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V. Differentiation

This section contains basic results from differential calculus. The key observation
about differentiation is that a function f is differentiable at a point x if and only if
there is a line through the point (xg, f(zo)) that approximates the graph of f near
(20, f(z0)) in a sense that is made precise in Proposition V.1.

A. Definitions
Let S be a subset of R and f : S — R be given.

Definition 1: Let xy € int(S) be given. We say that f is differentiable at xq if

1o @) = £ o)

z—z0 T — X

exists in R. In this case we write

(1) f'(zg) = lim

and we call f'(xg) the derivative of f at xo. If V is an open subset of S, we say that
f is differentiable on V' provided that f is differentiable at each x € V.

Definition 2: Let xq € S be given. We say that f attains

(i) a local minimum at zq if 36 > 0 such that f(z) > f(xo) for all = € Bs(z) N S.

(ii) a local maximum at z¢ if 3§ > 0 such that f(z) < f(x¢) for all x € Bs(xg) N S.

Higher Derivatives: If f is differentiable on an open set V' and f’ is itself differ-
entiable, we denote the derivative of f’ by f” and call it the second derivative of f.
Continuing in this manner we obtain functions

f, f/,f”,f/”,f/”/, .

each of which is the derivative of the preceding one. For derivatives of order n, we
often write f(™ rather than f followed by n super-scripted primes. We make the
convention that f(© = f.

B. Some Key Results

Let a,b € R with a < b, sets S,T C R, and xy € int(S) be given.



V.1 Proposition: Let f : S — R and a € R be given. Then f is differentiable
at xo if and only if there exists a function e(-;zo) : S — R such that e(xg;x¢) =
0, lim e(x;zo) =0, and

T—x0

(2) f(z) = f(zo) + ol — wo) + e(z;20)(x — 7o) V2 €S.
V.2 Proposition: If f: S — R is differentiable at zy then f is continuous at xg.

V.3 Theorem: Let f,g: S — R and o € R be given. Assume that f and g are
differentiable at xy. Then

(i) f + g is differentiable at xz¢ and (f + g)'(z0) = f'(z0) + ¢'(z0)
(ii) «af is differentiable at z¢ and (af) (xo) = af'(zo)
(iii) fg is differentiable at xq and (fg)'(zo) = f(z0)d (xo) + f'(z0)g(x0)

(iv) (i> is differentiable at xy and (i)/ (1g) = 9(wo) f'(0) — f(0)g' (20)
J 9 g(o)?
provided g(zo) # 0.

V.4 Theorem (Chain Rule): Let g : S — R be given. Assume that g[S] C
T, g(xo) € int(T), g is differentiable at z(, and that f is differentiable at g(z).
Then f o g is differentiable at zy and

(fo9)(z0) = f'(9(20))g'(x0)-
V.5 Proposition: Assume tht f attains a local maximum or a local minimum at

xo. Then f'(zg) = 0.

V.6 Lemma (Rolle’s Theorem): Assume that f is continuous on [a,b], differ-
entiable on (a,b), and that f(a) = f(b). Then, there exists ¢ € (a,b) such that

f'(c)=0.

V.7 Cauchy’s Mean Value Theorem: Assume that f, g are continuous on [a, b]
and differentiable on (a,b). Then there exists ¢ € (a,b) such that

F'(©)g(b) — gla)] = ' ()[f (b) — f(a)].

V.8 Corollary (Mean Value Theorem): Assume that f is continuous on [a, b]
and differentiable on (a,b). Then there exists ¢ € (a,b) such that

Fo =101

V.9 Corollary: Assume that f is continuous on [a,b] and differentiable on (a,b).



(i) If f'(x) > 0 for all € (a,b) then f(xg) > f(xq) for all x1,29 € [a,b] with
T S ZTo.

(i) If f'(z) > 0 for all € (a,b) then f(x2) > f(x1) for all xy,25 € [a,b] with
1 < Z9.

(iii) If f'(x) < 0 for all z € (a,b) then f(z3) < f(x1) for all xy,29 € [a,b] with
1 < T9.

(iv) If f'(z) <0 for all = € (a,b) then f(z2) < f(x1) for all z € [a,b] with 1 < xs.

(v) If f'(x) =0 for all x € (a,b) then f is constant on [a, b].

V.10 Theorem (L’Hopital’s Rule): Let n > 0,£ € R, and f,g : B} (z9) — R be
given. Assume that lim f(z) = lim g(x) = 0, that f and ¢ are differentiable on
T—T0 T—T0

Bj(wo) and g'(x) # 0 for all z € Bj(wo). If lim L&) — ¢ then lim L&) =¢.

g' () z—wo 9(T)

V.11 Taylor’s Theorem: Let f : [a,b] — R, n € NU{0}, and z, € (a,b) be given.
Assume that f is continuous on [a,b] and (n + 1)-times differentiable on (a,b).
Define P,(:;z,), R,(-;24) : [a,b] — R by

P.(x;z,) = i%(aﬁ — )% Vr € [a,b]
k=0 ’

R.(x;z.) = f(x)— P,(z) Yz € la,bl.
Then for each x € [a,b]\{z.} there exist ¢ between z, and x such that
R.(z;x,) = —+
C. Some Remarks

V.12 Remark: It is useful to note that the definition of derivative can be rewritten
so that (1) becomes

* / 1 f(lEo—i—h)—f(l‘O)
(1 ) f(l’o)—}llli% 3 .

V.13 Remark: L’Hopital’s Rule can be adapted to handle indeterminant forms of
the type 22 and also limits as © — 00 as well as one-sided limits.

V.14 Remark: The function P,(-,z,) in Theorem V.11 is called the Taylor polyno-
mial of order n for f about xy. The function R, (-, z,) is called the remainder. There
are other useful expressions for the remainder. The one given here is referred to as
the Lagrange form.



D. Some Proofs

Proof of V.1: Assume first that such a function e(-;xy) exists. Then for all x €
S\{zo} we have

f(z) — f(xo)

(3) pr——

= a+ e(x;x0).

Taking the limit as x — x( in (3) we obtain

o) = Jim T i i)

(4)

= a+ lim e(z;20) = «

T—x0

Assume now that f is differentiable at zy and f'(z¢) = .
Define e(-;x9) : S — R by

KD =T gy e 51
(5) e(x;x9) = r—Zo
0, x=ux.
Observe that
lim e(z;x9) = lim f@) = flwo)
(6) ro z—0) T — g
= fl(wo) —a=0.

It follows readily from (5) that (2) holds. m

Proof of V.2: Assume that f is differentiable at x3. By Proposition V.1 we may
choose a function e(+;xg) : S — R such that lim e(z;z9) = 0 and

T—T0

(7) f(x) = f(xo) + f(xo)(x — 20) + e(x;20)(x — x0) VI € S.

Taking the limit as © — x in (7) we find that

(8) lim f(z) = f(z0) + 0+ 0 = f(o)

T—T0

which implies that f is continuous at x,. m



Proof of V.4: By Proposition V.1 we may choose a function e(-; g(xp)) : T' — R

such that
o) fw) = flg(zo)) + ['(9(x0))(u— g(z0))
9
+ e(u;9(xo))(u — g(xo)) Yu € T
and
(10) lim _e(u; g(x0)) = e(g(wo); gl0)) = 0.

u—g(zo)

It follows from (9) that

(11)

Consequently, we have

flg(@)) — flg(xo)) _ f,(g(xo))(g(ﬂf)—g(wo))

T — 2o T — 2o

(12)

telg(x); glae) I ZI@) o e oy ).

T — Zo

Since g is differentiable at zg, it is continuous at x so that lim g(x) = g(zo).

T—T0
Using (10) we see that

(13) lim e(g(x); g(x0)) = 0.

T—x0
Taking the limit as x — x¢ in (12) we find that
fg(x)) = flg(0))

IILI? _ = f(9(x0))g'(z0) + 0 - g'(x0)
(14) 0 T — 2

= f'(9(x0))g (x0)-

It follows that f o g is differentiable at xy and

(15) (f ©9)(x0) = f'(9(x0))g (o). m

5



Proof of V.5: Assume that f attains a local minimum at x,. We may choose
d > 0 such that Bs(zo) C S and

(16) f(z) > f(xg) Va € Bs(zy).

It follows from (16) that

(17) w >0 V€ (rg,z0+9)
and
(18) w <0 Ve (rg—d,x0).

Choose sequences {y, }>°,, and {z,}2, such that y, € (xg,x0+0), 2, € (v — d,z,)
for every n € N and lim y, = lim 2, = x¢. Then, by (17) and (18) we have

n—oo n—oo

S (yn) — f(xo)

Yn — Lo

(19) >0 VneN

f(zn) = f(x0)

Zn — Xo

(20) <0 VneN.

Since f is differentiable at xg and lim y, = lim 2, = xy we know that
n—oo n—oo

S (yn) = f (o)

o) o) = Jim T2 =1
and
(22) f(o) = Tim L) =S (@0)

n—0o0 Zn — o

It follows from (19) and (21) that f’(xo) > 0. It follows from (20) and (22) that
f'(z9) < 0. We conclude that f'(x¢) = 0. If f attains a local maximum at z, then
— f attains a local minimum at zo and (—f)' (zg) = —f'(z9) = 0. m

Proof of V.6: Since f is continuous on [a, b] and [a, b] is nonempty and compact we
may choose «, 3 € [a, b] such that

(23) fla) < flx) < f(B) Vz € la,b].
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If {«, 5} C {a,b} then f(a) = f(B) (since f(a) = f(b)) and f is constant on [a,b].
It follows that f'(x) = 0 for all z € (a,b). If {a, B} ¢ {a,b} then f attains a local

maximum or a local minimum at a point ¢ € (a,b). By Proposition V.5, f'(c) =0. =

Proof of V.7: Define F': [a,b] — R by

(24) F(x) = f(x)]g(b) = bla)] — g(x)[f(b) = f(a)] Yz € [a,b].

It follows easily that F' is continuous on [a, b], differentiable on (a,b) and that

(25) F'(z) = f'(z)[g(b) — g(a)] — ¢'(z)[f(b) — f(a)] Vz € (a,b).
Using (24) we find that

(26) F(a) = f(a)g(b) — g(a) f(b) = F(b).

By Rolle’s Theorem, we may choose ¢ € (a,b) such that F’(c) = 0. It follows from
(25) that

(27) F'(©)lg(b) = g(a)] = g'()[f(b) = f(a)] = 0. m

Proof of V.9: Apply Cauchy’s Mean Value Theorem in the special case when g(z) =
x for all x € [a,b] and notice that g(b) — g(a) = b — a and that ¢'(z) = 1 for all
x € (a,b). m

Proof of V.10: Define F,G : B,(zo) — R by

{ f(t) vt e Bj(xo)
(28) F(t) =
0 t =z
g(t) Vvt € B (xo)
(29) G(t) =

Notice that F' and G are continuous on B, (zy), differentiable on By (), and that

(30) F'(t) = f'(t), G'(t) =g'(t) Vte B(xo).

[Indeed, F' and G are differentiable on B;(z0) and (30) holds by virtue of the fact
that F'(t) = f(t) and G(t) = g(t) for all t € By (o). The continuity of F' and G at x
follows from the fact that 0 = F'(z¢) = tlim F(t) = tlim G(t) = G(xo).]

—x0 —x0
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Let € > 0 be given. Then we may choose ¢ > 0 with § < 7 such that

re

(31) <e Vz € Bj(x).

We shall show that

(32) g(x) #0 Vz € Bj(xo)
and
(33) ‘%—E <e Vax € Bj(xg)

For this purpose, let © € Bj(xg) be given. If g(x) = 0 then G(x) = 0 and we may
apply Rolle’s Theorem to G' to deduce the existence of a point ¢ between zy and x
such that G'(¢) = ¢’(¢) = 0. This is a contradiction and consequently g(z) # 0. By
Cauchy’s Mean Value Theorem we may choose ¢, between xy and = such that

(34) [F(z) = F(20)] G'(ca) = [G(z) — Glwo)] F'(cz).

Using (28), (29), and (30) we may rewrite (34) as

(35) f(@)g' () = g(2) f'(cr).
Since g(z) # 0, and ¢'(¢;) # 0, we deduce from (35) that
f@) _ fie)

(36) 9@~ gle)

Since ¢, is between zy and « and = € B3 (o) we conclude that ¢, € B} (xy). Combining
(31) and (36) we arrive at

<e.n

Proof of V.11: Let = € [a,b]\{z.} be given and put

f(x) - Pn(xS x*)
(x — @, )t

(38) M =

Define F' : [a,b] — R by



(39) F(t) = f(t) — Pu(t;2.) — M(t — 2,)"*t WVt € [a,b].
It is not difficult to verify that F' is continuous on [a, b], (n + 1)-times differentiable

on (a,b) and that

(40) F®@)=0, k=0,1,2,...,n

(41) FOrO (@) = f0t D) - M(n+1)! Vit € (a,b)

Moreover, it follows easily from (38) and (39) that

(42) F(z) = 0.

By Rolle’s Theorem, we may choose ¢; between z, and = such that F'(c;) = 0.
Applying Rolle’s Theorem to F’ we may choose ¢, between x, and ¢; such that
F"(¢y) = 0. Continuing in this fashion we may eventually apply Rolle’s Theorem to
F® to choose a point Cny1 between z, and x such that

(43) FOt (e, 0) = 0.

It follows from (40) and (43) that

(44) fr () = M(n+1)!, ie.,
45 M= f(nJrl)(Cn-i-l)
(45)  (n+1)

Combining (38) and (45), we arrive at

oy S ) (@ — )
(46) R, (x;x,) = (;; Y .




