{U(f,P): P e Pla,b]}.

Definition 2. Let f € B[a,b] be given. We say that f is Reimann integrable if

/Lbf = ff;
fo-f

Sometimes we write / f(t)dt in place of / f- The set of all Riemann integrable
functions f : [a,b] — R will be denoted by R|a, b].

in this case we write



a a b
Definition 3. Let f € R[a, b] be given. Then we define / f=0and / f= —/ f.
a b a

Definition 4: Let P,Q € Pla,b] be given. If P C Q we say that @ is a refinement
of P.

Definition 5: Let Py, P» € Pla,b] be given. The partition P = P, U P, is called the
common refinement of P, Ps.

B. Some Key Results
VI.1 Proposition: Let f € Bla,b] and P,Q € Pla,b] with P C @ be given. Then
L(f,P) < L(f,Q) and U(f,P) 2 U(f,Q).

b b
VI.2 Proposition: Let f € B[a,b] be given. Then / f< / f.

VI.3 Theorem: Let f € Bla,b] be given. Then f € R]a,b] if and only Ve > 0, IP €
Pla,b] such that

VI.4 Theorem: Assume that f[a,b] — R is monotonic. Then f € R]a,b|.
VL5 Theorem: Assume that f : [a,b] — R is continuous. Then f € R]a,|.

VI.6 Theorem: Let f € Rla,b] be given and choose ¢, d, € R such that ¢ < d and
¢ < f(x) < dforall z € [a,b]. Let ¢ : [c,d] — R be given and assume that ¢ is
continuous. Then p o f € R[a,b].

VI.7 Theorem: Let f, g € Rla,b] and a € R be given. Then

i. f+g¢€Ra,b] and/ab(f+g)—/(lbf+/abg§

—

ii. af € Rla,b] and /bozf:oz/bf.

iii. fg € Rla,b.

b b
iv. If f(z) < g(z) Vz € a,b] then / f< / g.
b b
v il e Rl and | [ 1< [

VI.8 Theorem: Let f € Rla,b] and ¢,d € R with a < ¢ < d < b be given. Then the
restriction of f to [c,d] is integrable on [c, d].
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VI.9 Theorem: Let f € Bla,b] and ¢ € (a,b) be given. If f is integrable on [a, c|
and on [c,b] then f € R[a,b] and

/abf=/a0f+/cbf-

VI.10 Fundamental Lemma of Calculus: Let f € Ra,b] and ¢,z € (a,b) be
given. Define F': [a,b] — R by

/ f(t) Vz € [a,b].

Then F' is uniformly continuous on [a, b]. Moreover if f is continuous at z( then F is
differentiable at z¢ and F'(x¢) = f(xo).

VI.11 Fundamental Theorem of Calculus: Let f € R]a,b] be given and assume
that f is continuous on (a,b). Let F : [a,b] — R be any function that is continuous
, differentiable on (a,b) and such that F'(x) = f(z) for all = € [a,b]. Then

/fF F(a).

VI.12 Mean Value Theorem for Integrals. Let f € R[a, b] be given and assume
that f is continuous on (a, b). Then there exists ¢ € (a,b) such that

- bia/abf'

C. Some Remarks.
b
VI1.13 Remark: It is straightforward to verify that / 1=b—a.

VI.14 Remark: Define f : [a,b] — R by

0 Vzela,b\Q

flz) =
1 Vz€la,b]NQ.

It is straightforward to verify that

/f—O and/f—b—a

and consequently f ¢ Rla,b].

VI.15 Remark: Let f,g € R[a,b] be given and assume that f(z) < g(z) for all
€ (a,b). Then we have



b b
fr< s
although this seems much more difficult to prove than Theorem VI.7 (iv).

D. Some Proofs.

Proof of VI.3: Assume first that f € R[a,b]. Let € > 0 be given. Choose Py, P, €
Pla, b] such that

() v - [ 1<

b
(2) /f—LUJ@<

DN ™

and put P = P, U P,. By Proposition VI.1 we have

)
®) virp - 1<}

b
(4) /f—LUJv<

DO ™

Since /bf = /bf we may add (3) and (4) to obtain
(5) U(f,P)—L(f,P)<€

To prove the converse implication let € > 0 be given and choose P such that (5)
holds. Then, by Proposition VI.2 we have

(0 Mﬁﬂsl?szgvmm

Combining (5) and (6) we get

™) Oézz‘li“-




Since € > 0 was arbitrary we conclude that

0 ff—/ibfzo

and f € Rla,b]. m

Proof of V1.4: We treat the case when f is increasing. [The case when f is decreasing
very similar.] We use Theorem VI.3. Let € > 0 be given. Choose n € N such that

(9) n> (f(b)_f(a))(b_a)

Let P be the uniform partition of [a,b] with n sub-intervals, i.e. the partition char-
acterized by

(10) xi:aJri(b_a),i:O,l,...,n.
n

Let
_(b—a)

(11) Ax = -

and notice that

(12) ri—xi1=Ax, i=1,2,...,n.

Since f is increasing we have

It follows that

(1) U(.P)~ L(.P) = S () — flec)ae = U= D p) - ()

i=1
Combining (9) and (14) we get
(15) U(f,P)—L(f,P)<e m



Proof of VI.5. Once again, we apply Theorem VI.3. Le € > 0 be given. Since f
is continuous on [a, b] and [a, b] is compact, we know that f is uniformly continuous.
Therefore we may choose § > 0 so that

(16) IF(8) — f(s)] < ﬁ Vs, t € [a,b], [t — | < 0.

Let P be any partition of [a,b] such that

(17) Ax; <9, 1=1,2,...,n

Since f is continuous, for each i € {1,2,...,n} we may choose T;, =} € [x;_1, x4
such that

(18) f(@) < f(z) < f(z]) Yo €lzia, zl

It follows that

(19) U(f,P) = L(f, Py = > _[f() = f(@)Az
i=1

Since |z} —z;| <6 forallie {1,2,...,n} we know that

(20) ) = f(@) < g Vie{L2....n}.

It follows from (19) and (20) that

sz—e ]

(21) U(f,P)— L(f, P) <Z

Proof of VI.6: Once again, we use Theorem IV.3. Let ¢ > 0 be given. Since ¢
is continuous on the compact set [c,d] it is uniformly continuous and it is bounded.
Choose ¢ > 0 such that

(22) o) — @)l < gy Vst €led) Jt—s] >0
and choose K > 0 such that
(23) lp(s)| < K Vs € [e,d].
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Since f € Rla,b] we

(24)

Split the index {1,2,...

(25)

(26)

Notice that

(27)

may choose P € Pla,b] such that

o€

U(f.P) = L(f.P) <

,n} set into two pieces A, B as follows:

Ulpo f, P)—L(pof, P)
= ZieA[Mi(Spof) —m;(po f)]Az;

+ > ienlMi(wo f) —mi(po flAD;.

It follows from (22) and (25) that

(28) Mi(gpof)—mi(gpof)SZ(be_a) Vi € A.
Consequently

> [Mi(po f) —mi(p o f)lAz;

i€A
(29) A A

eA; eAx; €

_ZGZA 2(b—a) _i_ (b—a) (b—a)

Notice that
)

(30) 5Z€ZBA@<Z€ZB Az < U(f, P) — L(f, P)<i.

It follows from (30) that

(31)

i€B



For 1 € B, we have

(32) [Mi(po f) =mi(po f)] < Mi(po f)+mi(po f) <2K

and consequently

(33) Z[Mz(so o f)—mi(po f)lAz; < ZQKA@ < 2K <&> = g

by virture of (31) and (32). Combining (27), (29), and (33), we arrive at

(34) Ulpof, P)—L(pof, P)<e m

Proof of VI.7(i). Let € > 0 be given. Choose Py, P, € P|a,b] such that

(35) U(f, P1) = L(f, 1) < ¢/2

(36) Ulg, P») — L(g, P») <¢€/2.

Let P = P, U P, and observe that

(37) U(f,P)— L(f,P) <¢/2

(38) U(97 P) - L(ga P) <

DO | ™

Notice that for each i € {1,2,...,n} we have

(39) mi(f) < flz) < Mi(f) Vo€ |via, 2]

(40) mi(g) < g(x) < Mi(g) V€ [, 1,7,

and consequently

(41) mi(f) +mi(g) < f(x) +g(x) < Mi(f) + Mi(g) Yo € [0, 24

It follows that



(42) mi(f) +milg) <mi(f+9) < M(f +9) < M(f)+ M;(g) Vie{l,2,...,n}.

Multiplying (42) by Az; and summing over i we get

(43) L(f, P)+ L(g, P) < L(f + 9, P) < U(f + g, P) <U(f, P) + U(g, P).

It follows from (37), (38), and (43) that

(44) U(f+gap)_L(f+97P)<€

We conclude that f + g € Rla,b]. Notice that

(45) L(f.P) < / f<U(P),
(46) L(g.P) < / g <U(g,P),
b
(47) L(f+g,P)§/(f+g)§U(f+g,P)-

Combining (37), (38), (45), (46), and (47) in a straightforward (but perhaps tedious)
fashion we arrive at

(48) —6+/f+/g</ (f+9) < /f+/g+e.

Since € > 0 was arbitrary we conclude that

(49) /ab(f+g)=/abf+/:g. m

The proofs of VI.7 (ii) and VL7 (iv) are left as exercises.

Proof of VI.7(iii). The function ¢ — #* is continuous on R. Therefore, by Theorem
V1.6, F? € Rla,b] for every F € R[a,b]. We conclude that (f + g)* € R[a,b] and
(f —g)? € Rla, b] by virtue of Theorem V1.7 (i), (ii) and the observation above. The
fact that f, g € R[a,b] now follows from the equation



1
(50) fo=7(f+9) = (f—9)]
and another application of Theorem VI.7(i), (ii). m

Proof of VI.7(v): The fact that |f| € R|a,b] follows from Theorem VI.6 and
continuity of the function ¢ +— |t| on R. The desired inequality follows form Theorem
VI.7(ii), (iv) and the observation

(51) f(@) < [f(2)] Va € la, 0]

(52) —f(@) <|f(@)] Ve ela,b]. =

Proof of VI.10: The uniform continuity of F' is a homework problem. For h # 0
and |h| small enough so that z¢ + h € [a, b] we have

F(zg+h) = [*" f(t)dt
(53) = [ ftydt + [ f(t)dt
= Flwo) + [ f(t)dt
and consequently

(52) F(xo + h})l — F(x) _ %/fﬂo foi

o

Let € > 0 be given. Since f is continuous at xy we may choose d > 0 such that

(53) u@—fmm<§ Vt € Bs(xo) N [a, b].

Observe that for A # 0 we have

zo+h
(50) fa) = [ rlandr
Let h € B;(0) be given such that zo + h € [a,b]. Then we have
. zo+h
(57) Pt WP pagy =3 [ 60 - s
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by virtue of (54) and (56). It follows from (55) and (57) that

zo+h 1

€
<qp L = Sl < g g

F(xg+ h) — F(zo)

(58) - f(x0)

|h| < e.
We conclude that F' is differentiable at xy and F'(x¢) = f(zo). ®
Proof of VLIIL: Define F, G : [a,b] — R by

(59) Fa) = / " F@)dt Ve € o]

(60) G(z) = F(z) — F(z) Yz € [a,b].

Notice that F, G are continuous on [a, b], differentiable on (a, b) and

(61) G'(x) = F'(x) — F'(z) = f(z) — f(z) =0 Vz € (a,b).

We conclude that G is constant on [a, b], i.e.

(62) G(z) = G(a) Vz € [a,b];

in particular

(63) G(b) = G(a).

Notice that

(64) G(a) = F(a) — F(a) = F(a)

Combining (63) and (64) yields

(65) G(b) = F(a)

Observe that

b
(66) / f(t)dt = F(b) = F(b) — G(b) = F(a) — (a)
by virtue of (59), (60), and (65). m
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Proof of VI.12: Define F': [a,b] — R by

(67) Fz) = / Cfdt o€ ol

Then F' is continuous on [a, b, differentialbe on (a,b) and F'(x) = f(z) for all z €
(a,b). By the Mean Value Theorem for derivatives we may choose ¢ € (a,b) such that

) =F'(e) = W
(%) - bia Uabf(t)dt — /baf(t)dt]

:bia/aﬂt)dt' ]
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