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1 Objectives

• Continue exploring ideas of linear transformations.

• Define range and kernel of a linear transformation.

• Expand ideas of functions to ideas of linear transformations.

• Define a homomorphism and isomorphism.

2 Summary

• Here’s some non-examples:

1. T : M22 → R by T (A) = det(A)

2. T : R→ R by T (x) = 2x

3. T : R→ R by T (x) = x + 1

• There are some transformations that are useful:

– If V and W are vector spaces then zero transformation from V to W , defined
by:

T (v) = 0

is a linear transformation.

– If V is a vector space the identity transformation is a linear operator on V
defined by

T (v) = v

– If W is a subspace of V then the inclusion transformation is a transforma-
tion from W to V defined by

T (v) = v

• Linear transformations (as in the case of Rn) are completely determined by a basis.

Theorem Suppose V and W are vector spaces. Let B be a basis for V , and
let T ′ : B → W be a function from B to W . Then there exists a unique linear
transformation T : V →W .

Proof.
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Theorem Suppose V and W are vector spaces. Let T : V → W be a linear
transformation, and S a spanning set for V . Then T (S) = {T (v) | v ∈ S } spans
the range.

Proof.

• As with functions (and linear transformations) we can define the composition of
the maps T : U → V and S : V →W as follows:

(S ◦ T )(u) = S(T (u))

where u ∈ U .

• We can also define what it means for a linear transformation to be invertible. We
say T : U → V linear transformation is invertible if there is some map (which,
incidentally, will be a linear transformation), which we call T−1 : V → U such that:

T ◦ T−1 = IV T−1 ◦ T = IU

Remark Note that we only talked about invertibility with square matrices before;
that is, when the domain and codomain were the same. We do not have this
restriction anymore. That said, we could have imposed this definition for matrix
multiplication as well, it’s just that only square matrices would have been invertible
(which will be a consequent of our future studies).

Inverses, as before, are unique if they exist.

Example Consider the following map T : R3 → P 2:

T

a
b
c

 = a + bx + cx2

This map is invertible. It’s inverse is given by:

T−1(a + bx + cx2) =

a
b
c


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• There were two subspaces that we saw when we viewed a matrix as a linear trans-
formation: it’s range and it’s null space. In the context of arbitrary vector spaces,
we will call the null space the kernel, and denote it ker(T ). The range of T will be
denoted range(T ). They have the same definitions:

If T : U → V then
ker(T ) = {u ∈ U | Tu = 0 }

and
range(T ) = {v ∈ V | ∃u. Tu = v }

Example Consider the map T : R2 → P3 defined by

T

(
a
b

)
= a + bx + bx2

Example Consider the map T : P 3 → P 2 defined by:

T (ax2 + bx + c) = 2ax + b

• As before, we have the following property:

Theorem If T : U → V is a linear transformation:

1. ker(T ) is a subspace of U .

2. range(T ) is a subspace of V

The proof is the same as it was.

• As they are subspaces we can make the same definitions for the rank and the nullity.

The rank of a linear transformation T : U → V is the dimension of it’s range; we
call it rank(T ). Its nullity is the dimension of its kernel; we denote it nullity(T ).

Example Define the map T : P1 → R by

T (p(x)) =

∫ 1

0

p(x) dx

• We had a very strong theorem that came with many consequences for our study of
transformations on Rn: The Rank Theorem. This theorem carries over for all finite
dimensional vector spaces:
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Theorem If T : U → V is a linear transformation between finite dimensional vector
spaces then:

rank(T ) + nullity(T ) = dimU

Proof.

• If you took concepts, you can recall there are two properties a function can have
that are of particular interest: one-to-one and onto.

A function f : A→ B is onto (or surjective) if for every b ∈ B there is some a ∈ A
such that f(a) = b. That is: everything in the codomain is hit by the function.

A function f : A→ B is one-to-one (or (injective) if for every a1, a2 ∈ A we have
f(a1) = f(a2) then a1 = a2. That is, things only get hit once.

Example The maps above: which were onto, one-to-one, both, or neither?

• These are of interest for linear transformations because they tell us about aspects
of the spaces ker(T ) and range(T ).

Theorem If T : U → V is a linear transformation then

– T is onto if and only if range(T ) = V .

– T is 1-1 if and only if ker(T ) = {0}.

Proof.

Theorem If T is a linear transformation on a finite dimensional vector space then
it is one to one if and only if it is onto.
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