Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Coding with
Naturals

Logic and In-
completeness

Arithmetic and Incompleteness

Will Gunther

February 6, 2013

@ Goals

@® Coding with Naturals

© Logic and Incompleteness

«O>r «Fr <

it
it
v

DA

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Things talk
e Will approach from

angle of computation.

e Will not assume very
much knowledge.

e Will “prove” Godel's
Incompleteness
Theorem.

About Talk

e Will not talk much
about first order logic.

o Will not even write
down any axioms of
arithmetic.

o Will not talk about
every detail.

Arithmetic
and Incom-
pleteness

Will Gunther

Goals

Things to Take Away

@ Arithmetic is powerful.
® Incompleteness is an obvious corollary of (1).

© Incompleteness is not frustrating.

Arithmetic
and Incom-

pleteness The blg theorems

Will Gunther

Goals

There are three "big theorems” which make up incompleteness.
We will prove two.
e Godel's $ Function Lemma There is a very computable
way to code sequences of natural numbers.
e Godel’s Representability Theorem All primitive
recursive functions can be represented in Peano's
Arithmetic (omitted).

e Godel’s Diagonal Lemma Formulas have “fixed points”

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

What are Natural Numbers?

e The Natural Numbers are the numbers 0,1,2,. ...

e We can define them inductively as the smallest set
containing 0, and closed under the operation of taking a

SUCCESSOr.
e This is a circular definition in the eyes of mathematical
foundations.
Problem to Ponder: How can we better define the natural

numbers to be more pure with respect to foundations?
This question invites writing down axioms for how numbers

behave.

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

What can we do with Natural
Numbers?

We will be particularly diligent in deciding what we can do
with natural numbers. For instance, we will not give
ourselves the power to do arbitrary calculations on the
natural numbers.

Instead, we want to capture what simple operations we
can do on natural numbers. There are several approaches.

Approach One: Addition and multiplication are the only
thing we can do.

Result: Arithmetic is fairly boring.

Approach Two: We can do addition, multiplication, and

define things by induction.
Result: Arithmetic becomes self-aware.

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Primitive Recursion

A function f : N7 — N is primitive recursive if and only if it is
one of the following:

f(x1,...,%x,) =0
f(x1,...,%n) = s(x1) where s is the successor operation.
f(x1,...,%n) = x; for some 1 < <n.
f(x1,...,xn) = h(gi(x1,---y%n)s- ., 8k(X1,-..,xn)) where
h, g primitive recursive.
f(Xl, e ,Xn) =

g(x1,...,Xn) if xg=0

h(x1, ..y Xn, F(X*, X2, ..., X)) if x1 = s(x¥)

where h, g are primitive recursive.

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

What is Primitive Recursive

e What is a function that is not primitive recursive?

Answer: It doesn't matter.
e In a computability class, primitive recursive functions are

just the first stopping point.
e For us, it's all(ish) we need. Because...

Fact
Most functions are primitive recursive.

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Coding with Primitive Recursive
Functions
We have the above language of primitive recursive functions,
and our goal is the following theorem:

Theorem (Godel's 3 function lemma)

There is a primitive recursive function 3 : N> — N such that

for any sequence of natural numbers (a1, az, ..., an) there is a
natural number a such that for every 1 < i <n

B(a,i) = aj
a is called the code for the sequence (a1, ..., an)

The above theorem is the heart of incompleteness. It should
tell you, if you look at the naturals just as 0,1,2,... then
you're wrong. The information that is encoded in the natural
numbers is immense.

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Let's add and multiply first...

As a toy project, let's define the function + : N> — N which
represents addition. This is a simple definition by recursion:

£ —
Xty = ma(x,y) | x=0
s(x*+y) if x =s(x¥)

Now, it's not difficult to define multiplication.

0 ifx=0
Xy = .
y+(x*-y) if x=s(x*)

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Now let's subtract

Subtracting is a little more tricky perhaps. Note it's not always
possible. For instance, what is 5 — 107 So we restrict ourselves
to cut-off subtraction. That is, subtraction but it cuts off at 0.
First, we define the predecessor function, which is not too hard.

o) = {o* if x=0

x*if x = s(x*)

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Now, doing x — y is just a matter of iterating this operation

several times!
ify=0

T {p(x —y") ify=s(y")

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Coding Booleans

For our purposes, T will be the constant function 1, and L will
be the constant function 0. Now, we define some simple
booleans operations.

®* XAy =X-y

e xVy:=(x+y)—(x-y)

e —x =1—x

Cases

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

We will define a function x?y : z which outputs y if x is T and

z if x is L as follows:
z ifx=0

(x?y :z) = {
y

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Relations and Characteristic

Functions

A binary relation on N can be expressed as a function
T if R(x,y

Fley) = {L)

Using this, we can talk about defining a relation using primitive
recursive functions too. The relation < is definable.

x<y:=(x—y)?L:T

Then of course equality and < can be defined:

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Bounded Search

| can return the first value of x smaller then b for which some

relation is true.
if b=20

(e FON =7

Nx<bf(x) =
(F(b%)?7b" = b) : (px<bf(x))

This easily allow us to do to ask if there is some x < b such

that some function is true.
E|><<bf-(x) = ((Mx<bf(X)) = b)7J_ T

And one can write Vy<pf(x) := = (Ix<p—f(x))

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Back to Division

Now, we can determine whether x divides y.
X|y =3,cyx-z=y
This also gives us a primality test.
isPrime(x) :==V,«x(z=1) V =(z | x)

And we can even calculate the nth prime with the knowledge

there is a prime between p and 2p.
if n=20

2
pr(n) := . o
fz<2.pr(ns)(z > pr(n*)) AisPrime(2)

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Integer Division and Modulus

We can calculate an integer division.

x+yi=y—(fzeyx-(y —2) < y)

And the remainder is of course:

x%y = pzcy(y - (x+y)+2)=y

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Theorem (Godel's 5 function lemma)

There is a primitive recursive function 3 : N> — N such that
for any sequence of natural numbers (a1, az, . . .,
natural number a such that for every 1 < i <n

B(a, i) = aj

a is called the code for the sequence (ay, . ..

,an)

ap) there is a

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Proof of Godel's (3

Proof.
Step 1: We find a way to encode a pair (a, b). There are a few

ways to do this. The earliest example is due to Cantor, and is
the "dovetailing” bijection you probably have seen. Another
technique is with Kleene's Pairing Function:

n(a,b) = 2°(2b + 1)

We want to know that we can decode this using a primative
recursive function.

m1(p) = pz<p((p +27)%2 = 1)

m(p) = ((p+2"P)) —1) =2

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

Chinese Remainder Theorem

Recall the following theorem from antiquity.
Theorem (Chinese Remainder Theorem)

For every sequence as, ..., ap, if p1,...,py are relatively prime

then there is a number u such that

u=a; mod p;

u=a mod p>

u=a, mod p,

u is the unique such number less than [] p;

Arithmetic
and Incom-
pleteness

Will Gunther

Coding with
Naturals

B lemma proof continued

[lemma proof continued...

Step 2: Be clever, and use CRT. Consider the sequence
(a1,...,an). Let N be the maximum of a,...,apn, n.

Claim that N1 41, 2N! +1, ... nN! 4+ 1 are all relatively prime.
Otherwise, there is some j that divides two of them, so it
divides the difference, so it divides N!, so j < N. But of course
no j < N can divide kN! 4 1.

Let u be obtained by CRT so that v = a; mod iN! + 1.

Code the sequence (a1, ..., a,) as the pair w(N!, u).

B(U, i) =m(U) % (i - m(U)+ 1)

Arithmetic
and Incom-

pleteness TO Loglc
Will Gunther
e We have avoided talking about formal logic thus far, and
we will continue to avoid a lot of details.
e The important thing is, using the § function, we can

Logic and In-

completeness represent all the information we'd ever want to about logic
in arithmetic.
o "x;1:=(0,1)
° r¢ A wj = <17r¢‘|’ rw‘|>
° '_VX.(b—' = <2,'_X~','_¢—'>
e etc.

These are call Godel numbers of the formulas. Every
formula has a Godel number. Now, questions about logic
can be answers just by arithmetic of the numbers.

Theorem
There is a primitive recursive function isWFF which can identify
if a given natural number is the Godel number of a formula.

Arithmetic
and Incom-

pleteness What's in a Proof?

Will Gunther

A proof is a sequence of formulas where each is either an
_ axiom or obtained from previous formulas by modus
Logic and In- i i i i
il ponens (ie. if P and P — Q are listed earlier, we can now
list Q).
e As formulas can be Godel numbered with natural
numbers, proofs can also be Godel numbered as they are
nothing more than sequences of formulas.

e We would like it if there were a function which recognizes
whether a Godel number is a valid proof.

e This might not always be the case for every axiomatic
system. What is required is that the axioms are “simple”
to describe.

Arithmetic
and Incom-

pleteness Assumption: Simple list of Axioms

Will Gunther

Logic and In- e Our system is something in the language of arithmetic (so
completeness there is + and - and 0 and 1)

e We will assume that the axioms of our system are simple
enough there there is a primitive recursive function that
can decide whether a given formula is an axiom (so there
is a primitive recursive function that can decide if a
sequence of formulas is a proof).

e This is a reasonable assumption. (Peano's Arithmetic and
ZFC both have simple axiom system, for example).

Arithmetic
and Incom-
pleteness

Will Gunther

Logic and In-
completeness

Assumption: Expressive

We assume our system is sufficiently expressive. That is, the

following is true :
For every primitive recursive function f(xi,...,x,) there is a

formula ¢(x1, ..., xn,y) such that
(X1, .., xn) =y <= F o(x1,...,Xn,Y)

This was proven by Godel to hold for Peano Arithmetic. We
will not prove this.

Arithmetic
and Incom-
pleteness

Will Gunther

Logic and In-
completeness

Fixed Point Theorem

Theorem
For every formula ¢(x) with one free variable, there is a

sentence 1) such that

< o("yYT)

Assume this is true momentarily.

Arithmetic
and Incom-
pleteness

Will Gunther

Logic and In-
completeness

Incompleteness

Theorem
Our system is incomplete.

Proof.
We need to find a sentence 1) such that neither 1) nor =1 have

a proof.

e Let ¢(x) be the formula Jy.y is the Godel number of a
proof of —x.

e By the fixed point theorem these is v such that
P("Y7) < 9.

e Thus v is true if and only if there is a proof of —.

e As we are assuming our system doesn’t prove
contradictions, we can neither prove ¥ nor =)

Arithmetic
and Incom-
pleteness

Will Gunther

Logic and In-
completeness

Proof of Fixed Point Theorem

Proof.
Step 1: The function App : N2> — N is primitive recursive,
which does the following:

App(n, m) = "¢(m)"

Where "¢(x)" = n. This isn't hard to see; you just do cases on
what kind of formula n represents and do the substitution
inductively.

Define f : N — N by

f(x) = ApP(x, %)

Arithmetic
and Incom-
pleteness

Will Gunther

Logic and In-
completeness

Proof of Fixed Point Theorem
continued

Proof.
Step 2: Recall our language is expressive. So there is some

formula 6¢(x, y) such that:

Or(x,y) <= y="f(x)

Consider the formula:

p(x) == Vy.0r(x,y) = é(y)

It is easy to see that this formula is equivalent to ¢(f(x));
therefore we have:

w(x) <= ¢(App(x,x))

Arithmetic
and Incom-
pleteness

Will Gunther

Logic and In-
completeness

Proof of Fixed Point Theorem
continued

Proof.
Step 3: Instantiate the formula p(x) at it's own Godel number

Tu(x)™. Then:
p("p(x)7) = d(App("u(x)7,"u(x)T))
= o("u("u(x)")")

So, set ¥ := pu("p(x)7). So v = o("Y").

	Goals
	Coding with Naturals
	Logic and Incompleteness

