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II. Sequences

By a real sequence we mean a function x : N → R, i.e. a function whose domain
is the set of natural numbers and whose values are real numbers. For each n ∈ N the
function value x(n) is called the nth term of the sequence. It is customary to write xn

in place of x(n) and to denote the sequence by {xn}∞n=1. Although we will generally
adopt the customary notation, it is important to bear in mind that a sequence is a
function. Throughout this section we use the term sequence to mean real sequence.
Most of our effort with sequences will be devoted to understanding how the terms xn

behave when the index n is large.
The central notion pertaining to sequences is that of a limit. Let {xn}∞n=1 be a

sequence and l ∈ R be given. We say that l is a limit of {xn}∞=1 and we write xn → l
as n → ∞ provided that for every ε > 0 there exists N ∈ N such that |xn − l| < ε
for all n ∈ N with n ≥ N . A sequence can have at most one limit. (See Proposition
II.1.) Therefore, if xn → l as n → ∞, we refer to l as the limit of the sequence and
we write lim

n→∞
xn = l.

A. Some Definitions

Let {xn}∞n=1 be a sequence.

Definition 1: We say that {xn}∞n=1 is convergent if there exists l ∈ R such that
xn → l as n →∞.

Definition 2: We say that {xn}∞n=1 is
(i) bounded below if there exists α ∈ R such that xn ≥ α for all n ∈ N.
(ii) bounded above if there exists β ∈ R such that xn ≤ β for all n ∈ N.
(iii) bounded if there exists M ∈ R such that |xn| ≤ M for all n ∈ N.

Definition 3: We say that {xn}∞n=1 is
(i) increasing if xn+1 ≥ xn for all n ∈ N.
(ii) strictly increasing if xn+1 > xn for all n ∈ N.
(iii) decreasing if xn+1 ≤ xn for all n ∈ N.
(iv) strictly decreasing if xn+1 < xn for all n ∈ N.
(v) monotonic if it is either increasing or decreasing.
(vi) strictly monotonic if it is either strictly increasing or strictly decreasing.

Definition 4: We say that {xn}∞n=1 is a Cauchy sequence provided that for every
ε > 0 there exists N ∈ N such that |xm − xn| < ε for all m,n ∈ N with m,n ≥ N .

Definition 5: By a subsequence of {xn}∞n=1 we mean a sequence of the form {xnk
}∞k=1

where {nk}∞k=1 is a strictly increasing sequence of natural numbers.

1



Definition 6: Let l ∈ R be given. We say that l is a cluster point of {xn}∞n=1 provided
that for every ε > 0, {n ∈ N : |xn − l| < ε} is infinite.

Definition 7: Assume that {xn}∞n=1 is bounded. For each n ∈ N put

yn = inf{xk : k ∈ N, k ≥ n},

zn = sup{xk : k ∈ N, k ≥ n}.
Note that {yn}∞n=1 is increasing and bounded above and that {zn}∞n=1 is decreasing
and bounded below. We define

lim inf
n→∞

xn = lim
n→∞

yn and lim sup
n→∞

xn = lim
n→∞

zn.

(Note that {yn}∞n=1 and {zn}∞n=1 are convergent by virtue of Theorem II.6.)

B. Some Key Results

II.1 Proposition: A sequence can have at most one limit.

II.2 Proposition: Every convergent sequence is bounded.

II.3 Proposition: Let `, L, α ∈ R be given and {xn}∞n=1, {yn}∞n=1 be sequences.
Assume that xn → ` and yn → L as n →∞. Then:

(i) xn + yn → ` + L as n →∞;
(ii) αxn → α` as n →∞;
(iii) xnyn → `L as n →∞;
(iv) If xn 6= 0 for all n ∈ N and ` 6= 0, we have 1

xn
→ 1

`
as n →∞.

II.4 Proposition: Let `, L ∈ R be given and {xn}∞n=1, {yn}∞n=1 be sequences. If
xn ≤ yn for all n ∈ N and xn → `, yn → L as n →∞ then ` ≤ L.

II.5 Squeeze Theorem: Let ` ∈ R be given and {xn}∞n=1, {yn}∞n=1, {zn}∞n=1 be
sequences. Assume that xn ≤ yn ≤ zn for all n ∈ N and that xn → `, zn → ` as
n →∞. Then yn → ` as n →∞.

II.6 Theorem: Let {xn}∞n=1 be a sequence.
(i) If {xn}∞n=1 is increasing and bounded above then {xn}∞n=1 is convergent.
(ii) If {xn}∞n=1 is decreasing and bounded below then {xn}∞n=1 is convergent.

II.7 Proposition: Let ` ∈ R be given and {xn}∞n=1 be a sequence. Then ` is a cluster
point of {xn}∞n=1 if and only if there is a subsequence {xnk

}∞k=1 such that xnk
→ ` as

k →∞.

II.8 Proposition: Let {xn}∞n=1 and {yn}∞n=1 be bounded sequences and α ∈ R be
given. Then:
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(i) lim sup
n→∞

(xn + yn) ≤
(

lim sup
n→∞

xn

)
+

(
lim sup

n→∞
yn

)
;

(ii) lim inf
n→∞

(xn + yn) ≥
(
lim inf
n→∞

xn

)
+

(
lim inf
n→∞

yn

)
;

(iii) If α ≥ 0 we have lim sup
n→∞

(αxn) = α lim sup
n→∞

xn and lim inf
n→∞

(αxn) = α lim inf
n→∞

xn;

(iv) lim sup
n→∞

(−xn) = −lim inf
n→∞

xn and lim inf
n→∞

(−xn) = −lim sup
n→∞

xn

II.9 Lemma: Let {xn}∞n=1 be a bounded sequence and ls ∈ R be given. Then
ls = lim sup

n→∞
xn if and only if (i) and (ii) below hold.

(i) ∀ε > 0, ∃N ∈ N such that xn < ls + ε for all n ∈ N with n ≥ N .
(ii) ∀ε > 0, ∀N ∈ N, ∃n ∈ N with n ≥ N such that xn > ls − ε.

II.10 Proposition: Let {xn}∞n=1 be a bounded sequence. Then lim sup
n→∞

xn is the

largest cluster point of {xn}∞n=1 and lim inf
n→∞

xn is the smallest cluster point of {xn}∞n=1.

II.11 Proposition: Let {xn}∞n=1 be a bounded sequence and put li = lim inf
n→∞

xn and

ls = lim sup
n→∞

xn. Let ε > 0 be given. Then there exists N ∈ N such that

li − ε < xn < ls + ε

for all n ∈ N with n ≥ N .

II.12 Proposition: Let {xn}∞n=1 be a bounded sequence. Then {xn}∞n=1 is convergent
if and only if

lim sup
n→∞

xn = lim inf
n→∞

xn.

II.13 Bolzano-Weierstrass Theorem: Every bounded sequence has a convergent
subsequence.

II.14 Theorem (Cauchy’s Criterion): A sequence is convergent if and only if it is a
Cauchy sequence.

II.15 Lemma: Every sequence has a monotonic subsequence.

C. Some Remarks.

II.16 Remark: Let {xn}∞n=1 be a sequence. Then {xn}∞n=1 is
(i) increasing if and only if xm ≥ xn for all m,n ∈ N with m ≥ n.
(ii) strictly increasing if and only if xm > xn for all m,n ∈ N with m > n.
(iii) decreasing if and only if xm ≤ xn for all m,n ∈ N with m ≥ n.
(iv) strictly decreasing if and only if xm < xn for all m,n ∈ N with m > n.

II.17 Remark: Let {nk}∞k=1 be a strictly increasing sequence of natural numbers.
Then nk ≥ k for all k ∈ N.
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II.18 Remark: Let K be an infinite subset of N. Then there is exactly one strictly
increasing sequence {nk}∞k=1 of natural numbers such that {nk : k ∈ N} = K.

II.19 Remark: Let {xn}∞n=1 be a sequence and l ∈ R be given. Then l is a cluster
point of {xn} if and only if for every ε > 0 and every N ∈ N, there exists n ∈ N with
n ≥ N such that |xn − l| < ε.

D. Some Proofs.

Proof of II.1: Let {xn}∞n=1 be a sequence and let l, L ∈ R be given. Suppose that
xn → l as n →∞ and that xn → L as n →∞. We shall show that L = l. Let ε > 0
be given. Choose N1, N2 ∈ N such that

(1) |xn − l| < ε ∀n ∈ N, n ≥ N1,

(2) |xn − L| < ε ∀n ∈ N, n ≥ N2.

Put N = max{N1, N2} and notice that

(3) |xN − l| < ε, |xN − L| < ε.

Now we observe that

(4) l − L = l − xN + xN − L

and consequently

(5) |l − L| ≤ |l − xN |+ |xN − L| < ε + ε = 2ε

by virtue of the triangle inequality and (3). Since ε > 0 was arbitrary, it follows from
(5) that l − L = 0. [Indeed, if l − L 6= 0 then we may put ε = 1

2
|l − L| in (5) which

yields |l − L| < |l − L| and this is impossible.]

Proof of II.2: Let {xn}∞n=1 be a convergent sequence and put l = lim
n→∞

xn. Using the

definition of limit with ε = 1, we choose N ∈ N such that

(6) |xn − l| < 1 ∀n ∈ N, n ≥ N.

Let S = {|x1|, |x2|, . . . |xN |}. Since S is nonempty and finite, it has a largest element.
Let K = max (S) and M = max{1 + |l|, K}. Let n ∈ N be given. If n ≤ N then
|xn| ∈ S so that
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(7) |xn| ≤ K ≤ M.

If n ≥ N , then we have

(8) xn = l + xn − l

which yields

(9) |xn| ≤ |l|+ |xn − l| ≤ |l|+ 1 ≤ M

by virtue of the triangle inequality, (6), and the definition of M . We conclude that
|xn| ≤ M for all n ∈ N, i.e. {xn}∞n=1 is bounded.

Proof of II.3 (i): Let ε > 0 be given. Choose N1, N2 ∈ N such that

(10) |xn − l| < ε

2
∀n ∈ N, n ≥ N1,

(11) |yn − L| < ε

2
∀n ∈ N, n ≥ N2

and put N = max{N1, N2}. Then for all n ∈ N with n ≥ N we have

(12)

|xn + yn − (l + L)| = |(xn − l) + (yn − L)|

≤ |xn − l|+ |yn − L|

< ε
2

+ ε
2

= ε

by virtue of the triangle inequality and (10), (11).

Proof of II.3 (iii): Since {xn}∞n=1 is convergent we may choose M > 0 such that

(13). |xn| ≤ M ∀n ∈ N.

Let ε > 0 be given. Choose N1, N2 ∈ N such that

(14) |xn − l| < ε

2(|L|+ 1)
∀n ∈ N, n ≥ N1,

(15) |yn − L| < ε

2M
∀n ∈ N, n ≥ N2.
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Put N = max{N1, N2}. Then, for all n ∈ N with n ≥ N we have

(16)

|xnyn − lL| = |xnyn − Lxn + Lxn − lL|

= |xn(yn − L) + L(xn − l)|

≤ |xn| · |yn − L|+ |L| · |xn − l|

< M
( ε

2M

)
+

|L|ε
2(|L|+ 1)

< ε

by virtue of (13), (14), (15).

Proof of II.4: Assume that xn ≤ yn for all n ∈ N and that xn → l, yn → L as
n →∞. Put

(17) zn = yn − xn ∀n ∈ N,

(18) α = L− l

and notice that zn ≥ 0 for all n ∈ N and that zn → α as n →∞. We shall show that
α ≥ 0, which yields l ≤ L.

Suppose that α < 0. Then we may choose N ∈ N such

(19) |zn − α| < −α

2
∀n ∈ N, n ≥ N, i.e.

(20)
α

2
< zn − α < −α

2
∀n ∈ N, n ≥ N.

It follows from (20) that

(21) zN <
α

2
< 0

and this is a contradiction (since zn ≥ 0 for all n ∈ N). We therefore conclude that
α ≥ 0 and hence that l ≤ L.

Proof of II.6 (i): Assume that {xn}∞n=1 is increasing and bounded above. Put
S = {xn : n ∈ N} and observe that S is nonempty and bounded above. Let

(22) l = sup(S).
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We shall show that xn → l as n →∞. Let ε > 0 be given. Then l− ε is not an upper
bound for S. We may therefore choose N ∈ N such that

(23) xN > l − ε

Recall that

(24) xn ≤ l ∀n ∈ N.

Since {xn}∞n=1 is increasing we deduce from (23) and (24) that

(25) l − ε < xN ≤ xn ≤ l ∀n ∈ N, n ≥ N.

It follows from (25) that

(26) |xn − l| < ε ∀n ∈ N, n ≥ N.

Proof of II.9: For each n ∈ N, put

(27) Tn = {xk : k ∈ N, k ≥ n},

(28) zn = sup(Tn).

Recall that {zn}∞n=1 is decreasing and that

(29) lim
n→∞

zn = lim sup
n→∞

xn.

Assume first that ls = lim sup
n→∞

xn. We shall show that (i) and (ii) hold. Let ε > 0 be

given. Choose N ∈ N such that

(30) |zn − ls| < ε ∀n ∈ N, n ≥ N.

Then, for all n ∈ N with n ≥ N we have

(31) zn − ls < ε, i.e.

(32) zn < ls + ε,
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which yields

(33) xn ≤ zn < ls + ε

and consequently (i) holds. To verify (ii), let ε > 0 and N ∈ N be given. Since
{zn}∞n=1 is decreasing and zn → ls as n →∞, we know that

(34) zn ≥ ls > ls − ε ∀n ∈ N.

It follows from (34) that l− ε is not an upper bound for TN . We may therefore choose
y ∈ TN with y > ls − ε. By the definition of TN , y = xn for some n ∈ N with n ≥ N .

Conversely, assume now that (i) and (ii) hold. We shall show that ls = lim sup
n→∞

xn.

Let ε > 0 be given. It follows from (ii) that

(35) zn > ls − ε ∀n ∈ N.

Using (i), we choose N ∈ N such that

(36) xn < ls +
ε

2
∀n ∈ N, n ≥ N.

It follows from (36) that

(37) zn ≤ ls +
ε

2
< ls + ε.

Since {zn}∞n=1 is decreasing, (37) yields

(38) zn < ls + ε ∀n ∈ N, n ≥ N.

Combining (35) and (38) we arrive at

(39) |zn − ls| < ε ∀n ∈ N, n ≥ N.

We conclude that zn → ls as n →∞ and consequently ls = lim sup
n→∞

xn.

Proof of II.12: For each n ∈ N, put

(40) Tn = {xk : k ∈ N, k ≥ n},

(41) yn = inf(Tn),
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(42) zn = sup(Tn).

Let l ∈ R be given. Assume first that lim sup
n→∞

xn = lim inf
n→∞

xn = l. We shall show

that xn → l as n →∞. Observe that

(43) yn ≤ xn ≤ zn ∀n ∈ N.

Since yn → l and zn → l as n →∞, it follows from the Squeeze Theorem that xn → l
as n →∞.

Assume now that xn → l as n → ∞. We shall show that yn → l and zn → l as
n →∞. Let ε > 0 be given. Choose N ∈ N such that

(44) |xn − l| < ε

2
∀n ∈ N, n ≥ N, i.e.

(45) − ε

2
< xn − l <

ε

2
∀n ∈ N, n ≥ N.

It follows from (45) that

(46) l − ε

2
< xn < l +

ε

2
∀n ∈ N, n ≥ N.

Using (46) we conclude that l − ε

2
is a lower bound for TN and l +

ε

2
is an upper

bound for TN . It therefore follows that

(47) yN ≥ l − ε

2

(48) zN ≤ l +
ε

2
.

Since {yn}∞n=1 is increasing and {zn}∞n=1 is decreasing we infer from (47), (48) that

(49) l − ε

2
≤ yN ≤ yn ≤ zn ≤ zN ≤ l +

ε

2
∀n ∈ N, n ≥ N.

It follows immediately from (49) that

(50) |yn − l| ≤ ε

2
< ε ∀n ∈ N, n ≥ N,
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(51) |zn − l| ≤ ε

2
< ε ∀n ∈ N, n ≥ N,

i.e. yn → l and zn → l as n →∞.

Proof of II.13: Let {xn}∞n=1 be a bounded sequence and put ls = lim sup
n→∞

xn. It

follows easily from Lemma II.9 that ls is a cluster point of {xn}∞n=1. By Proposition
II.7, there is a subsequence {xnk

}∞n=1 of {xn}∞n=1 such that xnk
→ ls as n →∞.

Proof of II.14: Let {xn}∞n=1 be a sequence. Assume first that {xn}∞n=1 is convergent
and put l = lim

n→∞
xn. Let ε > 0 be given and choose n ∈ N such that

(52) |xn − l| < ε

2
∀n ∈ N, n ≥ N.

Observe that for all m,n ∈ N with m,n ≥ N we have

(53) xm − xn = xm − l + l − xn,

which yields

(54) |xm − xn| ≤ |xm − l|+ |l − xn| < ε

2
+

ε

2
= ε

by virtue of the triangle inequality and (54).
Assume now that {xn}∞n=1 is a Cauchy sequence. We shall first show that {xn}∞n=1

is bounded. For this purpose, we choose N∗ ∈ N such that

(55) |xm − xn| < 1 ∀m,n ∈ N, m, n ≥ N∗.

Put S = {|x1|, |x2|, . . . |xN∗ |} and let K = max (S). Then, put M = max{K, |xN∗ |+
1}. Let n ∈ N be given. If n ≤ N∗ then

(56) |xn| ≤ K ≤ M.

If n ≥ N∗ then

(57) |xn| ≤ |xn − xN∗|+ |xN∗ | < 1 + |xN∗ | ≤ M.

We conclude that |xn| ≤ M for all n ∈ N, i.e. {xn}∞n=1 is bounded.
By the Bolzano-Weierstrass Theorem we may choose a convergent subsequence

{xnk
}∞n=1. Let l = lim

k→∞
xnk

. We shall show that xn → l as n → ∞. Let ε > 0 be

given. Choose K, N ∈ N such that

10



(58) |xnk
− l| < ε

2
∀k ∈ N, k ≥ K

(59) |xm − xn| < ε

2
∀m,n ∈ N, m, n ≥ N.

We choose k∗ ∈ N such that k∗ ≥ K and nk∗ ≥ N . (Notice that k∗ = max {K, N}
will do.) Then, for all n ∈ N with n ≥ N we have

(60) xn − l = xn − xnk∗ + xnk∗ − l,

which gives

(61) |xn − l| ≤ |xn − xnk∗ |+ |xnk∗ − l| < ε

2
+

ε

2
= ε

by virtue of (58), (59), and the triangle inequality.
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